Oral Gels as an Alternative to Liquid Pediatric Suspensions Compounded from Commercial Tablets
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Hydrogels
2.3. Short-Term Stability Studies
2.4. Analysis of Viscosity, Rheology, and Texture of Oral Hydrogels
2.5. HPLC Analysis of the Drug Content
3. Results and Discussion
3.1. Visual and Microscopic Observations
3.2. pH Measurements
3.3. Viscosity, Rheology and Consistency
3.4. Chemical Stability of VAL and CC in Oral Hydrogels
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thabet, Y.; Klingmann, V.; Breitkreutz, J. Drug formulations: Standards and novel strategies for drug administration in pediatrics. J. Clin. Pharmacol. 2018, 58, S26–S35. [Google Scholar] [CrossRef] [PubMed]
- Malkawi, W.A.; AlRafayah, E.; AlHazabreh, M.; AbuLaila, S.; Al-Ghananeem, A.M. Formulation challenges and strategies to develop pediatric dosage forms. Children 2022, 9, 488. [Google Scholar] [CrossRef] [PubMed]
- WHO. Development of Paediatric Medicines: Points to Consider in Formulation. WHO Tech. Rep. Series. 2012, 970, 197–225. Available online: https://www.who.int/publications/m/item/trs970-annex-5-development-of-paediatric-medicines-points-to-consider-in-formulation (accessed on 12 September 2024).
- Alessandrini, E.; Brako, F.; Scarpa, M.; Lupo, M.; Bonifazi, D.; Pignataro, V.; Cavallo, M.; Cullufe, O.; Enache, C.; Nafria, B.; et al. Children’s preferences for oral dosage forms and their involvement in formulation research via EPTRI (European Paediatric Translational Research Infrastructure). Pharmaceutics 2021, 13, 730. [Google Scholar] [CrossRef]
- Lopalco, A.; Denora, N. Paediatric formulation: Design and development. Int. J. Mol. Sci. 2020, 21, 7118. [Google Scholar] [CrossRef]
- Zanden, T.M.; Mooij, M.G.; Vet, N.J.; Neubert, A.; Rascher, W.; Lagler, F.B.; Male, C.; Grytli, H.; Halvorsen, T.; de Hoog, M.; et al. Benefit-risk assessment of off-label drug use in children: The Bravo framework. Clin. Pharmacol. Ther. 2021, 110, 952–965. [Google Scholar] [CrossRef]
- Petkova, V.; Georgieva, D.; Dimitrov, M.; Nikolova, I. Off-label prescribing in pediatric population—Literature review for 2012–2022. Pharmaceutics 2023, 15, 2652. [Google Scholar] [CrossRef]
- Richey, R.H.; Shah, U.U.; Peak, M.; Craig, J.V.; Ford, J.L.; Barker, C.E.; Nunn, A.J.; Turner, M.A. Manipulation of drugs to achieve the required dose is intrinsic to paediatric practice but is not supported by guidelines or evidence. BMC Pediatr. 2013, 13, 81. [Google Scholar] [CrossRef]
- Andersson, Å.; Lindemalm, S.; Eksborg, S. Dividing the tablets for childrenGood or bad? PHME 2016, 7, 23–27. [Google Scholar] [CrossRef]
- Orubu, E.S.; Tuleu, C. Medicines for children: Flexible solid oral formulations. Bull World Health Organ. 2017, 95, 238–240. [Google Scholar] [CrossRef]
- Richey, R.H.; Hughes, C.; Craig, J.V.; Shah, U.U.; Ford, J.L.; Barker, C.E.; Peak, M.; Nunn, A.J.; Turner, M.A. A systematic review of the use of dosage form manipulation to obtain required doses to inform use of manipulation in paediatric practice. Int. J. Pharm. 2017, 518, 155–166. [Google Scholar] [CrossRef] [PubMed]
- Woods, D.J. Extemporaneous Formulations of Oral Liquids a Guide. Available online: https://pharma7roro.wordpress.com/wp-content/uploads/2010/06/extemprep1.pdf (accessed on 31 July 2024).
- Patel, S.; Scott, N.; Patel, K.; Mohylyuk, V.; McAuley, W.J.; Liu, F. Easy to swallow “Instant” jelly formulations for sustained release gliclazide delivery. J. Pharm. Sci. 2020, 109, 2474–2484. [Google Scholar] [CrossRef] [PubMed]
- Mohylyuk, V.; Patel, K.; Scott, N.; Richardson, C.; Murnane, D.; Liu, F. Wurster fluidised bed coating of microparticles: Towards scalable production of oral sustained-release liquid medicines for patients with swallowing difficulties. AAPS PharmSciTech 2019, 21, 3. [Google Scholar] [CrossRef] [PubMed]
- Dashevskiy, A.; Mohylyuk, V.; Ahmed, A.R.; Kolter, K.; Guth, F.; Bodmeier, R. Micropellets coated with Kollicoat® Smartseal 30D for taste masking in liquid oral dosage forms. Drug Dev. Ind. Pharm. 2017, 43, 1548–1556. [Google Scholar] [CrossRef] [PubMed]
- Silva, M.R.M.; Dysars, L.P.; Santos, E.P.; Ricci Júnio, E. Preparation of extemporaneous oral liquid in the hospital pharmacy. Braz. J. Pharm. Sci. 2020, 56, 18358. [Google Scholar] [CrossRef]
- Stegemann, S. Patient centric drug product design in modern drug delivery as an opportunity to increase safety and effectiveness. Expert Opin. Drug Deliv. 2018, 15, 619–627. [Google Scholar] [CrossRef]
- Timpe, C.; Stegemann, S.; Barrett, A.; Mujumdar, S. Challenges and opportunities to include patient-centric product design in industrial medicines development to improve therapeutic goals. Br. J. Clin. Pharmacol. 2020, 86, 2020–2027. [Google Scholar] [CrossRef]
- O’Brien, F.; Clapham, D.; Krysiak, K.; Batchelor, H.; Field, P.; Caivano, G.; Pertile, M.; Nunn, A.; Tuleu, C. Making medicines baby size: The challenges in bridging the formulation gap in neonatal medicine. Int. J. Mol. Sci. 2019, 20, 2688. [Google Scholar] [CrossRef]
- Menditto, E.; Orlando, V.; De Rosa, G.; Minghetti, P.; Musazzi, U.M.; Cahir, C.; Kurczewska-Michalak, M.; Kardas, P.; Costa, E.; Lobo, J.M.S.; et al. Patient centric pharmaceutical drug product design—The impact on medication adherence. Pharmaceutics 2020, 12, 44. [Google Scholar] [CrossRef]
- Musko, M.; Sznitowska, M. Use of compounded dispersing media for extemporaneous pediatric syrups with candesartan cilexetil and valsartan. Acta Pharm. 2014, 64, 463–474. [Google Scholar] [CrossRef]
- Passariello, A.; Nocerino, R.; Terrin, G.; Cecere, G.; De Marco, G.; Micillo, M.; Pezzella, V.; Cosenza, L.; Malamisura, M.; Maddalena, Y.; et al. Acceptability and efficacy of a gel hypotonic oral rehydration solution in children with acute gastroenteritis. Eur. J. Gastroenterol. Hepatol. 2015, 27, 523–526. [Google Scholar] [CrossRef] [PubMed]
- Mawazi, S.M.; Al-Mahmood, S.M.A.; Chatterjee, B.; Hadi, H.A.B.; Doolaanea, A.A. Carbamazepine gel formulation as a sustained release epilepsy medication for pediatric Use. Pharmaceutics 2019, 11, 488. [Google Scholar] [CrossRef] [PubMed]
- Edwards, T.; Liu, G.; Hegarty, J.E.; Crowther, C.A.; Alsweiler, J.; Harding, J.E. Oral dextrose gel to prevent hypoglycaemia in at-risk neonates. Cochrane Database Syst. Rev. 2021, 5, 5, Erratum in Cochrane Database Syst Rev. 2023, 1–38. [Google Scholar] [CrossRef]
- FDA. Atacand, Drug Information. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/020838s041lbl.pdf (accessed on 30 July 2024).
- Schaefer, F.; Zurowska, A.; Gimpel, C.; Van Hoeck, K.; Drozdz, D.; Montini, G.; Bagdasorova, I.V.; Sorof, J.; Sugg, J.; Teng, R.; et al. Candesartan in children with hypertension investigators. Efficacy, safety and pharmacokinetics of candesartan cilexetil in hypertensive children from 1 to less than 6 years of age. J. Hypertens. 2010, 28, 1083–1090. [Google Scholar] [CrossRef]
- Stat Pearls. Candesartan Information. Available online: https://www.ncbi.nlm.nih.gov/books/NBK519501/ (accessed on 30 July 2024).
- HIP. Study to Characterize the Long-Term Clinical Experience of Atacand in Hypertensive Children Ages 1 to <11 Years (Hypertension in Pediatrics). Available online: https://www.astrazenecaclinicaltrials.com/study/D2451C00006/ (accessed on 30 July 2024).
- EMA. Atacand, Drug Information. Available online: https://www.ema.europa.eu/en/medicines/human/referrals/atacand (accessed on 30 July 2024).
- MedLibrary, Candesartan Cilexetil Drug Information. Available online: https://medlibrary.org/lib/rx/meds/candesartan-cilexetil/page/3/#ID_4CCA141E-2679-47D6-B3E3-C57F1413B855 (accessed on 30 July 2024).
- Redon, J.; Seeman, T.; Pall, D.; Suurorg, L.; Kamperis, K.; Erdine, S.; Wühl, E.; Mancia, G. Narrative update of clinical trials with antihypertensive drugs in children and adolescents. Front. Cardiovasc. Med. 2022, 9, 1042190. [Google Scholar] [CrossRef]
- Siddiqui, N.; Husain, A.; Chaudhry, L.; Alam, M.S.; Mitra, M.; Bhasin, P.S. Pharmacological and pharmaceutical profile of valsartan: A review. J. Appl. Pharm. Sci. 2011, 1, 12–19. Available online: https://japsonline.com/admin/php/uploads/54_pdf.pdf (accessed on 31 July 2024).
- Darwhekar, G.N.; Jain, D.K.; Chouhan, J. Biopharmaceutical classification of candesartan and candesartan cilexetil. Asian J. Pharm. Life Sci. 2012, 2, 295–302. Available online: https://api.semanticscholar.org/CorpusID:55243030} (accessed on 31 July 2024).
- Candesartan Cilexetil Characteristics. PubChem Information. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Candesartan-cilexetil (accessed on 29 August 2024).
- Valsartan Characteristics. PubChem Information. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/valsartan (accessed on 29 August 2024).
- Diovan FDA Information, Actualisied 2021. Available online: https://www.fda.gov/drugs/development-approval-process-drugs/drug-approvals-and-databases (accessed on 30 July 2024).
- Lou-Meda, R.; Stiller, B.; Antonio, Z.L.; Zielinska, E.; Yap, H.K.; Kang, H.G.; Tan, M.; Glazer, R.D.; Valentin, M.A.; Wang, L. Long-term safety and tolerability of valsartan in children aged 6 to 17 years with hypertension. Pediatr. Nephrol. 2019, 34, 495–506. [Google Scholar] [CrossRef]
- Schaefer, F.; Coppo, R.; Bagga, A.; Senguttuvan, P.; Schlosshauer, R.; Zhang, Y.; Kadwa, M. Efficacy and safety of valsartan in hypertensive children 6 months to 5 years of age. J. Hypertens. 2013, 31, 993–1000. [Google Scholar] [CrossRef]
- Schaefer, F.; Litwin, M.; Zachwieja, J.; Zurowska, A.; Turi, S.; Grosso, A.; Pezous, N.; Kadwa, M. Efficacy and safety of valsartan compared to enalapril in hypertensive children: A 12-week, randomized, double-blind, parallel-group study. J. Hypertens. 2011, 29, 2484–2490. [Google Scholar] [CrossRef]
- Diovan 3 mg/mL Oral Solution—Summary of Product Characteristics. Available online: https://www.medicines.org.uk/emc/product/5991/smpc#gref (accessed on 30 July 2024).
- Diovan® (Valsartan) Tablets, for Oral Use. Patient Information Approved by the U.S. Food and Drug Administration. 2021. Available online: https://www.novartis.com/us-en/sites/novartis_us/files/diovan.pdf (accessed on 31 July 2024).
- Candesartan Extemporaneous Syrups, Drug Monograph. Available online: https://publications.aap.org/pediatriccare/drug-monograph/18/4996/Candesartan?autologincheck=redirected (accessed on 30 July 2024).
- Candesartan Extemporaneous Syrups, Formula Preparation. Available online: https://compoundingtoday.com/Formulation/SearchByKeyword.cfm (accessed on 31 July 2024).
- Candesartan Extemporaneous Syrup, Formula Preparation. Available online: https://medilib.ir/uptodate/show/17058 (accessed on 31 July 2024).
- Younes, M.; Aquilina, G.; Engel, K.H.; Fowler, P.; Frutos Fernandez, M.J.; Fürst, P.; Gürtler, R.; Gundert-Remy, U.; Husøy, T.; Manco, M.; et al. Safety evaluation of crosslinked polyacrylic acid polymers (carbomer) as a new food additive. EFSA J. 2021, 19, 06693. Available online: https://efsa.onlinelibrary.wiley.com/doi/pdf/10.2903/j.efsa.2021.6693 (accessed on 31 July 2024).
- Carbopol® 934P NF Polymer Characteristic, Lubrizol Pharmaceuticals. Available online: https://www.lubrizol.com/Health/Pharmaceuticals/Excipients/Carbopol-Polymer-Products/Carbopol-934P-NF-Polymer (accessed on 30 July 2024).
- Malkin, A.Y.; Derkach, S.R.; Kulichikhin, V.G. Rheology of gels and yielding liquids. Gels 2023, 9, 715. [Google Scholar] [CrossRef] [PubMed]
- Wróblewska, M.; Słyż, J.; Winnicka, K. Rheological and textural properties of hydrogels, containing sulfur as a model drug, made using different polymers types. Polimery 2019, 64, 208–2015. [Google Scholar] [CrossRef]
- Texture Analysis, Back Extrusion Ring (A/BE). Available online: https://textureanalysisprofessionals.blogspot.com/2015/02/texture-analysis-in-action-back.html (accessed on 31 July 2024).
- Tomczykowa, M.; Wróblewska, M.; Winnicka, K.; Wieczorek, P.; Majewski, P.; Celińska-Janowicz, K.; Sawczuk, R.; Miltyk, W.; Tryniszewska, E.; Tomczyk, M. Novel gel formulations as topical carriers for the essential oil of Bidens tripartita for the treatment of candidiasis. Molecules 2018, 23, 2517. [Google Scholar] [CrossRef]
- Hurler, J.; Engesland, A.; Poorahmary Kermany, B.; Škalko-Basnet, N. Improved texture analysis for hydrogel characterization: Gel cohesiveness, adhesiveness, and hardness. J. Appl. Polym. Sci. 2012, 125, 180–188. [Google Scholar] [CrossRef]
- Wróblewska, M.; Szekalska, M.; Hafner, A.; Winnicka, K. Oleogels and bigels as topical drug carriers for ketoconazole—Development and in vitro characterization. Acta Pol. Pharm. 2018, 75, 777–786. Available online: https://ptfarm.pl/download/?file=File%2FActa_Poloniae%2F2018%2F3%2F777.pdf (accessed on 31 July 2024).
- Wróblewska, M.; Szymańska, E.; Winnicka, K. The Influence of tea tree oil on antifungal activity and pharmaceutical characteristics of Pluronic® F-127 gel formulations with ketoconazole. Int. J. Mol. Sci. 2021, 22, 11326. [Google Scholar] [CrossRef]
- Brookfield Ametek. Food and Beverage Applications. Available online: https://www.brookfieldengineering.com/brookfield-university/learning-center/application-notes/texture-applications/food-and-beverage/cheese-triangles (accessed on 31 July 2024).
- European Pharmacopoeia, 11th ed.; Council of Europe: Strasburg, France, 2023.
- El-Gizawy, S.M.; Abdelmageed, O.H.; Omar, M.A.; Deryea, S.M.; Abdel-Megied, A.M. Development and validation of HPLC method for simultaneous determination of amlodipine, valsartan, hydrochlorothiazide in dosage form and spiked human plasma. Am. J. Anal. Chem. 2012, 3, 422–430. [Google Scholar] [CrossRef]
- Madhavi, K.; Navamani, M.; Prasanthi, C. Simple analytical method for the simultaneous estimation of hydrochlorothiazide and candesartan by RP-HPLC. Int. J. Appl. Pharm. 2017, 9, 34–38. [Google Scholar] [CrossRef]
- Revathi, R.; Saravanan, V.S.; Ethiraj, T.; Marreddy, J.L. RP-HPLC Analysis for quantitation of candesartan cilexetil in solid dosage forms. Asian J. Pharm. Anal. 2013, 3, 115–118. Available online: https://ajpaonline.com/AbstractView.aspx?PID=2013-3-4-2 (accessed on 31 July 2024).
- Sharma, T.; Moitra, S.; Si, S.; Sankar, D. Development and validation of a HPLC method for the determination of valsartan and its degradation products in pharmaceutical formulation. Int. J. Pharm. Pharm. Sci. 2012, 4, 503–505. Available online: https://www.innovareacademics.in/journal/ijpps/Vol4Issue2/3530.pdf (accessed on 31 July 2024).
- Vinzuda, D.U.; Sailor, G.U.; Sheth, N.R. RP-HPLC Method for Determination of Valsartan in Tablet Dosage Form. Int. J. Chem. Tech. Res. 2010, 2, 1461–1467. Available online: https://sphinxsai.com/july-sept_2010_vol2.3/chemtech/chemtechvol2.3july-sept210/CT=16%20(1461-1467).pdf (accessed on 31 July 2024).
- STEP Database. Available online: https://step-db.ucl.ac.uk/eupfi/appDirectLink.do?appFlag=login (accessed on 31 July 2024).
- Salunke, S.; Brandys, B.; Giacoia, G.; Tuleu, C. The STEP (Safety and Toxicity of Excipients for Paediatrics) database: Part 2—The pilot version. Int. J. Pharm. 2013, 457, 310–322. [Google Scholar] [CrossRef] [PubMed]
- PubChem. Carmellose Sodium Characteristic. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Carmellose-sodium (accessed on 29 August 2024).
- Carmellose Sodium Characteristic. Available online: https://www.chembk.com/en/chem/carmellose%20sodium#:~:text=carmellose%20sodium%20-%20Physico-chemical%20Properties%20Molecular%20Formula,C6H7O2%20%28OH%292CH2COONa%20Molar%20Mass%20265.204%20Density%201%2C6%20g%2Fcm3 (accessed on 29 August 2024).
- UPICHEM. Carbomer 947P NF Characteristic. Available online: https://www.upichem.com/products/carbomer-974p-nf/#:~:text=Molecular%20Weight%3A,72.02%20g%2Fmol (accessed on 29 August 2024).
- Carbomer Properties. Pharmaceutical Polymers Typical Properties and Specifications. Available online: https://www.lubrizol.com/-/media/Lubrizol/Health/Literature/Pharmaceutical-Polymers-Typical-Properties-and-Specifications.pdf (accessed on 29 August 2024).
- Rowe, R.C.; Sheskey, P.J.; Cook, W.G.; Fenton, M.E. Handbook of Pharmaceutical Excipients, 7th ed.; Pharmaceutical Press: London, UK, 2014. [Google Scholar]
- Biopharmaceutics Classification System-Based Biowaivers. Available online: https://database.ich.org/sites/default/files/M9_Guideline_Step4_2019_1116.pdf (accessed on 29 August 2024).
- Truffin, D.; Häusler, O.; Martin, M.; Cotier, S.; Laparre, J.; Ramnath, M. Polyols permeability on Caco-2 cells and their effects on transport of low-permeability drugs. Future Pharmacol. 2023, 3, 229–237. [Google Scholar] [CrossRef]
- Trissel, L.A. Stability of Compounded Formulations, 5th ed.; American Pharmacists Association: Washington, DC, USA, 2012. [Google Scholar]
- Chalah, K.; Benmounah, A.; Mahdad, M.; Kheribet, R. Rheological study of sodium carboxymethyl-cellulose: Effect of concentration and molecular weight. Mater. Today Proc. 2022, 53, 185–190. [Google Scholar] [CrossRef]
- Aodah, A.H.; Bakr, A.A.; Booq, R.Y.; Rahman, M.J.; Alzahrani, D.A.; Alsulami, K.A.; Alshaya, H.A.; Alsuabeyl, M.S.; Alyamani, E.J.; Tawfik, E.A. Preparation and evaluation of benzalkonium chloride hand sanitizer as a potential alternative for alcohol-based hand gels. Saudi Pharm. J. 2021, 29, 807–814. [Google Scholar] [CrossRef]
- The United States Pharmacopeia and National Formulary; Pharmacopeia Convention: Rockville, MD, USA, 2022.
Parameter | CC | VAL |
---|---|---|
Water solubility (25 °C) | pH 1.2—0.037 mg/mL pH 7.4—0.126 mg/mL | Water—0.18 mg/mL pH 8—16.8 mg/mL |
pKa | 5.9 | 4.7 |
logP | 6.1 | 1.5 |
BCS classification | II | II or III |
Excipient | HEC | CMC (Sodium Salt) | CAR |
---|---|---|---|
Polymer | 2.0 | 2.0 | 0.75 |
Sucrose | 10.0 | ||
Glycerol | 5.0 | ||
Sorbitol | 4.0 | ||
Potassium sorbate | 0.10 | ||
Methylparaben | 0.10 | ||
Water | to 100.0 |
Gel | API | t = 0 [mPas] | t = 35 Days [mPas] | Viscosity Change [%] |
---|---|---|---|---|
HEC | --- | 8100 | ----- | |
VAL | 8186 | 11,056 | 135 | |
CC | 8244 | 7781 | 94 | |
CMC | --- | 15,900 | ----- | |
VAL | 12,907 | 16,173 | 125 | |
CC | 16,785 | 20,278 | 121 | |
CAR | --- | 9900 | ------ | |
VAL | 9178 | 9939 | 108 | |
CC | 10,291 | 10,377 | 101 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trofimiuk, M.; Sznitowska, M.; Winnicka, K. Oral Gels as an Alternative to Liquid Pediatric Suspensions Compounded from Commercial Tablets. Pharmaceutics 2024, 16, 1229. https://doi.org/10.3390/pharmaceutics16091229
Trofimiuk M, Sznitowska M, Winnicka K. Oral Gels as an Alternative to Liquid Pediatric Suspensions Compounded from Commercial Tablets. Pharmaceutics. 2024; 16(9):1229. https://doi.org/10.3390/pharmaceutics16091229
Chicago/Turabian StyleTrofimiuk, Monika, Małgorzata Sznitowska, and Katarzyna Winnicka. 2024. "Oral Gels as an Alternative to Liquid Pediatric Suspensions Compounded from Commercial Tablets" Pharmaceutics 16, no. 9: 1229. https://doi.org/10.3390/pharmaceutics16091229
APA StyleTrofimiuk, M., Sznitowska, M., & Winnicka, K. (2024). Oral Gels as an Alternative to Liquid Pediatric Suspensions Compounded from Commercial Tablets. Pharmaceutics, 16(9), 1229. https://doi.org/10.3390/pharmaceutics16091229