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Abstract: Background and Objective: A previous study investigated the in vitro release
of methylene blue (MB), a widely used cationic dye in biomedical applications, from
nanocellulose/nanoporous silicon (NC/nPSi) composites under conditions simulating
body fluids. The results showed that MB release rates varied significantly with the nPSi
concentration in the composite, highlighting its potential for controlled drug delivery. To
further analyze the relationship between diffusion dynamics and the MB concentration, this
study developed a finite element (FE) method to solve Fick’s equations governing the drug
delivery system. Methods: Release profiles of MB from NC/nPSi composites with varying
nPSi concentrations (0%, 0.1%, 0.5%, and 1.0%) were experimentally measured in triplicate
using phosphate-buffered saline (PBS) at 37 °C, pH 7.4, and 100 rpm. Mathematical models
incorporating linear and quadratic dependencies of the diffusion coefficient on the MB
concentration were developed and tested using the FE method. Model parameters were
refined by minimizing the error between simulated and experimental MB release profiles.
Results: The proposed FE method closely matched experimental data, validating its accu-
racy and robustness in simulating the diffusion and release processes. Conclusions: This
study emphasizes the significant impact of the nPSi concentration on enhancing release
control and highlights the importance of material composition in designing drug delivery
systems. The findings suggest that the FE method can be effectively applied to model other
complex systems, paving the way for advancements in precision drug delivery and broader
biomedical applications.

Keywords: finite element method; drug delivery; composites; nanocellulose; nanoporous silicon

1. Introduction
Nanoporous silicon (nPSi) stands out as an excellent biomaterial for drug delivery

applications due to its high surface area, biocompatibility, biodegradability, and bioresorba-
bility [1–3]. Typically, drugs are either loaded into the porous matrix or immobilized on the
surface following appropriate surface derivatization. When combined with biopolymers,
it acts as a substrate for composite materials, introducing advantageous chemical and
physical properties not present in individual components. These benefits include improved
control over drug release kinetics and enhanced stability in aqueous solutions [4,5]. As a
result, nPSi has been paired with various organic matrices to create composites as advanced
drug delivery systems, such as β-cyclodextrin polymers [4,6,7], oxidized hyaluronic acid
hydrogels [8], and poly(L-lactide) acid [9], among others.

Pharmaceutics 2025, 17, 120 https://doi.org/10.3390/pharmaceutics17010120

https://doi.org/10.3390/pharmaceutics17010120
https://doi.org/10.3390/pharmaceutics17010120
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/pharmaceutics
https://www.mdpi.com
https://orcid.org/0000-0003-3137-9503
https://orcid.org/0000-0003-1583-7113
https://orcid.org/0000-0002-1510-3470
https://doi.org/10.3390/pharmaceutics17010120
https://www.mdpi.com/article/10.3390/pharmaceutics17010120?type=check_update&version=1


Pharmaceutics 2025, 17, 120 2 of 17

In this context, nanocellulose (NC) has recently emerged as one of the most promising
“green” materials for obtaining drug delivery carriers as composites. It offers adaptable
surface chemistry, a high surface area, biocompatibility, and biodegradability [10,11]. Re-
cently, K. Garrido-Miranda et al. [12] synthesized NC/nPSi composites for the controlled
release of methylene blue (MB), a cationic thiazine dye widely used in biomedicine for
various purposes. These include the treatment of methemoglobinemia [13], its use as a
marker and indicator in various surgical techniques [14], and its use as an analgesic in
different treatments [15]. Additionally, it has been applied as an antibacterial, antiviral
agent, and against cancer cells [16].

On the other hand, the finite element (FE) method is a numerical technique com-
monly used to approximate the solution of ordinary and partial differential equations (see,
e.g., [17–19] and the references therein). It involves writing the equation in its variational
(weak) form and approximating the solution, originally defined in an infinite-dimensional
space, by restricting it to a finite-dimensional subspace. This approach has been suc-
cessfully applied to simulate various physical phenomena, including the fluid–structure
interaction [20], electromagnetism [21], and heat transfer [22].

This work presents an FE method to simulate the diffusion and controlled release
of MB from NC/nPSi composites. The simulations are based on Fick’s second law [23],
a widely used model for release kinetics (e.g., [24–28]). In this study, a concentration-
dependent diffusion coefficient is incorporated to more accurately represent the behavior
of highly polymerized NC. Furthermore, the influence of temperature on diffusivity in
biological environments is considered a critical factor. This temperature dependency is
modeled using the Stokes–Einstein relationship [29], offering a deeper insight into the
dynamics of the diffusion process:

D =
kBT
aηr

,

where kB is Boltzmann’s constant, T represents the temperature, a denotes the viscosity, η

is a constant that accounts for the boundary conditions between the diffusing molecule
and the solvent, and r is the radius of the molecule. Consequently, diffusion coefficients
increase with temperature, as observed in drug delivery experiments [30,31].

Nevertheless, as this model is further refined by incorporating dependency relations
from [32], which align with the experimental release profiles reported by K. Garrido-
Miranda et al. [12], the influence of temperature was not investigated and remains limited
to a concentration-dependent diffusion coefficient.

Fick’s second law is first discretized using the FE method, transforming the governing
equation into a discrete system. Since the diffusion coefficient depends on concentration, the
non-linearities are addressed using the Picard iteration. This method linearizes the system
at each time step, enabling its resolution using Octave [33]. The proof of unique solvability
of the system is provided under the assumption of a bounded diffusion coefficient. Based
on this assumption, examples are presented to offer valuable insights into designing more
efficient drug delivery systems for biomedical applications.

The outline of this article is as follows. Section 2 presents the model problem and its
FE discretization. A case study comparing the numerical solution with experimental data
is presented in Section 3. Numerical details concerning future directions are discussed in
Section 4, while conclusions are drawn in Section 5.
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2. Materials and Methods
2.1. Model Problem

This work is about the one-dimensional diffusion and controlled release of MB through
an NC/nPSi composite of thickness 2L (see Figure 1). It is assumed that L is sufficiently
small, such that the amount of MB passing through the edges of the composite is negligible.

In this context, the drug delivery system is modeled within the framework of Fick’s
second law [23], a widely used approach in diffusion processes, with a diffusion coefficient
D that depends on the concentration ϕ. Let I = (−L, L) be an interval along the x-axis,
and let T > 0 be a given finite time. The governing equation is

∂ϕ

∂t
=

∂

∂x

(
D(ϕ)

∂ϕ

∂x

)
in I × (0, T). (1)

At the surfaces x = ±L, the concentration is prescribed as ϕ = ϕ∞ for all t ∈ (0, T).

Figure 1. Scheme of the drug delivery system.

When the concentration is initially uniform, with ϕ(x, 0) = ϕ0 for all x ∈ I, and both
D and ϕ∞ are constants, the partial differential Equation (1) can be solved using the method
of separation of variables or the Laplace transform, as detailed in [34]. This gives

ϕ(x, t)− ϕ0

ϕ∞ − ϕ0
= 1− 4

π

∞

∑
n=0

(−1)n

(2n + 1)
cos

[
(2n + 1)πx

2L

]
exp

[
−D(2n + 1)2π2t

4L2

]
. (2)

Moreover, if Mt denotes the amount of MB released at time t and M∞ the correspond-
ing quantity after infinite time, the release profile is given by

Mt

M∞
= 1− 8

π2

∞

∑
n=0

1
(2n + 1)2 exp

[
−D(2n + 1)2π2t

4L2

]
. (3)

Although assuming a constant D is common in diffusion modeling, this assumption is
unrealistic for highly polymerized substances [34], such as NC and NC-based composites.
Given the relevance of the NC in this context, Fick’s second law in (1) with a variable D
will be addressed in the following sections, focusing on the numerical solution. To facilitate
understanding, we first analyze the case with a constant D and then extend the analysis to
accommodate D = D(ϕ).

2.2. Constant Diffusion Coefficient
2.2.1. Preliminaries

Let us review some basic concepts of functional analysis which are useful in dealing
with partial differential equations. We first define the Sobolev space H1(I) as

H1(I) := {ψ ∈ L2(I) : ψ′ ∈ L2(I)},
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which is a Hilbert space equipped with the inner product

(ϕ, ψ)1,I :=
∫

I
ϕψ dx +

∫
I

ϕ′ψ′ dx ∀ ϕ, ψ ∈ H1(I).

For further details, we refer the reader to [35]. The norm induced by (·, ·)1,I is given by

∥ψ∥1,I :=
(
∥ψ∥2

0,I + |ψ|21,I

)1/2
∀ψ ∈ H1(I),

where |ψ|1,I := ∥ψ′∥0,I is a semi-norm on H1(I). It is well known that the quantity |ψ|1,I is
a norm equivalent to ∥ψ∥1,I on the following subspace of H1(I):

H1
0(I) :=

{
ψ ∈ H1(I) : ψ = 0 at x = ±L

}
, (4)

due to Poincaré’s inequality. This result is stated below, and its proof can be found in ([35],
Proposition 8.13).

Lemma 1 (Poincaré’s inequality). Let I be a bounded interval. Then, there exists a constant
CP > 0, depending only on I, such that

∥ψ∥1,I ≤ CP|ψ|1,I ∀ψ ∈ H1
0(I). (5)

Finally, we note that an alternative way of interpreting ϕ in (1) is to treat it as a function
of time, taking values in a Sobolev space, e.g., V, where the elements of V are functions
that depend only on the spatial variable:

ϕ : t ∈ (0, T) 7→ ϕ(t) ≡ ϕ(·, t) ∈ V.

This notation will be used throughout this work. Furthermore, time derivatives will
be denoted by dt(·).

2.2.2. Weak Formulation

To introduce the weak formulation of Fick’s second law, we multiply (1) by a test
function ψ ∈ H1

0(I), assume a constant D, and perform integration over I, yielding

∫ L

−L
ψdtϕ(t)dx + D

∫ L

−L
ϕ′(t)ψ′ dx− Dϕ′(t)ψ

∣∣∣∣x=L

x=−L
= 0.

Then, using the condition that ψ = 0 at x = ±L (cf. (4)), we obtain

∫ L

−L
ψdtϕ(t)dx + D

∫ L

−L
ϕ′(t)ψ′ dx = 0. (6)

By virtue of identity (6) and under the conditions used to determine the exact ϕ in (2),
the weak formulation of Equation (1) with a constant D reads the following: For almost
every t ∈ (0, T), find ϕ(t) ∈ H1(I), such that ϕ = ϕ∞ on {−L, L} × (0, T), ϕ = ϕ0 on
I × {0}, and ∫ L

−L
ψdtϕ(t)dx + D

∫ L

−L
ϕ′(t)ψ′ dx = 0 ∀ψ ∈ H1

0(I). (7)

At this point, we emphasize that the FE method, which will be detailed later, does
not directly allow us to deduce the unique solvability for the discretization of (7) when
ϕ∞ ̸= 0. This is because, in this case, the discrete versions of ϕ(t) and ψ reside in different
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spaces. To address this issue, we recall that the orthogonal complement of H1
0(I) in H1(I)

is defined by

H1
0(I)⊥ :=

{
λ ∈ H1(I) : (λ, ψ)1,I = 0 ∀ψ ∈ H1

0(I)
}

. (8)

It follows that λ ∈ H1
0(I)⊥ if and only if λ is the weak solution to the equation

−λ′′ + λ = 0.

Accordingly, we decompose H1(I) as the direct sum H1
0(I) ⊕W, where W is the

subspace spanned by {ex, e−x}. Next, we introduce the auxiliary unknown

ϑ(t) := ϕ(t)− λ, (9)

with λ ∈ H1
0(I)⊥ being defined by

λ(x) :=

(
ϕ∞

eL + e−L

)
(ex + e−x). (10)

It is easy to check that λ(−L) = λ(L) = ϕ∞, from which we deduce that (7) is
equivalent to the following problem: for almost every t ∈ (0, T), find ϑ(t) ∈ H1

0(I) such
that ϑ = ϕ0 on I × {0} and

∫ L

−L
ψdtϑ(t)dx + D

∫ L

−L
ϑ′(t)ψ′ dx = −D

∫ L

−L
λ′ψ′ dx ∀ψ ∈ H1

0(I). (11)

We can therefore use ϑ to recover the solution to (7). In particular, ϑ = ϕ when ϕ∞ = 0.

2.3. Discretization of the Model with a Constant Diffusion Coefficient

This section focuses on approximating the solution to (11) using a fully discrete scheme
that combines an FE method in space with an implicit Euler method in time. For simplicity,
homogeneous boundary conditions are initially assumed. The non-homogeneous case will
be addressed in Section 2.3.3.

2.3.1. Fully Discrete Scheme

Let Vh denote an arbitrary finite-dimensional subspace of H1
0(I). We begin by consid-

ering the problem given by (11) with ϕ∞ = 0. We discretize this problem in space using the
following FE scheme: For each t ∈ [0, T], find ϑh(t) ∈ Vh such that ϑ0

h = ϕ0
h and

∫ L

−L
ψhdtϑh(t)dx + A(t, ϑh, ψh) = 0 ∀ψh ∈ Vh, (12)

where the bilinear form A : t 7→ H1
0(I)× H1

0(I) is defined by

A(t, ϑh, ψh) := D
∫ L

−L
ϑ′h(t)ψ

′
h dx, (13)

and ϕ0
h is the L2-projection of ϕ0 into Vh, such that ϕ0

h ∈ Vh satisfies, for all ψh ∈ Vh,

∫ L

−L
ϕ0

hψh dx =
∫ L

−L
ϕ0ψh dx. (14)
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To discretize in time, we partition the interval [0, T] as

0 = t0 < t1 < · · · < tN+1 = T,

with time step denoted by ∆tn := tn+1 − tn for n ∈ {0, 1, . . . , N}. Furthermore, we denote
a function ζ(t) at time level t = tn by ζn.

For the implicit Euler method in time, we use

(dtϑh)
n+1 ≈ ϑn+1

h − ϑn
h

∆tn .

Inserting this expression into (12) at time tn+1 yields the following fully discrete formulation
of (11) with homogeneous boundary conditions: For each n ∈ {0, 1, . . . , N}, find ϑn+1

h ∈ Vh,
such that

B(ϑn+1
h , ψh) + ∆tn A(ϑn+1

h , ψh) = B(ϑn
h , ψh) ∀ψh ∈ Vh, (15)

where, for easy of notation, we write A(ϑn+1
h , ψh) instead of A(tn+1, ϑn+1

h , ψh) and

B(ϑh, ψh) :=
∫ L

−L
ϕhψh dx ∀ ϑh, ψh ∈ Vh. (16)

We will show that problem (15) reduces to a system of linear equations. To achieve
this, we assume that M = dim Vh < ∞ and let {e1, . . . , eM} be a basis of Vh. Then, for each
n ∈ {0, 1, . . . , N}, there exist αn+1

1 , . . . , αn+1
M ∈ R such that

ϑn+1
h =

M

∑
j=1

αn+1
j ej. (17)

We therefore write (15) as follows: For each n ∈ {0, 1, . . . , N}, find αn+1
1 , . . . , αn+1

M ∈ R
such that

M

∑
j=1

αn+1
j

{
B(ej, ei) + ∆tn A(ej, ei)

}
=

M

∑
j=1

αn
j B(ej, ei) ∀ i = 1, . . . , M. (18)

In this way, if we set aij := A(ej, ei) and bij := B(ej, ei), so that

αn+1 := (αn+1
j ) ∈ RM, A := (aij) ∈ RM×M, B := (bij) ∈ RM×M,

the matrix form of (18) reads the following: For each n ∈ {0, 1, . . . , N}, find αn+1 ∈ RM,
which satisfies

(B+ ∆tnA)αn+1 = Bαn, (19)

where the iteration is initialized with α0 ∈ RM obtained from (14). The following result
establishes the unique solvability of the linear system (19).

Theorem 1. The matrix B+ ∆tnA is symmetric and positive definite, and therefore invertible.

Proof. The symmetry property follows directly from the definition of the bilinear forms A
and B. Next, given β := (β j) ∈ RM, we set

ψh =
M

∑
j=1

β jej. (20)
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Proceeding analogously to ([36], Chapter 4), that is, using the H1
0(I)-ellipticity of the

form A with ellipticity constant C > 0, depending on the diffusion coefficient D and the
constant from Poincaré’s inequality (cf. (5)), we obtain

βT(B+ ∆tnA)β =
M

∑
i,j=1

(bij + ∆tnaij)βiβ j = B(ψh, ψh) + ∆tn A(ψh, ψh)

≥ ∥ψh∥2
0,I + ∆tnC∥ψh∥2

1,I ≥ ∆tnC∥ψh∥2
1,I .

Since βT(B + ∆tnA)β > 0 for all β values that are different from the null vector,
the result follows.

2.3.2. Specific FE Subspace

This section specifies the matrix structure of the linear system (19) for a particular
choice of Vh. Let {xm}0≤m≤M+1 be a uniform partition of the interval Ī = [−L, L], with the
meshsize being denoted by h > 0. We set

Vh =

{
ψh ∈ C( Ī) : ψh

∣∣∣
[xj−1,xj ]

∈ P1([xj−1, xj]) ∀ j = 1, · · · , M + 2
}
∩ H1

0(I), (21)

where P1(S) denotes the space of polynomials of degree ≤ 1 defined over an interval S.
The following definition can be found in ([37], Section 1.1.2).

Definition 1. For each i ∈ {1, . . . , M}, the hat functions ei ∈ Vh are defined as

ei(x) =



x− xi−1

h
x ∈ [xi−1, xi],

xi+1 − x
h

x ∈ [xi, xi+1],

0 x ̸∈ [xi−1, xi+1].

An example of a hat function is shown in Figure 2. It follows that ei(xj) = δij, where δij

is the Kronecker delta function. Moreover, {e1, . . . , eM} is a basis for Vh; hence, a function
ψh ∈ Vh is uniquely determined by the values {ψh(xi)}1≤i≤M, namely

ψh =
M

∑
i=1

ψh(xi)ei.

Figure 2. Example of hat function.
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Note that aij = bij = 0 when |i− j| ≥ 2. Furthermore, we obtain, after some algebraic
manipulations,

aij =


2D
h

if j = i,

−D
h

if |j− i| = 1.

Similarly,

bij =


2h
3

if j = i,

h
6

if |j− i| = 1.

Consequently, the global matrix of (19) is tridiagonal, which is highly desirable in situ-
ations where the dimension of Vh is very large, as this allows for a reduction in the number
of flop required to solve the system. In particular, a tridiagonal system can be solved using
the Thomas algorithm, which requires significantly fewer flop than the method that directly
computes the inverse of the matrix. For further details, we refer the reader to [38].

2.3.3. Numerical Treatment of Non-Homogeneous Boundary Conditions

Recall from (9) that the unknowns ϕ and ϑ are related by the decomposition ϕ = ϑ + λ,
where λ is defined such that λ = ϕ∞ at x = ±L. This approach allows ϕ to be recovered
from ϑ, even in the presence of non-homogeneous boundary conditions. Building on this
idea, we approximate ϕ using the decomposition

ϕn+1
h = ϑn+1

h + λh, n ∈ {0, 1, . . . , N}, (22)

where ϑn+1
h ∈ Vh is given by (17), with Vh being defined in (21), and λh is a polynomial

satisfying the boundary conditions λh(−L) = λh(L) = ϕ∞. Specifically, we define

λh := ϕ∞(e0 + eM+1), (23)

where e0 and eM+1 are the hat functions associated with the endpoints of I.
Next, using the same notation as in Section 2.3.2, the fully discrete formulation of (11)

reads as follows: for each n ∈ {0, 1, . . . , N}, find ϑn+1
h ∈ Vh such that ϑ0

h = ϕ0
h (cf. (14)) and

B(ϑn+1
h , ψh) + ∆tn A(ϑn+1

h , ψh) = B(ϕn
h , ψh)− ∆tnD

∫ L

−L
λ′hψ′h dx ∀ψh ∈ Vh. (24)

It is clear that (24) coincides with (15) when ϕ∞ = 0.
Now let µ ∈ RM be the vector whose entries are all zero, except for the first and

last ones, which are both set to ϕ∞. Then, for each n ∈ {0, 1, . . . , N}, the discretization
(24) yields

(B+ ∆tnA)αn+1 = Bαn − ∆tnAµ. (25)

Here, the matrices A and B are defined as in Section 2.3.2, thus ensuring the unique
solvability of the linear system (25), which follows directly from Theorem 1.

We end this section by noting that the discrete concentration with non-homogeneous
boundary conditions can be computed from (22) using the solution of (25), which provides

ϕn+1
h =

M+1

∑
j=0

αn+1
j ej, n ∈ {0, . . . , N},

with ϕn+1
h (−L) = ϕn+1

h (L) = ϕ∞, as required.
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2.4. Variable Diffusion Coefficient

This section presents an FE method to solve the non-linear equation in (1), assuming
ϕ∞ is time-dependent for greater generality. Although this model is more challenging to
analyze with FE methods due to the concentration dependence of D, it still relies on the
previous results.

The weak form of (1) resembles (11), with the form A now replaced by

A(ϕ; ϑ, ψ) :=
∫ L

−L
D(ϕ(t))ϑ′(t)ψ′ dx ∀ψ ∈ H1

0(I).

Note here that ϑ(t) := ϕ(t)− λ(t) and λ(t) ∈ H1
0(I)⊥ with λ(t) = ϕ∞(t) at x = ±L.

Proceeding analogously to Section 2.3, we discretize the weak formulation of (1) using
an FE method in space and an implicit Euler method in time. To handle the non-linearities,
we employ a Picard-type iteration. Specifically, we consider the following fully discrete
scheme: for each n ∈ {0, 1, . . . , N} and given ϕn

h , find ϑn+1
h ∈ Vh such that ϑ0

h = ϕ0
h and

B(ϑn+1
h , ψh) + ∆tn A(ϕn

h ; ϑn+1
h , ψh)

= B(ϑn
h , ψh)−

∫ L

−L
λn+1

h ψh dx− ∆tn
∫ L

−L
D(ϕn

h )(λ
n+1
h )′ψ′h dx ∀ψh ∈ Vh,

(26)

where ϕ0
h is given by (14) and B by (16). Furthermore, the last two integrals in (26) arise

from the treatment of the time-dependent boundary condition. In fact, proceeding as in
Section 2.3.3, we obtain

ϕn+1
h = ϑn+1

h + λn+1
h , with λn+1

h := ϕn+1
∞ (e0 + eM+1). (27)

Now, inspired by [32], we define

D(ϕ) := D0(1 + δϕ)k, (28)

where k ∈ N, δ ∈ R, and D0 > 0 are experimentally determined constants. For the sake of
simplicity, we assume that k is either 1 or 2. However, the analysis in this section can be
easily extended to cases where k > 2. We furthermore assume that D is bounded: There
exists a constant D∗ > 0 such that, for all ψ ∈ [0, 1],

D(ψ) ≥ D∗. (29)

Remark 1. As discussed in [39], a general form for the diffusion coefficient is D(ϕ) = D0F(ϕ),
where D0 = D(0) is a positive constant. The choice in (28), with F(ϕ) = (1 + δϕ)k, represents a
specific instance of this general form. While other forms of F, such as exponential functions, have
been explored in the literature (see, e.g., [40]), we restrict our focus to (28) for brevity.

Next, we specify the matrix form of the fully discrete scheme (26), subjected to the
diffusion coefficient (28). Let Â := (âij) ∈ RM×M denote the matrix given by

âij := A(ϕn
h ; ej, ei) =

∫ L

−L
D(ϕn

h )e
′
ie
′
j dx = D0

∫ L

−L

(
1 + δ

M+1

∑
l=0

αn
l el

)k

e′ie
′
j dx, (30)

where e0, e1, . . . , eM+1 are the hat functions introduced in Section 2.3.2.
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After some algebraic manipulations, we obtain

Â =
D0

h



r1 q1 0 0 · · · · · · 0

q1 r2 q2 0 · · · · · · 0

0
. . . . . . . . . . . . 0

...
. . . . . . . . . . . . . . .

...

0 · · · 0 qM−3 rM−2 qM−2 0

0 · · · · · · 0 qM−2 rM−1 qM−1

0 · · · · · · 0 0 qM−1 rM



,

with matrix components depending on the value of k. Specifically, for k = 1,

qi := −1− δ

2h
(αn

i + αn
i+1),

ri := 2 +
δ

2h
(αn

i−1 + 2αn
i + αn

i+1),

while for k = 2,

qi := −1
3
(1 + δαi)

2 − 1
3
(1 + δαi)(1 + δαi+1)−

1
3
(1 + δαi+1)

2,

ri :=
1
3
(1 + δαi−1)

2 +
2
3
(1 + δαi)

2 +
1
3
(1 + δαi+1)

2 +
1
3
(1 + δαi)(2 + δαi−1 + δαi+1).

Finally, for each n ∈ {0, 1, . . . , N}, we set µn+1 ∈ RM as the vector whose components
are all zero, except for the first and last ones, which are set to ϕn+1

∞ . Then, the matrix form
of (26) reads as follows: for each n ∈ {0, 1, . . . , N}, find αn+1 := (αn+1

j ) ∈ RM such that

(B+ ∆tnÂ)αn+1 = Bαn − (B+ ∆tnÂ)µn+1, (31)

where the matrix B is defined as in Section 2.3.2.

Remark 2. The unique solvability of the fully discrete scheme (31) follows from the fact that the
diffusion coefficient (28) satisfies the condition (29). In fact, the matrix B+ ∆tnÂ is symmetric,
and for any vector β ∈ RM given by (20), we have

βT(B+ ∆tnÂ)β ≥ ∆tnC∥ψh∥2
1,I ,

with constant C > 0 depending on D∗ and the constant from Poincaré’s inequality. It then follows
that the matrix B+ ∆tnÂ is positive definite, and therefore invertible.

3. Results
3.1. Drug Release Experiments

Samples of NC/nPSi composites (0.5 × 0.5 cm2) with varying concentrations of
microparticulate nPSi were synthesized following the protocol outlined by K. Garrido-
Miranda et al. [12]. Each sample had different thicknesses based on the percentage of
nPSi (m/m): NC (control, 0.0%) = 6.5 ± 1 µm, NC/nPSi-0.1% = 10.5 ± 2 µm, NC/nPSi-
0.5% = 12.7± 3 µm, and NC/nPSi-1.0% = 29.5± 4 µm (Figure 3). Subsequently, the samples
were loaded with a concentrated MB solution (0.001 M, pH 7.0) for 15 min at 100 rpm.
They were then rinsed with distilled water and dried at room temperature. Release pro-
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files were conducted in vials filled with 3 ml of saline phosphate-buffered solution (PBS,
pH 7 and 37 ◦C) at 100 rpm on a horizontal shaker (INB-2005 LN, Biotek, Winooski, VT,
USA). The concentration of MB in the fluid was measured at specific time intervals us-
ing UV-Vis spectrophotometry (UV-1800 Shimadzu, Kyoto, Japan) at a wavelength of
671 nm [7]. The release profiles were obtained as the mean of triplicate experiments (see
the Supplementary Materials section).

(a) NC control film (b) NC/nPSi-0.1%

(c) NC/nPSi-0.5% (d) NC/nPSi-1.0%

Figure 3. SEM images of samples.

3.2. Model Prediction

In this section, we compare the drug release experiments with the numerical results
obtained using the FE method described in Section 2.4. All simulations were implemented
using Octave 8.4.0 [33].

In what follows, the diffusion coefficient D is defined as in (28), with the constant D0

determined using the Nelder–Mead optimization method [41], which minimizes the error

eana :=

√√√√N+1

∑
n=0

∣∣un − wn(D0)
∣∣2,

where un represents the experimental release profile at time tn, and wn(D0) denotes the
corresponding value obtained from the analytical release profile in (3), computed as

wn(D0) = 1− 8
π2

p

∑
k=0

1
(2k + 1)2 exp

[
−D0(2k + 1)2π2tn

4L2

]
.

Note here that p is a user-defined integer, which we set to p = 100. The computed
values of D0 for the four samples detailed in Section 3.1 are listed in Table 1. Once the
parameter D0 is determined, we proceed to complete the definition of the diffusion coef-
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ficient D by selecting an appropriate value for the scalar δ, as will be discussed in more
detail below. With D being fully defined, the release profile Mt/M∞ is approximated by
solving Fick’s second law using the FE method. Specifically, the solution to the system (31),
as obtained from Algorithm 1, provides the following approximation:

Mt

M∞

∣∣∣∣∣
t=tn+1

≈
∫ L
−L(ϕ

n+1
h − ϕ0)dx∫ L

−L(ϕ
n+1
∞ − ϕ0)dx

. (32)

Unless otherwise specified, we choose ϕ0 = 1 and ϕn+1
∞ = 0 for all n ∈ {0, 1, . . . , N + 1}.

Table 1. Computed values of D0.

Sample D0 (µm2/h)

NC 28.648

NC/nPSi-0.1% 107.640

NC/nPSi-0.5% 17.413

NC/nPSi-1.0% 51.523

Algorithm 1 FE solution.
Input: N, M, δ, Dref, ϕ0, ϕ∞, L
Output: ϕ0

h, ϕ1
h, . . . , ϕN+1

h
1: h← 2L/(M + 1)
2: ϕ0

h ← L2-projection of ϕ0 into Vh (cf. (14))
3: for n = 0, 1, . . . , N do
4: ∆tn ← tn+1 − tn

5: αn+1
0 ← ϕn+1

∞
6: αn+1

M+1 ← ϕn+1
∞

7: αn+1
1 , . . . , αn+1

M ← solution to the problem (31)
8: ϕn+1

h ← ∑M+1
j=0 αn+1

j ej

Selecting the optimal values for δ and k is essential for accurately defining the diffusion
coefficient D. To determine these values, we focused on the samples in Table 1. For each
sample, k was set to either 1 or 2, the meshsize h was computed as 2L/(M+ 1) with M = 31,
and δ was chosen from the interval [−1, 1]. The goal was to minimize the numerical error

enum :=

√√√√N+1

∑
n=0

∣∣un − vn(δ)
∣∣2, (33)

where the experimental release profile at time tn is denoted by un, while vn(δ) represents
the corresponding approximation from (32). Values of δ outside the interval [−1, 1] led to
larger errors and were therefore discarded. In this context, the computed errors for k = 2
are shown in Table 2, indicating that the optimal value of δ is 0.3 for the first three samples
and 0.2 for the last one. Thus, condition (29) is satisfied with D∗ = D0, ensuring the unique
solvability of the fully discrete scheme (26), as stated in Remark 2. Similar results for k = 1
were obtained and are omitted for brevity.
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Table 2. Release profile of errors associated with the variable diffusion coefficient D for k = 2.

NC

δ −1 −0.3 −0.2 0 0.2 0.3 1

enum 1.636 0.320 0.262 0.166 0.104 0.092 0.200

eana – – – 0.140 – – –

NC/nPSi-0.1%

δ −1 −0.3 −0.2 0 0.2 0.3 1

enum 1.573 0.333 0.279 0.194 0.145 0.135 0.193

eana – – – 0.178 – – –

NC/nPSi-0.5%

δ −1 −0.3 −0.2 0 0.2 0.3 1

enum 1.344 0.314 0.264 0.185 0.141 0.134 0.263

eana – – – 0.171 – – –

NC/nPSi-1.0%

δ −1 −0.3 −0.2 0 0.2 0.3 1

enum 1.219 0.306 0.257 0.191 0.176 0.185 0.351

eana – – – 0.146 – – –

Figure 4 shows the experimental release data, their numerical approximations using
the FE method, and the analytical solution from (3). The FE solution provided the best fit for
the experimental data in the first three samples. For the last sample, where the concentration
of nPSi was higher, the analytical release profile was 20.55% more accurate, as indicated
by the errors in Table 2. It follows that D strongly depends on the concentration when the
percentage of nPSi is below 1.0%. Additionally, the simulations in Figure 5 reveal that the
diffusion rate decreases at higher nPSi percentages, as reflected by the slower reduction in
concentration across the thickness, particularly in the last sample. These results align with
the experimental findings of K. Garrido-Miranda et al. [12], where incorporating nPSi into
the material enhances control over the release of MB.
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Analytical solution
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(a) NC: k = 2 and δ = 0.3
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(b) NC/nPSi-0.1%: k = 2 and δ = 0.3

Figure 4. Cont.
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Figure 4. Numerical vs. analytical drug release profiles.
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Figure 5. Approximate concentration.

4. Discussion
The FE method presented in Section 2.4 provides a general framework for accu-

rately describing the drug delivery system under consideration. In fact, the variable
diffusion coefficient defined in (28) showed strong agreement with data from K. Garrido-
Miranda et al. [12], particularly for samples with nPSi percentages below 1.0%. A weaker
dependency was observed at an nPSi concentration of exactly 1.0%. This may be linked to
the increased thickness associated with higher nPSi levels, which was presumed negligible
in both the numerical method and the analytical solution.

In our simulations, we assumed constant initial and boundary conditions. However,
a more realistic assumption would involve time-dependent boundary data, which may occur
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when the solution is not well stirred [42]. Notably, the fully discrete scheme (26) remains
effective in simulating this scenario, as illustrated in Figure 6 for a single sample, where the
boundary data were derived from the empirical relation ϕ∞(t) = 1−Mt/M∞. These results
were contrasted with the analytical solution from (3), showing that the numerical solution
with time-dependent ϕ∞ performs better when Mt/M∞ < 0.85. This conclusion is further
supported by the error computed from (33) using δ = 0.45 and k = 2, yielding a value of
0.149, which represents a 14.77% improvement compared to the corresponding error reported
in Table 2 for the analytical solution with constant boundary conditions.
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(a) Numerical vs. analytical drug release profiles
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Figure 6. NC/nPSi-0.5%: k = 2 and δ = 0.45.

Building on these results, a more comprehensive approach to designing drug deliv-
ery systems that undergo significant geometric changes and time-dependent boundary
conditions should incorporate space–time FE methods (see, e.g., [43,44]). Future work
will explore this approach by incorporating additional parameters into the general form
of diffusion coefficient presented in Remark 1, with the aim of capturing effects such as
evaporation within the composite.

5. Conclusions
This study employed an FE method to model diffusion and controlled drug release

from NC/nPSi composites based on Fick’s second law with variable diffusivity. The FE
simulations, supported by experimental validation, demonstrated that increasing the nPSi
concentration in the NC matrix enhances control over the release MB. This finding is
particularly relevant for pharmaceutical applications, where controlled drug delivery is
critical to minimize adverse effects on tissues. Furthermore, this study highlights the
importance of considering geometric changes in the composite matrix, especially at high
nPSi concentrations, which significantly influence drug release behavior. Addressing these
complexities is a priority for future work to extend the applicability of the proposed model
to a wider range of material configurations and drug delivery scenarios. The results not
only validate the effectiveness of the FE method for modeling diffusion in composite
materials but also provide insights into optimizing the design of NC/nPSi composites for
controlled drug release. This work sets a foundation for further research into more complex
geometries and dynamic environmental conditions, reinforcing its potential contributions
to the development of advanced drug delivery systems.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/pharmaceutics17010120/s1, Table S1: Experimental MB release
data from NC/nPSi composites; Table S2: Cumulative release of MB.

https://www.mdpi.com/article/10.3390/pharmaceutics17010120/s1
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