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Abstract: To classify the image material on the internet, the deep learning methodology, especially
deep neural network, is the most optimal and costliest method of all computer vision methods.
Convolutional neural networks (CNNs) learn a comprehensive feature representation by exploiting
local information with a fixed receptive field, demonstrating distinguished capacities on image
classification. Recent works concentrate on efficient feature exploration, which neglect the global
information for holistic consideration. There is large effort to reduce the computational costs
of deep neural networks. Here, we provide a hierarchical global attention mechanism that
improve the network representation with restricted increase of computation complexity. Different
from nonlocal-based methods, the hierarchical global attention mechanism requires no matrix
multiplication and can be flexibly applied in various modern network designs. Experimental
results demonstrate that proposed hierarchical global attention mechanism can conspicuously
improve the image classification precision—a reduction of 7.94% and 16.63% percent in Top 1 and
Top 5 errors separately—with little increase of computation complexity (6.23%) in comparison to
competing approaches.
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1. Introduction

To classify the image material on the internet, the deep learning/neural network methodology
is the most optimal but also the costliest of all computer vision methods. Convolutional neural
network (CNN) has been proved as a powerful tool for different computer vision tasks [1]. In CNN,
filters extract the information from features with learned adaptive weights and bias [2]. By building the
network deeper or wider, the accumulation of filters demonstrates a significant improvement in feature
representation. Different from fully connection networks, the filters in CNN have fixed receptive fields
to concentrate on the local information from features, saving the parameters and making it possible to
build the network deeper [3]. Recently, researchers concentrate on well-designed network architectures
for efficient feature exploration [4,5]. The elaborate network designs are composed of depth-wise and
channel-wise convolutional layers and effectively exploit the features with modified filters [6]. As the
receptive fields and network depths are fixed, these works almost neglect the global information for
holistic consideration.

Attention mechanism has been introduced to address this issue [7,8]. As a weighting component
for importance distribution, attentions are usually calculated as non-negative feature maps from a
Sigmoid activation. To consider the global information, global average pooling is introduced to measure
the information from the entire feature map [7]. After pooling, the feature maps will be compressed into
a fixed size vector according to the channels. Then, fully connection layers with activation functions
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are utilized for nonlinear exploration. This channel-wise attention mechanism applies pooling to
information evaluation, which treats the spatial information of features equally. In fact, the intrinsic
property of pooling operation neglects the diversity of spatial information. Another global attention
mechanism termed as non-local attention is proposed based on the matrix multiplication [9]. Due to
the characteristic of matrix multiplication, all the spatial information will be considered for holistic
consideration. Non-local attention has been proved as an effective design for network representation
improvement. However, the matrix multiplication will result in a large memory consumption and
high computation complexity. All of this will be further elaborated/introduced in the Related Works.

To reduce the CNN costs and provide better classification performance, we devise an improvement
of attention mechanism for comprehensive information consideration. In the proposed hierarchical
global attention (HGA) mechanism, multi-scale structure has been proved as an effective mechanism
for hierarchical information exploration. We hold to the notion that features from different scales
obtain various information, and the multi-scale structure can comprehensively exploit the features for
better representation. Global average pooling is a suitable operation to estimate the information from
different feature maps, which lacks the spatial-wise consideration. By combining the global average
pooling and multi-scale structure, the attention mechanism can learn a comprehensive relations among
different feature maps. Then, the nonlinear exploration will find a more adaptive representation
of features. The holistic design of proposed HGA mechanism is shown in Figure 1. There are few
parameters and restricted computation complexity in HGA, which makes it possible for flexible
plug-and-play in exist effective network structures. To address this point, we provide several patterns
for flexibly applying HGA to the existing network backbones. Experimental results shows HGA can
boost the image classification capacity for different advanced network structures.
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Figure 1. Structure of proposed hierarchical global attention mechanism (HGA). There are three
modules in our proposed HGA: Multi-Scale Feature Exploitation (MFE), Hierarchical Global Average
Pooling (HAP), and Excitation Exploration (EE).

The contributions of our work can be summarized as follows.

• We propose a hierarchical global attention (HGA) mechanism for comprehensive information
consideration. The HGA hierarchically finds the spatial-wise relations among features with
multi-scale structure design and utilizes nonlinear exploration to learn an adaptive attention.

• We provide several patterns for applying HGA to exist network backbones, which demonstrates
its flexible applications for different structures.

• Experimental results show HGA can boost the image classification capacity for different advanced
network structures with restricted computation complexity and parameters.
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2. Related Works

2.1. CNN-Based Image Classification

Image classification is one of the classical computer vision issue. In recent years, CNN has
demonstrate its superior performance on image classification issue due to the amazing capacity
of feature representation. To the best of our knowledge, LeCun et al. first introduced LeNet [1]
to handwritten numeral recognition and achieved great success. There are convolution, pooling,
and full connection layers in LeNet for mapping an input digital image with size 32 × 32 to a
specific output. There are several benchmarks for image classification, such as MNIST [1], CIFAR-10,
and CIFAR-100 [10]. However, the image resolutions of these datasets are small, which cannot
sufficiently demonstrate the performance of various networks. ImageNet [11], proposed by Deng et al.,
is one of the most famous benchmarks for image classification task with large resolution images,
and has become one of the most famous competitions in computer vision area. To our best knowledge,
the first most famous CNN-based winner of ImageNet is AlexNet [12]. In AlexNet, GPU was firstly
utilized to boost the training phase. Furthermore, ReLU activation, dropout, and normalization
strategies were utilized in AlexNet, which provided an improvement on classification performance,
and were widely considered by later works. After AlexNet, VGGNet [13] has proven to be another
milestone of ImageNet competition. Different from AlexNet, VGGNet introduced a well-designed
network structure with 3× 3 convolutional layers, which could preserve the receptive field with fewer
parameters and deeper networks. Because of its superior feature representation capacity, VGGNet has
also been utilized in different computer vision tasks, such as object detection, semantic segmentation,
and GAN-based applications. However, there is an critical issue that when the networks are deeper,
the gradient will vanish, which restricts the network depth. To address this issue, GoogLeNet [14]
and ResNet [15] proposed two different style networks. GoogLeNet introduces 1× 1 convolutional
layers to build a shortcut for efficient transmission. Besides the 1× 1 convolution, different scales of
convolutions are utilized to find the suitable feature representation. With the deeper network structure
and elaborate block design, GoogLeNet achieved better performance than VGGNet. In ResNet, a more
suitable and efficient identical shortcut is introduced to build the network, which can efficiently solve
the information transmission and gradient vanishing issues. In ResNet, the identical shortcut provides
an information and gradient transmission pathway to build the network deeper. The features from
shortcut and main path are aggregated as the final output. With the residual connection, ResNet could
build the network much deeper than before, and achieved state-of-the-art performance much superior
than previous works.

As ResNet has proved to be a success network design, there is a network family based on the
ResNet backbone with different elaborate block designs. Res2Net [16], proposed by Gao et al., utilized
the granular level to present the multi-scale features and achieved better performance. In Res2Net,
the feature maps are separated into several groups. Different groups hold different receptive fields
which provide a comprehensive consideration of feature representation. With this substitution, there is
a large improvement for Res2Net. Another elaborate designed network is ResNext [17]. ResNext
integrated the advantages of ResNet and GoogLeNet and proposed a new concept termed cardinality.
In ResNext, the cardinalities are implemented by group convolutions and point-wise convolutions.
Recently, another derivative was investigated with split attention mechanism, which is named as
ResNeSt [18], has become one of the state-of-the-arts.

Besides ResNet, there are also well-designed networks with amazing performance. DenseNet [19]
has proved to be another success network design pattern for efficient gradient and information
transmission. In DenseNet, densely connection has been firstly proposed to concentrate features from
all convolutional layers. WRN [20], proposed by Zagoruyko et al., introduced a wide residual network
for image classification. In PyramidNet [21], Han et al. designed a pyramidal residual network inspired
by Pyramid structure from classical computer vision methods. Based on fractal design, Larsson et al.
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proposed FractalNet [22] with good performance. Recently, IGCV family [23–25], Xception [26],
PolyNet [27], and other elaborate designs have also achieved state-of-the-art performances.

Handcrafted network designs concentrate on reasonable information transmission. In recent
years, network architecture search (NAS) has become a spotlight for researchers. As far as we know,
GeneticCNN [28] is the first work using genetic algorithm to find a suitable structure with better
performance. After GeneticCNN, there are works concentrating on different restrictions [29–31].
Reinforcement learning, which is another method for finding solutions, has also been applied to
NAS [32,33]. Recently, Differentiable NAS has been proposed in DARTS [34].

2.2. Attention Mechanism for Image Classification

Attention mechanism, which is first proposed in natural language processing (NLP), has become
one of the effective components for improving network representation capacity. Attention mechanism
aims to find the inherent correlation among features. CNN-based methods focus on the image feature
and try to find a better feature exploration way. It is true that a better network architecture will hold
superior performance, but it is challenging to find a distinguished design. Attention mechanism can be
considered as an enhancement component to improve the performance of an existed network. With a
small cost on parameters and computation complexity, attention can provide an indeed improvement
on the network representation. From this point of view, the attention mechanism is important.
In attention mechanism, global information has attracted researchers’ eyes and various methods have
been proposed for finding the global inherent correlations. To our best knowledge, SENet [7], which is
the champion of 2017 ImageNet competition, is the first attention mechanism proposed for image
classification. In SENet, global average pooling is utilized to measure the information from different
channels. After pooling, squeezing-and-excitation structure is devised to explore the nonlinear relations
among channels. Finally, a sigmoid activation is introduced for non-negativity. There are several
deviations based on SENet. SKNet [35], which is another effective attention mechanism, was proposed
for weighted inherent correlations. Furthermore, ResAttentionNet [8] is another image classification
network with attention mechanism.

3. Hierarchical Global Attention

As shown in Figure 1, there are three modules for proposed HGA. First, the multi-scale
information will be extracted by convolutional layers with different kernel sizes. After exploitation,
the feature maps will be concatenated for a comprehensive consideration. Global average pooling
operations with different window sizes provide another multi-scale way for hierarchical global
attention, which act as an pyramid structure. Finally, a squeezing-and-excitation way is regarded
for adaptive information learning. Herein, the three modules are termed as multi-scale feature
exploitation (MFE), hierarchical global average pooling (HAP), and excitation exploration (EE).

3.1. Multi-Scale Feature Exploitation

Let us denote the input tensor of HGA as Fin ∈ RH×W×C. The MFE module extracts local
information with four convolutional layers. For each convolutional kernel fi, where i denotes the
kernel size, the exploited multi-scale features are

[F1, F3, F5, F7] = [Fin ⊗ f1, Fin ⊗ f3, Fin ⊗ f5, Fin ⊗ f7], (1)

where ⊗ denotes the group convolution operation. After the exploitation, these multi-scale features
will be concatenated as one tensor, where

FMFE = Concat([F1, F3, F5, F7]). (2)
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FMFE holds the shape RH×W×4C, which holds the same resolution Fin, and four times channels
from different scales.

3.2. Hierarchical Global Average Pooling

After exploitation, the multi-scale features contain various information for adaptive learning.
These features concentrate on the diversity of local spatial signals, while the global information is
omitted. Global average pooling (GAP) has proved to be an efficient method for the global signal
measurement [7]. To address the global multi-scale information, HAP module applies GAP layers with
different window sizes to information extraction. The multi-scale feature FMFE will be processed as

[FG1, FG2, FG4] = GAP1(FMFE), GAP2(FMFE), GAP4(FMFE), (3)

where GAPj(·) denotes the GAP layer with windows size as j.
Notice that FG1, FG2, and FG4 holds the different sizes. The channel number of three tensors are

same, while the spatial resolutions vary. To jointly consider the multi-scale global information, FG1,
FG2, and FG4 will be resized as 1× 1× (j ∗ C) separately. The resized tensors will be concatenated as a
joint vector FG, which contains the multi-scale global information.

3.3. Excitation Exploration

EE module is designed to explore the correlations among multi-scale global information. In the
vector FG, each value denotes the global information measurement from different scales. To find the
correlations, two fully connection layers with a ReLU activation is utilized to suppress the information
distribution, and explore the importance of different channels. The operations can be demonstrated as

Fsuppress = FC21c→ 1
4 c(FG), (4)

Fexcitation = FC 1
4 c→c(ReLU(Fsupress)), (5)

where FCcin→cout(·) denotes the fully connection layer with input channel size cin and output channel
size cout. The suppressed channel number is set as 1

4 c, which is smaller than c for analyzing the
computation complexity and representation performance. ReLU activation is applied for introducing
the nonlinear relation. After suppression, the vector Fsuppress will be excited to the same channel size
as the input tensor Fin. Finally, a Sigmoid activation is applied for the non-negativity. The attention
vector after EE module is considered as

Fattention = σ(Fsuppress), (6)

where σ denotes the Sigmoid activation. Finally, the output after HGA is

Fout = Fin � Fin, (7)

where � denotes the channel-wise multiplication.

4. Implementation and Discussion

As an efficient component, HGA can be flexibly applied in different network designs. ResNet [18]
and InceptionNet [14] are two classical network design patterns from which most recent networks are
derived. From this point of view, we provide the applications of HGA on the two patterns, which are
demonstrated in Figure 2. Figure 2a,c denotes the vanilla block designs in ResNet and Inception
Net. Figure 2b,d denotes the applications of HGA. In ResNet, HGA is applied in the main path after
the ResBlock processing. On one hand, this pattern could find the inherent correlations after feature
exploration. On the other hand, applying HGA on main path could preserve the identical information
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and gradient transmission on the shortcut. Different from ResNet, in Inception Net, the HGA is applied
after the Inception Block. In Inception Block, the identical information transmission is utilized by 1× 1
convolutional layer. The HGA does not omit the identical transmission in Inception Net. It is because
the 1× 1 convolution will change the distribution of information from different channels.

ResBlock

𝐗𝐗

�𝐗𝐗

(a)

ResBlock

𝐗𝐗

HGA

�𝐗𝐗

(b)

Inception Block

𝐗𝐗

�𝐗𝐗

(c)

Inception Block

𝐗𝐗

HGA

�𝐗𝐗

(d)

Figure 2. Applications of HGA on different network designs. (a) The vanilla ResBlock [15]. (b) The
application of HGA on ResBlock. (c) The vanilla Inception Block [14]. (d) The application of HGA on
Inception Block.

From the design, HGA is an efficient component with restricted parameters and computation
complexity. Suppose the input Fin is with size H ×W × C, then the FLOPs cost on MFE module is

FLOPMFE = 2HWC(12 + 32 + 52 + 72). (8)

After concatenation, there are three GAP layers for global information measurement. The FLOPs
cost on HAP module is

FLOPHAP = 3HWC. (9)

Finally, there are two full connection layers and two activation functions in EE module. The FLOPs
cost on EE module is

FLOPEE =
85
2

C2. (10)

The entire FLOP cost of HGA is,

FLOPHGA = FLOPMFE + FLOPHAP + FLOPEE. (11)

Notice that there is no bias in both group convolutions and the full connection layers. On one
hand, it will save the parameters and computation cost. On the other hand, the bias setting will modify
the distribution of feature maps.

The parameters of HGA are

ParamHGA = (12 + 32 + 52 + 72)C +
11
2

C2. (12)

The left-hand side of Equation (12) denotes the parameters of MFE module and the right-hand
side denotes the EE module. There is no parameter in HAP module, where only the GAP layers exist.

5. Experiments

5.1. Results

To demonstrate the capacity of HGA, we evaluate the image classification performance on
ImageNet [11] 2012 dataset. The ImageNet dataset contains 1.28 million images for training and
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around 50,000 images for validation, which cover 1000 different classes. Top-1 and top-5 error are
considered as the indicators of classification capacity. The images are augmented by randomly
cropping, flipping, and rotation. Training data are resized as 224× 224 to suit the origin settings of
baseline network. The parameters are updated by SGD optimizer with learning rate as lr = 0.6 and
shrunk 10 times for every 30 epochs. We totally update the model for 100 epochs.

For a better representation of the HGA embedding method, we provide the details on two modern
backbones, which is shown in Table 1. As there are a large number of filters in the deeper layers, a linear
transformation is applied for dimension reduction. In the table, HGA(a, b, c) denotes a three-step
operation. First, a full connection (FC) layer is conducted to shrink the dimension from a to b, then an
HGA attention with b channels is utilized. After the attention mechanism, the dimension will be
restored from b to c with a FC layer.

Table 1. The embedding methods of HGA for different modern backbones.

Output Size ResNet-50 [15] HGA-ResNet-50 HGA-ResNeXt-50

112× 112 conv, 7× 7, 64, stride = 2 conv, 7× 7, 64, stride = 2 conv, 7× 7, 64, stride = 2

56× 56 maxpool, 3× 3, stride = 2 maxpool, 3× 3, stride = 2 maxpool, 3× 3, stride = 2 conv, 1× 1, 64
conv, 3× 3, 64

conv, 1× 1, 256

× 3


conv, 1× 1, 64
conv, 3× 3, 64

conv, 1× 1, 256
HGA(256, 32, 256)

× 3


conv, 1× 1, 128
conv, 3× 3, 128
conv, 1× 1, 256

HGA(256, 32, 256)

× 3

28× 28

 conv, 1× 1, 128
conv, 3× 3, 128
conv, 1× 1, 512

× 4


conv, 1× 1, 128
conv, 3× 3, 128
conv, 1× 1, 512

HGA(512, 32, 512)

× 4


conv, 1× 1, 256
conv, 3× 3, 256
conv, 1× 1, 512

HGA(512, 32, 512)

× 4

14× 14

 conv, 1× 1, 256
conv, 3× 3, 256

conv, 1× 1, 1024

× 6


conv, 1× 1, 256
conv, 3× 3, 256

conv, 1× 1, 1024
HGA(1024, 32, 1024)

× 4


conv, 1× 1, 512
conv, 3× 3, 512
conv, 1× 1, 1024

HGA(1024, 32, 1024)

× 4

7× 7

 conv, 1× 1, 512
conv, 3× 3, 512

conv, 1× 1, 2048

× 6


conv, 1× 1, 512
conv, 3× 3, 512

conv, 1× 1, 2048
HGA(2048, 32, 2048)

× 4


conv, 1× 1, 1024
conv, 3× 3, 1024
conv, 1× 1, 2048

HGA(2048, 32, 2048)

× 3

1× 1 GAP, 1000-d fc, softmax GAP, 1000-d fc, softmax GAP, 1000-d fc, softmax

Herein, we consider the error rate as the indicator for different networks. In fact, statistically
significant is a less concerned indicator for deep learning-based image classification. On one hand,
Top-1 and Top-5 error (%) can well describe the performance for practical applications. On the other
hand, CNN has a good generalization ability and performs well on different classification datasets.
Usually when a network works well on one class, it will also work well on another one. In this situation,
Analysis of Variance (ANOVA) may be not useful for evaluating the network performance. From this
point of view, we only compare the numeric values but not perform the statistically significant test.

We compare the single-crop error rates on the ImageNet validation set and adopt better values
between the reported results from their origin papers and our reproduction version. The results are
shown in Table 2. We apply the HGA to five modern backbones: ResNet-50, ResNet-101, ResNet-152,
ResNeXt-50, and ResNeXt-101, which have proved to be remarkable design patterns. From the
results, HGA provides a significant performance improvement with restricted increase on FLOPs and
parameters. Notice that the accuracy rates from vanilla models are reported from the origin paper,
and the HGA versions are trained by ourselves. From the numerical comparison with vanilla models,
HGA achieves average 7.94% improvement on Top 1 error and 16.63% on Top 5 error. The FLOPs of
HGA version only increases 6.23% on average. Furthermore, we also compare our HGA with recent
elaborate attention mechanism SENet [7] and SKNet [35]. The results are shown in Table 3. From the
results, HGA achieves better classification accuracy than other attention mechanisms. To demonstrate
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the generalization ability of HGA, we perform the comparisons on CIFAR-10 and CIFAR-100 dataset
in Table 4, which shows the superior capacity of our HGA.

Table 2. Single-crop error rates of different models on ImageNet dataset.

Model ResNet-50 ResNet-101 ResNet-152 ResNeXt-50 ResNeXt-101

Vanilla

Top 1 err.(%) 24.80 23.17 22.42 22.11 21.18
Top 5 err.(%) 7.48 6.52 6.34 5.90 5.57

FLOPs(G) 4.11 7.83 11.55 4.25 8.01
Params(M) 25.55 44.54 60.19 25.02 44.17

HGA

Top 1 err.(%) 22.48 (−2.32) 21.50 (−1.67) 20.63 (−1.79) 20.22 (−1.89) 19.82 (−1.36)
Top 5 err.(%) 6.22 (−1.26) 5.60 (−0.92) 5.23 (−1.11) 4.88 (−1.02) 4.59 (−0.98)

FLOPs(G) 4.38 8.23 12.13 4.53 8.71
Params(M) 26.73 47.07 63.92 26.21 46.70

Table 3. Comparisons of different attention mechanism on ImageNet dataset.

Model ResNet-50 ResNet-101 ResNet-152 ResNeXt-50 ResNeXt-101

Vanilla Top 1 err.(%) 24.80 23.17 22.42 22.11 21.18

SENet [7] Top 1 err.(%) 23.29 (−1.51) 22.38 (−0.79) 21.57 (−0.85) 21.10 (−1.01) 20.70 (−0.48)
FLOPs(G) 4.11 7.83 11.56 4.26 8.01

SKNet [35] Top 1 err.(%) - - - 20.79 (−1.23) 20.19 (−0.84)
FLOPs(G) - - - 4.47 8.46

HGA Top 1 err.(%) 22.48 (−2.32) 21.50 (−1.67) 20.63 (−1.79) 20.22 (−1.89) 19.82 (−1.36)
FLOPs(G) 4.38 8.23 12.13 4.53 8.71

Table 4. Top 1 error(%) of different attention mechanism on CIFAR-10 and CIFAR-100 dataset.

Model R-110 [15] R-164 [15] SE-R-110 [7] SE-R-164 [7] HGA-R-110 HGA-R-164

CIFAR-10 6.37 5.46 5.21 4.39 4.52 3.98
CIFAR-100 26.88 24.33 23.85 21.31 22.02 20.82

5.2. Ablation Study

Investigation on different modules. To demonstrate the effectiveness of three different modules,
we rebuild the HGA with different module combinations. The results are shown in Table 5.
From the table, we can find that MFE plays as a critical role for performance improvement. On one
hand, MFE extracts the multi-scale information from input features which provides a diverse
comprehension. On the other hand, the MFE module increases the network depth, which helps
to enhance the representation.

Table 5. Comparisons of different module combinations.

MFE HGA EE ResNet-101 ResNeXt-101
Top 1 err.(%) Top 5 err.(%) Top 1 err.(%) Top 5 err.(%)

3 3 3 21.50 5.60 19.82 4.59
7 3 3 21.91 5.73 20.22 4.81
3 7 3 21.58 5.63 19.92 4.62
3 3 7 21.63 5.69 20.01 4.69
3 7 7 21.85 5.69 20.03 4.63
7 3 7 22.40 6.20 20.48 5.09
7 7 3 22.00 5.75 20.34 4.88
7 7 7 23.17 6.52 21.18 5.57
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Investigation on HGA module. To further explore the capacity of HGA module, we modify the
multi-scale extraction with different convolutional layers, which are shown in Table 6. From the result,
we can find that the larger filters will help more on the accuracy improvement. Different filter sizes will
exploit different scale information, and the HGA module can comprehensively exploit the multi-scale
feature for better representation and semantic understanding.

Table 6. Investigation on HGA module.

1 × 1 3 × 3 5 × 5 7 × 7 ResNet-101 ResNeXt-101
Top 1 err.(%) Top 5 err.(%) Top 1 err.(%) Top 5 err.(%)

3 21.88 5.72 20.19 4.79
3 21.76 5.69 20.11 4.71

3 21.70 5.67 20.08 4.69
3 21.67 5.66 20.01 4.66

3 3 3 3 21.50 5.60 19.82 4.59

6. Conclusions

In this paper, we introduced a hierarchical global attention mechanism termed HGA for the
image classification issue, considering the multi-scale correlations between different feature maps.
There are three modules in HGA for adaptive multi-scale information exploration and finding the
attention among features. As an efficient network component, HGA could be flexibly applied
in various network design patterns, which was demonstrated in both computational complex
analysis and the experimental results. We performed the experiments with several modern network
design patterns, the experiment results showed HGA as an effective component for better image
classification performance.
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