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Abstract: The smart energy system, viewed as an “Energy Internet”, consists of the intelligent
integration of decentralized sustainable energy sources, efficient distribution, and optimized power
consumption. That implies the fault diagnosis for a smart energy system should be of low complexity.
In this paper, we propose a Strong Tracking Unscented Kalman Filter (STUKF) and modified
Bayes’ classification-based Modified Three Sigma test (MTS), abbreviated as SFBT, for smart energy
networks. The theoretical analysis and simulations indicate that SFBT detects faults with a high
accuracy and a low complexity of O(n).

Keywords: fault diagnosis; low-complexity; energy internet; smart city

1. Introduction

The components a smart city include smart infrastructure, smart buildings, smart transportation,
smart energy, smart health care, smart technology, smart governance, smart education, and smart
citizens [1–5], among which the concept of smart energy can be viewed as an “Energy Internet”
model [6–11]. The backbone of a smart energy system is the smart energy grid, the smart energy
metering of which is an important component. For example, the smart meter records consumption
of electric energy in certain time intervals and communicates that information to the utility for
monitoring and billing. To ensure a green model for smart cities [12], minimal energy consumption
is required. To serve such a purpose, fault diagnosis in green smart cities should be efficient in low
complexity [13–15].

There exist many filter-based fault diagnosis algorithms specifically designed for nonlinear
time-varying stochastic systems. In Reference [16], Ma et al. proposed a fault-related parameter
estimation method based on a strong tracking filter for state assessment, as well as a logistic regression
algorithm for root cause classification. In Reference [17], Daroogheh et al. designed a particle
filter-based dual estimation strategy for both time-varying parameters and states. In Reference [18],
Yin and Zhou proposed an intelligent particle filter to solve the problem of misleading state estimation
due to the particle impoverishment. They designed a genetic-operators-based strategy to improve
the particle diversity. Zhao et al. [19] developed an optimal unbiased finite impulse response filter,
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the estimator of which is used to minimize the mean square error subject to the unbiasedness constraint.
In Reference [20], He et al. used the residual signal to detect sensor bias faults first and then employed
residual analysis for faults isolation. Ge et al. [21] studied a performance comparison of the strong
tracking filter and Kalman filter. In Reference [22], Zhao et al. designed an adaptive robust square-root
cubature Kalman filter (CKF) with the noise statistic estimator to solve the decline or divergence
problem of the accuracy of the CKF. Residual χ2 test is a system-level fault detection algorithm [23] that
can judge whether a set of measurement information in the Kalman filter system is effective in real time,
based on which interactive residual fault detection method was proposed to identify both hard and
soft faults, which are similar to the jump type fault and the soft fault, respectively. Huang and He [24]
utilized two Bernoulli random variables to model the dead-zone effect. In addition, a Tobit Kalman
filter is brought forward to generate a residual that can indicate the occurrence of an intermittent fault.
The time-domain uncensored Kalman filter state estimation methodology is applied to address short
circuit faults and transient load conditions [25]. On the other hand, researchers have been working on
non-filter-based fault diagnosis algorithms for decades. Lau et al. [26] proposed a centralized diagnosis
algorithm based on end-to-end transmission time, and then they employed the Bayes’ classification to
improve the diagnosis accuracy. In Reference [27], Nandi et al. used the Pearson test to find faulty
nodes within a square grid based network. Gong et al. [28] proposed an optimal deducing model to
locate faulty nodes based on the return message from the sink node. Jiang [29] developed a two-phase
fault detection algorithm based on the majority voting. Panda and Khilar [30] applied a three Sigma
test to locate faulty nodes. In Reference [31], Sharma et al. proposed a decentralized algorithm based on
spatio-temporal correlation. In Reference [32], Swain et al. integrated the network cut set and majority
voting to detect the faulty nodes. Recently, Samuel et al. [33] presented the design of a H∞ sliding
mode and an unknown input observer for Takagi-Sugeno systems to deal with the problem of inexact
measurements of the premise variables. In Reference [34], a data-driven system based on PCA was
designed to detect and quantify fluid leaks in an experimental pipeline.

Although these fault diagnosis approaches are able to detect certain industrial system
faults, it remains a challenge to design a fault diagnosis model that meets practical production
requirements [35–37]. In addition, how to accurately detect faults with a low complexity is still
a challenge.

Our Contribution

In this paper, we propose a novel low-complexity algorithm named SFBT for fault detection
in smart cities, which consists of a Strong Tracking Unscented Kalman Filter (STUKF), a Modified
Bayes’ classification algorithm (MB), and a Modified Three Sigma test (MTS), aimed to detect both of
attenuation type faults and jump type faults. Besides, as a special case of the hypothesis test, SFBT can
detect Byzantine faults [38]. Note that the message complexity of SFBT is O(n) such that the lifetime
of a smart city network is extended. The details of our contributions are listed as follows:

1. The STUKF, along with the MB, is applied to detect faulty cluster-heads in a centralized manner
with a high accuracy; meanwhile, the messages exchanged are no more than O(n) such that the
corresponding energy cost is reduced.

2. We develop MTS to determine the faulty state of every cluster-member within each cluster of a
faulty cluster-head, while the cluster with a fault-free cluster-head can easily make a decision
by simply comparing the data between the cluster-head and cluster-members. By doing so, the
diagnosis accuracy is increased significantly, and the message complexity, which is only O(n),
implies that the energy cost is further reduced.

The rest of the paper is organized as follows. The system model and notions are given in Section 2.
The strategies are elaborated in Section 3. Section 4 gives the theoretical analysis on the performance
of the SFBT. The validation results are presented in this section, as well. We conclude this paper in
Section 5.
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2. System Model

In this paper, a fault diagnosis model that meets practical production requirements for smart
energy network of smart city is considered. The discrete state-space model of which is given as follows:{

x(k + 1) = f (x(k)) + Γ(k)v(k)
z(k + 1) = h(x(k + 1)) + e(k + 1)

, (1)

where k ≥ 0 is a discrete time variable, x ∈ Rn is a state vector, z ∈ Rm is an output vector, f : Rn → Rn

and h : Rn → Rm denote nonlinear transition functions, Γ ∈ Rn×n and vk ∈ Rn and ek ∈ Rm are
uncorrelated, zero-mean, Gaussian white noises with covariance Vk and Ek, respectively. The meter
of the smart energy network records consumption of electric energy in certain time intervals and
communicates that information to the utility for monitoring and billing. Based on the normal and
observed values of different meters, the data is modeled as a normal distribution with specific mean and
standard deviation. Due to the harsh environment, each meter may malfunction with a probability p.
In this paper, we aim to solve the fault detection problem with a high accuracy and a low message
complexity in a nonlinear time-varying stochastic system. All symbols and descriptions throughout
the paper are given in Table 1.

Table 1. Notions.

Symbols Descriptions

Ci i-th cluster
CHi i-th cluster-head of Ci
si i-th meter
Negi Set of neighboring meters of si
x(k) State of a meter at time k
xi data of si
x̂i Estimated value of xi
µi Sample mean of si
σi Sample variance of si
Med Median of the data
MAD Median Absolute Deviation
SD Standard Deviation
η Threshold for identifying fault state
pr Probability of a meter being faulty
p Probability of a faulty meter detected as fault-free
STUKF Strong Tracking Unscented Kalman Filter
MB Modified Bayes’ classification algorithm
MTS Modified Three Sigma test

3. The Proposed Strategy

We consider a clustered smart energy network in this paper. Instead of testing each meter, we
perform a centralized testing on cluster-heads only. Then, the fault state of cluster-members can be
verified by corresponding fault-free cluster-heads in a decentralized manner. To be more specific, the
SFBT works in three phases. In the first phase, SFBT finds the Minimal Dominating Set (MDS) of
the network such that each dominator serves as a cluster-head while the corresponding dominatees
become cluster-members. During the phase two, SFBT applys both STUKF and MB to detect the
faulty cluster-heads in a centralized manner. In the last phase, an MTS is developed to determine the
fault state of each cluster-member for decentralized fault diagnosis.
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3.1. STUKF- and MB-based Centralized Fault Diagnosis

In this section, we introduce the faulty cluster-heads detection algorithm, which is the second
phase of the SFBT. Specifically, we apply an STUKF-based joint estimation method to predict the state
and parameter of each cluster-head CHi first; then, the MB is adopted to find the faulty ones.

3.1.1. STUKF-based State Prediction

First, we introduce fault state related time-varying parameter θ(k). Then, joint estimation requires
(1) to be rewritten as: 

x(k + 1) = f (x(k)) + Γ(k)v(k)
θ(k + 1) = θ(k)
z(k + 1) = h(x(k + 1)) + θ(k + 1) + e(k + 1)

. (2)

By applying joint estimation of states and parameters, faulty states can be detected. Then, we
extent state, noise, and transition as follows:

xe(k + 1) =

[
x(k + 1)
θ(k + 1)

]
, (3)

Γe(k) =

[
Γ(k)

0

]
, (4)

fe(xe(k)) =

[
f (x(k))

θ(k)

]
, (5)

he(xe(k + 1)) = h(xe(k + 1)) + θ(k + 1). (6)

Substituting Equations (3)–(6) into Equation (2) yields:
xe(k + 1) = fe(xe(k)) + Γe(k)v(k)
θ(k + 1) = θ(k)
z(k + 1) = he(xe(k + 1)) + θ(k + 1) + e(k + 1)

. (7)

It is worth mentioning that xe(k + 1) can be predicted by STUKF [39].

3.1.2. MB-based Faulty Cluster-Heads Identification

Once we obtain x̂e(k + 1), the MB is applied to find the faulty cluster-heads. First, we assume θ(k)
obeys the normal distribution when the system is fault-free, which is θi ∼ N(θ0

i , σ2
θ0

i
). If the system

suffers from the parameter exception, it can be determined by the following hypothesis test, where si
is fault-free if H0 holds; otherwise, si is faulty.

H0 : dθi (k) ≤ βθi , (8)

H1 : dθi (k) > βθi , (9)
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where

µθi (k) =
1

N1

N1

∑
j=1

θ̂i(k− j|k− j), (10)

σ2
θi1
(k) =

1
N1 − 1

N1

∑
j=1

[θ̂i(k− j|k− j)− θ0
i ]

2, (11)

σ2
θi2
(k) =

1
N1 − 1

N1

∑
j=1

[θ̂i(k− j|k− j)− µθi (k)]
2, (12)

dθi (k) =
σ2

θi1
(k)

σ2
θ0

i

− ln
σ2

θi2
(k)

σ2
θ0

i

− 1. (13)

To be more specific, for each θ̂i(k + 1|k + 1), the MB is applied to determine the faulty state of si.
The meter si suffers from the parameter bias fault at k = τ, only if there exists a θi such that H1 holds.
For the jump type fault, we need to obtain an accurate fault amplitude as follows. If there exists an
integer M ∈ {0, 1, 2, · · · } such that for each T ∈ {MT2 + 1, · · · , MT2 + T2}, MT2 ≥ τ, we have

|θ̂i(T|T)− θ̂i(T − 1|T − 1)| < εi, (14)

then, at k = MT2 + T2, the fault amplitude of si is estimated to be

∆θi =
[ 1

T2

MT2+T2

∑
T=MT2+1

θ̂i(T|T)
]
− θ̂0

i . (15)

Note that if a smaller εi is chosen, then faults can be more accurately estimated, which requires
much more time, and vice-versa.

3.2. Modified Three Sigma Rule-based Fault Diagnosis

In this section, the modified three sigma rule is introduced first, based on which the corresponding
decentralized fault diagnosis is given.

The data xi sensed by si can be measured by taking both estimated mean µ̂i and standard deviation
σ̂i of the data collected from neighbors. Let ti represent the ratio between its deviation to the estimated
mean and standard deviation as follows:

ti =
xi − µ̂i

σ̂i
. (16)

According to the three sigma rule, if |ti| > 3, then si is considered as faulty; otherwise, si is
fault-free. However, this rule is unable to detect faulty meters within a lower degree network. The
reason is listed as follows. If there exist two suspicious meters si and sj such that xi � xj, then sj may
be considered fault-free, which is called the “masking” [30]. To solve such a problem, the Median
(Med) of the data and the Median Absolute Deviation (MAD) are applied, instead of the µi and σi,
respectively. This is because the actual data value deviate from the faulty meter readings such that the
Md- and MAD-based fault detecting schemes can achieve better accuracy in results. Then, we give the
modified three sigma rule as follows.

For a data set xk = {x1, x2, · · · , xnk} sorted in an ascending order, we have

Mdi = Med(xi)

{
xm+xm+1

2 ni = 2m
xm otherwise

. (17)
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The MAD is defined as follows:

MAD(x1, · · · , xni ) = Med{|xi −Mdi|}. (18)

In fact, only the normalized MAD, which is

MADN(xi) =
Med{|xi −Mdi|}

0.675
, (19)

is suitable to replace Standard Deviation (SD) [30]. Then, the absolute error for the modified three
sigma test is defined as follows:

tr
i =

xi −Mdi
MADN(xi)

. (20)

It is apparent that the modified three sigma rule defers from the original one only in the choice of
the absolute error.

Next, we give the corresponding decentralized fault diagnosis algorithm as follows:
Step 1: For each cluster Ci with a fault-free cluster-head CHi, if |xj − xi| ≤ η, then sj ∈ Ci is

fault-free; otherwise, sj is faulty.
Step 2: For each cluster Cj with a faulty cluster-head CHj, the MTS is applied to C

′
j = Cj\{CHj}

such that the fault state of each cluster-member within Cj is detected.
By doing so, we can determine the fault states of at least |MDS| M (1− pr) meters, where M

represents the maximum degree of graph G. The theoretical analysis on the diagnosis accuracy and
message complexity is given in the next section.

4. Performance Analysis

4.1. Theoretical Analysis

In this section, we analyze the performance of the SFBT in terms of: (I) Detection Accuracy
(abbreviated as DA, which is the ratio between number of faulty meters detected as faulty and the
total number of faulty meters); (II) False Alarm Rate (abbreviated as FAR, which is the number of
fault-free meters detected as faulty to the total number of fault-free meters); (III) False Positive Rate
(abbreviated as FPR, which is the ratio of the number of faulty meters detected as fault-free to the total
number of faulty meters); and (IV) message complexity.

Let pr be the probability of a meter being faulty, p be the probability that a faulty meter
detected as fault-free, and p

′
denote the accuracy of the SFBT, respectively. Then, the following

three theorems hold.

Theorem 1. The DA of the proposed algorithm SFBT is

DASFBT =

{ |MDS|[(1−p)M+1]
n , tr

i ≤ 3
|MDS|{M[2(1−pr)+p]+1}

n , tr
i > 3

. (21)

Proof. The SFBT detects faulty meters in two phases. In the first phase, there are up to |MDS|(1− pr)

fault-free cluster-heads detected along with |MDS|pr faulty ones. That implies there are at most
|MDS|(1 − pr) M pr faulty cluster-members correctly diagnosed within corresponding clusters.
According to the modified sigma rule, it is apparent that, if tr

i ≤ 3, then the detection accuracy
is according to the DA of the three sigma test given by Panda [38], which is

DA =

{
pr − p, tr

i ≤ 3
(1− pr) + p, tr

i > 3
. (22)
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That suggests we can correctly detect |MDS|pr M faulty cluster-members. Therefore, the DA of
SFBT is deduced as

DASFBT =

{ |MDS|[(1−p)M+1]
n , tr

i ≤ 3
|MDS|{[2(1−pr)+p]M+1}

n , tr
i > 3

,

where |MDS| ≤ 1+ln(δ+1)
δ+1 n [40], n denotes the number of meters, and the minimum and the maximum

degree of graph G is denoted by δ and M, respectively.

Theorem 2. The FPR of the algorithm SFBT is

FPRSFBT =

{
n(pr+p)−|MDS|[1+(1−pr)M]

n , tr
i ≤ 3

n(1−pr−p)−|MDS|[1+(1−pr)M]
n , tr

i > 3
. (23)

Proof. Similar to the proof of Theorem 5.1, the SFBT can correctly detect up to |MDS|pr faulty
cluster-heads. With the help of fault-free cluster-heads, there are at most |MDS|pr(1− pr) M faulty
cluster-members detected as faulty ones. According to literature [38], the FPR of the three sigma test is

FPR =

{
pr + p, tr

i ≤ 3
1− (pr + p), tr

i > 3
. (24)

Therefore, we can deduce that the FPR of the SFBT is

FPRSFBT =

{
n(pr+p)−|MDS|[1+(1−pr)M]

n , tr
i ≤ 3

n(1−pr−p)−|MDS|[1+(1−pr)M]
n , tr

i > 3
.

Theorem 3. The FAR for the algorithm SFBT is

FARSFBT =


npr−|MDS|(1−pr)[1+M(1−pr)]

n(1−pr)
, tr

i ≤ 3
np−|MDS|(1−pr)[1+M(1−pr)]

n(1−pr)
, tr

i > 3
. (25)

Proof. Similar to the proofs of previous theorems, there are up to |MDS|(1 − pr) fault-free
cluster-heads correctly detected by the SFBT. That implies the fault states of corresponding
cluster-members, which are as many as |MDS|(1− pr) M (1− pr) meters, are easily verified. The FAR
of the three sigma test is given in Reference [38] as follows:

FAR =

{ pr
1−pr

, tr
i ≤ 3

p
1−pr

, tr
i > 3

. (26)

There is no doubt that the FAR of the SFBT is

FARSFBT =


npr−|MDS|(1−pr)[1+M(1−pr)]

n(1−pr)
, tr

i ≤ 3
np−|MDS|(1−pr)[1+M(1−pr)]

n(1−pr)
, tr

i > 3
.

Theorem 4. The message complexity of the algorithm SFBT is O(n).

Proof. Since the SFBT is a two-phase strategy, we analyze the complexity of each phase to prove
this theorem. Since the centralized diagnosis part of the SFBT requires sampling, the corresponding
message complexity depends on the number of sample, which equals to the data window N1. In fact,
the data window can be chosen as a constant such that the number of messages exchanged is less than
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|MDS|N1. That implies complexity of the centralized part of the SFBT is O(n). On the other hand, for
an MTS-based strategy, each fault-free CHi obtains the broadcasting data of every cluster-member,
while meters within each Ci of a faulty CHi broadcast data to each other. That implies the complexity
of the decentralized part of the SFBT is O(n). Therefore, the message complexity of the SFBT is no
more than O(n).

It is obvious that SFBT is low-complexity when compared with contemporaneous fault
diagnosis algorithms.

4.2. Validation Experiment

The performance of the SFBT is given in this section. First, the diagnosis accuracy for faulty
cluster-header detection utilizing STUKF and MB only is validated through experiments. Then, we
compare the SFBT with the existing DFD [30], Jiang [28], and DSFD [38] in terms of detection accuracy
(DA), false positive rate (FPR), and false alarm rate (FAR), respectively.

The resistor of a meter easily suffers from the jump type fault. Suppose the resistor gets faulty at
k = 1000. Let θ0 = 10 kΩ, σ2

θ0 = 1000, N1 = 20, βθ = 4000, ε = 0.1, and T2 = 50.
Figures 1 and 2 show that the fault is detected at k = 1030 and it is isolated at k = 1250 with the

fault amplitude equal to 4.8 kΩ. That implies the detection accuracy is about 1− 4.8
4000 = 99.88%.
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to

r/
k
+ estimated value

real value

Figure 1. Real value vs. estimated value of Strong Tracking Unscented Kalman Filter (STUKF) for
jump type fault.
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Figure 2. STUKF and Modified Bayes’ classification algorithm (MB)-based detection for jump
type fault.

The capacitor is subject to the attenuation type fault, which is a case of the incipient fault. Now,
we show the proposed strategy can detect the attenuation type fault. Let θ0 = 1000 pF, σ2

θ0 = 0.1,

N1 = 40, βθ = 500, 000. Suppose the degradation of the capacitor begins with θ(k + 1) = θ(k)−1
2 at

k = 600.
Figures 3 and 4 show that, the attenuation type fault has been detected at about step = 1110 with

the magnitude about 235 pF. That implies the detection accuracy is 1− 235
1000 = 97.65%.
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Figure 4. STUKF and MB-based detection for attenuation type fault.

In Figure 5, it is clear that the detection accuracy of each strategy drops with the increase of the
fault probability. However, the SFBT achieves higher detection accuracy than the others.
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Figure 5. Detection accuracy comparison.

Although the false alarm rate and the false positive rate increase with the fault probability (see
Figures 6 and 7), the SFBT still outperforms baseline approaches.
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Figure 6. False alarm rate comparison.
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Figure 7. False positive rate comparison.

To sum up, the SFBT performs better than DFD [41], Jiang [29], and DSFD [30] in terms of
detection accuracy, false positive rate, and false alarm rate, respectively. The reason for that is the
SFBT employs fault-free cluster-heads, which are located by the strong tracking UKF and the modified
Bayes’ classification algorithm, to detect the fault states of cluster-members through the modified three
sigma test.

5. Conclusions

The optimized power consumption for a smart energy system of a smart city is crucial. Although
a variety of fault diagnosis algorithms have been developed, how to efficiently detect faults with
low complexity poses a great challenge. To this end, we propose the SFBT that works on a clustered
network. It first applies a strong tracking UKF (STUKF) and a modified Bayes’ classification algorithm
(MB) to detect fault-free cluster-heads in a centralized manner. Then, a decentralized modified
three Sigma test (MTS) is developed to identify faulty cluster-members to overcome the “masking”
problem within the cluster with a faulty cluster-head. Besides, a faulty-free cluster-head can detect any
faulty cluster-member by simply comparing the data of its own and the one of the cluster-member.
The theoretical analysis and experiment results indicate that the SFBT achieves higher diagnosis
accuracy over some contemporary strategies with a complexity of O(n).

In fact, each faulty free cluster-head detected by the SFBT is only one hop away from
corresponding cluster-members. That suggests data collected by the cluster-head do not differ much
from that of cluster-members, which makes the three Sigma test work. However, by doing so, more
cluster-heads are required. Thus, our future work includes how to detect faulty cluster-members at
least two hops away with a complexity no more than O(n).
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