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Abstract: Secret information sharing through image carriers has aroused much research attention in
recent years with images’ growing domination on the Internet and mobile applications. The technique
of embedding secret information in images without being detected is called image steganography.
With the booming trend of convolutional neural networks (CNN), neural-network-automated tasks
have been embedded more deeply in our daily lives. However, a series of wrong labeling or bad
captioning on the embedded images has left a trace of skepticism and finally leads to a self-confession
like exposure. To improve the security of image steganography and minimize task result distortion,
models must maintain the feature maps generated by task-specific networks being irrelative to any
hidden information embedded in the carrier. This paper introduces a binary attention mechanism into
image steganography to help alleviate the security issue, and, in the meantime, increase embedding
payload capacity. The experimental results show that our method has the advantage of high
payload capacity with little feature map distortion and still resist detection by state-of-the-art image
steganalysis algorithms.

Keywords: convolutional neural network; steganography; attention mechanism

1. Introduction

Image steganography aims at delivering a modified cover image to secretly transfer hidden
information inside with little awareness of the third-party supervision. On the other side, steganalysis
algorithms are developed to find out whether an image is embedded with hidden information or not,
and, therefore, resisting steganalysis detection is one of the major indicators of steganography security.
In the meantime, with the booming trend of convolutional neural networks, a massive amount of
neural-network-automated tasks are coming into industrial practices like image auto-labeling through
object detection [1,2] and classification [3,4], face recognition [5], pedestrian re-identification [6],
etc. Image steganography is now facing a more significant challenge from these automated tasks,
whose embedding distortion might influence the task result in a great manner and irresistibly lead
to suspicion. Figure 1 is an example that LSB (Least Significant Bit)-Matching [7] steganography
completely alters the image classification result from goldfish to proboscis monkeys. Under such
circumstances, a steganography model even with outstanding invisibility to steganalysis methods still
cannot be called secure where the spurious label might re-arouse suspicion and, finally, all efforts are
made in vain (Source code will be published at: https://github.com/adamcavendish/BASN-Learning-
Steganography-with-Binary-Attention-Mechanism).
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Figure 1. LSB-matching embedded image misclassification.

The cover image and embedded image both use an ImageNet pretrained ResNet-18 [3] network
for classification. The percentage before the predicted class label represents a network’s confidence in
prediction. The red, green, and blue noisy images in the center represent the altered pixel locations
in corresponding channels during steganography. There are only three kinds of colors within these
images where white stands are for no modification, the lighter one stands for a +1 modification, and
the darker one stands for a −1 modification.

Most previous steganography models focus on resisting steganalysis algorithms or raising
embedding payload capacity. BPCS (Bit-Plane Complexity Segmentation) [8,9] and PVD (Pixel-Value
Differencing) [10–12] use adaptive embedding based on local complexity to improve embedding visual
quality. HuGO [13] and S-UNIWARD [14] resist steganalysis by minimizing a suitably defined
distortion function. Wang [15] adopts a gray level co-occurence matrix to calculate the image
texture complexity. Meng’s method [16] improves security and robustness with the aid of Faster
R-CNN’s object detection on texture complex areas. Xue [17] proposes optimal dispersion degree
on halftone images to measure region texture complexity. Huang [18] adds a texture-based loss
to help GAN hide information. Liao [19] establishes a framework with image texture complexity
and distortion distribution strategies to embed hidden information across multiple cover images.
Hu [20] adopts a deep convolutional generative adversarial network to achieve steganography without
embedding. Wu [21] and Baluja [22] achieve a vast payload capacity by focusing on image-into-image
steganography.

In this paper, we propose a Binary Attention Steganography Network (abbreviated as BASN)
architecture to achieve a relatively high payload capacity (2–3 bpp, bits per pixel) with minimal
distortion to other neural-network-automated tasks. It utilizes convolutional neural networks with two
attention mechanisms, which minimize embedding distortion to the human visual system and neural
network feature maps, respectively. Additionally, multiple attention fusion strategies are suggested to
balance payload capacity with security, and a fine-tuning mechanism are put forward to improve the
hidden information extraction accuracy.

2. Binary Attention Mechanism

Binary attention mechanism involves two attention models including an image texture complexity
(ITC) attention model and a minimizing feature distortion (MFD) attention model. The attention
mechanism in both models serves as a hint for steganography showing where to embed or extract
and how much information the corresponding pixel might tolerate. The ITC model mainly focuses
on deceiving the human visual system from noticing the differences out of altered pixels. The MFD
model minimizes the high-level features extracted between clean and embedded images so that neural
networks will not give out diverge results. With the help of the MFD model, we align the latent space
of the cover image and the embedded image so that we can infer the original cover attention map
using solely the embedded image. Afterwards, the hidden information is extracted at the locations and
capacity indicated by the inferred attention map. The conjoint effort of both models can maintain a
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high security and robustness against neural-network-automated tasks in addition to human perceptual
invisibility.

The embedding and extraction overall architecture are shown in Figure 2 where both models are
trained for the ability to generate their corresponding attention. The training process and the details
of each model are elaborated in Sections 2.2 and 2.3. After attention is placed on the binary attention
mechanism, we may adopt several fusion strategies to create the final amount of attention used for
embedding and extraction. The fusion strategies are compared for their pros and cons in Section 3.

(a) Embedding (b) Extraction

Figure 2. The embedding and extraction architecture.

2.1. Evaluation of Image Texture Complexity

To evaluate an image’s texture complexity, variance is adapted in most approaches. However,
using variance as the evaluation mechanism enforces very strong pixel dependencies. In other words,
every pixel is correlated to all other pixels in the image.

We propose a variance pooling evaluation mechanism to relax cross-pixel dependencies (see
Equation (1)). Variance pooling applies on patches but not the whole image to restrict the influence
of pixel value alterations within the corresponding patches. Especially in the case of training when
optimizing local textures to reduce its complexity, pixels within the current area should be most
frequently changed while far distant ones are intended to be reserved for keeping the overall image
contrast, brightness, and visual patterns untouched:

VarPool2d(Xi,j) = Eki
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Ekj
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In Equation (1), X is a two-dimensional random variable which can either be an image or a

feature map and i, j are the indices of each dimension. Operator E[·] calculates the expectation of the
random variable. VarPool2d applies a similar kernel mechanism as other two-dimensional pooling or
convolution operations [23,24], and ki, k j indicates the kernel indices of each dimension.

To further show the impact of gradients updating between variance and variance pooling during
backpropagation, we applied the gradients backpropagated directly to the image to visualize how
gradients influence the image itself during training (see Equations (2) and (3) for training loss and
Figure 3 for the impact comparison):

LVariance = Var(X) (2)

LVarPool2d = E [VarPool2dn=7 (X)] (3)
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(a) (b) (c) (d) (e) (f) (g) (h) (i)

(j) (k) (l) (m) (n) (o) (p) (q) (r)

Figure 3. The gradient impact comparison between variance and variance pooling during training.

The first row shows the impact of variance while the second shows that of variance pooling. The
visualization interval is 5000 steps of gradient backpropagation on the corresponding image.

2.2. ITC Attention Model

The ITC (Image Texture Complexity) attention model aims to embed information without being
noticed by the human visual system, or, in other words, making just a noticeable difference (JND) to
cover images to ensure the largest embedding payload capacity [25]. In texture-rich areas, it is possible
to alter pixels to carry hidden information without being noticed. Finding the ITC attention means
finding the positions of the image pixels and their corresponding capacity that tolerate mutations.

Here, we introduce two concepts:

1. A hyper-parameter θ representing the ideal embedding payload capacity that the input image
might achieve.

2. An ideal texture-free image Cθ corresponding to the input image that is visually similar but with
the lowest texture complexity possible regarding the restriction of at most θ changes.

With the help of these concepts, we can formulate the aim of ITC attention model as:
For each cover image C, the ITC model fitc needs to find an attention Aitc = fitc(C) to minimize

the texture complexity evaluation function Vitc:

minimize Vitc(Aitc · Cθ + (1− Aitc) · C) (4)

subject to
1
N

N

∑
i

Aitc ≤ θ (5)

The θ in Equation (5) is used as an upper bound to limit down the attention area size. If trained
without it, model fitc is free to output an all-ones matrix Aitc to acquire an optimal texture-free image.
It is well known that an image with the least amount of texture is a solid color image, which does not
help find the correct texture-rich areas.

In an actual training process, the detailed model architecture is shown in Figure 4 and two parts
of the equation are slightly modified to ensure better training results. First, the ideal texture-free
image Cθ in Equation (4) does not indeed exist but is available through approximation nonetheless.
In this paper, median pooling with a kernel size of 7 is used to simulate the ideal texture-free image.
It helps eliminate detailed textures within patches without touching object boundaries (see Figure 5
for comparison among different smoothing techniques and Figure 6 for comparison among various
kernel sizes). Second, we adopt soft bound limits in place of a hard upper bound in the form of
Equation (6) (visualized in Figure 7). Soft limits help generate smoothed gradients and provide
optimizing directions.
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Figure 4. ITC attention model architecture.

(a) Original (b) Average (c) Gaussian (d) Median

(e) Original (f) Average (g) Gaussian (h) Median

Figure 5. Image smoothing effect comparison.
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(a) Original (b) Median-3 (c) Median-5 (d) Median-7 (e) Median-11 (f) Median-15

(g) Original (h) Median-3 (i) Median-5 (j) Median-7 (k) Median-11 (l) Median-15

Figure 6. Various kernel size effect comparison.
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(b) MFD Area Penalty

Figure 7. Soft area penalties.

Area-Penaltyitc = E[Aitc]
3−2·E[Aitc] (6)

The overall loss on a training ITC attention model is listed in Equations (7) and (8). We use a
λ factor to balance the weight between VarLoss and Area-Penalty. Figure 8 shows the effect of ITC
attention on image texture complexity reduction. The attention area reaches 21.2% on average, and the
weighted images gain an average of 86.3% texture reduction in the validation dataset:

VarLoss = E [VarPool2d (Aitc · Cθ + (1− Aitc) · C)] (7)

Lossitc = λ ·VarLoss + (1− λ) ·Area-Penaltyitc (8)
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(a) Original Image (b) ITC Attention (c) Weighted Image

(d) Original Image (e) ITC Attention (f) Weighted Image

Figure 8. The effect of ITC attention on texture complexity reduction.

2.3. MFD Attention Model

MFD (Minimizing Feature Distortion) attention model aims to embed information with the least
impact on neural network extracted features. Its attention also indicates the position of image pixels
and their corresponding capacity that tolerate mutations.

For each cover image C, MFD model fmfd needs to find an attention Amfd = fmfd(C) that
minimizes the distance between cover image features fnn(C) and embedded image features fnn(S)
after embedding information into cover image according to its attention:

S = fembed(C, Amfd) (9)

minimize Lfmrl( fnn(C), fnn(S)) (10)

subject to α ≤ 1
N

N

∑
i

Amfd ≤ β (11)

Here, C stands for the cover image and S stands for the corresponding embedded image. Lfmrl(·)
is the feature map reconstruction loss and α, β are thresholds limiting the area of attention map acting
the same role as θ in the ITC attention model.

The MFD model instances colored in purple that share the same weight. The ResNet-18 model
instances colored in yellow use the same weight and are frozen.

The actual ways of training the MFD attention model is split into two phases (see Figure 9). The
first training phase aims to initialize the weights of encoder blocks using the left path shown in Figure 9
as an autoencoder. In the second training phase, all the weights of decoder blocks are reset and take
the right path to generate MFD attention. The encoder and decoder block architectures are shown in
Figure 10.
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Figure 9. MFD attention model architecture.

(a) Encoder (b) Decoder

Figure 10. The encoder and decoder block of the MFD attention model.

The overall training pipeline in the second phase is shown in Figure 11. The weights of two
MFD blocks colored in purple are shared while the weights of two task specific neural network
blocks colored in yellow are frozen. In the training process, task specific neural network works only
as a feature extractor and therefore it can be simply extended to multiple tasks by reshaping and
concatenating feature maps together. Here, we adopt ResNet-18 [3] as an example for minimizing
embedding distortion to the classification task.
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Figure 11. MFD attention mechanism training pipeline.

The overall loss on training MFD attention model (phase 2) is listed in Equation (12). The Lfmrl
(Feature Map Reconstruction Loss) uses L2 loss to reconstruct between cover image extracted feature
maps and embedded ones (Equation (13)). The Lcerl (Cover Embedded Image Reconstruction Loss)
and Latrl (Attention Reconstruction Loss) uses L1 loss to reconstruct between the cover images and
the embedded images and their corresponding attention (Equation (14)). The Latap (Attention Area
Penalty) also applies a soft bound limit in forms of Equation (16) (visualized in Figure 7). The visual
effect of MFD attention embedding with random noise is shown in Figure 12:

Lossmfd = Lfmrl + Lcerl + Latrl + Latap (12)

Lfmrl = E
[
(Cover-Feature-Map− Embedded-Feature-Map)2

]
(13)

Lcerl = E [|Cover-Image− Embedded-Image|] (14)

Latrl = E [|Cover-Attention− Embedded-Attention|] (15)

Latap = Area-Penaltymfd =
1
2
· (1.1 ·E[Amfd])

8·E[Amfd]−0.1 (16)
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(a) The Cover (b) MFD Attention (c) The Embedded

(d) The Cover (e) MFD Attention (f) The Embedded

Figure 12. The visual effect of MFD attention on embedding with random noise.

3. Fusion Strategies, Fine-Tuning Process, and Inference Techniques

The fusion strategies help merge ITC and MFD attention models into one attention model, and
thus they are substantial to be consistent and stable. In this paper, two fusion strategies being minima
fusion and mean fusion are put forth as Equations (17) and (18). The minima fusion strategy aims to
improve security while the mean fusion strategy generates more payload capacity for embedding:

Af = min(Aitc, Amfd) (17)

Af =
1
2
(Aitc, Amfd) (18)

After a fusion strategy is applied, the fine-tuning process is required to improve attention
reconstruction on embedded images. The fine-tuning process is split into two phases. In the first
phase, the ITC model is fine-tuned as Figure 13. The two ITC model instances colored in purple
share the same network weights, and the MFD model weights are frozen. Besides from the ITC
variance loss (Equation (7)) and the ITC area penalty (Equation (6)), the loss additionally involves an
attention reconstruction loss using L1 loss similar to Latrl in Equation (12). In the second phase, the
new ITC model from the first phase is frozen, while the MFD model is fine-tuned using its original
loss (Equation (12)) as Figure 14. The use of color has the same meaning as that of the first phase.
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Figure 13. The 1st phase fine-tune pipeline.

All the loss functions are colored in red. The fine-tune target model is colored in purple and all
the instances share the same weight.

Figure 14. The 2nd phase fine-tune pipeline.

All the loss functions are colored in red. The fine-tune target model is colored in purple and all
the instances share the same weight.

The ITC model, after fine-tuning, appears to be more interested in the texture-complex areas while
ignoring the areas that might introduce noises into the attention (see Figure 15).
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 15. ITC attention after fine-tuning.

The first column shows the original image, the second column shows the ITC attention before any
fine-tuning, the third column shows the ITC attention after fine-tuning for a minima fusion strategy,
and the fourth column shows the ITC attention after fine-tuning for the mean fusion strategy.

When using the model for inference after fine-tuning, two extra techniques are proposed to
strengthen steganography security. The first technique is named Least Significant Masking (LSM) which
masks the lowest several bits of the attention during embedding. After the hidden information is
embedded, the masked bits are restored to the original data to disturb the steganalysis methods. The
second technique is called Permutative Straddling, which sacrifices some payload capacity to straddle
between hidden bits and cover bits [26]. It is achieved by scattering the effective payload bit locations
across the overall embedded locations using a random seed. The overall hidden bits are further
re-arranged sequentially in the effective payload bit locations. The random seed is required to restore
the hidden data.

4. Experiments

4.1. Experiment Configurations

To demonstrate the effectiveness of our model, we conducted experiments on an ImageNet
dataset [27]. In particular, an ILSVRC2012 dataset with 1,281,167 images is used for training and 50,000
for testing. Our work is trained on one Nvidia GTX1080 GPU, and we adopt a batch size of 32 for all
models. Optimizers and learning rate setup for the ITC model, the MFD model 1st phase, and the
MFD model 2nd phase are the Adam optimizer [28] with 0.01, Nesterov momentum optimizer [29]
with 1 × 10−5, and Adam optimizer with 0.01, respectively.

All of the validation processes use the compressed version of The Complete Works of William
Shakespeare [30] provided by Project Gutenberg [31]. It can be downloaded here at [32].

The error rate uses BSER (Bit Steganography Error Rate) shown in Equation (19).

BSER =
Number of redundant bits or missing bits

Number of hidden information bits
× 100% (19)

4.2. Different Embedding Strategies Comparison

Table 1 presents a performance comparison among different fusion strategies and different
inference techniques. These techniques offer several ways to trade off between error rate and payload
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capacity. Figure 16 visualizes the fused attention and its corresponding embedding results of mean
fusion strategy with 1-bit Least Significant Masking. Even with Mean-LSM-1 strategy, a strategy with
most payload capacity, the embedded image arouses little visual awareness of the hidden information.
Moreover, with Permutative Straddling, it is further possible to precisely handle the payload capacity
during transmission. Just as shown in Table 1, the payload of Mean-LSM-1 and Mean-LSM-2 are both
controlled down to 1.2 bpp.

Table 1. Different embedding strategies comparison.

Model BSER (%) Payload (bpp)

Min-LSM-1 1.06% 1.29
Min-LSM-2 0.67% 0.42
Mean-LSM-1 2.22% 3.89
Mean-LSM-2 3.14% 2.21
Min-LSM-1-PS-0.6 0.74% 0.60
Min-LSM-1-PS-0.8 0.66% 0.80
Mean-LSM-1-PS-1.2 0.82% 1.20
Mean-LSM-2-PS-1.2 0.93% 1.20

(a) The Cover (b) Fused Attention (c) The Embedded

(d) The Cover (e) Fused Attention (f) The Embedded

Figure 16. Steganography using Mean Fusion with 1-bit LSM.

In the model name part, the value after LSM is the number of bits masked during embedding
process and the value after PS is the maximum payload capacity the embedded image is limited to
during permutative straddling.

4.3. Steganalysis Experiments

To ensure that our model is robust to steganalysis methods, we test our models using
StegExpose [33] with linear interpolation of detection threshold from 0.00 to 1.00 with 0.01 as the step
interval. The ROC curve is shown in Figure 17 where true positive stands for an embedded image
correctly identified in which there are hidden data inside while a false positive means that a clean
figure is falsely classified as an embedded image. The green solid line with a slope of 1 is the baseline
of an intuitive random guessing classifier. The figure shows a comparison among our several models,
StegNet [21] and Baluja-2017 [22] plotted in dash-line-connected scatter data. It demonstrates that
StegExpose can only work a little better than random guessing and most BASN models perform better
than StegNet and Baluja-2017.
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Figure 17. ROC curves: Steganalysis with StegExpose, SPAM features, SRM features and Yedroudj-Net.

Our model is also further examined with learning-based steganalysis methods including SPAM
(Subtractive Pixel Adjacency Model) [34], SRM (Spatial Rich Model) [35], and YedroudjNet [36]. All
of these models are trained with the same cover and embedded images as ours. Their corresponding
ROC curves are shown in Figure 17. The SRM [35] method works quite well on our model with a
larger payload capacity; however, in real-world applications, we can always keep our dataset private
and thus ensure high security in resisting detection from learning-based steganalysis methods.

4.4. Feature Distortion Analysis

Figure 18 is a histogram of the feature distortion rate before and after hidden information
embedding, or namely the impact of steganography against the network’s original task. A more
concentrated distribution in the middle of the diagram indicates better preservation of the neural
network’s original features and, as a result, a more consistent task result is ensured after steganography.
As we can see in Figure 18, our model has little influence on the targeted neural-network-automated
tasks, which, in this case, is classification. Even with the Mean-LSM-1 strategy, images that carry
more than 3 bpp of hidden information are still very concentrated and take an average of only 2% of
distortion.



Future Internet 2020, 12, 43 15 of 17

������������������������ ����� ����� ����� ����� �����

�������������

�

��

���

���

���

���

���

	
��

��
�

���������
���������
����������
����������

Figure 18. ResNet-18 classification feature distortion rate.

5. Conclusions

This paper proposes an image steganography method based on a binary attention mechanism to
ensure that steganography has little influence on neural-network-automated tasks. The first attention
mechanism, the image texture complexity (ITC) model, help track down the pixel locations and
their tolerance of modification without being noticed by the human visual system. The second
mechanism, the minimizing feature distortion (MFD) model, further keeps down the embedding
impact through feature map reconstruction. Moreover, some attention fusion and fine-tuning
techniques are also proposed in this paper to improve security and hidden information extraction
accuracy. The imperceptibility of secret information by our method is proved such that the embedding
images can effectively resist detection by several steganalysis algorithms. The major drawback of our
approach is that it requires a lot of GPU memory and quite a long time for training and fine-tuning
before it can be applied in evaluation.

With the increase of deep learning, more applications will appear geared with neural networks.
We believe that hiding from neural-network-automated tasks in addition to human visual systems is
occupying a more essential position. Plenty of future works need to be done in this direction including
improving the performance of the steganography model to run in real time along with other automated
tasks, sustaining the hidden information in the embedded image even after being post-processed by
other neural-network-automated tasks like image super-resolution, etc.
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