Social Media, Quo Vadis? Prospective Development and Implications
Abstract
:1. Introduction
2. Theoretical Background and Development of Projections
2.1. Interactive Technologies
2.2. Platform Development
2.3. News Media
2.4. Institutional and Organizational Users
2.5. Individual Effects
2.6. Societal Effects
3. Methodology
3.1. Research Design
3.2. Panel
3.3. Data Collection
4. Results
4.1. Descriptive Statistics
4.2. Scenario
5. Discussion
5.1. Striking Results and Implications of the Findings
5.2. Limitations and Future Research
6. Conclusions and Implications
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Boyd, D.M.; Ellison, N.B. Social network sites: Definition, history, and scholarship. J. Comput. Mediat. Commun. 2007, 13, 210–230. [Google Scholar] [CrossRef] [Green Version]
- eMarketer. Number of Social Network Users Worldwide from 2010 to 2023 (in billions). 2019. Available online: https://www.statista.com/statistics/278414/number-of-worldwide-social-network-users (accessed on 12 June 2020).
- Kaplan, A.M.; Haenlein, M. Higher education and the digital revolution: About MOOCs, SPOCs, social media, and the cookie monster. Bus. Horiz. 2016, 59, 441–450. [Google Scholar] [CrossRef]
- Van Dijck, J. The Culture of Connectivity; Oxford University Press: New York, NY, USA, 2013. [Google Scholar]
- Appel, G.; Grewal, L.; Hadi, R.; Stephen, A.T. The future of social media in marketing. J. Acad. Mark. Sci. 2020, 48, 79–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fergnani, A. Corporate foresight: A new frontier for strategy and management. Acad. Manag. Perspect. 2020, in press. [Google Scholar] [CrossRef]
- Iden, J.; Methlie, L.B.; Christensen, G.E. The nature of strategic foresight research–A systematic literature review. Technol. Forecast. Soc. Chang. 2017, 116, 87–97. [Google Scholar] [CrossRef]
- Rohrbeck, R.; Battistella, C.; Huizingh, E. Corporate foresight: An emerging field with a rich tradition. Technol. Forecast. Soc. Chang. 2015, 101, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Semke, L.-M.; Tiberius, V. Corporate foresight and dynamic capabilities: An exploratory study. Forecasting 2020, 2, 180–193. [Google Scholar] [CrossRef]
- We Are Social, Hootsuite and DataReportal. Most Used Social Media Platform. Available online: https://www.statista.com/statistics/272014/global-social-networks-ranked-by-number-of-users/ (accessed on 15 July 2020).
- Höhne, S.; Tiberius, V. Powered by blockchain: Forecasting blockchain use in the electricity market. Int. J. Energy Sect. Manag. 2020, in press. [Google Scholar] [CrossRef]
- Skulmoski, G.J.; Hartman, F.T.; Krahn, J. The Delphi method for graduate research. J. Inf. Technol. Educ. 2007, 6, 1–21. [Google Scholar] [CrossRef]
- Tiberius, V.; Hirth, S. Impacts of digitization on auditing: A Delphi study for Germany. J. Int. Account. Audit. Tax. 2019, 37, 100288. [Google Scholar] [CrossRef]
- Kaplan, A.; Haenlein, M. Users of the world, unite! The challenges and opportunities of Social Media. Bus. Horiz. 2010, 53, 59–68. [Google Scholar] [CrossRef]
- Luther, L.; Tiberius, V.; Brem, A. User Experience (UX) in business, management, and psychology: A bibliometric mapping of the current state of research. Multimodal Technol Interact. 2020, 4, 18. [Google Scholar] [CrossRef]
- Flavián, C.; Ibáñez-Sánchez, S.; Orús, C. The impact of virtual, augmented and mixed reality technologies on the customer experience. J. Bus. Res. 2019, 100, 547–560. [Google Scholar] [CrossRef]
- Hilken, T.; de Ruyter, K.; Chylinski, M.; Mahr, D.; Keeling, D.I. Augmenting the eye of the beholder: Exploring the strategic potential of augmented reality to enhance online service experiences. J. Acad. Mark. Sci. 2017, 45, 884–905. [Google Scholar] [CrossRef]
- Muñoz-Saavedra, L.; Miró-Amarante, L.; Domínguez-Morales, M. Augmented and Virtual Reality evolution and future tendency. Appl. Sci. 2020, 10, 322. [Google Scholar] [CrossRef] [Green Version]
- Hudson, S.; Matson-Barkat, S.; Pallamin, N.; Jegou, G. With or without you? Interaction and immersion in a virtual reality experience. J. Bus. Res. 2019, 100, 459–468. [Google Scholar] [CrossRef]
- Laurell, C.; Sandström, C.; Berthold, A.; Larsson, D. Exploring barriers to adoption of Virtual Reality through Social Media Analytics and Machine Learning–An assessment of technology, network, price and trialability. J. Bus. Res. 2019, 100, 469–474. [Google Scholar] [CrossRef]
- Loureiro, S.M.C.; Guerreiro, J.; Eloy, S.; Langaro, D.; Panchapakesan, P. Understanding the use of Virtual Reality in marketing: A text mining-based review. J. Bus. Res. 2019, 100, 514–530. [Google Scholar] [CrossRef]
- Manis, K.T.; Choi, D. The virtual reality hardware acceptance model (VR-HAM): Extending and individuating the technology acceptance model (TAM) for virtual reality hardware. J. Bus. Res. 2019, 100, 503–513. [Google Scholar] [CrossRef]
- Martínez-Navarro, J.; Bigné, E.; Guixeres, J.; Alcañiz, M.; Torrecilla, C. The influence of virtual reality in e-commerce. J. Bus. Res. 2019, 100, 475–482. [Google Scholar] [CrossRef]
- Tran, H.T.T.; Ngoc, N.P.; Pham, C.T.; Jung, Y.J.; Thang, T.C. A subjective study on user perception aspects in Virtual Reality. Appl. Sci. 2019, 9, 3384. [Google Scholar] [CrossRef] [Green Version]
- Sparkar.facebook.com. Augmented reality: Enriching Personal Communication and Online Connection|Spark AR Studio. Available online: https://sparkar.facebook.com/augmented-reality (accessed on 3 July 2020).
- Oculus. Facebook Horizon. Available online: https://www.oculus.com/facebookhorizon/ (accessed on 4 July 2020).
- Obrist, M.; Velasco, C.; Vi, C.; Ranasinghe, N.; Israr, A.; Cheok, A.; Spence, C.; Gopalakrishnakone, P. Sensing the future of HCI: Touch, taste, and smell user interfaces. Interactions 2016, 23, 40–49. [Google Scholar] [CrossRef]
- Kapočiūtė-Dzikienė, J. A domain-specific generative chatbot trained from little data. Appl. Sci. 2020, 10, 2221. [Google Scholar] [CrossRef] [Green Version]
- Maniou, T.A.; Veglis, A. Employing a chatbot for news dissemination during crisis: Design, implementation and evaluation. Future Internet 2020, 12, 109. [Google Scholar] [CrossRef]
- Neururer, M.; Schlögl, S.; Brinkschulte, L.; Groth, A. Perceptions on Authenticity in Chat Bots. Multimodal Technol. Interact. 2018, 2, 60. [Google Scholar] [CrossRef] [Green Version]
- Sheehan, B.; Jin, H.S.; Gottlieb, U. Customer service chatbots: Anthropomorphism and adoption. J. Bus. Res. 2020, 115, 14–24. [Google Scholar] [CrossRef]
- Um, T.; Kim, T.; Chung, N. How does an intelligence chatbot affect customers compared with self-service technology for sustainable services? Sustainability 2020, 12, 5119. [Google Scholar] [CrossRef]
- Hong, H.; Oh, H.J. Utilizing bots for sustainable news business: Understanding users’ perspectives of news bots in the age of social media. Sustainability 2020, 12, 6515. [Google Scholar] [CrossRef]
- Ferrara, E.; Varol, O.; Davis, C.; Menczer, F.; Flammini, A. The rise of social bots. Commun. ACM 2016, 59, 96–104. [Google Scholar] [CrossRef] [Green Version]
- eMarketer. E-commerce Share of Total Retail Sales. 2019. Available online: https://www.statista.com/statistics/534123/e-commerce-share-of-retail-sales-worldwide (accessed on 8 July 2020).
- Liang, T.-P.; Turban, E. A research framework for social commerce. Int. J. Electron. Commer. 2011, 16, 5–14. [Google Scholar] [CrossRef] [Green Version]
- Sembada, A.Y.; Koay, K.Y. How perceived behavioral control affects trust to purchase in social media stores. J. Bus. Res. 2019, in press. [Google Scholar] [CrossRef]
- Instagram for Business. Shopping on Instagram. Available online: https://business.instagram.com/shopping/ (accessed on 8 July 2020).
- Statista Survey. Do you Use the Direct-Purchase Option When You Find an Interesting Product on Social Media? Available online: https://www.statista.com/forecasts/962003/usage-of-direct-purchase-on-social-media-by-us-consumers (accessed on 14 July 2020).
- Burch, P.; Miglani, N. Technocentrism and social fields in the Indian EdTech movement: Formation, reproduction and resistance. J. Educ. Policy 2018, 33, 590–616. [Google Scholar] [CrossRef]
- Cherner, T.; Mitchell, C. Deconstructing EdTech frameworks based on their creators, features, and usefulness. Learn. Media Technol. 2020, in press. [Google Scholar] [CrossRef]
- Macgilchrist, F. Cruel optimism in edtech: When the digital data practices of educational technology providers inadvertently hinder educational equity. Learn. Media Technol. 2019, 44, 77–86. [Google Scholar] [CrossRef] [Green Version]
- Ramiel, H. Edtech disruption logic and policy work: The case of an Israeli edtech unit. Learn. Media Technol. 2020. [Google Scholar] [CrossRef]
- Manca, S. Snapping, pinning, liking or texting: Investigating social media in higher education beyond Facebook. Internet High. Educ. 2020, 44, 100707. [Google Scholar] [CrossRef]
- Manca, S.; Ranieri, M. Facebook and the others. Potentials and obstacles of social media for teaching in higher education. Comput. Educ. 2016, 95, 216–230. [Google Scholar] [CrossRef]
- Cuesta, M.; Eklund, M.; Rydin, I.; Witt, A. Using Facebook as a co-learning community in higher education. Learn. Media Technol. 2015, 41, 55–72. [Google Scholar] [CrossRef]
- IBM. Automotive 2030: Racing toward a Digital Future. Available online: https://www.ibm.com/thought-leadership/institute-business-value/report/auto-2030 (accessed on 16 July 2020).
- Merchant, G.; Schlaff, D.; Pankratz, D.M. Experiencing the Future of Mobility. Deloitte Insights 2017. Available online: https://www2.deloitte.com/us/en/insights/focus/future-of-mobility/opportunities-for-media-and-entertainment-industry.html (accessed on 16 July 2020).
- Alt, R.; Beck, R.; Smits, M.T. FinTech and the transformation of the financial industry. Electron. Mark. 2018, 28, 235–243. [Google Scholar] [CrossRef] [Green Version]
- Deng, X.; Huang, Z.; Cheng, X. FinTech and Sustainable Development: Evidence from China Based on P2P Data. Sustainability 2019, 11, 6434. [Google Scholar] [CrossRef] [Green Version]
- Gimpel, H.; Rau, D.; Röglinger, M. Understanding FinTech start-ups–A taxonomy of consumer-oriented service offerings. Electron Mark. 2018, 28, 245–264. [Google Scholar] [CrossRef] [Green Version]
- Goo, J.J.; Heo, J.-Y. The impact of the regulatory sandbox on the fintech industry, with a discussion on the relation between regulatory sandboxes and open innovation. J. Open Innov. Technol. Mark. Complex. 2020, 6, 43. [Google Scholar] [CrossRef]
- Haddad, C.; Hornuf, L. The emergence of the global fintech market: Economic and technological determinants. Small Bus. Econ. 2019, 53, 81–105. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Yuan, J.; Shi, Y.; Sun, Z.; Ruan, J. Emerging trends and innovation modes of internet finance–results from co-word and co-citation networks. Future Internet 2020, 12, 52. [Google Scholar] [CrossRef] [Green Version]
- Mhlanga, D. Industry 4.0 in Finance: The Impact of Artificial Intelligence (AI) on Digital Financial Inclusion. Int. J. Financial Stud. 2020, 8, 45. [Google Scholar] [CrossRef]
- Tiberius, V.; Rasche, C. FinTechs-Disruptive Geschäftsmodelle im Finanzsektor; SpringerGabler: Wiesbaden, Germany, 2017. [Google Scholar] [CrossRef]
- Zhao, Q.; Tsai, P.-H.; Wang, J.-L. Improving Financial Service Innovation Strategies for Enhancing China’s Banking Industry Competitive Advantage during the Fintech Revolution: A Hybrid MCDM Model. Sustainability 2019, 11, 1419. [Google Scholar] [CrossRef] [Green Version]
- Rirsch, R.; Tomanek, S. Facebook’s Libra: A case for capital markets supervision? J. Payments Strateg. Syst. 2019, 13, 255–267. [Google Scholar]
- Henderson, K.E. They posted what? Recruiter use of social media for selection. Organ. Dyn. 2019, 48, 100663. [Google Scholar] [CrossRef]
- Jeske, D.; Shultz, K. Using social media content for screening in recruitment and selection: Pros and cons. Work Employ. Soc. 2015, 30, 535–546. [Google Scholar] [CrossRef]
- Carpentier, M.; Van Hoye, G.; Weng, Q. Social media recruitment: Communication characteristics and sought gratifications. Front. Psychol. 2019, 10, 1669. [Google Scholar] [CrossRef] [Green Version]
- About.linkedin.com. Available online: https://about.linkedin.com/ (accessed on 15 July 2020).
- Öhman, C.; Watson, D. Are the dead taking over Facebook? A Big Data approach to the future of death online. Big Data Soc. 2019, 6, 1–13. [Google Scholar] [CrossRef]
- Huang, H.C. Freemium business model: Construct development and measurement validation. Internet Res. 2016, 26, 604–625. [Google Scholar] [CrossRef]
- Li, Z.; Nan, G.; Li, M. Advertising or freemium: The impacts of social effects and service quality on competing platforms. IEEE Trans. Eng. Manag. 2020, 67, 220–233. [Google Scholar] [CrossRef]
- Voigt, S.; Hinz, O. Making digital freemium business models a success: Predicting customers’ lifetime value via initial purchase information. Bus. Inf. Syst. Eng. 2016, 58, 107–118. [Google Scholar] [CrossRef]
- IC3. Amount of Monetary Damage Caused by Reported Cyber Crime to the IC3 from 2001 to 2019. Available online: https://www.statista.com/statistics/267132/total-damage-caused-by-by-cyber-crime-in-the-us (accessed on 9 July 2020).
- Van der Walt, E.; Eloff, J.H.P.; Grobler, J. Cyber-security: Identity deception detection on social media platforms. Comput. Secur. 2018, 78, 76–89. [Google Scholar] [CrossRef] [Green Version]
- Rahman, R.U.; Tomar, D.S. A new web forensic framework for bot crime investigation. Forensic Sci. Int. Digit. Investig. 2020, 33, 300943. [Google Scholar] [CrossRef]
- Ali, S.; Islam, N.; Rauf, A.; Din, I.U.; Guizani, M.; Rodrigues, J.J.P.C. Privacy and security issues in online social networks. Future Internet 2018, 10, 114. [Google Scholar] [CrossRef] [Green Version]
- Riepl, W. Das Nachrichtenwesen des Altertums Mit Besonderer Rücksicht Auf Die Römer; Teubner: Leipzig, Germany, 1913. [Google Scholar]
- Zenith. Daily Time Spent with Media Worldwide from 2011 to 2021. Available online: https://www.statista.com/statistics/256300/time-spent-with-media-worldwide (accessed on 23 June 2020).
- Bergström, A.; Jervelycke Belfrage, M. News in social media. Digit. J. 2018, 6, 583–598. [Google Scholar] [CrossRef] [Green Version]
- Karimi, J.; Walter, Z. Corporate entrepreneurship, disruptive business model innovation adoption, and its performance: The case of the newspaper industry. Long Range Plan. 2016, 49, 342–360. [Google Scholar] [CrossRef]
- Van der Burg, M.; Van den Bulck, H. Why are traditional newspaper publishers still surviving in the digital era? The impact of long-term trends on the Flemish newspaper industry’s financing, 1990–2014. J. Media Bus. Stud. 2017, 14, 82–115. [Google Scholar] [CrossRef]
- Abonizio, H.Q.; de Morais, J.I.; Tavares, G.M.; Barbon, S., Jr. Language-independent fake news detection: English, Portuguese, and Spanish mutual features. Future Internet 2020, 12, 87. [Google Scholar] [CrossRef]
- Jwa, H.; Oh, D.; Park, K.; Kang, J.M.; Lim, H. exBAKE: Automatic fake news detection model based on bidirectional encoder representations from transformers (BERT). Appl. Sci. 2019, 9, 4062. [Google Scholar] [CrossRef] [Green Version]
- Allcott, H.; Gentzkow, M.; Yu, C. Trends in the diffusion of misinformation on social media. Res. Politics 2019, 6, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Tchakounté, F.; Faissal, A.; Atemkeng, M.; Ntyam, A. A reliable weighting scheme for the aggregation of crowd intelligence to detect fake news. Information 2020, 11, 319. [Google Scholar] [CrossRef]
- Zhang, C.; Gupta, A.; Kauten, C.; Deokar, A.V.; Qin, X. Detecting fake news for reducing misinformation risks using analytics approaches. Eur. J. Oper. Res. 2019, 279, 1036–1052. [Google Scholar] [CrossRef]
- Statista. Social Media Advertising-Worldwide|Statista Market Forecast. Available online: https://www.statista.com/outlook/220/100/social-media-advertising/worldwide?currency=eur (accessed on 5 July 2020).
- Kim, J.; Min, J. Supplier, tailor, and facilitator: Typology of platform business models. J. Open Innov. Technol. Mark. Complex. 2019, 5, 57. [Google Scholar] [CrossRef] [Green Version]
- Reimers, K.; Guo, X.; Li, M. Beyond markets, hierarchies, and hybrids: An institutional perspective on IT-enabled two-sided markets. Electron. Mark. 2019, 29, 287–305. [Google Scholar] [CrossRef] [Green Version]
- Safapour, E.; Kermanshachi, S.; Taneja, P. A Review of Nontraditional Teaching Methods: Flipped Classroom, Gamification, Case Study, Self-Learning, and Social Media. Educ. Sci. 2019, 9, 273. [Google Scholar] [CrossRef] [Green Version]
- Marker, C.; Gnambs, T.; Appel, M. Active on Facebook and failing at school? Meta-analytic findings on the relationship between online social networking activities and academic achievement. Educ. Psychol. Rev. 2017, 30, 651–677. [Google Scholar] [CrossRef]
- Sampasa-Kanyinga, H.; Chaput, J.; Hamilton, H.A. Social media use, school connectedness, and academic performance among adolescents. J. Primary Prevent. 2019, 40, 189–211. [Google Scholar] [CrossRef]
- Bond, R.M.; Fariss, C.J.; Jones, J.J.; Kramer, A.D.I.; Marlow, C.; Settle, J.E.; Fowler, J.H. A 61-million-person experiment in social influence and political mobilization. Nature 2012, 489, 295–298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allcott, H.; Gentzkow, M. Social media and fake news in the 2016 election. J. Econ. Perspect. 2017, 31, 211–236. [Google Scholar] [CrossRef] [Green Version]
- Dirkson, A.; Verberne, S.; Sarker, A.; Kraaij, W. Data-Driven Lexical Normalization for Medical Social Media. Multimodal Technol. Interact. 2019, 3, 60. [Google Scholar] [CrossRef] [Green Version]
- Smailhodzic, E.; Hooijsma, W.; Boonstra, A.; Langley, D.J. Social media use in healthcare: A systematic review of effects on patients and on their relationship with healthcare professionals. BMC Health Serv. Res. 2016, 16, 442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jamal, A.A.; Aldawsari, S.T.; Almufawez, K.A.; Barri, R.M.; Zakaria, N.; Tharkar, S. Twitter as a promising microblogging application for psychiatric consultation–Understanding the predictors of use, satisfaction and e-health literacy. Int. J. Med. Inform. 2020, 141, 104202. [Google Scholar] [CrossRef] [PubMed]
- Holland, G.; Tiggemann, M. A Systematic review of the impact of the use of social networking sites on body image and disordered eating outcomes. Body Image 2016, 17, 100–110. [Google Scholar] [CrossRef]
- Naslund, J.A.; Aschbrenner, K.A.; Marsch, L.A.; Bartels, S.J. The future of mental health care: Peer-to-peer support and social media. Epidemiol. Psychiatr. Sci. 2016, 25, 113–122. [Google Scholar] [CrossRef] [Green Version]
- Lerman, B.I.; Lewis, S.P.; Lumley, M.; Grogan, G.J.; Hudson, C.C.; Johnson, E. Teen Depression Groups on Facebook: A Content Analysis. J. Adolesc. Res. 2016, 32, 719–741. [Google Scholar] [CrossRef]
- Duradoni, M.; Innocenti, F.; Guazzini, A. Well-Being and Social Media: A Systematic Review of Bergen Addiction Scales. Future Internet 2020, 12, 24. [Google Scholar] [CrossRef] [Green Version]
- Coyne, S.M.; Rogers, A.A.; Zurcher, J.D.; Stockdale, L.; Booth, M. Does time spent using social media impact mental health? An eight year longitudinal study. Comput. Hum. Behav. 2020, 104, 106160. [Google Scholar] [CrossRef]
- Puukko, K.; Hietajärvi, L.; Maksniemi, E.; Alho, K.; Salmela-Aro, K. Social media use and depressive symptoms—A longitudinal study from early to late adolescence. Int. J. Environ. Res. Public Health 2020, 17, 5921. [Google Scholar] [CrossRef] [PubMed]
- Berezan, O.; Krishen, A.S.; Agarwal, S.; Kachroo, P. Exploring loneliness and social networking: Recipes for hedonic well-being on Facebook. J. Bus. Res. 2020, 115, 258–265. [Google Scholar] [CrossRef]
- Hunt, M.G.; Marx, R.; Lipson, C.; Young, J. No More FOMO: Limiting Social Media Decreases Loneliness and Depression. J. Soc. Clin. Psychol. 2018, 37, 751–768. [Google Scholar] [CrossRef] [Green Version]
- Primack, B.A.; Shensa, A.; Sidani, J.E.; Whaite, E.O.; Lin, L.; Rosen, D.; Colditz, J.B.; Radovic, A.; Miller, E. Social media use and perceived social isolation among young adults in the U.S. Am. J. Prev. Med. 2017, 53, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Pittman, M.; Reich, B. Social media and loneliness: Why an Instagram picture may be worth more than a thousand Twitter words. Comput. Hum. Behav. 2016, 62, 155–167. [Google Scholar] [CrossRef]
- Salomon, I.; Brown, C. The Selfie Generation: Examining the Relationship Between Social Media Use and Early Adolescent Body Image. J. Early Adolesc. 2018, 39, 539–560. [Google Scholar] [CrossRef]
- Andreassen, C.S.; Pallesen, S.; Griffiths, M.D. The relationship between addictive use of social media, narcissism, and self-esteem: Findings from a large national survey. Addict. Behav. 2017, 64, 287–293. [Google Scholar] [CrossRef]
- Barry, C.T.; McDougall, K.H. Social media: Platform or catalyst for narcissism? In Handbook of Trait Narcissism; Hermann, A., Brunell, A., Foster, J., Eds.; Springer: Cham, Switzerland, 2018; pp. 435–441. [Google Scholar]
- Bouncken, R.; Cesinger, B.; Tiberius, V. Narcissism, machiavellianism, and psychopathy of top managers—Can entrepreneurial orientation secure performance? Int. J. Entrep. Ventur. 2020, 12, 273–302. [Google Scholar] [CrossRef]
- Logan, R.K. Understanding New Media. Extending Marshall McLuhan; Peter Lang Publishing: New York, NY, USA, 2010. [Google Scholar]
- McLuhan, M. Understanding Media. The Extensions of Man, 2nd ed.; MIT Press: Camdridge, MA, USA, 1994. [Google Scholar]
- Postman, N. Amusing Ourselves to Death: Public Discourse in the Age of Show Business; Penguin: New York, NY, USA, 1985. [Google Scholar]
- Lim, M. Many clicks but little sticks: Social media activism in Indonesia. J. Contemp. Asia 2013, 43, 636–657. [Google Scholar] [CrossRef]
- Deloitte. Facebook’s Global Economic Impact. 2016. Available online: https://www2.deloitte.com/tr/en/pages/technology-media-and-telecommunications/articles/the-global-economic-impact-of-facebook.html (accessed on 17 July 2020).
- Duffy, B.E.; Schwartz, B. Digital “women’s work?”: Job recruitment ads and the feminization of social media employment. New Media Soc. 2017, 20, 2972–2989. [Google Scholar] [CrossRef] [Green Version]
- Aral, S.; Eckles, D. Protecting elections from social media manipulation. Science 2019, 365, 858–861. [Google Scholar] [CrossRef] [PubMed]
- Enikolopov, R.; Petrova, M.; Sonin, K. Social media and corruption. Am. Econ. J. Appl. Econ. 2018, 10, 150–174. [Google Scholar] [CrossRef] [Green Version]
- Dick, A.L. Established democracies, internet censorship and the social media test. Inf. Dev. 2012, 28, 259–260. [Google Scholar] [CrossRef] [Green Version]
- Gumede, W. Rise in censorship of the Internet and social media in Africa. J. Afr. Media Stud. 2016, 8, 413–421. [Google Scholar] [CrossRef]
- Stathopoulou, A.; Siamagka, N.T.; Christodoulides, G. A multi-stakeholder view of social media as a supporting tool in higher education: An educator-student perspective. Eur. Manag. J. 2019, 37, 421–431. [Google Scholar] [CrossRef]
- Tess, P.A. The role of social media in higher education classes (real and virtual)–A literature review. Comput. Hum. Behav. 2013, 29, A60–A68. [Google Scholar] [CrossRef]
- Kass-Hout, T.A.; Alhinnawi, H. Social media in public health. Br. Med. Bull. 2013, 108, 5–24. [Google Scholar] [CrossRef] [Green Version]
- Finch, K.C.; Snook, K.R.; Duke, C.H.; Fu, K.-W.; Tse, Z.T.H.; Adhikari, A.; Fung, I.C.-H. Public health implications of social media use during natural disasters, environmental disasters, and other environmental concerns. Nat. Hazards 2016, 83, 729–760. [Google Scholar] [CrossRef]
- Haider, J. The Shaping of Environmental Information in Social Media: Affordances and Technologies of Self-control. Environ. Commun. 2015, 10, 473–491. [Google Scholar] [CrossRef] [Green Version]
- Boulianne, S.; Lalancette, M.; Ilkiw, D. “School Strike 4 Climate”: Social media and the international youth protest on climate change. Media Commun. 2020, 8, 208–218. [Google Scholar] [CrossRef]
- Morley, J.; Widdicks, K.; Hazas, M. Digitalisation, energy and data demand: The impact of Internet traffic on overall and peak electricity consumption. Energy Res. Soc. Sci. 2018, 38, 128–137. [Google Scholar] [CrossRef]
- Facebook Sustainability. Available online: https://sustainability.fb.com (accessed on 18 July 2020).
- Leonhardt, J.M.; Pezzuti, T.; Namkoong, J.E. We’re not so different: Collectivism increases perceived homophily, trust, and seeking user-generated product information. J. Bus. Res. 2020, 112, 160–169. [Google Scholar] [CrossRef]
- Woudenberg, F. An evaluation of Delphi. Technol. Forecast. Soc. Chang. 1991, 40, 131–150. [Google Scholar] [CrossRef]
- Tiberius, V. Towards a ‘Planned Path Emergence’ View on Future Genesis. J. Futures Stud. 2011, 15, 9–24. [Google Scholar]
- Flostrand, A.; Pitt, L.; Bridson, S. The Delphi technique in forecasting–A 42-year bibliographic analysis (1975–2017). Technol. Forecast. Soc. Chang. 2020, 150, 119773. [Google Scholar] [CrossRef]
- Gausemeier, J.; Fink, A.; Schlake, O. Scenario management: An approach to develop future potentials. Technol. Forecast. Soc. Chang. 1998, 59, 111–130. [Google Scholar] [CrossRef]
- Kahn, H.; Wiener, A.J. The Year 2000–A Framework for Speculation on the Next Thirty–Three Years; Macmillan: New York, NY, USA, 1968. [Google Scholar]
- Tiberius, V. Scenarios in the strategy process: A framework of affordances and constraints. Eur. J. Futures Res. 2019, 7, 7. [Google Scholar] [CrossRef] [Green Version]
- Tiberius, V. Scenarios in business and management: The current stock and research opportunities. J. Bus. Res. 2020, in press. [Google Scholar]
- Bell, W. Technological forecasting–What it is and what it does. Manag. Rev. 1967, 56, 64. [Google Scholar]
- Dalkey, N.; Helmer, O. An experimental application of the DELPHI method to the use of experts. Manag. Sci. 1963, 9, 458–467. [Google Scholar] [CrossRef]
- Rowe, G.; Wright, G. The Delphi technique as a forecasting tool: Issues and analysis. Int. J. Forecast. 1999, 15, 353–375. [Google Scholar] [CrossRef]
- Rowe, G.; Wright, G. Expert opinions in forecasting: The role of the Delphi technique. In Principles of Forecasting: A Handbook for Researchers and Practitioners; Armstrong, J.S., Ed.; Kluwer: Boston, MA, USA, 2001; pp. 125–144. [Google Scholar]
- Tiberius, V.; Lisiecki, L. Stock price forecast accuracy and recommendation profitability of financial magazines. Int. J. Financ. Stud. 2019, 7, 58. [Google Scholar] [CrossRef] [Green Version]
- Gordon, T.J. The Delphi method. Futures Res. Methodol. 1994, 2, 1–30. [Google Scholar]
- Graefe, A.; Armstrong, J.S. Comparing face-to-face meetings, nominal groups, Delphi and prediction markets on an estimation task. Int. J. Forecast. 2011, 27, 183–195. [Google Scholar] [CrossRef] [Green Version]
- Hasson, F.; Keeney, S.; McKenna, H. Research guidelines for the Delphi survey technique. J. Adv. Nurs. 2000, 32, 1008–1015. [Google Scholar] [CrossRef] [Green Version]
- Parente, R.; Anderson-Parente, J. A case study of long-term Delphi accuracy. Technol. Forecast. Soc. Chang. 2011, 78, 1705–1711. [Google Scholar] [CrossRef]
- Welty, G. Problems of selecting experts for Delphi exercises. Acad. Manag. J. 1972, 15, 121–124. [Google Scholar] [CrossRef]
- Winkler, J.; Moser, R. Biases in future-oriented Delphi studies: A cognitive perspective. Technol. Forecast. Soc. Chang. 2016, 105, 63–76. [Google Scholar] [CrossRef]
- Okoli, C.; Pawlowski, S.D. The Delphi method as a research tool: An example, design considerations and applications. Inf. Manag. 2004, 42, 15–29. [Google Scholar] [CrossRef] [Green Version]
- Tiberius, V.; Borning, J.; Seeler, S. Setting the table for meat consumers: An international Delphi study on in vitro meat. NPJ Sci. Food 2019, 3, 10. [Google Scholar] [CrossRef] [Green Version]
- Dalkey, N.; Brown, B.; Cochran, S. Use of self-ratings to improve group estimates. Technol. Forecast. 1970, 1, 283–291. [Google Scholar] [CrossRef]
- Murry, J.; Hammons, J. Delphi: A versatile methodology for conducting qualitative research. Rev. Higher Educ. 1995, 18, 423–436. [Google Scholar] [CrossRef]
- Wakita, T.; Ueshima, N.; Noguchi, H. Psychological Distance Between Categories in the Likert Scale. Educ. Psychol. Meas. 2012, 72, 533–546. [Google Scholar] [CrossRef]
- McGregor, J.A.; Camfield, L.; Woodcock, A. Needs, wants and goals: Wellbeing, quality of life and public policy. Appl. Res. Qual. Life 2009, 4, 135–154. [Google Scholar] [CrossRef]
- Humprecht, E.; Esser, F. Diversity in online news: On the importance of ownership types and media system types. J. Stud. 2018, 19, 1825–1847. [Google Scholar] [CrossRef]
- Beckers, K.; Masini, A.; Sevenans, J.; van der Burg, M.; De Smedt, J.; Van den Bulck, H.; Walgrave, S. Are newspapers’ news stories becoming more alike? Media content diversity in Belgium, 1983–2013. Journalism 2019, 20, 1665–1683. [Google Scholar] [CrossRef]
- Graham, C. Happiness and health: Lessons–and questions–for public policy. Health Aff. 2008, 27, 72–87. [Google Scholar] [CrossRef] [Green Version]
- Abad-Segura, E.; Cortes-Garcia, F.J.; Belmonte-Urena, L.J. The sustainable approach to Corporate Social Responsibility: A global analysis and future trends. Sustainability 2019, 11, 5382. [Google Scholar] [CrossRef] [Green Version]
- Chu, S.C.; Chen, H.T.; Gan, C. Consumers’ engagement with corporate social responsibility (CSR) communication in social media: Evidence from China and the United States. J. Bus. Res. 2020, 110, 260–271. [Google Scholar] [CrossRef]
- Kvasničková Stanislavská, L.; Pilař, L.; Margarisová, K.; Kvasnička, R. Corporate Social Responsibility and social media: Comparison between developing and developed countries. Sustainability 2020, 12, 5255. [Google Scholar] [CrossRef]
- Latapí Agudelo, M.A.; Jóhannsdottir, L.; Davídsdóttir, B. A literature review of the history and evolution of corporate social responsibility. Int. J. Corp. Soc. Responsib. 2019, 4, 1. [Google Scholar] [CrossRef] [Green Version]
- Okazaki, S.; Plangger, K.; West, D.; Menéndez, H.D. Exploring digital corporate social responsibility communications on Twitter. J. Bus. Res. 2019, 117, 675–682. [Google Scholar] [CrossRef]
- Coldwell, C. Examining corporate citizenship: Balancing duties and opportunities in the modern organization. Bus. Ethics Q. 2004, 14, 775–780. [Google Scholar] [CrossRef]
- Kruggel, A.; Tiberius, V.; Fabro, M. Corporate citizenship: Structuring the research field. Sustainability 2020, 12, 5289. [Google Scholar] [CrossRef]
- Saritas, O.; Oner, M.A. Systemic analysis of UK foresight results: Joint application of integrated management model and roadmapping. Technol. Forecast. Soc. Chang. 2004, 71, 27–65. [Google Scholar] [CrossRef]
- Arrow, K.J.; Forsythe, R.; Gorham, M.; Hahn, R.; Hanson, R.; Ledyard, J.O.; Levmore, S.; Litan, R.; Milgrom, P.; Nelson, F.D.; et al. The promise of prediction markets. Science 2008, 320, 877. [Google Scholar] [CrossRef]
- Tiberius, V.; Rasche, C. Prognosemärkte. Z. Plan. Unternehmenssteuerung/J. Manag. Control 2011, 21, 467–472. [Google Scholar] [CrossRef]
- Goodman, C. The Delphi technique: A critique. J. Adv. Nurs. 1987, 12, 729–734. [Google Scholar] [CrossRef]
- Sackman, H. Summary evaluation of Delphi. Policy Anal. 1975, 1, 693–718. [Google Scholar]
- Ecken, P.; Gnatzy, T.; von der Gracht, H.A. Desirability bias in foresight: Consequences for decision quality based on Delphi results. Technol. Forecast. Soc. Chang. 2011, 7, 1654–1670. [Google Scholar] [CrossRef]
- Bardecki, M.J. Participants’ response to the Delphi Method: An attitudinal perspective. Technol. Forecast. Soc. Chang. 1984, 25, 281–292. [Google Scholar] [CrossRef]
- Hill, K.Q.; Fowles, J. The methodological worth of the Delphi forecasting technique. Technol. Forecast. Soc. Chang. 1975, 7, 179–192. [Google Scholar] [CrossRef]
- Tiberius, V. Theorien des Wandels–Theorien der Zukunftsgenese? In Zukunftsgenese; Tiberius, V., Ed.; VS Verlag: Wiesbaden, Germany, 2012; pp. 11–54. [Google Scholar]
- Kraus, S.; Clauß, Z.; Breier, M.; Gast, J.; Zardini, A.; Tiberius, V. The economics of COVID-19: Initial empirical evidence on how family firms in five European countries cope with the corona crisis. Int. J. Entrep. Behav. Res. 2020, in press. [Google Scholar] [CrossRef]
Projections |
---|
Section 1. Interactive Technologies |
P1. Apart from text-, image-, and video-based social media platforms, also platforms mainly based on virtual reality will emerge. |
P2. Some social media platforms will use augmented reality (e.g., to display information or commercials while looking at things). |
P3. Apart from the visual and auditory sense, some social media platforms will also address the somatosensory sense. |
P4. Apart from the visual and auditory sense, some social media platforms will also address the olfactory sense. |
P5. Apart from the visual and auditory sense, some social media platforms will also address the gustatory sense. |
P6. Apart from entering text or uploading media, some platforms will also allow for a touch- and movement-based interaction. |
P7. Apart from entering text or uploading media, some platforms will also allow for a thought-based interaction. |
P8. Users will not recognize a difference when interacting with a real person or an AI-based bot. |
Section 2. Platform Development |
P9. Social media and the World Wide Web will merge. |
P10. Social media and e-commerce will merge. |
P11. Social media and educational platforms will merge. |
P12. Social media will move into the automobile industry. |
P13. Social media will expand in the Fintech sphere. |
P14. There will be one unified social media platform. |
P15. State governments will break social media platform providers to de-monopolize the market. |
P16. Social media will become the main channel for hiring staff. |
P17. On most of today’s leading social media platforms, the number of inactive, deleted, or profiles by dead people will exceed active users. |
P18. Several social media platforms will offer fee-based premium accounts with additional possibilities and services. |
P19. Cybercrime will increase on social media platforms. |
P20. Governments’ strict regulations will massively inhibit platform development. |
Section 3. News Media |
P21. Social media will be the leading news distributor. |
P22. Television will significantly diminish due to social media. |
P23. Radio will significantly diminish due to social media. |
P24. Print media will significantly diminish due to social media. |
P25. Fake news on social media will still be an unsolvable problem. |
P26. Advertising expenses on social media will significantly rise. |
Section 4. Institutional and organizational users |
P27. Schools will use social media for educational purposes. |
P28. Political elections will be mainly determined by social media. |
P29. Election campaigns will be banned from social media. |
P30. Marketing budgets of companies will significantly increase. |
P31. Medical doctors will use social media for online consultations. |
Section 5. Individual effects |
P32. Social media will increase users’ general wellbeing. |
P33. Social media will increase users’ depression among users. |
P34. Social media will increase real-life social contacts between users. |
P35. Social media will increase users’ isolation and loneliness. |
P36. Social media will increase users’ negative body images. |
P37. Social media will increase users’ self-centeredness and narcissism. |
P38. Social media will reduce users’ attention span. |
Section 6. Societal effects |
P39. Social media will (directly or indirectly) significantly increase economic growth. |
P40. Social media will (directly or indirectly) significantly increase the creation of jobs. |
P41. Social media will increase birth rates in various countries. |
P42. Social media will (directly or indirectly) significantly increase political interest. |
P43. Social media will (directly or indirectly) significantly increase democracy. |
P44. Censorship on social media will increase. |
P45. Social media will (directly or indirectly) significantly increase the public’s level of education. |
P46. Social media will (directly or indirectly) significantly increase public health. |
P47. Social media will (directly or indirectly) significantly reduce environmental pollution. |
P48. Energy demand for operating social media platform servers will have a two-digit percentage of the global energy consumption. |
P49. Social media will (directly or indirectly) significantly increase individualism. |
P50. Social media will (directly or indirectly) significantly increase collectivism. |
First Round | Second Round | |
---|---|---|
Age range | ||
18–29 | 48% | 48% |
30–39 | 32% | 32% |
40–49 | 14% | 16% |
50–59 | 5% | 4% |
60+ | 2% | 0% |
Role | ||
User | 22% | 24% |
Social Media Researcher | 14% | 12% |
Blogger/Influencer | 14% | 8% |
PR-Manager | 6% | 8% |
Social Media Marketing Manager/Employee | 22% | 24% |
Other Social Media Manager/Employee | 12% | 16% |
Not specified | 8% | 8% |
Projection | Second Round (N = 63) | Second Round (N = 25) | Differences | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Section 1: Interactive Technologies | x0.25 | x0.5 | x0.75 | IQR | x0.25 | x0.5 | x0.75 | IQR | x0.25 | x0.5 | x0.75 | IQR |
1. Virtual realty | 1 | 2 | 2 | 1 | 1 | 1 | 2 | 1 | 0 | −1 | 0 | 0 |
2. Augmented reality | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | −1 | −1 |
3. Sematosensory sense | 2 | 2 | 3 | 1 | 2 | 2 | 3 | 1 | 0 | 0 | 0 | 0 |
4. Olfactory sense | 2 | 3 | 3 | 1 | 3 | 3 | 4 | 1 | 1 | 0 | 1 | 0 |
5. Gustatory sense | 2 | 3 | 3 | 1 | 3 | 3 | 4 | 1 | 1 | 0 | 1 | 0 |
6. Touch- and movement | 1 | 1 | 2 | 1 | 1 | 1 | 2 | 1 | 0 | 0 | 0 | 0 |
7. Tought-based interact. | 1 | 2 | 3 | 2 | 2 | 3 | 3 | 1 | 1 | +1 | 0 | −1 |
8. AI-based bots | 1 | 2 | 3 | 2 | 1 | 2 | 3 | 2 | 0 | 0 | 0 | 0 |
Section 2: Platform Development | x0.25 | x0.5 | x0.75 | IQR | x0.25 | x0.5 | x0.75 | IQR | x0.25 | x0.5 | x0.75 | IQR |
9. WWW | 1 | 2 | 2 | 1 | 1 | 2 | 2 | 1 | 0 | 0 | 0 | 0 |
10. E-Commerce | 1 | 1 | 2 | 1 | 1 | 1 | 2 | 1 | 0 | 0 | 0 | 0 |
11. Educational platforms | 1 | 2 | 2 | 1 | 1 | 2 | 2 | 1 | 0 | 0 | 0 | 0 |
12. Automotive industry | 1 | 2 | 3 | 2 | 1 | 2 | 2 | 1 | 0 | 0 | −1 | −1 |
13. Fintechs | 1 | 2 | 2 | 1 | 1 | 1 | 2 | 1 | 0 | −1 | 0 | 0 |
14. Unified platform | 3 | 3 | 4 | 1 | 3 | 4 | 4 | 1 | 0 | +1 | 0 | 0 |
15. De-monopolization | 2 | 3 | 3 | 1 | 2 | 3 | 3 | 1 | 0 | 0 | 0 | 0 |
16. HR Recruitment | 1 | 2 | 2 | 1 | 2 | 2 | 2 | 0 | 1 | 0 | 0 | −1 |
17. Inactive Profiles | 2 | 2 | 3 | 1 | 2 | 2 | 3 | 1 | 0 | 0 | 0 | 0 |
18. Freemium | 1 | 2 | 2 | 1 | 1 | 2 | 2 | 1 | 0 | 0 | 0 | 0 |
19. Cybercrime | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | −1 | −1 |
20. Regulations | 2 | 3 | 3 | 1 | 3 | 3 | 3 | 0 | 1 | 0 | 0 | −1 |
Section 3: News Media | x0.25 | x0.5 | x0.75 | IQR | x0.25 | x0.5 | x0.75 | IQR | x0.25 | x0.5 | x0.75 | IQR |
21. News distribution | 1 | 1 | 2 | 1 | 1 | 1 | 2 | 1 | 0 | 0 | 0 | 0 |
22. TV | 1 | 2 | 3 | 2 | 1 | 1 | 2 | 1 | 0 | −1 | −1 | −1 |
23. Radio | 1 | 2 | 3 | 2 | 1 | 2 | 3 | 2 | 0 | 0 | 0 | 0 |
24. Print media | 1 | 1 | 2 | 1 | 1 | 1 | 2 | 1 | 0 | 0 | 0 | 0 |
25. Fake news | 1 | 1 | 2 | 1 | 1 | 1 | 2 | 1 | 0 | 0 | 0 | 0 |
26. Advertising expenses | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | −1 | −1 |
Section 4: Institutions/organizations | x0.25 | x0.5 | x0.75 | IQR | x0.25 | x0.5 | x0.75 | IQR | x0.25 | x0.5 | x0.75 | IQR |
27. Schools | 1 | 2 | 2 | 1 | 1 | 2 | 2 | 1 | 0 | 0 | 0 | 0 |
28. Political elections | 1 | 2 | 3 | 2 | 1 | 2 | 3 | 2 | 0 | 0 | 0 | 0 |
29. No election campaigns | 2 | 3 | 3 | 1 | 3 | 3 | 4 | 1 | 1 | 0 | 1 | 0 |
30. Marketing budgets | 1 | 2 | 2 | 1 | 1 | 1 | 2 | 1 | 0 | −1 | 0 | 0 |
31. Medical doctors | 1 | 2 | 3 | 2 | 2 | 2 | 3 | 1 | 1 | 0 | 0 | −1 |
Section 5: Individual effects | x0.25 | x0.5 | x0.75 | IQR | x0.25 | x0.5 | x0.75 | IQR | x0.25 | x0.5 | x0.75 | IQR |
32. Well-being | 2 | 3 | 3 | 1 | 3 | 3 | 3 | 0 | 1 | 0 | 0 | −1 |
33. Depression | 1 | 2 | 2 | 1 | 2 | 2 | 2 | 0 | 1 | 0 | 0 | −1 |
34. Real-life contacts | 2 | 3 | 3 | 1 | 3 | 3 | 3 | 0 | 1 | 0 | 0 | −1 |
35. Isolation/loneliness | 2 | 2 | 3 | 1 | 2 | 2 | 3 | 1 | 0 | 0 | 0 | 0 |
36. Negative body image | 1 | 2 | 2 | 1 | 1 | 1 | 2 | 1 | 0 | −1 | 0 | 0 |
37. Narcissism | 1 | 2 | 2 | 1 | 1 | 1 | 2 | 1 | 0 | −1 | 0 | 0 |
38. Reduced attention | 1 | 1 | 2 | 1 | 1 | 1 | 2 | 1 | 0 | 0 | 0 | 0 |
Section 6: Societal effects | x0.25 | x0.5 | x0.75 | IQR | x0.25 | x0.5 | x0.75 | IQR | x0.25 | x0.5 | x0.75 | IQR |
39. Economic growth | 2 | 2 | 2 | 0 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 |
40. Job creation | 1 | 2 | 2 | 1 | 1 | 2 | 2 | 1 | 0 | 0 | 0 | 0 |
41. Birth rates | 3 | 3 | 4 | 1 | 3 | 3 | 4 | 1 | 0 | 0 | 0 | 0 |
42. Political interest | 2 | 2 | 3 | 1 | 2 | 2 | 2 | 0 | 0 | 0 | −1 | −1 |
43. Democracy | 2 | 2 | 3 | 1 | 2 | 2 | 3 | 1 | 0 | 0 | 0 | 0 |
44. Censorship | 2 | 2 | 3 | 1 | 2 | 2 | 2 | 0 | 0 | 0 | −1 | −1 |
45. General education | 2 | 3 | 3 | 1 | 2 | 2 | 3 | 1 | 0 | −1 | 0 | 0 |
46. Public health | 2 | 3 | 3 | 1 | 3 | 3 | 3 | 0 | 1 | 0 | 0 | −1 |
47. Pollution | 2 | 3 | 3 | 1 | 2 | 3 | 4 | 2 | 0 | 0 | 1 | +1 |
48. Energy demand | 2 | 2 | 3 | 1 | 2 | 2 | 3 | 1 | 0 | 0 | 0 | 0 |
49. Individualism | 2 | 2 | 3 | 1 | 2 | 2 | 3 | 1 | 0 | 0 | 0 | 0 |
50. Collectivism | 2 | 2 | 3 | 1 | 2 | 2 | 3 | 1 | 0 | 0 | 0 | 0 |
Assessment/Change | Projection(s) |
---|---|
Agree | 1, 2, 6, 10, 13, 19, 21, 22, 24, 25, 26, 30, 36, 37, 38 |
Somewhat agree | 3, 8, 9, 11, 12, 16, 17, 18, 23, 27, 28, 31, 33, 35, 39, 40, 42, 43, 44, 45, 48, 49, 50 |
Somewhat disagree | 4, 5, 7, 15, 20, 29, 32, 34, 41, 46, 47 |
disagree | 14 |
Agreement increased | 1, 13, 22, 30, 36, 37, 45 |
Disagreement increased | 7, 14 |
IQR decreased | 2, 7, 12, 16, 19, 20, 22, 26, 31, 32, 33, 34, 42, 44, 46 |
IQR increased | 47 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Studen, L.; Tiberius, V. Social Media, Quo Vadis? Prospective Development and Implications. Future Internet 2020, 12, 146. https://doi.org/10.3390/fi12090146
Studen L, Tiberius V. Social Media, Quo Vadis? Prospective Development and Implications. Future Internet. 2020; 12(9):146. https://doi.org/10.3390/fi12090146
Chicago/Turabian StyleStuden, Laura, and Victor Tiberius. 2020. "Social Media, Quo Vadis? Prospective Development and Implications" Future Internet 12, no. 9: 146. https://doi.org/10.3390/fi12090146
APA StyleStuden, L., & Tiberius, V. (2020). Social Media, Quo Vadis? Prospective Development and Implications. Future Internet, 12(9), 146. https://doi.org/10.3390/fi12090146