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Abstract: At present, most mobile App start-up prediction algorithms are only trained and predicted
based on single-user data. They cannot integrate the data of all users to mine the correlation between
users, and cannot alleviate the cold start problem of new users or newly installed Apps. There are
some existing works related to mobile App start-up prediction using multi-user data, which require
the integration of multi-party data. In this case, a typical solution is distributed learning of centralized
computing. However, this solution can easily lead to the leakage of user privacy data. In this paper,
we propose a mobile App start-up prediction method based on federated learning and attributed
heterogeneous network embedding, which alleviates the cold start problem of new users or new
Apps while guaranteeing users’ privacy.

Keywords: mobile app start-up prediction; federated learning; app usage; prediction

1. Introduction

The popularization of mobile terminals and mobile networks has resulted in changes
to our daily life. Various services of mobile terminals are basically provided through
Apps, such as news reading services provided by TouTiao; social networking services
offered by MicroBlog; travel recommendations, hotel reservations and other services
provided by Ctrip; entertainment services provided by PlayerUnknown’s Battlegrounds
(PUBG); and other game software. With the development of communication network
technology and the popularization of mobile devices, the service types of mobile Apps
are becoming more diversified, and the number is increasing. The start-up prediction of
installed Apps has practical implications, which can help users reduce the time before
using Apps. Furthermore, it takes time for mobile Apps to start up and load the latest
content, especially for game Apps, the loading time of which can reach 20 s. This can
be reduced by preloading the Apps into memory. However, the premise of preloading
an App is to accurately predict the App that a user will use, so as to reduce the waste of
resources and various adverse consequences caused by preloading an inaccurate mobile
App. The purpose of mobile App start-up prediction is to predict the mobile Apps that
users are most likely to use in the next period, which can realize the preloading of Apps,
save the start-up time of Apps for users, and provide better use experience [1].

The general predictive recommendation algorithm is based on multi-user data, such as
the most classic collaborative filtering algorithm; for example, in shopping, the similarity of
items purchased between multiple users can be calculated, and then users with the highest
similarity can recommend products to each other. However, application startup prediction
is highly personalized, so at present, most mobile App start-up prediction algorithms are
only trained and predicted based on single-user data. The simplest example is to count
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the proportion of the time used by the installed software in the software, which is used to
predict which application will be the next to operate. The algorithms cannot integrate the
data of all users to mine the correlation between users, and cannot alleviate the cold start
problem of new users or newly installed Apps. Although there are mobile App start-up
prediction algorithms based on multi-user data, the integration of multi-party data is
required, which can easily lead to the leakage of user privacy data [2]. The current general
solution is the distributed learning of centralized computing, which collects user data,
uploads it to the central server, and conducts distributed learning in the central server to
obtain the recommended model, and then recommends items that users may be interested
in based on the model and the current situation. In the whole process, the user serves only
as the producer of the data. After the data is gathered on the central server, the user will lose
the ownership of the data and cannot control the storage, access, usage, or flow of the data.
Consequently, the risk of information being leaked, misused, or even used for improper
profit is increasing. As for big data systems, they have organizational boundaries and lack
of matched solutions for supervision and compliance operations. However, in the era of big
data where privacy protection has attracted much attention, various countries have begun
to attach importance to the legislation in terms of privacy protection. Data producers still
lack the control over data, and due to the frequent occurrence of personal information
leakage, users have more distrust of data custodians. The Federated Learning [3] solution
proposed by Google AI Lab in 2016 can alleviate the problem of data privacy leakage in
centralized data recommendation. The basic idea of federated learning is to store the data
locally, train the model locally, and then upload the model parameters to the cloud to
perform the model aggregation.

To address the above problems, we propose the FL-AHNEAP method based on the
federated learning and AHNEAP [4] method. The FL-AHNEAP method can realize the
mobile App start-up prediction under the condition of privacy protection, so as to adapt to
the mobile App start-up prediction scenario. While integrating multi-user data, the idea of
federated learning is applied to alleviate the privacy leakage problem in the distributed
learning of centralized computing. At the same time, it can alleviate the cold start problem
of users to a certain extent.

The paper comprises the following parts: Section 1. Review of current research
results of mobile App start-up prediction and federated learning. Section 2. A multi-user
data prediction method, FL-AHNEAP, is proposed based on federated learning and the
AHNEAP method. Section 3. The terminal load and communication overhead of the
FL-AHNEAP method are analyzed based on the Android terminal. Section 4. We use the
LiveLab dataset to conduct related experiments on the proposed method and analyze the
influence of various factors on FL-AHNEAP. Section 5. Summary of the main work of this
paper, and outlook for further work.

2. Related Work
2.1. Mobile App Start-Up Prediction

Mobile App start-up prediction is a kind of prediction recommendation issue. Its purpose
is to predict the mobile Apps that users are most likely to use in the next period, so as to re-
alize the preloading of Apps and save the start-up time of Apps for users. The information
that the mobile App start-up prediction method relies on for modeling is mainly related to
the usage patterns and the context of the user’s App.

App usage patterns refer to the App’s usage cycle, usage sequence, etc. The temporal-
sequence correlation can be studied from two perspectives: the usage temporal sequence of
all installed Apps, and each App’s separate usage temporal sequence. The usage temporal
sequence of all installed Apps refers to the start-up sequence of Apps in a period of time,
whereas each App’s separate usage temporal sequence refers to the start-up sequence
of the App in that period of time. By analyzing the temporal sequence of each App
separately, we can determine the time rule for the usage of the App, and then analyze the
temporal sequence of all Apps, and find the periodicity of user behavior [5]. For example,
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Reference [5] divides the usage temporal sequence of each mobile App according to the
length of the time slot, so as to mine the periodicity and recent behavior of users using
mobile Apps. Reference [6] uses the variant of App’s usage temporal sequence to perform
hierarchical clustering on the number of startups of each mobile App in a unit of time to
determine a variety of user behaviors. The separate analysis of each App’s usage temporal
sequence attaches great importance to studying the time rule of each App, but ignores the
correlation between Apps. For example, after paying with Alipay, the purchaser usually
opens an SMS to check the balance of their bank card. To a certain extent, the startup
sequence of different Apps has a sequence association, which may be caused by the user’s
own habits, or by the automatic jump between Apps. Therefore, some studies predict the
next App the user is most likely to launch based on the usage sequence of all installed
Apps. Reference [7] exploits the ideas presented in word2vec to model the App’s temporal
sequence documents and uses a Gaussian-based method to identify the context of each
App action to extract session features. According to the principle of Tree Augmented
Naive Bayes (TAN) algorithm, the prediction model is established based on the basic
features of spatiotemporal context (such as Time, Latitude, Longitude, Charging Cable,
etc.); Reference [8] uses a Bayesian network to draw the relationship between the App and
the last used App, time, location, and the user profile (such as whether the mobile phone
mode is in vibration or mute), and calculates the probability of each App according to
the network.

Context-based mobile App start-up prediction can often achieve higher accuracy
after fusing multi-party contextual information. Some studies are based on probabilistic
graphic models to realize the context-based mobile App start-up prediction, such as the
conditional probability model [9], Markov model [10,11], and Bayesian network [7,8,12].
Baeza et al. proposed an effective Bayesian network-based personalized classification
method, using the joint features from the basic contextual information and the App session-
related contextual information, such as the context change when an App is started, to solve
the App prediction problem [7]. Reference [12] utilizes sensor data to extract contextual
information, and uses a Bayesian model to predict.

In recent years, researchers have collected local App usage records of mobile terminals
and exploited machine learning methods to establish prediction models, such as inferring
Apps from temporal profiles [6,13] and mining App usage patterns for prediction [14], etc.,
which can improve prediction accuracy. XU Shijian et al. defined the mobile App start-up
prediction problem as a multi-label classification problem, and proposed a classification
model based on LSTM using temporal-sequence correlation and contextual information
as prediction features [15]. XU Yanan et al. mined the App usage context patterns based
on the contextual information, and proposed a neural network approach to learn both
user characteristics and App characteristics, and introduced various sampling methods to
address the problem of unbalanced data in the historical use of multiple Apps by multiple
users [16]. However, the App-related characteristics that can be collected from smart
mobile devices are becoming increasingly diversified, such as the location information,
device configuration information, and various sensor data, when the App is in use, and
the performance of extracting features from this information by machine learning methods
such as LSTM is not sufficient for prediction.

To date, some research has used network representation learning methods to mine
the correlation between different types of data of App–time–location. TAN Yaowen et al.
constructed a User–App bipartite graph based on the network footprint data. This bipartite
graph not only extracts the User–App correlation, but also expresses the similarity between
users who used the same application [17]. Thus, an App usage prediction method based
on link prediction was proposed. However, the bipartite graph does not use contextual
information related to App usage, and research [18] showed that contextual information,
such as location and time information or the last used App, is conducive to App prediction.
CHEN Xinlei et al. proposed a method called CAP [16], which includes the representa-
tional learning module and personalized prediction. Firstly, multi-user data are used to
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construct a network representing App usage records, including four node types, i.e., App,
time, location, App type, and three edge types, i.e., App–location, App–time, App–App.
The representational learning module is trained to obtain the node embedding representa-
tion, and then the personalized user profile is calculated based on the individual historical
data. Personalized prediction is undertaken based on user profiles combined with App
node embedding representation. The CAP method uses the relationships between edges
to represent App attributes—time, location, and type—but the nodes in the network do
not extract the feature attribute of the nodes based on external information, which is not
conducive to the calculation of the embedding representation of new nodes and affects the
prediction accuracy. CEN et al. proposed an attributed network representation learning
method—GATNE [19]—and constructed a heterogeneous network based on historical
records and combined external information to construct feature attributes for the nodes of
the heterogeneous network. At the same time, they proposed the GATNE-I mode, which
can effectively deal with the existence of new nodes; however, this method is not designed
for mobile App start-up scenario.

2.2. Federated Learning

Federated learning is also a kind of distributed learning, but differs from traditional
distributed learning. The current distributed machine learning is still a kind of data central-
ized computing, but after the data is concentrated, the central server divides the sample
subsets, and each sample subset trains the model and then aggregates the parameters of
each model. Therefore, the samples in distributed machine learning are independent and
identically distributed, and the sample size is uniformly distributed, so the training process
of each subset is relatively similar. However, in federated learning, instead of concentrating
data, algorithms are distributed to various devices to perform calculations. Compared with
distributed learning, federated learning has more training subsets. In the mobile App start-
up prediction scenario, a terminal user is equivalent to a training subset, and the training
subsets located in different terminals may not be independent and identically distributed.
In recent years, there have been many related studies on joint optimization, mainly for
communication overhead and communication security.

The current research reduces the communication overhead from two perspectives:
reducing the communication rounds and reducing the dimensionality of communication
data. Reference [20] uses the optimization method of the synchronous SGD algorithm [21]
to improve the asynchronous stochastic gradient descent algorithm, so as to reduce the
communication rounds between the client and the server, perform more calculations on the
client, and quicken the model convergence. There are also studies using the same idea to
improve the SVRG algorithm and apply it to federated learning [22]. In order to solve the
problem of multiple communication rounds in federated learning based on the first-order
stochastic gradient descent algorithm, YANG et al. proposed a quasi-Newton method-
based vertical federated learning framework for logistic regression under the additively
homomorphic encryption scheme [23]. LIU et al. proposed the Federated Stochastic Block
Coordinate Descent (FedBCD) to effectively reduce the communication rounds for VFL [24].
The device and the server side need to interact with the complete model, and the large
model needs to transmit more data. For the model update data uploaded on the device side,
Low Rank, Random Mask, Subsampling, Probabilistic quantization, and other methods are
used to reduce the dimensionality or compress the uplink data to reduce communication
overhead [25].

According to the idea of federated learning, only the updated data of the model is
used to interact between the client and the server, but the updated data still contains the
characteristics of the client and may be reproduced. Some studies achieve privacy security
in communication from the perspective of data encryption. For example, References [26,27]
adopted differential privacy methods to solve this problem. Reference [28] improved secure
multi-party protocols for federated learning, to ensure that individual updates can be read
only when enough users submit updates. In addition, the design of the framework and the
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system has been studied to realize the protection of communication data. YANG et al. intro-
duced a comprehensive secure the federated learning framework, covering three types of
federated learning, building data networks among organizations based on federated mech-
anisms, and allowing knowledge to be shared without compromising user privacy [29].
CHENG et al. proposed a novel lossless privacy-preserving tree-boosting system known
as SecureBoost in the setting of federated learning. The learning process of the system is
executed by multiple parties with partially common user samples but different feature sets.
It was theoretically proven that the system is as accurate as other non-privacy protection
methods, and can also not disclose any user-related privacy data [30].

In addition to the study on communication overhead and communication security,
there are many other efforts on federated learning, such as the application of federated
learning, other security issues, and optimal design in federated learning. In terms of the
application of federated learning, research has been conducted on the specific architecture
of federated learning [31], the application of federated learning to the field of mobile
recommendation [32], and the combination of deep learning and edge computing to
intelligently utilize the collaboration among devices and edge nodes to exchange the
learning parameters [33]. In view of the problems that the client is autonomous in federated
learning and can easily deviate from the prescribed process of the model, some studies have
proposed the generation of low-dimensional surrogates of model weight vectors, which
are then used to detect anomalous clients at the server side [34]. Previous studies did not
take the heterogeneity of data and privacy constraints into consideration. Reference [35]
proposed a heterogeneous federated learning approach to analyze human behavior and
recognize human emotions based on EEG technology, and train machine learning models
over heterogeneous data, while preserving the data privacy of each party. Regarding
studies on the optimization of the aggregate parameter server, it is believed that the
centralized parameter updates are easily affected by server failure; therefore, a block-
chained federated learning architecture has been proposed, where mobile devices’ local
learning model updates are exchanged and verified by leveraging the blockchain [36].

3. FL-AHNEAP for Mobile App Start-Up Prediction under Privacy Protection
3.1. Basic Idea

The AHNEAP [4] method performs mobile App start-up prediction based on a single-
user data training model. It is a mobile App startup prediction method based on represen-
tation learning on the attributed heterogeneous network. In an attributed heterogeneous
network, there are different nodes, and each node has its own attribute information.
There are also multiple edge relationships between the nodes. In this article, this means
that a network contains three kinds of nodes: time, location, and application. Each node
has its own attribute information. Accordingly, there are three types of edge relation-
ships between time and application, location and application, and preorder application.
The method includes three steps:

• Data pre-processing: extracting time, location, App information, and their relation-
ships from the user’s historical App usage records to generate a heterogeneous net-
work, and assigning attribute information to each node in the network;

• Representation learning on the attributed heterogeneous network: employing the
random walk method in the attributed heterogeneous network to generate training
sample pairs to train the representation learning model for the attributed heteroge-
neous network;

• Link prediction model based on the neural network: integrating three pieces of
contextual information—time, location, and previous App—to predict the probability
of links jointly generated by current time, location, previous App node, and other
App nodes. Moreover, the processing of new nodes is included in the design of the
AHNEAP method, and the new Apps in the network are represented by the new
nodes. Therefore, the AHNEAP method alleviates the cold start problem of new Apps
to a certain extent.
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In practical situations, users with few or no historical records cannot be predicted
according to the AHNEAP method, and the integration of multi-user data can mine the
correlation between users and alleviate the cold start problem of new users to a certain
extent. At present, the training based on multi-user data generally depends on centralized
computing of data, and historical records generated by each user need to be stored in a
centralized manner. The AHNEAP method is a context-based prediction method, and the
leakage of context information may result in risks to the safety of the user’s property or
life. Therefore, users’ privacy issues need to be considered in the context of improvement
based on the AHNEAP method to integrate multi-user data. The idea of federated learning
is proposed to alleviate the risk of privacy leakage in data centralized computing.

In the mobile App start-up prediction scenario, the training process of each user is the
same. Therefore, we intend to improve the AHNEAP method by integrating the multi-user
App usage records, which is the basic idea of horizontal federated learning. Based on the
idea of federated learning, the data pre-processing step is performed locally, and in order to
ensure the user’s personalized prediction, the FL-AHNEAP method only applies federated
learning to the representation learning on the attributed heterogeneous network, and the
link prediction step based on the neural network is still performed locally. To summarize,
FL-AHNEAP contains the following three steps:

• Data pre-processing: In the context of federated learning, model training is performed
on the terminal, and obviously data pre-processing is also performed on the terminal;

• Network representation learning under federated learning: Based on the idea of
federated learning, the representation learning model for the attributed heterogeneous
network is used to integrate multi-user data, and the FederatedAveraging algorithm
is used as the optimization algorithm;

• Personalized link prediction: The personalized link prediction model is trained based
on the neural network.

The data pre-processing and personalized link prediction are basically the same as the
AHNEAP method, and the most important step is to improve the network representation
learning. As shown in Figure 1, the terminal obtains the representation learning model
for the attributed heterogeneous network from the server, using the local dataset to train
the model, and then the terminal uploads the model updates to the server. The server
performs model aggregation according to the model updates uploaded by each terminal.
After the terminal and the server complete the training of the representation learning
model for the attributed heterogeneous network, the terminal obtains the latest shared
model from the cloud, calculates the node embedding of the local dataset through the
representation learning model for the attributed heterogeneous network as the input, and
trains the personalized link prediction model based on the neural network.



Future Internet 2021, 13, 256 7 of 20
Future Internet 2021, 13, 256 7 of 21 
 

 

 
Figure 1. Framework of the FL-AHNEAP method. 

3.2. Network Representation Learning under Federated Learning 
The representation learning model for the attributed heterogeneous network in AH-

NEAP uses the following formula to calculate the node’s embedding: 𝑣, = ℎ௭(𝑥) + 𝛼𝑀் 𝑈𝑎, + 𝛽𝐷௭் 𝑥 (1) 

where 𝑟 represents the edge type in the attribute heterogeneous network built in AH-
NEAP, and there are three types of node: time, location, and application, and three types 
of edge: time application, location application, and preamble application. Therefore, r is 
a positive integer and satisfies 1 ≤ 𝑟 ≤ 3. 𝑥 denotes a feature of the node 𝑖. ℎ௭(𝑥) is a 
transformation function, whose role is to calculate the influence of 𝑥in the embedding 
representation of the node, and is the base embedding for node 𝑖. According to the self-
attention mechanism [37], 𝑎, is the weight of the edge embedding vector of node 𝑖 in 
the sub-network of edge type 𝑟 , and is computed according to 𝑎, =𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑤் 𝑡𝑎𝑛ℎ (𝑊𝑈)), and is actually a simple feedforward neural network. 𝑤் ,𝑊, 
represent the transformation probability matrix, which requires the training of the model, 
and optimization 𝑈 represents the hidden layer state in the self-attention mechanism. 𝑡𝑎𝑛ℎ () is the activation function of 𝑊𝑈, and 𝑠𝑜𝑓𝑡𝑚𝑎𝑥() is a normalized function, which 
converts the result from negative infinity to positive infinity to the probability 0–1. 𝑈 is 
a vector composed of the edge embedding vectors of node 𝑖 in three sub-networks, which 
represents the relationship between node 𝑖 and its neighbor nodes. Each node aggregates 
the mean value of the features of a certain number of neighbor nodes in each sub-network, 
as the edge embedding vector of the node in the sub-network 𝑈 is formed by concate-
nating the edge embedding vectors of node 𝑖 in three sub-networks. 𝑀 is the transfor-
mation matrix of the edge embedding vector; 𝑀்  represents the transpose of 𝑀, and the 𝑖th one-dimensional vector in 𝑀 represents the influence of the edge embedding vector 
of the node 𝑖 in the sub-network of the edge type 𝑟 on the embedding representation of 
node 𝑖. α୰ represents the influence coefficient of the edge embedding vector of each node 
on the embedding representation of the node in the sub-network with edge type 𝑟. 𝐷௭ is 
a feature transformation matrix on node 𝑖’s corresponding node type 𝑧, designed for the 
purpose of calculating the embedding representation vector of the new node, and the new 
nodes are isolated from all nodes in the network. 𝐷௭ represents the similarity relation be-
tween node 𝑖 and all nodes in the network from the perspective of features similarity; 𝐷௭்  

FL Server

Aggregation and Update

Shared Model
Update

Shared Model
Update

T
P

L
A

T
P

L
A

T
P

L
A

T
P

L
A

T
P

L
A

T
P

L
A

T
P

L
A

Figure 1. Framework of the FL-AHNEAP method.

3.2. Network Representation Learning under Federated Learning

The representation learning model for the attributed heterogeneous network in
AHNEAP uses the following formula to calculate the node’s embedding:

vi,r = hz(xi) + αr MT
r Uiai,r + βrDT

z xi (1)

where r represents the edge type in the attribute heterogeneous network built in AHNEAP,
and there are three types of node: time, location, and application, and three types of edge:
time application, location application, and preamble application. Therefore, r is a positive
integer and satisfies 1 ≤ r ≤ 3. xi denotes a feature of the node i. hz(xi) is a transformation
function, whose role is to calculate the influence of xi in the embedding representation of the
node, and is the base embedding for node i. According to the self-attention mechanism [37],
ai,r is the weight of the edge embedding vector of node i in the sub-network of edge type
r, and is computed according to ai,r = so f tmax

(
wT

r tanh(WrUi)
)
, and is actually a simple

feedforward neural network. wT
r , Wr, represent the transformation probability matrix,

which requires the training of the model, and optimization Ui represents the hidden
layer state in the self-attention mechanism. tanh() is the activation function of WrUi, and
so f tmax() is a normalized function, which converts the result from negative infinity to
positive infinity to the probability 0–1. Ui is a vector composed of the edge embedding
vectors of node i in three sub-networks, which represents the relationship between node i
and its neighbor nodes. Each node aggregates the mean value of the features of a certain
number of neighbor nodes in each sub-network, as the edge embedding vector of the
node in the sub-network Ui is formed by concatenating the edge embedding vectors of
node i in three sub-networks. Mr is the transformation matrix of the edge embedding
vector; MT

r represents the transpose of Mr, and the ith one-dimensional vector in Mr
represents the influence of the edge embedding vector of the node i in the sub-network
of the edge type r on the embedding representation of node i. αr represents the influence
coefficient of the edge embedding vector of each node on the embedding representation of
the node in the sub-network with edge type r. Dz is a feature transformation matrix on
node i’s corresponding node type z, designed for the purpose of calculating the embedding
representation vector of the new node, and the new nodes are isolated from all nodes in the
network. Dz represents the similarity relation between node i and all nodes in the network
from the perspective of features similarity; DT

z is the transpose of Dz. βr represents the
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influence coefficient of the similarity relation between features in the sub-network with
edge type r on the node embedding.

In this section, we use the FederatedAveraging algorithm to realize the parameter
aggregation of the network representation learning model. In Equation (1), hz(xi) is
actually obtained by multiplying a feature matrix and a transformation matrix. There is
a transformation matrix H, and there are transformation matrices M and D, and two
transformation matrices w and W in ai,r, and finally there is a transformation matrix T for
node edge embedding. The updates of model parameters are actually the updates of the
above six transformation matrices. Algorithm 1 is pseudo code of network representation
learning based on federated learning.

Algorithm 1. Network Representation Learning under Federated Learning.

Inputs: Nodes, Features, Neighbors.
Model parameters: transformation matrix in network representation learning model H0, M0, D0,
w0, W0, T0.
Server:

Choose b samples from the training set M;
Initialize the model parameters H0, M0, D0, w0, W0, T0;

for each round t = 1, 2, 3, . . .:
Randomly select C clients St;
Parallel execution on each worker node k ∈ St:
Hk

t+1, Mk
t+1, Dk

t+1, wk
t+1, Wk

t+1, Tk
t+1 = ClientUpdate

(
k, Hk

t , Mk
t , Dk

t , wk
t , Wk

t , Tk
t

)
;

Calculate the parameter updates: Ht+1 = ∑C
k=1

nk
n Hk

t , Mt+1, Dt+1, wt+1, Wt+1, Tt+1
in a similar way;
ClientUpdate(k, Hk

t , Mk
t , Dk

t , wk
t , Wk

t , Tk
t ):

Divide the training set into B parts according to the batch size B;
for each epoch e from 1 to E:

for each batch b ∈ B:
Train the representation learning model for attributed heterogeneous network, and

update Hk
t+1, Mk

t+1, Dk
t+1, wk

t+1, Wk
t+1, Tk

t+1;
return Hk

t+1, Mk
t+1, Dk

t+1, wk
t+1, Wk

t+1, Tk
t+1;

Assuming that the completion of the shared model requires multiple rounds of com-
munication between the terminal and the server, there is a fixed set of clients K, and E
rounds of local training, and each round is divided into small batches using all the local
datasets. At the beginning of each round of communication t, C clients St are randomly
selected, and the server sends the information about the current shared model to the se-
lected clients. Then, each selected client performs local computation based on the shared
model and its local datasets, trains the representation learning model for the attributed
heterogeneous network, updates the model parameters, and sends the updated model
parameters to the server. The server aggregates these updated model parameters and
carries out the weighted average of the model parameters according to the proportion of
the number of training samples of each user (nk) to the number of training samples of
all users participating in this round of training (n). The specific process of each round of
communication basically includes the following three steps:

• Select a certain proportion of users from all client users to participate in this round
of training;

• Each selected client trains the shared model obtained from the cloud using local data;
• The server waits for and obtains the updated model parameters of all selected clients,

and aggregates the model parameters according to the proportion of client training
samples to all training samples.

3.3. Analysis of Cold Start Prediction

The AHNEAP method includes the processing of new nodes. In the mobile App
start-up prediction scenario, a new App appears as a new node in the network, and the
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FL-AHNEAP method is designed based on the AHNEAP method, so the FL-AHNEAP
method copes with the cold start problems of new Apps to a certain extent. Therefore, we
focus on analyzing the cold start problem of new users in this section.

The cold start problem is a classic problem in prediction and recommendation, and is
an extreme problem of data sparseness. It has been frequently studied. However, for most
recommended algorithms, effective solutions have not been obtained. Generally, various
auxiliary data are used to achieve cold start prediction of new things or new users. In terms
of the sources of auxiliary information, there are three kinds of cold start prediction methods
at present [38]. The first does not consider the prediction of auxiliary content at all, and does
not avail of any auxiliary information, such as random recommendation, mean method,
and mode method. In general, we do not take this method into account. The second kind
of auxiliary information is obtained from the source network or the destination network,
and is solved by using user and item score records and auxiliary information. The third
method is interview-based cold start prediction, using questionnaire surveys and other
means to directly ask about new users’ preferences. However, in addition to the above three
kinds of cold start recommendation methods, group recommendation can also alleviate the
cold start problem to a certain extent. As the name suggests, group recommendation is to
recommend things to a group [39]. Firstly, the prediction scores of all users in the group
are aggregated to obtain the prediction score of the group, and then the degree of deviation
between each user in the group and the prediction score of the group is calculated, and
finally the group consensus score is calculated according to the weighted group prediction
score and the deviation degree of users. The higher the group prediction score, the smaller
the user deviation, and the greater the value of the consensus score. The goal of group
recommendation is to solve the consensus score, and recommend the item with the highest
score or the top k item groups with the highest score to the group.

Reference [6] describes two user cold start strategies for the mobile App startup
prediction problem. The first strategy is to find similar users with the same App, and the
second is to select the historical records of some users to synthesize the historical records
of new users. Both strategies are based on the premise that other user data is available.
However, in the idea of federated learning, the App information and historical records of
users are isolated from each other, and the only thing that can be obtained from the user
terminal is the model parameters. Therefore, these two strategies are not feasible. In the
FL-AHNEAP method, the only additional information required for new users to access
is the representation learning model for the attributed heterogeneous network placed
in the cloud, so the first three cold start prediction methods mentioned above are not
feasible. The basic idea of the FL-AHNEAP method is to select a certain number of users,
generate models on the user terminals, and then aggregate these model parameters in the
cloud to generate a shared model. This is similar to the group recommendation concept.
Reference [39] introduces an aggregation strategy, which aggregates and calculates the
score data of each member based on the characteristics, influence, and other information of
group members, and the simplest one is the mean strategy. The FL-AHNEAP method uses
the FederatedAveraging algorithm to implement cloud model aggregation, and calculates
the mean value of a group of users’ model parameters as the parameters of the final
shared model, which is similar to the mean aggregation strategy in group recommendation.
Therefore, new users can obtain the shared model from the cloud for direct prediction.

When a new user has no historical record at all, the prediction can only be made
based on time or location information according to the shared model. We can learn from
the analysis of experimental results in Reference [4] that the accuracy based on the time
information is higher than that based on the location information. Thus, we calculate the
current time and the node embeddings of all Apps based on the model, and then calculate
the cosine similarity between the time node embedding and the node embeddings of all
Apps. Then we select the top K Apps with the highest similarity as the candidate set.
However, in actual situations, it is impossible for a new user to have no historical record at
all. Even if there is only one record, the prediction can be made based on the previous App.
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The cosine similarity between the embedding representation of the context node (vc) and
the embedding representation of the App node (va) is:

cos(c, a) =
∑n

i=1 vi
cvi

a√
∑n

i=1 vi
c
2
√

∑n
i=1 vi

a
2

(2)

where n represents the dimension of node embedding; vi
c denotes the ith element of the

ith embedding representation of the time or the previous App node. Then the user’s cold
start prediction problem is actually to find an application au

i , so that the cosine similarity is
highest in a certain context c:

max(cos(c, au
i )), au

i ∈ appsu (3)

where appsu represents the App set of user u; au
i denotes the ith application of user u.

4. Terminal Load and Communication

The FL-AHNEAP method is improved based on federated learning, so the process
of model training is performed on the terminal. However, the computing power of the
terminal is limited. Thus, we need to consider whether the terminal is capable of under-
taking the model training of the FL-AHNEAP method and whether the communication
overhead between the terminal and the cloud will impose a burden on users. Next, we
analyze the terminal load from the spatiotemporal complexity of the FL-AHNEAP method,
and analyze the communication overhead of the terminal.

4.1. Analysis of Terminal Load

The training process of the FL-AHNEAP method is divided into two parts: the
representation learning on the attributed heterogeneous network and the link prediction
model based on the neural network.

The representation learning on the attributed heterogeneous network uses the noise
contrastive estimation (NCE) loss function to optimize the model parameters. According to
the idea of NCE, for each sample, N other labels are first sampled to generate negative sam-
ples. At first, we calculate the input node embedding vector vi,r according to Formula (4),
and then construct the optimization model parameters of log-likelihood function of the
binary logistic regression:

li = log
(

sigmoid(WT
p vi,r)

)
+ ∑K

k=1 log
(
1− sigmoid(WT

n vi,r)
)

= log
(

sigmoid
(

WT
p vi,r

))
+ ∑K

k=1 log
(
sigmoid(−WT

n vi,r)
) (4)

When computing the node embedding vi, in the mobile App startup prediction
scenario stated in this paper, the embedding of the same node in the three sub-networks
needs to be obtained respectively. The main computing overhead comes from the process
of generating node embedding representation from node features and node neighbor
information. The process is mainly matrix multiplication, and the time complexity is
O(NRDL), where N represents the number of nodes, R denotes the edge type, D is the
dimension of the node embedding, and L represents the number of neighbor nodes selected
for the generation of node edge embedding. The main computing overhead of using the
NCE loss function to optimize the model is the matrix multiplication in logistic regression.
The time complexity is O(NRD(K + 1)), and K represents the number of negative samples
for each sample. The experiment of Reference [2] shows that the terminal training round
has little effect on the FL-AHNEAP method, assuming five rounds of terminal training.
The edge type R = 3, the node embedding dimension D = 20, the number of neighbors
L = 10, and K is generally set to 5, and the time complexity depends on the number of
nodes N. When there are an increasing number of historical records, the number of nodes
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in the network generated based on the records will also increase, and the computing load
on the terminal will become greater.

In light of Reference [2], only a simple neural network with a single hidden layer is con-
structed in the link prediction based on neural network, so the main computing overhead is
still matrix multiplication. The time complexity is O(Nr NaD + Nr NaNa) = O(Nr Na(D + Na)),
where Nr represents the number of historical records, and Na represents the number of
applications. There are not many applications for a user, so (D + Na) � Nr. The time
complexity depends on the number of historical records of users participating in the train-
ing. In the same manner, when there are an increasing number of historical records, the
computing load on the terminal will increase.

In this paper, we adopt the App: AID Learning to run the terminal part of the
FL-AHNEAP method on the Android system to calculate the model training time. AID Learning
is a Linux virtual machine running on an Android terminal that supports a graphical in-
terface. It is a framework and platform that supports the development of deep neural
networks, with the most popular deep learning framework built in. We use the following
two mobile devices with different configurations for verification:

• Huawei P20: equipped with OS Android 10, HiSilicon Kirin 970 processor, CPU
frequency 2.36GHz, 6GB RAM, 128GB ROM;

• Huawei Nova2S: equipped with OS Android 9, HiSilicon Kirin 960 processor, CPU
frequency 1.8GHz, 4GB RAM, 64GB ROM.

We use following three kinds of training data for testing

• One month’s data of user A11: a total of 745 records; 170 nodes and 2550 training
sample pairs were generated;

• One month’s data of user D03: a total of 2718 records; 570 nodes and 6694 training
sample pairs were generated;

• Data of user B02 in the past year: 14,565 records in total; 3427 nodes and 37,602 training
sample pairs were generated.

The test results are shown in Table 1. The values in the table are the mean val-
ues after multiple tests. The total running time includes the whole step of data pre-
processing, training of the representation learning model for the attributed heterogeneous
network, training of the link prediction model based on the neural network, and model
testing, whereas the data processing time only includes the time consumed by the data
pre-processing step. Obviously, the mobile phone configuration will affect the time con-
sumption. The configuration of P20 is better than that of Nova2S. Therefore, P20 generally
consumes less time than Nova2S in both data processing time and total running time.
The total running time of P20 is about 56∼68% of that of Nova2S, whereas the data process-
ing time is about 60∼70% . The total running time minus the data processing time yields
the time for model training and model testing; this time for P20 is about 51∼65% of that
of Nova2S.

Table 1. Comparison of terminal training duration.

User Number of
Records

Number of
Nodes

Training
Sample Pairs

Data Processing
Time

Total Running
Time

P20 A11 745 170 2550 29′′ 1′20′′

D03 2718 570 6694 48′′ 3′7′′

B02 14,565 3427 37,602 10′32′′ 37′09′′

Nova2S A11 745 170 2550 48′′ 2′18′′

D03 2718 570 6694 1′12′′ 4′35′′

B02 14,565 3427 37,602 14′4′′ 56′47′′

Through the analysis of the test results, we can learn that the more training data, the
longer the consumption time; the less training data, the shorter the consumption time; and
the total running time increases exponentially similar to the number of training sample
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pairs. As the user with the most historical records in a month, user D03 spends 3′7′′ on
P20, and 4′35′′ on Nova2S. As one of the users with the most historical records in a year,
user B02 spends 32′43′′ on P20 and 56′37′′ on Nova2S. It can be seen that when the amount
of training data is within a certain range, the consumption of the terminal load in the
FL-AHNEAP method is still within an acceptable range. However, as the training data
grows, the running time also increases, and it takes nearly half an hour or even an hour of
training, which is unfriendly for users. Therefore, we still need to consider a variant of the
FL-AHNEAP method in the future to make it an incremental training method.

At present, the RAM of most users’ smart phones is still 4 GB, but the RAM of
newly launched mobile phones is generally 6 GB, and mobile phones with 8 GB RAM are
continuously being introduced. Apparently, from the perspective of space complexity, the
space consumption of RAM in the terminal is sufficient for FL-AHNEAP. In addition, the
storage capacity of smart phones is constantly expanding, from 64 G to 128 G, and gradually
to 256 G; this capacity is enough to store the historical records continuously generated by
users. Similarly, however, as a result of the growth of time, the storage capacity occupied
by historical records is also increasing. Although the capacity is sufficient, occupying too
much capacity of the mobile phone is not friendly to the user experience. Therefore, it is
necessary to consider a variant of the FL-AHNEAP method in the future to make it an
incremental training method.

4.2. Analysis of Terminal Communication Overhead

In the FL-AHNEAP method, end users need to interact with the cloud. According to
Algorithm 1, the communication items are mainly six transformation matrices, the dimen-
sions of which are mainly related to the characteristic dimension of the node features, the
node embedding dimension, and the edge in the network. We selected the matrix with
the largest dimension for analysis. It can be drawn from the Reference [2] that there are
three edge types in the network. The attribute feature dimension is set to 50, and the
node embedding can be set to 20 according to experiments; then, there are up to floating-
point type elements in a matrix. Five matrix parameters need to be passed, so a total of
floating-point type elements need to be passed. A floating-point type occupies 8 bytes, so
it occupies a total of about 14 KB. We exploit the array form in Python to store six matrices,
and then store the six matrices in the same dictionary. We store the structure and data of
the dictionary in a file, and the final file size is about 33 KB; that is, the interaction required
for each communication is a file of about 33 KB. For users, the communication overhead of
each round is almost negligible.

5. Experimental Results and Analysis
5.1. Experiment Settings

Dataset: Figure 2 shows the statistics of 34 users’ historical records in a month.
Among these, user D05 has the least with only 45 records, whereas user D03 has the
most with a total of 2718 records. It can be seen that the number of users’ historical records
within a month can be divided into five stages from 0 to 2500. In order to make the experi-
mental results more credible and make the user data more random, users in each stage are
selected separately, and finally the data of ten users, i.e., A01, B07, A11, D00, A03, A12, B06,
B08, A04, and A07, are selected for the experiment.
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Data pre-processing: Based on the idea of horizontal federated learning, the model
used by each terminal is the same, and the model parameter settings are also the same.
In the representation learning model for the attributed heterogeneous network, the param-
eter dimension setting is related to the feature vector, and the feature information about the
location node is related to the number of connected base stations in the historical records.
However, in horizontal federated learning, each terminal needs to get the same feature, so
the dimension of the feature vector needs to be fixed. The App node features are obtained
according to the App node types. The frequency of each type of application is counted, a
fixed number of high-frequency types are selected, and the remaining types are classified
into one category. In the same manner, the location node features are obtained according to
the coverage area of the base station, the usage frequency of each coverage area is counted,
a fixed number of high-frequency base stations LAC are selected, and the remaining types
are classified into one category. When a user’s App types or the number of coverage areas
is less than a fixed number, 0 is used to fill the one-hot encoding value to obtain the feature
vector of the same dimension.

Basic settings: In this section, we conduct an experiment and evaluation on the
proposed FL-AHNEAP method still based on the LiveLab App usage dataset, using the
prediction accuracy as the evaluation criterion. During terminal training, we use 80% of
the selected training dataset as the training set and 20% as the test set.

In this experiment, ten users—A01, B07, A11, D00, A03, A12, B06, B08, A04, and A07—
were selected as the representative users to realize the mobile App start-up prediction
method based on federated learning. Because it is a simulation experiment, and there
are restrictions on the number of users in the dataset, we did not select many users to
participate in the training, and did not randomly selected users for the training. In each
round of communication, the clients corresponding to these 10 users were directly selected
to perform the aggregation of the shared model parameters, which is equivalent to the
parallelization of synchronous data in distributed learning, and all user data were selected
to train the shared model. Then each terminal trained a personalized link prediction model
based on the neural network according to the shared model. During prediction, each
terminal first generates the node embeddings of the current time, location, and previous
App according to the shared model, and then aggregates the node embeddings as the input,
obtains the prediction probability based on the neural network model, and generates the
candidate App set.
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5.2. Experimental Results

AHNEAP vs. FL-AHNEAP: Figure 3 compares the accuracy between the AHNEAP
method and the FL-AHNEAP method. The FL-AHNEAP method uses 10 users for
20 rounds of communication, and each user is trained for five rounds at the terminal.
As for the AHNEAP method, each user is trained for 100 rounds independently. FL-Strict
strictly implements the FL-AHNEAP method, selecting 15 users for training and conduct-
ing 20 rounds of communication. The users are trained at the terminal for five rounds, and
five users are randomly selected to participate in one round of communication according to
a one-third ratio. It can be seen from Figure 3 that the experimental results of FL-AHNEAP
and FL-Strict are not much different, but the accuracy of the two is generally lower than
that of the AHNEAP method of single-user data. Among these, the accuracy of user D00 is
the highest, reaching 72%, whereas user B08 has the lowest accuracy, of only 40%. For user
A12, the accuracy of the FL-AHNEAP method is 17.5% lower than that of the AHNEAP
method, which is the largest difference among all users, whereas the difference of user A03
is the smallest, at only 2.5% lower. This is because the FL-AHNEAP method destroys the
structural property of the network to a certain extent; from the perspective of federated
learning, it is equivalent to sacrificing part of the accuracy to obtain privacy protection.
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In the figure, the abscissa consists of 10 users arranged from left to right based on the
number of historical records. From the results of AHNEAP, it is obvious that each user has
different App usage patterns, the accuracy of App prediction based on AHNEAP method
is different, and there is no direct relationship between the accuracy of prediction and the
number of historical records. User A11 does not have the most historical records, but has
the highest accuracy rate of 79%, whereas user B08 has significantly more historical records,
but has the lowest accuracy rate of only 48%.

Effect of communication rounds on FL-AHNEAP: Figure 4 compares the effect of
communication rounds on FL-AHNEAP. Five users are selected to train the shared model.
Each time, the communication terminal only performs one round of training for the
representation learning on the attributed heterogeneous network, and a total of 20 com-
munication rounds are performed. It can be seen from the figure that the communication
rounds have little effect on the prediction accuracy. For users D00, B07, and B08, there is
almost no effect, whereas user A04 has a slight fluctuation, and A07 is relatively unstable.
Generally speaking, however, the fluctuation range of prediction accuracy is not large; thus,
in this case, it may only need one round of communication to obtain better results.
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Effect of terminal communication rounds on FL-AHNEAP: Figure 5 compares the
effect of terminal communication rounds on FL-AHNEAP. Ten users are selected to partici-
pate in training and 20 communication rounds are performed. Each time, the communi-
cation terminal performs one round, five rounds, and 10 rounds of training, respectively,
for the representation learning on the attributed heterogeneous network. It can be seen
from the figure that the prediction accuracy rates of 10 users in the three cases almost
overlap. For users A01 and A07, the prediction accuracy rate of one round of training
is slightly higher. In can be drawn from the experiment stated in Reference [2] that the
AHNEAP method can converge quickly, so it can be inferred that the terminal training
round has little effect on FL-AHNEAP. To reduce the consumption of terminal resources,
there is no need to perform multiple rounds of training on the terminal. According to the
FL-AHNEAP method, the terminal will train a personalized neural network, so the overlap
of the prediction accuracy in the three cases can be explained.
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Effect of the number of users on FL-AHNEAP: Figure 6 compares the effect of the
number of users on FL-AHNEAP. Each time, the communication terminal only performs
one round of training for the representation learning on the attributed heterogeneous
network, and a total of 20 communication rounds are performed. We select five users,
10 users, and 15 users, respectively, for the training, and conduct the prediction on a
common group of five users. It can be seen from the figure that there is basically no
difference in the accuracy of training with different numbers of users. This is because,
in the FL-AHNEAP method, only the shared model is used to train the representation
learning on the attributed heterogeneous network, whereas the link prediction model based
on the neural network is used to realize the personalized prediction of users.
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Effect of the number of applications used by users on the accuracy of prediction:
Figure 7 describes the effect of the number of applications used in each user’s training
set on the accuracy of prediction. The FL-AHNEAP method uses 10 users for 20 rounds
of communication, and each user is trained for five rounds at the terminal. It shows
that for the three users B07, A11, and D00 with high prediction accuracy, the number of
applications used in the training set is relatively small, whereas for B08 with the lowest
prediction accuracy, the number of applications used in the training set is the largest. It can
be basically inferred that the number of applications used by users has a certain impact on
the prediction accuracy, and further research can be undertaken in the future.
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Analysis of cold start of new users: In the FL-AHNEAP method, each user can obtain
a shared model, that is, a representation learning model for the attributed heterogeneous
network. Therefore, for the cold start problem of new users, we can calculate the embedding
of each new code based on the shared model, then calculate the cosine similarity of the node
embedding, and select the node with higher similarity as the prediction result. Figure 8
shows the prediction accuracy results of the shared model (obtained after training based
on the data of ten users: A01, B07, A11, D00, A03, A12, B06, B08, A04, and A07) to five
users: D03, A06, A02, B03, and D04, who have not participated in the training. If a new
user does not have a historical record at all, we can only make predictions based on the
current time and location information. It can be seen that, except for D03, the prediction
accuracy obtained by time and location information is almost the same, and all accuracies
are higher than 20%. If a new user has some historical records, the prediction accuracy
of time, location, and previous App can be considered at the same time. It can be seen
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that the prediction accuracies based on the previous App are much higher than that of
time and location information, and all are higher than 50%. User D03 achieves the highest
result, reaching 71%, whereas user D04 is the lowest, but also has an accuracy of 51%.
In actual situations, it is impossible for a new user to have no App usage record at all, so
the candidate App set can be obtained by selecting the previous App information.
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Effect of the number of user historical records on FL-AHNEAP: Figure 9 shows the
effect of the number of user historical records on the FL-AHNEAP method. One month,
three month, and six month data of five users are selected for training, including 80% for
the training set and 20% for the test set. The figure shows that the number of user historical
records has little effect on the FL-AHNEAP method, and the fluctuation of the prediction
accuracy of each user is small. When only one month’s data of each user is selected for the
training, the accuracy tends to be slightly higher.
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Effect of historical data on FL-AHNEAP: We can learn from the terminal load anal-
ysis that the user data size will directly affect the time consumed by the FL-AHNEAP
method in terminal training. Therefore, it is necessary to analyze the effect of historical data
on FL-AHNEAP, e.g., the effect of three month data and one month data on FL-AHNEAP.
We select the historical data of one month, three months, and six months to predict the
same data of the next month, as shown in Figure 10. It can be seen that the accuracy of
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using three month and six month data to predict the next month’s data is slightly higher
than the accuracy of using one month data, whereas the accuracy of using three month
data and six month data is basically the same. It can be inferred that historical data has
a certain impact on accuracy, but when the time span of historical data is long, the gap
gradually decreases. More specific experiments can be performed to obtain the critical
point, by measuring the historical data of the appropriate time period for the prediction
accuracy and terminal load.
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6. Conclusions

The training of single-user data has strong personalized features, but when a user
has little or no historical record, the user will not be able to make a good prediction.
In general, the integration of multi-user data can often achieve higher accuracy. However,
the integration of multi-user data generally requires centralized management, which is not
conducive to the privacy protection of users. Combining federated learning and AHNEAP
methods, in this paper we propose FL-AHNEAP, a mobile App start-up prediction method
under privacy protection. It integrates multi-user data to train a representation learning
model for the attributed heterogeneous network, and the terminal separately trains the link
prediction model based on the neural network to achieve personalized predictions for users.
Experimental analysis shows that, in the LiveLab dataset, the accuracy of the FL-AHNEAP
method is slightly lower than that of the AHNEAP method based on single-user data
because the model aggregation destroys the structure of the user’s heterogeneous network.
However, through the analysis of cold start experiments for new users, it is shown that
the FL-AHNEAP method can alleviate the cold start problem of new users to a certain
extent. Under the assumption that users have previous Apps, the prediction accuracy can
reach 71%.

However, the FL-AHNEAP method under privacy protection only uses Federate-
dAveraging, a simple federated learning optimization algorithm, and even if the idea of
federated learning is used, the user’s privacy is not absolutely secure. There are many
aspects worthy of discussion in the context of mobile App start-up prediction based on fed-
erated learning, such as data security in the communication process and other algorithms
for model aggregation. The FL-AHNEAP method destroys the network structure when per-
forming model aggregation. In the future, it can be considered how to realize not only the
aggregation of parameters, but also the merger of the network under the federated learning
mechanism. Although the idea of federated learning realizes the privacy protection of user
data to a certain extent, it cannot guarantee absolute data security. Studies have shown that
user-related information can be extracted from model parameters, and FL-AHNEAP can
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be optimized from the perspective of federated optimization, such as model aggregation
algorithm, homomorphic encryption, and differential privacy, to further ensure privacy
and security. Moreover, model training is resource intensive, and for the terminal, model
training consumes a large proportion of resources. Due to the importance of attracting
terminal holders to participate in federated learning training, the study of user incentive
mechanisms is a possible future research direction.
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