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Abstract: Advancements in smart technology, wearable and mobile devices, and Internet of Things,
have made smart health an integral part of modern living to better individual healthcare and well-
being. By enhancing self-monitoring, data collection and sharing among users and service providers,
smart health can increase healthy lifestyles, timely treatments, and save lives. However, as health
data become larger and more accessible to multiple parties, they become vulnerable to privacy
attacks. One way to safeguard privacy is to increase users’ anonymity as anonymity increases
indistinguishability making it harder for re-identification. Still the challenge is not only to preserve
data privacy but also to ensure that the shared data are sufficiently informative to be useful. Our
research studies health data analytics focusing on anonymity for privacy protection. This paper
presents a multi-faceted analytical approach to (1) identifying attributes susceptible to information
leakages by using entropy-based measure to analyze information loss, (2) anonymizing the data by
generalization using attribute hierarchies, and (3) balancing between anonymity and informativeness
by our anonymization technique that produces anonymized data satisfying a given anonymity
requirement while optimizing data retention. Our anonymization technique is an automated Artificial
Intelligent search based on two simple heuristics. The paper describes and illustrates the detailed
approach and analytics including pre and post anonymization analytics. Experiments on published
data are performed on the anonymization technique. Results, compared with other similar techniques,
show that our anonymization technique gives the most effective data sharing solution, with respect
to computational cost and balancing between anonymity and data retention.

Keywords: health data anonymity analytics; privacy in smart health; data anonymization

1. Introduction

Smart health improves the well-being and quality of lives by providing customized
cares and treatments using health data collected from smart health devices (e.g., trackers
of movements and heart rates [1], or mobile EKG (electrocardiogram) monitors for heart
rhythms [2]). Telemedicine increasingly relies on health devices to treat chronic diseases,
e.g., by monitoring glucose [3], blood sugar levels [4], or blood pressure [5] for patients
with heart diseases and diabetes. Advancement in wearable technology and Internet of
Things enable smart health in self-monitoring and delivery of users’ health data to doctors,
hospitals, and fitness service providers [6]. Smart health can increase healthy lifestyles,
timely treatments, and save lives. Furthermore, collection and sharing of health data can
help researchers navigate scientific discoveries. For example, genetic-testing companies
collect users’ DNA (Deoxyribonucleic Acid) and survey data to gain insights on genetic
diseases like Parkinson, Late-onset Alzheimer ‘s or celiac disease [7].

While smart health brings great benefits, it also poses potential threats to privacy as
health data often contains sensitive and disclosed information. Collecting, storing, and
sharing these data can put users’ privacy at risks of being re-identified (even if personally
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identifiable information is removed) or loss of personal information by inferences from
overlapping external data, known as side-channel attacks [8]. As health data become
larger and more accessible to multiple parties, they become more susceptible to privacy
attacks as users may lose control of their personal information. A common practice to
safeguard privacy is to increase users’ anonymity as anonymity increases indistinguish-
ability, making it harder for re-identification. For example, let us consider a published
dataset that consist of people in a health club. Being the only person of age between 30–40
in a published dataset makes Bob easily re-identifiable from the dataset. If an attacker is
looking for Bob’s home address and knows that Bob is about 35, not only his home address
can be found but his genetic disease and other personal information can also be revealed.
Compared to Mary being one of the age 30 female health club members, Mary is more
anonymous (among female club members) than Bob (among those of age 30–35). Because
unlike Bob, Mary is not easily distinguishable since there are other people with the same
information as Mary. Since the attacker cannot identify Mary among other age 30 female
club members, she is more anonymous. Thus, Mary’s privacy is better protected because
she has higher anonymity than Bob. Anonymity ensures that each set of ‘critical’ data
values is associated with more than one individual (or a minimum requirement) to protect
the individual’s identity [8–10]. When the minimum requirement is specified to k, we refer
to such a condition as k-anonymity, where each unique ‘critical’ data values has at least k
records (or people) [7,8].

Much work on privacy and anonymity analytics has been studied in two groups:
anonymity measures [11–14] and anonymization techniques [8–10,12,14–25]. The for-
mer deals with indirect anonymity measures based on relevant information (e.g., av-
erage information losses [13,14], likelihood of attacker’s correct re-identification given
his prior knowledge [12]). The latter deals with transforming a given database into a
more anonymous form to better protect privacy. Many anonymization techniques have
been researched [8–10,14,15,18–22] using suppression and generalization by either omit-
ting [18,20] or replacing critical data values with more general substitutes (according to its
taxonomies) [22]. Some transforms the original data into a generalized table that complies
with k-anonymity requirements [8–10,19]. Many techniques have focused on minimizing
generalizations to enhance computational efficiency. Still the challenge is not only to
efficiently preserve data privacy but also to ensure that the shared data are sufficiently
informative to be useful. Excess generalization to provide anonymity can corrupt impor-
tant information that the data may convey. As a result, the data become less informative.
Recent anonymization approaches [16,17,23] aim to increase data information (e.g., by
using information gain [17] but they are intended to be used resulting anonymized data
for classification.

Our research studies health data analytics focusing on anonymity for privacy protec-
tion. This paper presents a multi-faceted analytical approach to (1) identifying attributes
susceptible to information leakages by using entropy-based measure to analyze information
loss, (2) anonymizing the data by generalization using attribute hierarchies, and (3) bal-
ancing between anonymity and informativeness by our anonymization technique that
produces anonymized data satisfying a given anonymity requirement while optimizing
data retention. Our anonymization technique is an automated Artificial Intelligence search
based on two simple heuristics. Part (1) can be viewed as pre-anonymization analytics,
whereas part (2) is anonymization with a refinement in part (3). Because there are many
anonymization techniques and each may have different objectives, the post anonymization
analytics can be performed by applying Part (1) again. The contribution of this paper is
not only techniques for each part but an overall methodology for analyzing privacy and
anonymity of health data. The proposed method is practical in a sense that it is applicable to
any kind of smart health data and moreover balancing the information loss and anonymity
makes the approach feasible to use. This paper is an extension from our previous work [15]
that only describes part (3) focusing on our proposed anonymization algorithm. The rest
of the paper is organized as follows. Section 2 describes related work followed by the
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multi-faceted analytical approach in Section 3, which can be viewed as pre-anonymization
and anonymization steps. Section 4 describes experiments to evaluate performance and
effectiveness of our anonymization technique when compared with similar techniques.
Section 5 provides post anonymization analytics and Section 6 concludes the paper.

2. Related Work

Much research in data privacy addresses issues on anonymity [8–10,21,22,24–29].
Many aim to measure anonymity [11–14], whereas some are concerned with the utility
of the result [24,25,29]. Majority of the metrics that are concerned with anonymization
quality [11,13,14] use Shannon’s entropy to quantify average information [13,14]. Work
in [13] uses entropy to estimate the average number of correct re-identifications (of in-
dividuals) based on binary queries. More correct responses help increase the attacker’s
information about the individuals in the database and reduce the anonymity of the in-
dividuals. Longpre et al. proposed a measure [14] to estimate an average information
loss when an attacker acquires additional information through querying. Again, the more
information the attacker gains (or average information loss), the less anonymity users have.
This makes it easier for the attacker to breach disclosure and identify the users. Our paper
suggests a method to analyze the data using this latter measure to pinpoint areas in the
data that are susceptible to privacy attacks. Some anonymization techniques consider
the utility of the data after the anonymization for evaluation [24,25,29]. Among those,
work in [25] considers information loss and calculates utility accordingly whereas some
considers classification accuracy to measure utility [24,29].

A large body of research in anonymity concerns with anonymization techniques to
transform a given data set into a more anonymous form for privacy preservation [8–10,14–22].
Most of these techniques find anonymized data (via generalization) that complies with k-
anonymity requirement [8–10,19,20] to guarantee that each group of unique critical attribute
values has at least k records to prevent individuals from being reidentified easily. Some
anonymization uses exhaustive search to find the minimal k-anonymization with minimal
distortion [9,22]. Although the approach is not practically feasible, it provides a concrete
formal model for minimal k-anonymization. Work in [9] searches for k-anonymizations
using a binary search. Since binary search is a blind search, computational cost can still
pose a problem when searching for all possible k-generalizations as discussed in [15]. Other
approaches focus on efficiency rather than minimal k-anonymizations [19,20]. Unlike the
approaches that search for minimal generalizations blindly or focusing on efficiency rather
than minimal anonymization, our proposed approach [15] aims to efficiently search for
anonymized data that strike a balance between satisfying k-anonymity requirements and
maximizing retention of the original data.

3. Proposed Multi-Faceted Anonymity Analytics Approach

This section describes the proposed approach that analyzes anonymity in multiple
aspects to protect data owner’s privacy. Figure 1 shows a general overview of the approach.
As shown in the figure, the approach identifies the attributes susceptible to information
leakages in pre-analytics process. The user can choose to increase anonymity of the vul-
nerable attributes before the anonymization procedure or directly anonymizes the data
using the findings of the vulnerable attributes as guidance. The user can also choose to
anonymize the smart health dataset, without applying pre-analytics. Then, the data are
anonymized, by our IAB (Intelligent Anonymity Balance) anonymization technique that
produces data satisfying a given anonymity requirement while optimizing data retention.
The anonymized data are then analyzed in the post-analytics process to see if the critical
attributes in the resulting anonymized data are vulnerable to information leakage (e.g., via
inference of attackers). If they are further actions can be taken (e.g., alerting data publishers
or injecting additional “fake” data to increase indistinguishability of the vulnerable indi-
viduals). The first two steps are described in this section whereas the post-analytics step
will be described in Section 5. For easy referencing, since we will describe and illustrate
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each section with the same data, we briefly introduce them along with common terms and
notations below.
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Figure 1. Overview of the Proposed Multi-faced Anonymity Analytical Approach.

Given a (data) table T (or relational database) with A, a set of attributes A1, A2, ..., An.,
a data record represents an instance of a tuple (a1, a2, ..., an), where data entry ai ∈ dom(Ai),
a set of all possible values of Ai. Consider Table 1, each row represents a unique tuple of
attribute values where the last column represents the number of records for each row. Here
Row 2 represents a unique tuple (F, Low, 35, 52000, 143, Black, No) with three instances of
records. As shown in Table 1, Rows 1, 4, 10, 13 are obviously vulnerable to privacy threats
since each has one record instance giving low anonymity and easy for re-identification.
Next, we will describe the analytical approach.

Table 1. Users’ Weight Loss Profiles.

Rows Sex Alcohol Cons. Age Zip Weight Race Genetic Risk #Rec.

1 F Med 35 52000 143 Black No 1
2 F Low 35 52000 143 Black No 3
3 M Med 50 53000 166 White No 4
4 M Low 35 52003 143 White No 1
5 M Med 68 52000 190 Hispanic No 3
6 M High 68 52000 190 Hispanic No 4
8 F Low 75 52002 122 Native Hawaiian No 4
9 F Med 35 52003 143 Black No 2
10 F High 75 52002 143 White Hereditary Thrombophilia 1
11 M High 44 52003 166 Asian Hereditary Thrombophilia 3
12 F Med 38 52000 166 White No 4
13 F High 35 52000 122 American Indian Hereditary Thrombophilia 1
14 F Low 35 52000 122 American Indian Hereditary Thrombophilia 2
15 M Med 38 52003 122 White No 3
16 F Med 22 54004 180 Native Hawaiian No 3
17 M High 20 54000 180 American Indian L.O. Alzheimer’s 3
18 M Low 21 54001 180 Black Parkinson’s 3
19 F High 24 54003 180 Asian Hereditary Thrombophilia 3
20 M No 25 54000 122 American Indian Celiac 3
21 M No 26 54001 166 Asian L.O. Alzheimer’s 3
22 F High 23 54003 180 Asian Parkinson’s 3
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3.1. Assessing Vulnerability to Information Leakages

Before we transform a given health data into a more anonymous form, one may
investigate if (and what areas of) the data are susceptible to information loss if an attacker
uses some of his information to make inferences. To do this, we propose an analysis
on various structures of the data using the Longpre et al.’s entropy-based measure [14]
to estimate average information loss in respective areas. The motivation of this pre-
anonymization analytics is not simply to apply existing measure in a typical manner
but maximizing the measure for systematic use to gain useful information for privacy
protection. For example, the finding that certain attribute is vulnerable to information
leakage may be linked to low anonymity that can be alleviated by modifying the original
data. Next, we briefly describe the measure and its derivations from two sources.

Proposition 1. Shannon’s information quantification.
Let X be a discrete random variable with outcomes x1, x2,...., xn, p(xi) be the probability of xi

being the outcome, and I(xi) be the amount (or value) of information received when learning that xi
is the outcome (sent). Then I(xi) is log2(1/p(xi)).

Proof. Since the more probable the information is, the less informative the information
becomes. Thus, I(xi) is inversely proportional to p(xi). Furthermore, for information of
value y, the amount of information is measured by the number of bits to store y, i.e., log2(y)
bits. Thus, Shannon’s quantifying information I(xi) = log2(1/p(xi)). �

Proposition 2. Longpre et al.’s entropy-based measure.
Given a data table of n individuals, where p(ri) is the probability of individual ri being re-

identified. An attacker makes queries, each of which has m possible answers represented in a sequence
<a1, a2,..., am>. All n individuals are partitioned into m partitions, where each partition Ej contains
individuals whose attribute value matches the jth answer of the query aj. Subsequently, the average

of information loss is ∆S
({

Ej
})

= ∑m
j=1 p(Ej)

(
S0 − Sj

)
, where S0 = −

n
∑

i=1
p(ri)log2 p(ri) and

Sj = ∑ri∈Ej
p
(

ri|Ej
)
log2 p

(
ri|Ej

)
representing an initial average amount of information (before

queries) and the average of amount of information after the query answer j, respectively.

Proof. If the attacker knows p(ri) then the amount or value of the information can be
quantified as log2(1/p(ri)) by Proposition 1. Thus, an average of these information values

over all individuals gives an entropy S0 = −
n
∑

i=1
p(ri) log2 p(ri). (Note, if an attacker does

not have any information about individuals, then everyone in the table is equally likely to
be identified with p(ri) = 1/n.).

Now suppose an attacker makes queries as stated. Each individual ri can belong
to one partition. Thus, ∑m

j=1
∣∣Ej

∣∣= n. Suppose an individual ri is found to be in Ej then
p(ri) becomes p(ri|Ej), which is p({ri}∩Ej)/p(Ej) = p(ri)/p(Ej) (since {ri}∩Ej = {ri}), where
p(Ej) = ∑k:rk∈Ej

p(rk). Since p(ri) is reduced, the information value/amount increases (as less
certain is more informative). Thus, an attacker gains more information about the individual
and more vulnerable to privacy breach. Thus, the average amount of information when
answer j is matched Sj = ∑ri∈Ej

p
(

ri|Ej
)

log2 p
(

ri|Ej
)
, where p(ri) is changed to p(ri|Ej).

This gives an average loss to be estimated as ∆S
({

Ej
})

= ∑m
j=1 p(Ej)

(
S0 − Sj

)
. �

Note that ∆S({Ej}) is maximum when Sj is zero and ∆S({Ej}) = S0 (i.e., no information
is lost to the attacker or that he has no information). Hence, the normalized average
information loss is ∆S({Ej})/S0 where its value is in [0, 1].
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Analytics on Information Leakages

Instead of applying the Longpre et al.’s entropy-based measure to the entire table, we
will analyze which attribute will be most vulnerable to information leaks (i.e., leaks most
amount) on the average when an attacker obtains information on the attribute values.

We will use Table 1 to illustrate and explain the concept. Suppose an attacker queries
information on attribute Sex. Table 1 has a total of 60 individuals with 27 females (F) and
33 males (M). When an attacker has no information, every individual is equally likely to
be identified with p(ri) = 1/60. Therefore, the initial average amount of information S0

is −
60
∑

i=1
(1/60)log2(1/60) = 5.9. For attribute Sex, there are two possible answers: <F, M>.

Thus, we partition 60 individuals into E1 and E2 for those who are F and M, respectively.
Based on Proposition 2 and Table 1, p(ri|E1) = p(ri)/p(E1) = (1/60)/(27/60) = 1/27, for

ri ∈ E1 = {ri| i = 1, 2, 8–10, 12–14, 16, 19, 22 }. This gives S1 = −27(1/27)log2(1/27) = 4.75.
Similarly, p(ri|E2)= (1/60)/(33/60) = 1/33, for ri ∈ E2 = {ri|i = 3–7, 11, 15, 17, 18, 20, 21} and
S2 = −33(1/33)log2(1/33) = 5. By Proposition 2, ∆S({Ej}) is (27/60)(5.9 − 4.75) + (33/60)(5.9
− 5) = 0.99. Normalizing by a maximum (i.e., when ∆S({Ej}) = S0 = 5.9), we have the
resulting normalized average information loss of 0.99/5.9 = 0.16 (when the attacker queries
on Sex) as shown in the first row of Table 2. Similarly, we can apply the measure to estimate
the average information loss given the attacker querying on other attributes except the
disclosed one (e.g., genetic risk). Table 2 shows the overall results obtained.

Table 2. Estimated Information Loss.

Query Attribute. # Query Partitions Avg. Info. Loss Norm. Avg. Info.
Loss

Sex 2 0.99 0.16
Alcohol Cons. 4 1.86 0.31

Age 13 3.55 0.60
Zip 8 2.75 0.46

Weight 5 2.24 0.38
Race 6 2.52 0.42

The normalized results show us on average how much information is leaked given
attacker knows the attribute value of the person they are looking for. The attribute that
discloses more information has a higher value out of the maximum possible value of one.
As shown in Table 2, for data Table 1, the Age attribute is the most vulnerable as it leaks
the most information. Next is Zip, followed by Race. These are not surprising as they are
typical key attributes that lead to identity identification. Although we have not done this,
the Longpre et al.’s entropy-based measure can be applied to a combination of attributes
at any level to give different insights. Here we apply the measure to each non-disclosed
attribute for systematic preliminary findings.

In general, this pre-anonymization analytics can help us decide which attributes we
should pay attention to when we try to protect privacy. For example, we may pick a set
of most vulnerable attributes to increase anonymity by generalization. In anonymization
techniques, a set of such attributes is known as quasi-identifiers or shields that are specified
by users. Next section shows more details of basic anonymization techniques.

3.2. Increasing Anonymity by Generalization

The analytics in Section 3.1 show that, once an attacker obtains the query answers,
information on some attributes (or set of attributes) can lead to more average information
loss than the others. To protect such loss, a common practice to increase anonymity is
by generalization and compression [8–10]. This section describes these basic concepts in
more details along with the concept of k-anonymity that is used in many anonymization
techniques including ours (to described in Section 3.3).
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Generalization replaces an attribute value by a more abstract form or a more general
but semantically consistent value. For example, we can replace the zip “12345” by “123∗∗”,
or replace a “city” by its “country”. The former can be viewed as a suppression of the
last two digits of the zip where“∗” represents any non-negative digit. The consistency on
semantics of attribute values is governed by its conceptual hierarchy. By doing this, the
number of records of each unique tuple will increase and that increases the tuple’s degree
of anonymity. Consequently, individuals are more indistinguishable, and their identities
are better protected. Generalization provides many advantages to preserve data privacy
including consistent interpretation, traceability, and minimal content distortion [10].

We will now explain the concepts in more details via illustrations on Table 1. Con-
tinuing our analytics from Section 3.1, where we identify that Age, Zip and Race are
vulnerable. One can focus on generalizing these attributes to increase their anonymity or
exploring other attributes based on domain experts. Here we consider the three attributes:
Alcohol Consumption (AC), Age and Zip and their corresponding conceptual hierarchies
as shown in Figure 2. For AC, there are four attribute values in the domain although only
three appear in Table 1. The Age attribute values are discretized into four ranges and the
Zip attribute values are string of numbers where a more general value uses “∗” for any
non-negative digit. The Zip hierarchy is general in that it is applicable to any string of
digits other than 9’s.
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Figure 2. Taxonomy Trees of three attributes in Table 1.

For simplicity and without loss of generality, we will illustrate generalization on parts
of Table 1, namely Rows 1, 2, 5, 6, 9 and 10 with four attributes: Sex, Alcohol Consumption
(AC), Age and Zip, as shown in Table 3a to be an initial data table.

In Table 3a, Row 1 and Row 5 each has one record. This makes an individual in these
two rows vulnerable for re-identification. If an attacker knows that the person he is looking
for is a Female (F) having Medium (Med) AC and lives in Zip 52000, he will be able to
identify the person and infer his age of 35 (see Row 1). Similarly, Row 5 is the only one
record of a Female, Age 75, so this person can be identified and her sensitive information
of having High AC can be leaked.

To increase anonymity of individuals in Rows 1 and 5, we generalize on AC cells of all
rows of females (i.e., Rows 1, 2, 5, 6) in Table 3a to obtain results as shown in Table 3b where
the change and important areas are colored. In this table, individual in Row 1 increases
his/her anonymity since Row 1 can be merged with individuals in Row 2 creating a tuple
(F, Yes, 35, 5200) with four records. However, this generalization is not enough to increase
anonymity of individual in Row 5.

To increase anonymity of individual in Row 5 with the goal to merge with Row 6,
we need to further generalize both rows on Age and Zip according to the taxonomies in
Figure 2. By generalizing the Age attribute two steps to [20–85] and the Zip to 5200∗, we
obtain the results as shown in Table 3c. As shown in this table, Rows 5 and 6 can now be
merged. By merging Row 1 with Row 2, and Row 5 with Row 6, we obtain the final table
as shown in Table 3d. Here none of the unique tuples of attribute values has a one record.
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In fact, the record number indicates the degree of anonymity. Table 3d shows that there are
at least three people in each group of the same attribute values and hence their identities
and information are better protected.

Table 3. Increasing anonymity by generalization on attribute values.
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There are many ways to generalize. The above shows generalization at a cell level
(i.e., a data entry of a specific row and column of a table). Another type of generalization
is applied to all attribute values of the same level in the hierarchy. Thus, when a table is
generalized on attribute A, the generalization is applied only to the table rows whose A’s
attribute values are either the child or its siblings of the same parent in the hierarchy. For
example, generalizing a Table 3a on Age will replace the Age values of Rows 1, 2, and 6
to [20–44] and those of the rest of rows will be replaced by [45–85]. To improve efficiency,
many anonymization techniques including ours (Section 3.1) adopt this interpretation when
applying generalization. Next, we formally define important concepts for anonymization,
namely, k-anonymity requirement and other relevant terminologies.

k-Anonymity Requirement for Anonymization

Anonymity requirement specifies an anonymity degree required on a subset of privacy
critical attributes, called shield (or quasi-identifiers [24,25]). Given the degree k and the
shield S, the k-anonymity requirement on shield S, denoted by <S, k>, is defined to be a set
of S-projected tuples, whose each unique tuple is guaranteed to have a minimum of k
records. Let [t, nt] denote an ordered pair of a unique tuple t and its corresponding number
of records nt. We say that <S, k> is violated if there is [b, rb] such that rb < k, for some
S-projected tuple b. The k-anonymity required on shield attributes helps user to protect
privacy without over generalizing the tuple. As for example, consider Table 3a with a given
anonymity requirement <{AC, Age, Zip}, 3>. Note that each row represents a unique tuple
projected on the shield. Rows 1, 5 and 6 violates the given anonymity requirements with
the number of records lower than three. However, Table 3d contains four distinct tuples,
each of which has three or more records. Thus, Table 3d satisfies the given anonymity
requirement.

In general, for a given table, one can define more than one anonymity requirement,
each of which can have a different anonymity degree and a shield. In practice, the
anonymity requirement is user-specified. If the anonymity degree is too low, the shield may
or may not be able to protect the individual identity (e.g., when the projected tuple becomes
personally identifiable). On the other hand, if we set the anonymity degree too high, data
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may not be informative since almost all tuples would be the same after anonymization [15].
The data privacy is over protected. This k-anonymity requirements are used in many
anonymization techniques [8–10,19,20]. Next, we describe our anonymization technique.

3.3. Balancing Generalization with Data Retention in Anonymization

Given a data table and a k-anonymity requirements, this section discusses an analytical
approach to transforming the data into anonymized data that satisfy the k-anonymity
requirements and at the same time retains the data from the original as much as possible.
In AI (Artificial Intelligence), we can view this problem as a search in a space of all possible
generalized tables on all possible attributes. The simplest approach is to search exhaustively
for a solution. To improve efficiency, heuristic search can be employed. Our approach relies
on two simple heuristics: the number of rows violating the anonymity requirements and
the total number of table rows. The interplay between the two heuristics gives a balance
between anonymity compliance and optimizing data retention.

3.3.1. Intelligent Anonymity Balance (IAB) Algorithm

We now briefly describe our anonymization algorithm, IAB (Intelligent Anonymity
Balance) as also discussed in [15]. Given a data table T with a set of attributes A and
a taxonomy tree for each shield attribute. Without loss of generality, we assume one
anonymity requirements R with shield S ⊆ A. The basic overview of the IAB algorithm is
shown in Algorithm 1.

Algorithm 1 The IAB Anonymization Algorithm

Procedure IAB Anonymization
Inputs: T, a table with a set of attributes A, a set of anonymity requirement R with a set

of anonymity shield attributes S ⊆ A and corresponding taxonomy trees of each
attribute in S.

Output: a generalized table T’ of T where T’ has a maximum number of rows among all
generalized tables of T satisfying R.

1 For each violating row and applicable attribute B in S
2 T’← generalized table of T on B
3 Add T’ in W;
4 Endfor
5 Repeat
6 Select from W, table Tk that has a maximum number of rows and a non-zero minimum

number of rows that violate R
7 For each violating row and applicable attribute B in S
8 T’k ← generalized table of Tk on B
9 Add T’k in W;
10 Endfor
11 Remove Tk from W
12 Until W is empty or no tables in W has a number of rows > number of rows of a table

that satisfies R
13 Return T* that has maximum number of rows over all tables in W that satisfy R

The algorithm iteratively generalizes a table on an appropriate attribute using its
corresponding taxonomy tree to increase anonymity degree. In Lines 1–4, a generalized
table of T on each attribute in S is generated and maintained in set W. Each generalized table
keeps track of two key heuristics: the number of rows that violate R and the total number
of rows on the table. The former tells how close we are to finding the table that satisfies
the anonymity requirements R while the latter measures how much data is preserved.
Among generalized tables in W, the algorithm selects a table that has the highest number
of rows with the lowest violation number of rows to be further generalized (Lines 5–10).
The selected table is removed from W (as shown in Line 11).
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The generalization process repeats until there are no more tables left in W or no tables
in W has the number of rows > the number of rows of a table that satisfies R. In other
words, we stop expanding the search when we find a table that satisfies R or a table that is
smaller than the biggest table that satisfies R found so far (even though it violates R). By
monotonicity of generalization, further generalization can never grow the table. Therefore,
the algorithm only further generalizes the table that is larger than those found to satisfy R
so far. However, if a table violates R but is already smaller than the biggest table found
so far to satisfy R, further generalizing it would not result in a larger table that satisfies
R. Thus, the algorithm selects the largest table among the tables in W with no anonymity
requirements violation.

Note that it is possible to have more than one of such table of the same size. In
such a case, the algorithm selects the first one found as it represents the table that has the
least number of generalized steps. In other words, it retains most specific data that are
closest to the given data table. Since generalization procedure monotonically decreases
the number of rows, our approach uses this property to prune the fruitless path of an
exhaustive search. Thus, it finds an optimal solution. The optimal solution is that maximizes
the information preserved (i.e., the table size) from the original table while hiding desired
privacy by satisfying anonymity requirements (i.e., zero violation rows). Therefore, the
optimal solution has maximum number of rows (maximum information preservation) that
satisfies the anonymity requirement (desired anonymity).

3.3.2. Illustration

We apply the algorithm described in Section 3.3.1 to Table 1 with a given anonymity
requirement R = <{Zip, Age, AC}, 3>. Based on the number of records of each row, Table 1
contains 6 rows with number of records less than 3. Thus, these rows, namely Rows 1, 4, 9,
10, 13 and 14, violate R. Generalizing these violating rows of Table 1 on attribute Zip (and
also generalizing Zip values for the rest of the rows since their Zip values are siblings of
those in the violating rows), we obtained a table as shown in Table 4.

Table 4. A generalized Table after generalizing T on the Zip attribute.

Rows Sex Alcohol Cons. Age Zip Weight Race Genetic Risk #Rec.
1,9 F Med 35 5200 ∗ 143 Black No 1 + 3
2 F Low 35 5200 ∗ 143 Black No 3
3 M Med 50 5300 ∗ 166 White No 4
4 M Low 35 5200 ∗ 143 White No 1
5 M Med 68 5200 ∗ 190 Hispanic No 3
6 M High 68 5200 ∗ 190 Hispanic No 4
7 M Med 44 5200 ∗ 166 Asian Hereditary Thrombophilia 3
8 F Low 75 5200 ∗ 122 Native Hawaiian No 4
10 F High 75 5200 ∗ 143 White Hereditary Thrombophilia 1
11 M High 44 5200 ∗ 166 Asian Hereditary Thrombophilia 3
12 F Med 38 5200 ∗ 166 White No 4
13 F High 35 5200 ∗ 122 American Indian Hereditary Thrombophilia 1
14 F Low 35 5200 ∗ 122 American Indian Hereditary Thrombophilia 2
15 M Med 38 5200 ∗ 122 White No 3
16 F Med 22 5400 ∗ 180 Native Hawaiian No 3
17 M High 20 5400 ∗ 180 American Indian L.O. Alzheimer’s 3
18 M Low 21 5400 ∗ 180 Black Parkinson’s 3
19 F High 24 5400 ∗ 180 Asian Hereditary Thrombophilia 3
20 M No 25 5400 ∗ 122 American Indian Celiac 3
21 M No 26 5400 ∗ 166 Asian L.O. Alzheimer’s 3
22 F High 23 5400 ∗ 180 Asian Parkinson’s 3

As shown in Table 4, Row 1 and Row 9 can be merged to the first row of the resulting
table. Rows 4 and 14 can be combined to satisfy R as a unique tuple from Shield attributes,
i.e., (Low, 35, 5200∗) has three records. However, the two rows cannot be merged. Therefore,
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the resulting Table 4 has reduced number of violating rows to two (i.e., Rows 10, 13) with a
total number of rows to be 21.

Let T(n, m) denote a generalized table T, where n is the number of rows violating R
and m is the number of rows in T. Tables 1 and 4 are represented by T(6, 22) and T1(2, 21),
respectively. The generalization process repeats. The whole process can be viewed as a
search starting from T(6, 22) as a root and as shown in Figure 3.
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The search starts from the root T(6, 22), i.e., Table 1 (or T) with6 violating rows and a
total of 22 rows as shown in Figure 3. We first apply to T, generalization on Zip, Age and
AC to obtain tables T1(2, 21), T2(4, 21) and T3(0, 18), respectively. Recall that T1(2, 21) is
actually Table 4.

As seen in Table 4, after merging Rows 1 and 9, we have [(Med, 35, 5200∗), 4]. Hence
the violation in these two cases is eliminated. Rows 4 and 14 also have the same shield
attribute values after the generalization that is [(Low, 35, 52,000), 3]. Therefore, T1 has 2
violating rows remained, namely Rows 10 and 13. Moreover, because Rows 1 and 9 merged,
the number of rows in T1 becomes 21. Thus, T1(2, 21) is obtained. The rest of resulting
tables can be obtained similarly.

T3(0, 18) has zero violations, however we continue to search because there might be a
table with more rows and zero violations.

The frontier nodes at this point are T1(2, 21), T2(4, 21). They have the same row
number, therefore T1(2, 21) having fewer violating rows is selected to be expanded further.
By generalizing T1(2, 21) on the three attributes we get the tables T4(2, 21), T5(0, 21) and
T6(0,17). At this point we stop because, we obtain T5(0, 21). We do not continue to search
even though there are still table with violations such as T2(4, 21), because none of them
have number of rows larger than the current result that is 21. That means we already found
the table with the greatest number of rows with zero violations as further generalizing on
other tables would only result in a smaller table. Thus, the optimal result of T5(0, 21) has
been found and the algorithm stops.

4. Evaluation and Experiments

This section compares our anonymization approach described in Section 3.3 and eval-
uate their performances by comparing with two other similar anonymization techniques.
Two criteria for evaluating the resulting anonymized table: (1) the table must satisfy a
given anonymity requirement with maximum data retention, and (2) the table must be
found in timely manner without too much space.

Section 4.1 relates to (1) to evaluate correctness on Table 1, and Section 4.2 relates to
(2) by discussion on experiments and results on public datasets. Since the anonymization
is viewed as a search problem in this paper, we evaluate our approach by comparing the
resulting table(s) with two other search methods: exhaustive search (Method 1) and greedy
search (Method 2) [30]. The former is blind search, but the latter is a heuristic search, where
the number of violating rows is the heuristic. We will compare results obtained by our
approach with Methods 1 and 2.
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4.1. On Correctness

Consider Table 1 and the anonymity requirement R is < {Zip, Age, AC}, 3 >. Partial
search tree obtained by Method 1 is shown in Figure 4.
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As shown in Figure 4, T corresponds to Table 1 and T2 is the table obtained from
generalizing T on attribute Zip (or Table 4). Method 1 generates all possible generalized
tables and choose a table with maximum number of rows among those with zero violation
as a solution. The resulting table is shown in Table 5 = T5 (0, 21) (see Figure 4), which is
the same result obtained by our approach. All violations are eliminated (since Rows 4 and
14, Rows 6 and 10, and Rows 11 and 13 has 3, 5, and 4 records, satisfying R, respectively).
Furthermore, T5 has 21 distinct rows as Rows 1 and 9 are merged.

Table 5. Anonymized table from Exhaustive (Method 1) and Our approach.

Row Sex Alcohol Cons. Age Zip Weight Race Genetic Risk #Rec.

1,9 F Med [35–44] 5200 ∗ 143 Black No 1 + 2
2 F Low [35–44] 5200 ∗ 143 Black No 3
3 M Med [45–64] 5300 ∗ 166 White No 4
4 M Low [35–44] 5200 ∗ 143 White No 1
5 M Med [65–85] 5200 ∗ 190 Hispanic No 3
6 M High [65–85] 5200 ∗ 190 Hispanic No 4
7 M Med [35–44] 5200 ∗ 166 Asian Hereditary Thrombophilia 3
8 F Low [65–85] 5200 ∗ 122 Native Hawaiian No 4
10 F High [65–85] 5200 ∗ 143 White Hereditary Thrombophilia 1
11 M High [35–44] 5200 ∗ 166 Asian Hereditary Thrombophilia 3
12 F Med [35–44] 5200 ∗ 166 White No 4
13 F High [35–44] 5200 ∗ 122 American Indian Hereditary Thrombophilia 1
14 F Low [35–44] 5200 ∗ 122 American Indian Hereditary Thrombophilia 2
15 M Med [35–44] 5200 ∗ 122 White No 3
16 F Med [20–34] 5400 ∗ 180 Native Hawaiian No 3
17 M High [20–34] 5400 ∗ 180 American Indian L.O. Alzheimer’s 3
18 M Low [20–34] 5400 ∗ 180 Black Parkinson’s 3
19 F High [20–34] 5400 ∗ 180 Asian Hereditary Thrombophilia 3
20 M No [20–34] 5400 ∗ 122 American Indian Celiac 3
21 M No [20–34] 5400 ∗ 166 Asian L.O. Alzheimer’s 3
22 F High [20–34] 5400 ∗ 180 Asian Parkinson’s 3

Method 1 (Exhaustive search) and our approach produce the same anonymized table.
However, as we will see later that both computational costs are significantly different. A
compromising approach between the two is to use a greedy search.

By using the number of rows that violate the anonymity requirement as a heuristic
and each time expand on the table with minimum violations (as it has the highest chance
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to reach 0 with minimum generalizations) until zero violations. The search tree of Method2
(Greedy approach) is shown in Figure 5.
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As seen from Figure 5, the result is achieved after generating 3 tables, and when the
violations become 0, the search stopped. In Figure 5, each node again is a table annotated
by a corresponding heuristic value. Starting from the root node T(6) represents Table 1,
with 6 violating rows. We see that after applying a generalization on Zip, Age and AC
attribute, the resulting table has 2, 4 and 0 violating rows, respectively.

The greedy solution produces Table 6 = T3, as a result. As shown in Table 6, there is
no violation. However, the number of rows is 19, which is less than our solution which has
21 rows.

Table 6. Resultant table from Greedy Approach.

Rows Sex Alcohol
Consumption Age Zip Weight Race Genetic Risk #Rec.

1,2 F Yes 35 52000 143 Black No 1 + 3
3 M Yes 50 52000 166 White No 4
4 M Yes 35 52003 143 White No 1

5,6 M Yes 68 52000 190 Hispanic No 3 + 4
7,11 M Yes 44 52003 166 Asian Hereditary Thrombophilia 3 + 3

8 F Yes 75 52002 122 Native Hawaiian No 3
9 F Yes 35 52003 143 Black No 2
10 F Yes 75 52002 143 White Hereditary Thrombophilia 1
12 F Yes 38 52000 166 White No 10

13,14 F Yes 35 52000 122 American Indian Hereditary Thrombophilia 1 + 2
15 M Yes 38 52003 122 White No 3
16 F Yes 22 54004 180 Native Hawaiian No 3
17 M Yes 20 54000 180 American Indian L.O. Alzheimer’s 3
18 M Yes 21 54001 180 Black Parkinson’s 3
19 F Yes 24 54003 180 Asian Hereditary Thrombophilia 3
20 M Any 25 54000 122 American Indian Celiac 3
21 M Any 26 54001 166 Asian L.O. Alzheimer’s 3
22 F Yes 23 54003 180 Asian Parkinson’s 3

However, the resulting table from Method 2 (Greedy search) is correct in that it satisfies
the R. Therefore, even though Method 2 satisfies (2) it fails (1). Our proposed approach on
the other hand satisfies both (1) and (2). Now we will show the performance results (i.e.,
Section 4.2) as reported in [15].

4.2. On Performances

To demonstrate the effectiveness of our method, we experiment with the public heart
disease datasets [31] collected from three different health organizations: Cleveland Clinic
Foundation (dataset 1), Hungarian Institute of Cardiology Budapest (dataset2) and V.A.
Medical Center, Long Beach, CA (dataset 3). In each data set, we select six most pertinent
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attributes for our purpose to illustrate privacy protection of our anonymization approach.
For the same reason, we also add the Zip attribute for our experiments giving a total
of seven attributes. Figure 6 summarizes the attributes of the three data sets with their
corresponding attribute values along with each data set size.
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The mechanism to anonymize the data relies on data generalization based on the
taxonomy of data of each attribute. Here the taxonomy trees for relevant attributes are
shown in Figure 7.
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Note that a combination of the attributes, selected in Figure 6, can be used to re-
identify an individual heart patient. Recall that our method aims to quickly find a solution
of an anonymized table that satisfies an anonymity requirement and that it maximally
preserves the original data. To better understand how our method performs with respect to
the trade-off among each criterion (i.e., data preservation, privacy protection, and efficient
solution), we compare our method with two other methods that solve a problem focusing
on a single criterion.

Method 1, that is the exhaustive search, aims to find a solution, satisfying anonymity
requirements, with maximum information preservation (i.e., retaining the greatest number
of data rows), whereas Method 2, that is greedy search, aims to find a solution satisfying
anonymity requirements most efficiently. In terms of search, Method 1 exhaustively
searches for a solution that has a maximum number of rows in the table, while Method 2 is
a greedy search for a table with no rows violating the anonymity requirements. See more
details on search algorithms in [30].

4.2.1. Comparisons on Single Shield

Shield attributes in this experiment are Age, Sex, Smoker and Zip and a given
anonymity requirement is <{Zip, Smoker, Sex, Age}, 5>. We evaluate in terms of three
metrics: number of generalizations, number of table rows, and time. For the number of
generalizations, we measure the total number of generalizations applied during the search
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for a solution. It indicates the degree of privacy protection. The more generalizations we
use, the table becomes more anonymous (but less data preservation). Each generalization
transforms a table into a new table. However, when generalizing a table on multiple
attributes, the order of the attribute applied for generalization does not affect the resulting
table. For example, generalizing a table on attribute age then generalizing the resulting
table on attribute Sex gives the same table as first generalizing a given table on Sex then
generalizing the resulting table on attribute Age. Hence, we label the tables that have the
same generalizations as duplicate and only keep one of the tables. The experiment results
on total number of generalizations are shown in Figure 8.
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As seen in Figure 8, although each method finds a solution that satisfies anonymity
requirements, Method 2 uses optimal number of generalizations in all of the three data sets.
This is as expected because the number of generalization steps effect how quickly we can
find the solution. On the other hand, Method 1 has the highest number of generalizations
in all the three data sets as expected. This can be explained by the fact that Method 1 aims
to maximize the data information and thus, it searches over all possible generalized tables
for the best solution giving the highest number of rows. On the other hand, the results for
our method are in between because it is a trade-off solution that compromises among the
three criteria.

The second metric is the number of (distinct) rows that the solution table has. As
shown in Figure 6, initially data sets 1–3 has 303, 294 and 200 rows, respectively. Number
of rows measures the quality of the result in terms of information preservation. The more
distinct row the table has the more original information is preserved. The comparison
results are shown in Figure 9. As shown in Figure 9, our method and Method 1 produce
the solutions with the same number of rows in all the three data sets. In fact, both obtained
an anonymity-complied solution with optimal number of rows. However, as observed in
Figure 8, our method uses less effort in terms of the number of generalizations applied.
This favors our method in that it takes less work (i.e., number of generalizations) and yet
it retains optimal information (i.e., number of rows). The third metric is time that each
method takes to find its anonymity-complied solution. Figure 10 shows the comparison
results.

As expected, Method 2 has the minimum time as its design (since Method 2 greedily
searches for the solution and returns once it finds a solution, see Section 4.1) and Method 1
has the maximum time in finding the solution in all the three data sets. This is because the
time is associated with the effort in generalization and thus, the number of generalizations.
On the other hand, our method gives a compromised solution in that it is relative fast to
find a solution and also retains the high number of data rows.
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4.2.2. Comparisons on Varying Anonymity Requirements

Given a fixed k with varying shield attributes on the anonymity requirement, the
biggest factor to both number of generalizations and total time is the selected shield
attributes. The taxonomy trees of the attributes and number of selected attributes both
effect the results.

Intuitively, the more attributes the shield has the more alternatives for generalization
there are. Similarly, if the shield attributes have higher depth of taxonomy trees, there
will be more generalizations. As also discussed in [15], to demonstrate that our method
still performs well on various shields, we experimented with different shield set sizes and
attribute on the same data set, namely dataset 1(Cleveland). The results are shown in
Table 7. As shown in the top partition row of Table 7, the anonymity requirement with
the greatest number of shield attributes produces the highest number of generalizations in
all methods. In the next two partition rows, between the two Anonymity Requirements
with three attributes, the Anonymity Requirement (<{Zip, Smoker, Age}, 5>) in the third
partition row produces a greater number of generalizations than those produced by the
Anonymity Requirement (<{Zip, Smoker, Sex}, 5>) for all methods. This is as expected
because the taxonomy tree of Age is larger than that of Sex. In fact, the size of the taxonomy
tree of the shield attribute can influence the number of generalizations more than the
number of attributes in the shield. As shown in Table 7, the Anonymity Requirement
(<{Zip, Smoker, Sex}, 5>) (second partition row) has higher number of attributes than the
Anonymity Requirement (<{Zip, Age}, 5>) (last partition row) and yet it produces smaller
number of generalizations. This is because the size of taxonomy tree of Age is deeper than
those of Sex and Smoker.
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Table 7. Experiments with Different Anonymity Requirements.

Anonymity Requirement #Rows #Generalizations

Method 1
<{Zip, Smoker, Sex, Age}, 5>

297 563
Method 2 274 68

Ours 297 304
Method 1

<{Zip, Smoker, Sex}, 5>
303 11

Method 2 303 6
Ours 303 6

Method 1
<{Zip, smoker, Age}, 5>

298 93
Method 2 274 11

Ours 298 51
Method 1

<{Zip, Age}, 5>
298 14

Method 2 274 12
Ours 298 14

In all cases of varying shields on the anonymity requirements, Method 1 (Method
2) generates the highest (lowest) number of generalizations, while ours is in between as
it is designed to balance the trade-off between privacy protection (i.e., generalizations)
and data preservation (i.e., rows). Our method aims to obtain an anonymized table with
maximum information preservation by generating only required amount of generalization.
As shown in Table 7, comparing the number of rows of the resulting tables generated by
all methods using varying shields on the anonymity requirements, ours and Method 1
generates a maximum number of rows, while results of Method 2 are slightly lower in all
but one case.

In general, Method 1 finds the anonymity-complied table that has a maximum number
of distinct rows by searching through all possible generalizations. Thus, the search is
exhaustive and optimal solution (i.e., an anonymity-compliant generalized table with
maximum number of rows) is guaranteed. If there are multiple tables with the same number
of rows, the first solution found is selected, as it would have the least generalizations (less
time). Even though Method 1 generates a solution that retains maximum information
preservation, its exhaustive search that requires many generalizations may not be desirable
in practice.

On the other hand, Method 2 finds an anonymized table by greedily searching for a
generalized table that has a minimum number of anonymity violations (i.e., zero). Using a
heuristic on the number of violating rows, Method 2 finds a solution without going through
all possible generalized tables. Thus, its search is more efficient than Method 1. However,
finding the optimal solution (i.e., a generalized table with zero violation) is not guaranteed.

Our method combines Methods 1 and 2 by quickly finding a generalized table that
has zero anonymity violation as well as being the most informative table (i.e., having
maximum number of distinct rows like Method 1). The method is heuristic using the
above two evaluation metrics and thus, saves time compared to an exhaustive Method 1.
Furthermore, when a generalized table with no violation is found, further generalization is
not necessary, as by the monotonicity property of generalization, generalization will not
produce a table with a higher number of rows. The reason is that generalization creates
rows with common values and therefore it always maintains or shrinks the table size. Our
method uses the monotonicity property to reduce search time and guarantees optimal
solution (i.e., an anonymity-compliant generalized table with a maximum number of rows).
The experimental results obtained are consistent with the design of each of the above
methods.

5. Post Anonymization Analytics

After an original data table has been anonymized, the table is ready to be released
for public or sharing among appropriate parties. However, in case when the data that are
privacy critical, further analyzing the anonymized table can be pursued. In this paper,
we examine the resulting anonymized table obtained by our technique as described in
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Section 3.3. To illustrate, consider the anonymized Cleveland dataset 1 (as obtained in
Section 4). By applying the approach described in Section 3.1 using the Longpre et al.’s
entropy-based measure, on the anonymized Cleveland dataset 1, we can further assess the
effectiveness of the anonymization.

Table 8 shows the overall results of this post anonymization analytics where each row
indicates vulnerability to information leakages (i.e., normalized average information loss)
given an attacker obtains information on the corresponding attribute in each column.

Table 8. Post anonymization analytics of Cleveland Dataset 1.

Avg. Info. Loss
Query Attribute Age Zip Smoker Sex Chol. BS

Before Anonymization 0.61 0.99 0.12 0.11 0.85 0.07

<{Age, Zip}, 5> 0 0.4 0.12 0.11 0.85 0.07

<{Age, Zip, Smoker, Sex}, 5> 0 0.4 0 0.11 0.85 0.07

As shown in Table 8, the first row gives the vulnerability “Before Anonymization”.
We see that the Zip attribute is most vulnerable as it leaks most information of 0.99. Next is
Cholesterol and Age that leaks 0.85 and 0.61, respectively. These results can help partially
select potential shield attributes although in practice, they are user-specified.

Second row shows the vulnerability on anonymized table that is in compliance with
the requirement of 5-anonymity on the shield attribute set {Age, Zip}, as denoted by <{Age,
Zip}, 5>. This shield attributes agree with the vulnerability assessment for the most part
and omit Cholesterol as it may not be acquired easily through binary query. As shown on
second row of Algorithm 1, the Age attribute is now not leaking any information. Each
record now has the same Age value as a result of anonymization (i.e., generalization).

Note that only attributes that are on the shield (i.e., Age and Zip) have reduced average
leakages (e.g., Age’s loss from 0.61 to 0, and Zip’s loss from 0.99 to 0.4). This is as expected
since the generalization only can be applied to those attributes and causes a value change.
The rest of other attribute values stays the same after anonymization. The information
disclosure based on that attribute stays the same.

Similarly, on the third row of Algorithm 1, the anonymization satisfies <{Age, Zip,
Smoker, Sex}, 5>. Compared with Row 2, two more attributes (i.e., Smoker and Sex) are
added to the anonymity requirement, leakages on Age and Zip remain the same (i.e., they
are generalized to the same level as previous case). However, leakages on Smoker reduce to
0 but leakages on Sex remain the same. This means that anonymization process generalizes
on Smoker attribute.

The overall analytics on leakages after post anonymization indicate that the anonymiza-
tion is effective since all shield attributes either maintain the same or reduced average
information loss after the anonymization. Note that the average information loss is re-
versed from anonymity. When the information loss is high (i.e., an attacker obtains more
information), the anonymity is low because the attacker can use the information to better
distinguish individuals for re-identification. Therefore, we can use this measure to link to
anonymity.

6. Conclusions

Smart health has significant impacts on healthcare and wellness. However, it also
poses privacy threats to users. As health data get larger and become more accessible to
multiple parties, users lose more control of their data that increasingly become vulnerable
to attacks. Furthermore, the challenge is not only to protect the data but also to ensure
that the shared data are sufficiently informative. Increasing users’ anonymity is a basic
remedy as anonymity increases indistinguishability. The more indistinguishable people
are the more anonymous they become and thus, their information and identity are better
concealed.
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This paper presents an approach to health data analytics focusing on anonymity for
privacy protection. The approach is applicable to both data producers (e.g., use of fitness
trackers, or glucose and heart rate monitors) as well as data consumers (e.g., weight loss
application services, healthcare professionals) to safeguard a given health data set from
information leakages and re-identification. A common concept relies on making data
anonymous.

An analytical approach is proposed to (1) identifying attributes susceptible to informa-
tion leakages by using entropy-based measure to analyze information loss, (2) transform-
ing the data into a more anonymous form by generalization using attribute hierarchies,
and (3) anonymization that balances anonymity requirements and optimal informative-
ness by an automated Artificial Intelligence search using two simple heuristics. Unlike
existing techniques, our anonymization approach preserves maximum information by
avoiding extensive generalizations yet still complies with the anonymity requirements.
The proposed anonymization follows k-anonymity; therefore, it inherits the limitations of
k-anonymization as discussed in [21]. We describe and illustrate the detailed approach and
analytics including pre and post anonymization analytics. We have conducted experiments
to evaluate effectiveness of our anonymization approach. The results obtained show that
our approach balances the trade-off between preserving privacy and retaining maximum
information with efficient computational cost. Future work includes a framework designed
to integrate all different measures to improve anonymization techniques as well as to better
increase anonymity and protect privacy. The added metrics will help further the analysis of
the anonymized data in terms of privacy. That way, we aim to get a better understanding
of what needs to be improved for anonymization or how successful the anonymization is.
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