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Abstract: Deep learning is a relatively new branch of machine learning in which computers are
taught to recognize patterns in massive volumes of data. It primarily describes learning at various
levels of representation, which aids in understanding data that includes text, voice, and visuals.
Convolutional neural networks have been used to solve challenges in computer vision, including
object identification, image classification, semantic segmentation and a lot more. Object detection
in videos involves confirming the presence of the object in the image or video and then locating it
accurately for recognition. In the video, modelling techniques suffer from high computation and
memory costs, which may decrease performance measures such as accuracy and efficiency to identify
the object accurately in real-time. The current object detection technique based on a deep convolution
neural network requires executing multilevel convolution and pooling operations on the entire image
to extract deep semantic properties from it. For large objects, detection models can provide superior
results; however, those models fail to detect the varying size of the objects that have low resolution
and are greatly influenced by noise because the features after the repeated convolution operations of
existing models do not fully represent the essential characteristics of the objects in real-time. With the
help of a multi-scale anchor box, the proposed approach reported in this paper enhances the detection
accuracy by extracting features at multiple convolution levels of the object. The major contribution
of this paper is to design a model to understand better the parameters and the hyper-parameters
which affect the detection and the recognition of objects of varying sizes and shapes, and to achieve
real-time object detection and recognition speeds by improving accuracy. The proposed model has
achieved 84.49 mAP on the test set of the Pascal VOC-2007 dataset at 11 FPS, which is comparatively
better than other real-time object detection models.

Keywords: deep learning; convolution neural network; object detection and recognition; PASCAL
VOC dataset; FDDB dataset

1. Introduction and Scope

Computer vision is a very sophisticated branch of artificial intelligence that focuses on
the imitation of the human visual system. With the help of computer vision, the computer
first identifies and then processes the objects which are present in images and videos. With
the advancement in machine learning and deep learning, the field can perform just as well
as humans in some of the tasks like detecting and labelling objects. The driving factor for
the increased growth of computer vision is the huge amount of data generated, which
is being used to train and make computer vision better. Deep learning is considered to
be one of the effective methods for carrying out computer vision. A good deep learning
algorithm considers a huge number of trained datasets, and the parameters can be tuned
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to re-train the model for various other applications. Here, the term parameters include: the
number of hidden layers, type of layers, training epochs, and many more. Deep learning
has revolutionized the developments in image processing, natural language processing,
biology, autonomous driving, artificial intelligence, and more [1]. Deep learning is regarded
as the subset of machine learning that uses a hierarchical level of layers to carry out machine
learning [2]. Traditionally, data analysis was performed linearly; however, with the advent
of deep learning, machines can now process data in a nonlinear approach [3].

This paper focuses on object detection and recognition. The challenging task at the
initial stage is to distinguish between the related computer vision tasks. For example, it
might be difficult to differentiate between image classifications, object localization, and
object detection. Object detection involves both a bounding box around an image and
assigning a class label. Altogether it is referred to as object recognition. The past work that
has been undertaken regarding object detection involves the extraction of the features by
using algorithms like HOG [4], SIFT [5], and SURF [6]. These algorithms use the traditional
machine learning approaches, i.e., first performing feature extraction and then training the
algorithm to achieve the desired output; however, deep learning algorithms have shown
a significant advantage over the traditional machine learning approach by training the
algorithm from the data itself. No features are extracted manually. The deep learning
algorithm differs as in it a network is used to extract features along with bounding box
prediction, etc. As a result of this, a faster and more accurate object detection system
is obtained. This paper deals with the deep convolutional neural network model for
efficiently detecting and recognizing the varying sizes of objects from a video sequence.

The existing detection models were successful in achieving better results for large-
sized objects. On the other hand, the existing models fail to detect small objects with poor
resolution and are strongly influenced by noise because the features of existing models
after multiple convolution procedures do not accurately capture the core characteristics of
small objects. A comparison of the proposed algorithm with the existing methods was also
carried out by considering various parameters like accuracy, frames per second, epochs,
dropout, learning rate, resolution, precision, and recall. The scope of our work is limited to
the Pascal VOC dataset [7].

1.1. Contributions

In summary the main contribution of this work is:

(1) Design and implementation of the model for accurate detection and recognition of
objects from a video sequence.

(2) Design a model to understand better the parameters and the hyper-parameters which
affect the detection and the recognition of objects of varying sizes and shapes.

(3) Achieve real-time object detection and recognition speeds by improving accuracy.
(4) Develop implementations to take full advantage of the GPU implementations.

1.2. Novelty

(1) Experimentation to detect objects of varying sizes from a video sequence.
(2) Comparison of the existing work with the proposed model.
(3) Generation of a multi-scale anchor box to obtain better results.
(4) Concept of an efficient multi-scale anchor box approach is used in the proposed

work to obtain better results by arranging the anchor boxes in descending order (i.e.,
large scale anchor box first and then moving towards small sized anchor box). If the
information is not present in the large-scale anchor box, there is no need to move
for a small-scale anchor box. This saves execution time for each time predicting the
prediction score of the information present in the given anchor box because it reduces
the search space for object recognition.
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1.3. Outline

The paper is organized as follows: Section 2 presents the background study followed
by Section 3 which describes the methods of the architecture employed in detail. Section 4
presents the experimentation, evaluations and results. Section 5 concludes the paper with
an overview and future work.

2. Background Study

One of the popular deep learning models is the convolutional neural network (CNN)
in the application of image classification. It mainly analyses visual imagery and works
in the field of image classification. It is present almost everywhere, starting from the
tagging of a photograph on Facebook to self-driving cars. It also works exceptionally well
in healthcare and society. In image classification, the input is taken as the input, and the
output is obtained in the form of class or the probability of the input of that particular
class. A CNN mainly has convolutional layers, ReLU layers, pooling layers, and a fully
connected layer. The classic CNN architecture is something like the one below mentioned:

Input→ Convolution→ ReLU→ Convolution→ ReLU→ Pooling→
ReLU→ Convolution→ ReLU→ Pooling→ Fully Connected→ output

The learned features are convolved with the input data, and 2D convolutional layers
are used. This indicates that such a network is idle for 2D images. A CNN requires com-
paratively less pre-processing as compared to the other algorithms of image classifications.
The applications of CNNs are image classification, object detection from videos and images,
the analysis of medical images, and object segmentation. The inspiration for CNNs mainly
arose from biological processes. The way a CNN is connected comes from the research
undertaken in the area of the visual cortex. In the eye of a mammal, visual stimuli are
responded to by individual neurons in the receptive field only. The receptive fields of
various regions partially overlap and because of this, the entire visual field is covered.
This is how the working of a CNN can be described. In a CNN, the features from the
image are extracted, which eliminates the manual extraction of features. These are not the
trained features, but rather, the network needs to be trained on such a set of images. It
enables the models of deep learning to carry out the tasks of computer vision accurately.
The CNN learns the detection of features via hundreds and thousands of hidden layers
and the complexity of the learned features increases with each layer. In the case of black
and white images, the pixels are interpreted as a 2D array, and every pixel has a value that
ranges between 0 and 255, wherein 0 indicates complete black and 255 indicates completely
white. Between the mentioned ranges lie the colour pixels. In the case of colour images, a
3D array consists of the blue, green, and red channels. These colours can be found by the
combination of values in each of the mentioned channels.

2.1. Building Blocks of CNN

Figure 1 demonstrates the building block of CNN.
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Convolution: The main step here constitutes feature extraction from the input image.
It is the first step in CNN. There is an input image, a feature detector, and a feature map.
The filter can be applied block by block to the input image.

ReLU: ReLU stands for a rectified linear unit and is the next step to the convolution
layer. It is the activation function frequently used in CNN. Convolution is a linear operation,
whereas the data of the real world is non-linear; however, other activation functions can
also be applied like Sigmoid, Tanh and Leaky ReLU.

Pooling: The size of the representation of the input is reduced as the pooling progresses.
With this, the detection of the objects becomes possible irrespective of their location. With
the help of pooling, the number of required parameters is reduced, thereby reducing the
computational power. Hence, it can control overfitting.

Flattening: one of the simple steps wherein the flattening is carried out of the pooled
feature maps into a sequence of long vectors.

Fully connected layer: this helps to combine the attributes and features that can predict
the classes.

The Figure 2 depicts the classification pipeline using CNN. The image is passed as
an input to a stack of Conv and Pool layers which act as feature extractors. The feature
maps are obtained as the output after the Conv and Pool layers are stretched out to a
1-dimensional vector. The 1-D vector is then passed on to the classification layer. The
softmax translates the probability from the output score of the fully connected layer.
Depending on the class having the highest probability, the name of the image is obtained.
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The classification pipeline is modified to perform the localization using a CNN. For
localization, the bounding box needs to be drawn around the object. In Figure 3, the
classifier obtains the class scores and classifies the image using the softmax function.
The BBox Regressor obtains the bounding box by using the L2 loss. The classifier and
BBox Regressor are combined by considering the maximum confidence score and its
corresponding coordinate to complete the localization.
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There are various methods of object detection as described below:

2.1.1. R-CNN

R-CNN [8] in the Figure 4 comprises three parts: a region proposal, a feature extractor,
and a classifier. A region proposal is a tool that generates and extracts region proposals.
The feature extractor’s job is to extract the features out of each candidate region. The
classifier then classifies the features as one of the known classes.
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A bounding box region is proposed for the objects in the image with the help of a
selective search. One of the simple examples of a CNN is object localization and recogni-
tion. Its disadvantage is that it is time-consuming because each of the candidate regions
generated by the region proposal algorithm requires a CNN-based extraction pass.

2.1.2. Fast R-CNN

An R-CNN’s [9] drawback is that the training takes a long time and takes up much
space. Hence, making predictions becomes very slow. In Fast R-CNN, the input is a set
of region proposals. For feature extraction, a pre-trained CNN can be applied to it. The
pooling layer, or the final layer, extracts features pertaining to a certain input candidate
region. The two outputs—class prediction and the bounding box—are separated by the
fully connected layer. The technique is then performed numerous times for each image.

2.1.3. Faster R-CNN

The architectural model was upgraded yet again for training and detecting speed. As
part of the training, the region proposals were revised. The model’s test-time operation was
improved to near real-time with a state-of-the-art performance due to these enhancements.
There are two main modules of Faster R-CNN [10], namely the region proposal network
and the Fast R-CNN. The RPN is used to propose the regions and the considerable objects
in the region. Fast R-CNN extracts the features from the proposed regions and generates a
class label and bounding box. Yi et al. presented a probabilistic faster R-CNN technique
with a stochastic region to recognise and locate grasshoppers from a remote sensing image
and achieved a 0.9263 f1-score [11].

2.1.4. Mask R-CNN

The Mask R-CNN [11] adapts a two-stage procedure, wherein the first stage is the RPN.
In the next stage, in parallel to predicting the box offset and the class, Mask R-CNN also
outputs a binary mask for each ROI. Mask R-CNN draws a dotted bounding box around
each detected object. A class label is assigned to each detected object. The confidence score
of the class label prediction is mentioned on the top-left corner of the bounding box. A
polygon outline for the mask of each detected object is drawn, known as the object mask
outline. The object mask indicates the fill of the polygon for the mask of each of the objects
detected. The main limitation of this is that it falls short for real-time applications.

2.1.5. YOLO Versions

In YOLO (You Only Look Once) in the Figure 5, an image is fed to the single neural
network and trained from scratch, thereby predicting the bounding box and class labels for
each bounding box [12]. In this, the entire image is divided into grid cells, and each cell
has the responsibility of predicting a bounding box only if the centre of the bounding box
falls within it. The predicted bounding box involves x and y coordinates along with the
width, height, and confidence. For each cell, a class prediction also plays a vital role.
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For image classification, an image is fed as an input to the neural network, and a
single class label along with the associated probability is obtained as the output. The class
label characterizes the entire image. For object detection, either the (x, y) coordinate for
each object or the list of the bounding boxes is required. Additionally, with each bounding
box, the class label should also be associated.

The class label and the confidence score or the probability associated with each
bounding box are obtained as the output. In this, the sliding window concept is utilized
wherein the slide from either left to right or from right to left is performed to localize the
objects at different locations. At varying scales, an image pyramid is used to detect the
objects. Classification is carried out via a pre-trained CNN. At every stop, the region of
interest is calculated and is fed as an input to the CNN to obtain the output classification
for the region of interest. In the case where the probability of classification of the label is
high compared to the threshold, the bounding box of the ROI is labelled as L. Continuing
this process, we obtain the object detectors. Finally, NMS is applied to the bounding box
in order to yield the final output. In general, this method is slow, while allowing a few
errors in. This method can turn any random image classification network into an object
detector. Thereby, it can avoid the need to train an object detector explicitly. Modwel
et al. introduced a hybrid approach for real-time object detection. They combine three
fundamental strategies to decrease frame scanning. The Recursive Density Estimation
(RDE) technique selects the scan frames. The YOLO algorithm detects and recognises the
objects in the selected frame with a 97% accuracy. The SURF algorithm tracks the detected
items in consecutive frames [13].

The mean average precision (mAP) is used to assess the accuracy of the deep learning
object detector. It is based on the intersection of all classes in our dataset (IoU) in the Figure 6.

Redmon et al. [14] introduced YOLO v2 and improvements were made in batch nor-
malization, high resolution of the classifier, the use of anchor boxes, and the dimensionality
clusters [15]. By adding the batch normalization to the architecture, the convergence of the
model was increased, which led to faster training. The need for applying Dropout was
eliminated. It was observed that there was an increase of 2% in the mAP from the basic
YOLO. The input size in the previous YOLO was 224 × 244 during the training time, but
during the time of detection, the image could be up to-the size 448 × 448. In YOLO v2, the
fully connected layer was removed, and instead, the anchor boxes were added to predict
the bounding box. With this, a decrease in the mAP was observed; however, the recall was
found to increase.
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YOLO v3 [16] utilizes the concept of multi-label classification. Salam et al. utilized
YOLOv3 to detect things in interior environments like offices or rooms and to generate
speech messages in Arabic sound for each object observed. The presented approach can
detect six objects with a 99% accuracy [17]. Binary cross-entropy is used for every class
label in YOLO v3, and a reduction in the computation complexity is seen by avoiding
the softmax function. The cost function is also calculated differently in YOLO v3. If the
anchor overlaps the ground truth, then the corresponding objectness should be 1. In earlier
approaches, the ground truth object was only associated with one border-box. There was
no classification if the bounding box was not assigned beforehand. YOLO v3 makes the
detection at three different scales. Hong et al. presented an enhancement on the “you only
look once” (YOLOv3) framework for ship detection in maritime surveillance using SAR
and optical data. The improved YOLOv3 has the average accuracy of 93.56% and 95.52%
on optical and SAR datasets, respectively [18]. The limitation as seen in YOLO v3 is that
an increase in the grid size results in a greater number of anchor boxes which leads to an
increase in the number of times for detection.

YOLO v4 is influenced by modern BoF (bag of freebies) and BoS (bag of specials) [19].
The BoF improve detector accuracy without increasing the inference time. The BoS, on
the other hand, raise the inference cost but improve object detection accuracy. Jocher et al.
proposed YOLOv5 [20]. Unlike previous releases, YOLO v5 is a PyTorch implementation
rather than a Darknet derivative. One of the biggest enhancements is auto learning
bounding box anchors.

2.1.6. RefineDet512

This is a single-shot based detector that has been found to achieve better accuracy than
the two-stage methods. It consists of an anchor refinement module and an object detection
module. The anchor refinement module filters out the negative anchors, which help to
reduce the search space for the classifier by adjusting the size and location of the anchors
for better initialization. The object detection module considers the refined anchors as input
from the anchor refinement module to improve the multi-class label. Furlán et al. adapted
the method of a single-shot-detector (SSD) network to detect rocks in planetary images [21].
The limitation observed in RefineDet 512 [20] is that as it is a two-step cascaded process,
real-time detection is slow.

2.1.7. CenterNet

CenterNet [22] detects each object as a triplet, which improves both recall and precision.
The CenterNet explores the centre part of the region, which is close to the geometric centre.
If the predicted bounding box has a high IoU compared to the ground truth box, there
is a high chance that the centre key point in its central region will be forecasted as the
same class. The limitation seen in the CenterNet is that the addition of the extra branch
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to identify the centre key point potentially increases the overhead of object detection and
reduces real-time performance.

The Table 1 summarizes the highlights and the limitations of the various methods of
object detection.

Table 1. Comparison of methods of object detection.

Model Highlights Limitations

R-CNN

Introduced for obtaining better accuracy as compared to HOG. Uses
selective search because CNN cannot run on too many patches

created by the sliding window detector. The first model for
integrating the RP methods with the CNN; improvement in the

performance observed with respect to the previous
state-of-the-art methods.

Training is expensive in time and
space. Testing is slow.

Fast R-CNN

end-to-end detector training; design of a layer of RoI pooling; the
multi-task objective of having both classification head and bounding
box regression head reduces the overall training time and increases

the accuracy.

Takes more execution time for
real-time applications.

Faster R-CNN

Instead of a selective search approach, an RPN is proposed for the
generation of high-quality region proposals. Introduces invariant

translation and multi-scale anchor boxes as references in RPN.
Comparatively faster in magnitude than Fast R-CNN without the loss

in performance.

Complex training and falls short
of real-time.

Mask R-CNN
Extends Faster R-CNN by adding a branch to predict the object mask

along with the existing branch for bounding box prediction;
outstanding performance.

Falls short of real-time application.

YOLO (You
Only Look

Once)

The classification score for each box is predicted for every class in
training. Image is divided into grids having the coordinates—SXS,

and hence total boxes predicted are SXSXN. It sees the complete
image at once.

Struggles for a small object.

YOLO v1 A first efficient unified detector, significantly faster than other
previous detectors.

A decrease in accuracy as compared
to the state-of-the-art detectors and
struggles for small object detection.

YOLO v2 Uses the number of existing strategies to improve the accuracy
and speed. Not good in detecting small objects.

YOLO v3
At three different scales, detection is carried out by applying the 1 ×

1 detection kernel to feature maps of three different sizes at three
separate locations in the network.

An increase in the grid size results in
an increased number of anchor boxes

which leads to an increase in the
number of times for detection.

RefineDet 512 Refines the sizes and the location of the anchor box with the help of
the anchor refinement module and object detection module.

As it is a two-step cascaded process,
real-time detection is slow.

CenterNet
Detects each of the objects as triplets, which improves both the recall
and the precision. It explores the central part of the proposal, which

is the region close to the geometric centres

Added an extra branch to identify the
centre key point, which potentially
increases object detection overhead
and reduces real-time performance.

3. Methods

In this section, the proposed architecture is explained in detail.

3.1. Proposed Architecture

In our proposed architecture, there are 22 convolution layers and 5 max-pooling layers.
The first 16 convolution layers are used for extracting the features from the input image.
The remaining 6 convolution layers are used for object detection which is depicted in
Figure 7. It trains on a 608 × 608 image size. Mostly 3 × 3 and 1 × 1 filters are used, and
they are double the number of filters after every pooling step. For end-to-end detection
methods, the quality of the anchor box plays a vital role. The anchor boxes can be generated
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with a fixed size and scale; however, the generated anchor boxes by fixed size are usually
suitable for the common sizes of objects, whereas the size of the objects may vary. After the
analysis was carried out to detect the box of YOLOv2, it was observed that some unusual
sizes of the objects were difficult to be detected and recognized. The unusual size of the
object here, for example, was a size bigger than that of the truck. The sedan could be
detected easily for the vehicle, but the difficulty was observed detecting the motorbike
because of its size. Therefore, to improve the detection accuracy, it is better to generate
an anchor box which matches most of the sizes of the ground truth. Consequently, in our
work, a multi-scale anchor box was used. The grid size considered to detect the small
objects was 19 × 19. In the last convolution layer, 675 output tensors were generated which
was calculated based on the number of classes present in the dataset and the class presence
probability with its bounding box coordinates. After generating the tensors, the anchor
box was selected based on the information mentioned in Section 3.2. On each anchor box,
regression was applied to predict the class of the object with its bounding box coordinates.
Finally, a non-max suppression technique was applied with an IoU = 0.5 to select the
bounding box having the highest probability among the overlapping bounding boxes.
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In each grid cell, 9 anchor boxes with 3 different scales (1:1, 1:2, 2:1) were applied.
Whether the object was of small size or with a large size, our method could recognize them
well. Additionally, regardless of the variation of illumination intensity, our method could
detect and recognize small objects, thereby demonstrating the strong robustness of our
proposed method.

3.2. Efficient Multi-Scale Anchor Box Approach

Object detection models which use the anchor box approach generate feature maps
to detect an object at the last convolution layer. These feature maps are used to predict
the object from defined anchor boxes. It is not necessary that all the anchor boxes carry
sufficient information to detect the object; however, the prediction score is calculated for
every anchor box which leads to an increased execution (training and testing) time in object
detection. Hence, real-time object detection becomes time-consuming and reduces the FPS
rate. In our work, we introduced an efficient method to utilize the anchor box for prediction.
The method was that a prediction was not applied for all anchor boxes as there was a
chance that there would not be any information in a given anchor box, i.e., Figures 8 and 9.
In order to validate the information, anchor boxes were arranged in descending order by
their sizes. If there was no information in a large size anchor box, there was no need to
explore small size anchor boxes within the grid. This method was applied at the last layer
convolution block which saved higher computation and memory costs. This method is
explained in two parts.
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(1) An optimized multi-scale anchor box detects whether the information is present or
not. This is done in the following manner:

1. Applying the canny edge detector algorithm [23] for only the anchor box portion.
The canny edge detector algorithm requires a minimum and maximum threshold
value to determine whether the obtained edge is weak or strong. To automate
this process, the Otsu binary threshold [24] is used. This binary threshold gives
the minValue and maxValue threshold.

2. The above step gives an output image wherein the frequency of black and
white pixels is calculated. If the white pixels have a frequency of less than 30,
then it indicates the absence of information. In all other cases, information is
present. The threshold value of 30 is a hyper-parameter and is decided by the
trial-and-error method. The value is considered for the Pascal VOC-2007 dataset.

(2) To carry out the small object detection in an optimized way, the anchor boxes are
arranged in descending order (i.e., large-scale anchor box first and then moving
towards small sized anchor box). If the information is not present in the large-scale
anchor box, there is no need to move to a small-scale anchor box. This saves execution
time for each time predicting the prediction score of the information present in the
given anchor box.

Figure 10 depicts the flowchart summarizing the training and the detection phase of
the proposed model.
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4. Experiments

This section describes the dataset used to perform the proposed work and compare
the same with the existing work. The PASCAL VOC 2007 dataset was considered for
the experiments [7]. This dataset consists of 20 classes (as mentioned below) for object
recognition; it provides some sets of standardized image datasets. A common set of tools is
provided to access the datasets as well as the annotations. This dataset was available from
the VOC challenge links. There are mainly two competitions in it, namely, classification
and detection. The detection seeks to forecast the bounding box and the class label from the
target classes in the test image, while the classification aims to predict the absence/presence
of the class example in the test image [7]. The Table 2 below compares the various object
detection approaches implemented in the PASCAL VOC 2007 dataset and compares speed.
It was observed that the mAP of the proposed model was far better as compared to the
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other object detection methods. The proposed model achieves a speed of 11 FPS over the
baseline models on the Pascal VOC dataset.

Table 2. Comparison of existing models with a proposed model in terms of mAP and speed.

Sr. No. Model Year mAP (%) Speed (FPS *)

1 R-CNN 2014 66.0 0.05 FPS

2 Fast R-CNN 2015 70.0 0.5 FPS

3 Faster R-CNN 2015 73.2 7 FPS

4 Mask R-CNN 2017 78.2 0.1 FPS

5 YOLO v1 2016 63.4 14 FPS

6 YOLO v2 2017 76.01 12 FPS

7 YOLO v3 2018 81.7 9 FPS

8 YOLO v4 2020 83.5 10 FPS

9 YOLO v5 2021 84.12 6 FPS

10 RefineDet512 2018 81.8 6 FPS

11 CenterNet 2019 78.7 0.3 FPS

12 CenterNet2 2021 81.69 2 FPS

13 Proposed Model 2021 84.49 11 FPS
* indicates that the result of FPS is calculated by running the algorithms on 4 GB GPU, NVIDIA GTX 1050 Ti.

In Table 3, the existing model is compared with the proposed model in terms of various
parameters such as the grid size, several convolution layers, and the number of bounding
boxes drawn per grid cell over the same baseline dataset, i.e., the Pascal VOC dataset. The
existing YOLO model uses the 7 × 7 grid to divide the entire image, and the architecture
of the YOLO model is such that it uses 24 convolutional layers. In YOLO, there was no
concept of an anchor box used; however, in YOLO v2, the concept of an anchor box was
introduced for object detection. Two bounding boxes per grid cell were used in YOLO, and
the entire result was compared using the Pascal VOC dataset. The proposed model used
the grid of 19 × 19 over the entire image. The number of convolutional layers was reduced
from 24 to 22, and a multi-scale anchor box was introduced in our proposed model. Instead
of using two bounding boxes per grid cell, the proposed model used nine bounding boxes
per grid cell, with each bounding box having nine multi-scale anchors. The importance of
using the multi-scale anchor box was to precisely detect the small objects and to detect and
recognise the large-sized objects.

Table 3. Comparison of the existing model with the proposed model on various parameters.

Characteristics Existing Model Proposed Model

Grid 7 × 7 grid 19 × 19 grid

Layers 24 convolutional layers 23 convolutional layers

Anchor Boxes Fixed-size anchor boxes Multi-scale anchor box

Bounding box/cell 2 bounding box/cell 9 bounding boxes/cells, with each bounding box
having 9 multi-scale anchors.

Dataset PASCAL VOC 2007 dataset with 20 classes
and 9963 images containing 24,640 annotated objects.

Table 4 shows that when the grid size was 19 × 19, the mAP obtained was 84.49,
which is reasonably better than the other mAP of varying grid sizes. Table 5 considers
the class-wise performance of the proposed model with the existing algorithms over the
baseline Pascal VOC dataset. In the above-mentioned table, the average precision of every
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class present in the dataset is calculated and compared for the existing model with that of
the proposed model. Lastly, the mAP is calculated wherein it can be seen that a fair amount
of increase was observed in the proposed model.

Table 4. Comparison of mAP on various grid sizes.

Models Grid Size mAP (%)

YOLO
7 × 7 63.4
9 × 9 68.93

11 × 11 77.39

Proposed Model 15 × 15 80.29
19 × 19 84.49

Table 5 depicts the calculation of the learnable parameters and the FLOPS of our
proposed model.

Table 5. Calculation of learnable parameters and FLOPS for the proposed model.

Layer No. Layer Type Filters Kernel Size Output #Parameters #FLOPS

1 Convolutional 32 3 × 3 608 × 608 × 32 864 319,389,696

2 Max - 2 × 2 304 × 304 × 32 0 11,829,248

3 Convolutional 64 3 × 3 304 × 304 × 64 18,432 1,703,411,712

4 Max - 2 × 2 152 × 152 × 64 0 5,914,624

5 Convolutional 128 3 × 3 152 × 152 × 128 73,728 1,703,411,712

6 Convolutional 64 1 × 1 152 × 152 × 64 8192 189,267,968

7 Convolutional 128 3 × 3 152 × 152 × 128 73,728 1,703,411,712

8 Max - 2 × 2 76 × 76 × 128 0 2,957,312

9 Convolutional 256 3 × 3 76 × 76 × 256 294,912 1,703,411,712

10 Convolutional 128 1 × 1 76 × 76 × 128 32,768 189,267,968

11 Convolutional 256 3 × 3 76 × 76 × 256 294,912 1,703,411,712

12 Convolutional 128 1 × 1 76 × 76 × 128 32,768 189,267,968

13 Convolutional 256 3 × 3 76 × 76 × 256 294,912 1,703,411,712

14 Max - 2 × 2 38 × 38 × 256 0 1,478,656

15 Convolutional 512 3 × 3 38 × 38 × 512 1,179,648 1,703,411,712

16 Convolutional 256 1 × 1 38 × 38 × 256 131,072 189,267,968

17 Convolutional 512 3 × 3 38 × 38 × 512 1,179,648 1,703,411,712

18 Convolutional 256 1 × 1 38 × 38 × 256 131,072 189,267,968

19 Convolutional 512 3 × 3 38 × 38 × 512 1,179,648 1,703,411,712

20 Convolutional 256 1 × 1 38 × 38 × 256 131,072 189,267,968

21 Max - 2 × 2 19 × 19 × 256 0 739,328

22 Convolutional 512 3 × 3 19 × 19 × 512 235,9296 851,705,856

23 Convolutional 1024 1 × 1 19 × 19 × 1024 524,288 189,267,968

24 Convolutional 512 3 × 3 19 × 19 × 512 4,718,592 1,703,411,712

25 Convolutional 1024 1 × 1 19 × 19 × 1024 524,288 189,267,968

26 Convolutional 512 3 × 3 19 × 19 × 512 4,718,592 1,703,411,712

27 Convolutional 1024 3 × 3 19 × 19 × 1024 4,718,592 1,703,411,712

28 Convolutional 675 1 × 1 19 × 19 × 675 691,200 249,523,200

23,312,224
=23.31 M

23,398,622,208
=23.39 BFLOPS
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Table 6 shows the reason behind selecting the 19 × 19 grid size.

Table 6. Class-wise performance of the existing models with the proposed model using PASCAL VOC 2007 dataset.

Class\Model R-
CNN

Fast R-
CNN

Faster
R-

CNN

Mask
R-

CNN

YOLO
v1

YOLO
v2

YOLO
v3

YOLO
v4

YOLO
v5

Refine
Det

Center
Net

Center
Net2

Proposed
Model

Aeroplane 77.2 84.2 84.1 88.9 77 86.3 87.2 90.1 90.5 88.7 86.1 89.6 89.7

Bike 76.4 78.9 81.2 86 67.2 84.3 88.3 87.6 89.6 87 87.2 90.8 91.4

Bird 68.8 75.2 75.4 80.2 69.2 74.8 78.9 79.5 78.5 83.2 82.4 85.4 89.1

Boat 50.3 53.6 56.3 61.1 43.4 59.2 65.4 70.2 75.4 76.5 67.1 73.2 69.4

Bottle 36.7 49.2 62.7 67.5 42.3 68.1 72.5 74.5 77.3 68 60.1 56.4 75.2

Bus 75.8 77.5 79.4 84.2 68.3 79.8 83.2 86.3 84.5 88.5 83.1 87.5 84.4

Car 69.6 73.2 77.2 82 68.5 76.5 83.4 88.1 92.4 88.7 82.7 85.4 91.3

Cat 87.3 85.8 84.9 89.7 81.4 90.6 94.2 95.3 98.5 89.2 87.7 88.5 92.7

Chair 42.2 45.6 57.1 61.9 53.7 64.2 68.3 70.8 71.2 66.5 61.7 64.2 68.4

Cow 70.2 77.1 78.6 83.4 60.8 78.2 81.2 83.4 81.2 87.9 82.4 89.4 83.8

Table 52.2 53.1 62.2 70.1 58.2 63.7 71.3 72.3 75.4 75 68.4 78.3 74.9

Dog 85.5 86.1 85.3 90.1 77.2 89.3 94.4 96.5 97 86.8 89.4 89.9 93.1

Horse 78.5 80.4 82.1 86.9 72.3 82.6 87.6 83.5 82.4 89.2 84.9 88.5 89.4

Motorbike 78.8 78.9 83.6 88.4 71.3 83.4 88.1 89.5 91.5 87.8 86.3 89.4 91.2

Person 68.3 79.3 78.9 83.7 63.5 81.5 93.3 95.6 95.9 84.7 85.7 86.5 94.8

Plant 33.1 40.1 44.2 49 48.9 52.8 71.3 75.4 76.5 56.2 62.3 60.5 74.1

Sheep 66.3 72.6 73.4 78.2 59.4 77.6 78.3 76.4 74.3 83.2 84.3 85.6 79.3

Sofa 63.7 68.4 62.3 67.1 54.8 69.8 75.2 79.5 80.3 78.7 73.1 78.4 78.7

Train 76.2 80.3 81.2 87.2 73.9 85.1 85.4 85.9 84.7 88.1 85.4 85.8 89.4

TV 62.9 60.5 73.8 78.6 56.7 72.4 86.5 89.6 85.3 82.3 73.9 80.5 89.5

mAP 66 70 73.2 78.2 63.4 76.8 81.7 83.5 84.12 81.8 78.7 81.69 84.49

In our work, the value of dropout in the Figure 11 was considered wherein the loss
value was minimal after successful completion of 150 epochs. In our work, the dropout
value of 0.5 was considered when the loss obtained was 0.25, which is comparatively lower
than the loss values of 2.4 and 1.5, respectively.
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Figure 12 compares the epoch versus IoU accuracy. The X-axis is the number of epochs,
and Y-axis indicates IoU accuracy. As the number of epochs starts increasing, it indicates
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that the model is being trained better and after 130 epochs, the value of the mAP starts
stabilizing; hence, any value between 130–150 epochs can be considered to have a mAP of
84%. The number of epochs is considered as high as possible, and the training is terminated
based on the error rates.
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The learning rate is one of the important hyper-parameters which controls the change
in the model with the estimated error whenever the weight is updated. The main challenge
is choosing the learning rate, as too small a value may increase the training process and
get stuck. In the below graph, for the learning rate of 0.0001, the loss was found to be
minimum and the value was 0.25, therefore, in our work, a learning rate of 0.0001 was
considered, as shown in Figure 13.

Future Internet 2021, 13, x FOR PEER REVIEW 16 of 21 
 

 

 
Figure 12. Comparison of IoU mAP vs. Epoch. 

The learning rate is one of the important hyper-parameters which controls the change 
in the model with the estimated error whenever the weight is updated. The main chal-
lenge is choosing the learning rate, as too small a value may increase the training process 
and get stuck. In the below graph, for the learning rate of 0.0001, the loss was found to be 
minimum and the value was 0.25, therefore, in our work, a learning rate of 0.0001 was 
considered, as shown in Figure 13. 

 
Figure 13. Comparison of Loss vs Epoch @ Learning Rate. 

In Figure 14, the mAP was measured with the PASCAL VOC dataset. The chart 
shows the results for 256 × 256, 416 × 416 and 608 × 608 resolution of the images. It is seen 
that a higher resolution of the image shows a better mAP. The hardware configuration 
also plays a vital role to depict the computation process. As there was little change in the 
configuration, the mAP was not affected much. The changes in the FPS are also reported 
in the Figure 14. The higher resolution of the image improved the detection of the small 
objects significantly while also helping to detect the large objects. By reducing the resolu-
tion, the accuracy was also lowered by an average of 12%. The evaluation results depict 
that our scheme improved the performance of the computing.  

Figure 13. Comparison of Loss vs Epoch @ Learning Rate.

In Figure 14, the mAP was measured with the PASCAL VOC dataset. The chart shows
the results for 256 × 256, 416 × 416 and 608 × 608 resolution of the images. It is seen that a
higher resolution of the image shows a better mAP. The hardware configuration also plays a
vital role to depict the computation process. As there was little change in the configuration,
the mAP was not affected much. The changes in the FPS are also reported in the Figure 14.
The higher resolution of the image improved the detection of the small objects significantly
while also helping to detect the large objects. By reducing the resolution, the accuracy
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was also lowered by an average of 12%. The evaluation results depict that our scheme
improved the performance of the computing.
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Figure 14. Comparison of FPS and mAP on various resolutions using different configurations of
CPU and GPU.

Figure 15 depicts an inverse relationship between precision and recall, stating that the
precision value lowers as the recall increases. In terms of object detection, as our model cor-
rectly recognised the objects, the chances of false recognition decreased. Figures 16 and 17
illustrate the examples wherein the proposed model could identify the objects by their
classes, and a class label was assigned on every detected object of varying size and shape
from a video sequence.
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Figure 18 illustrates at what size a small object could be detected. If the resolution of
the image was 608 × 608 then the minimum object size of 40 × 47 could be detected and
recognized accurately because the smallest size of an anchor box is considered 40 × 47.
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The model failed to detect blurred objects. The objects Figure 19 which were not
recognized by naked eyes, could not be detected by the proposed work.
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5. Conclusions

In this work, a deep learning model based on the convolutional neural network is
proposed, which is intended to accurately detect and recognize the varying size of objects
from a video sequence. The paper starts with a detailed review of the deep learning
algorithms and explains the architectures required for object detection and recognition. The
existing models did not perform well for real-time object detection, specifically for small
object detection. Therefore, to overcome this drawback, a model is proposed which can
accurately detect and recognize the varying size of objects from a video sequence. A multi-
scale anchor box is designed to capture the minor details of the object in the image. This
improves the detection of state-of-the-art object detectors. The proposed model ensures the
integrity of the feature of the large object and also preserves the full detail feature of the
small objects by extracting the multi-scale feature of the image. The mean average precision
of close to 84.49% and 11 FPS was achieved to detect the varying sizes of the objects for the
network input size of 608 × 608. The proposed model also works well in detecting and
recognizing objects in complex backgrounds. The number of parameters and FLOPS (the
number of floating-point operations) of the proposed architecture are used to determine
the complexity of the convolutional neural network and resulted in 31.57 M parameters
and 22.95 FLOPS, respectively.

In future work, the proposed work can be examined on the MS-COCO dataset and
can be optimized to run on edge devices in real time.
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