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Abstract: In location-based social networks (LBSNs), exploit several key features of points-of-interest
(POIs) and users on precise POI recommendation be significant. In this work, a novel POI recom-
mendation pipeline based on the convolutional neural network named RecPOID is proposed, which
can recommend an accurate sequence of top-k POIs and considers only the effect of the most similar
pattern friendship rather than all user’s friendship. We use the fuzzy c-mean clustering method to
find the similarity. Temporal and spatial features of similar friends are fed to our Deep CNN model.
The 10-layer convolutional neural network can predict longitude and latitude and the Id of the next
proper locations; after that, based on the shortest time distance from a similar pattern’s friendship,
select the smallest distance locations. The proposed structure uses six features, including user’s ID,
month, day, hour, minute, and second of visiting time by each user as inputs. RecPOID based on two
accessible LBSNs datasets is evaluated. Experimental outcomes illustrate considering most similar
friendship could improve the accuracy of recommendations and the proposed RecPOID for POI
recommendation outperforms state-of-the-art approaches.

Keywords: point-of-interest recommendation; CNN; deep learning; friendship; social networks

1. Introduction

As a result of the explosive growth of smartphones, location-based social networks
(LBSNs) such as Yelp and location-based service providers like Foursquare are popular.
By 2020, Foursquare has over 55 million users per month and over three billion monthly
visits to various locations worldwide; the Swarm app has nine million check-ins per day.
LBSN also allows users to share information and find friends. These Location-based social
networks collected users’ check-in data such as users’ tips at the location and visited
locations’ geographical information (longitude and latitude) [1,2]. To increase the user
experience in LBSNs, from mining social relationships and users’ check-in history, point-
of-interest (POI) recommendation is recommended, which advocates unknown places on
users for visiting.

POI recommendation a critical task that will create the most significant results in LB-
SNs, which allows users to explore new favorite places in the LBSNs. POI recommendation
usually explores venue information such as users’ social relationships and categories to
recommend a list of POIs where users most probably visit locations that had been checked-
in by their friends. POI recommendation improves a user’s interest in LBSN service and
profits advertising agencies through planning, launching, and analyzing a successful mar-
keting campaign. Specifically, users can discover nearby downtown shopping malls and
restaurants in Foursquare. The quality of LBSN services and benefits both POI owners and
users can be greatly improved by personalized POI recommendations. For instance, users
can discover POIs that they potentially favor [3–5].

In former studies, has been shown that POI recommendation is meaningfully con-
trolled by three significant items: friend importance [6], check-in correlation [7], and user
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preference [8]. Friend importance appraises on the user’ friend influence to go and visit a
location. User preference outlines the similarity between potential willingness and users to
the specific POIs in a region of interest. Common interests among users lead to a potential
possibility to visit the same POI. The behavior of users is correlated based on the POIs
and the check-in. For instance, users tend to travel several scenic spots or go to nearby
locations with short distances. Previous research reports one of these factors or does not
adequately describe them. In POI recommendation systems, the friend’s importance is
a vital issue because human beings are commonly living together as social and groups.
The user check-in activities of his friends are very influential [8]. However, most recent
studies in location-based recommendation systems consider all social friends, although the
survey of check-in pattern’s most similar friendship is important to accurate prediction
and recommendation according to the user’s interests [9].

In recent years, there has been a constant rise in utilizing the deep learning pipeline to
artificial intelligence tasks such as POI recommendation, natural language processing, and
also computer vision, where key features can be extracted deeply and effectively [10–13].
Deep learning is a representation-learning approach that can learn from data representa-
tions with multiple simple modules. Each module explores higher-level representations of
input (former module) from lower-level data [14,15]. Hence, different deep learning struc-
tures are very good at extracting intrinsic high-level features beneficial for recommendation
tasks. However, few studies have been proposed on location-based recommender systems
with the aid of artificial intelligence and deep learning that incorporate key factors such as
exploring the patterns of check-in behaviors and the impact of most similar friendships
and user preferences.

Yin et al. [16] have designed a Spatial-Aware Hierarchical Collaborative Deep Learning
technique (SH-CDL) used to spatial-aware personal preferences of hierarchically additive
representation learning and heterogeneous features. A new POI recommendation method
is employed by [9], capable of mine information in real-time. Convolutional Neural
Networks (CNN) are used for mining POI textual information and learn their inherent
representation. To improve accuracy, they add real-time POI embedding in the matrix
factorization approach. Doan et al. [6] have presented a new modeling user check-in be-
havior based on focusing on neighborhood competition and area attraction. The visitation
through the attractiveness of the area and neighborhood competition (VAN) method has
been implemented by incorporating neighborhood competition and area attraction factors.
He et al. [17] have implemented a POI recommendation model to combine time items, geo-
graphical factors, also social factors. Their approach is based on the linear weighting and
cascading combination. A deep neural network (DNN) was suggested by [5] to integrate
numerous attributes in LBSNs and then learn how they affect user behavior. Moreover, to
reduce data sparsity within POI recommendation systems, categorical, geographical, and
co-visiting influences have been exploited. The purpose of the study by Zhou et al. [18]
is to obtain a predictive score for each user of any POI. This overall score is the individ-
ual prediction score by factors such as user preference modeling, importance of friend
modeling, and check-in correlation modeling. Wang et al. [19] By supporting information
on location-based social networks, consider the three factors of visited venues, the user’s
geographical location, and social influence. For prediction and recommendation to visit
the new POI, they used characteristics such as the distance proximity of previously visited
locations by users and the impact of social relationships. The main function of the research
Zhang et al. [20] is to investigate the patterns of the check-in orders of all clients and to
consider the consecutive POIs visited dynamically. This work predicts the probability of
the sequence of visiting locations according to the geographical location and social scores.

Due to the importance of recommending POI to users in LBSNs and predicting the
user’s next possible locations with higher accuracy, and suggesting places of interest to the
user, and completing the shortcomings of past methods, this research has proposed a new
deep learning structure named RecPOID to recommend top-k POIs to each user. RecPOID
is a combination of convolutional neural network and c-mean fuzzy clustering method,
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which first identifies the most similar friendship relying on the check-in behavioral pattern
of user friends and second, CNN’s proposed model based on six input features including
user’s ID, month, day, hour, minute, and second predicts the next POI locations to visit,
depending on the current position and time of the user. Finally, to increase the proposed
POI accuracy, the shortest time distance is measured with a similar friendship check-in
pattern, and the next location is recommended to the user.

The remaining document is arranged as follows: A POI clustering approach is ex-
plained in Section 2.1. Section 2.2 describes the convolutional neural network architecture
and in Section 2.3, the proposed CNN model is represented. The results and final remarks
are outlined in Section 3.

2. Materials and Methods
2.1. Clustering the POI’s

Clustering is an unsupervised algorithm used for dividing/splitting wherever each
cluster has the most similar features [21,22]. Fuzzy c-means (FCM) iteratively groups
the pixels together based on specific conditions such as variations in the magnitude,
time, and place. In this method, the data is split into the pre-defined clusters (n clusters)
based on a priori knowledge or computed other available information. Every particular
point in the dataset (location in our dataset) is a member of at least two clusters with
unlike weights. Moreover, the clustering approach can uncover concealed information or
previously undetected relationships between input data [23,24].

In non-fuzzy clustering, each location in the data only belongs to a cluster. In contrast,
in the FCM technique, locations near the center of a cluster are more dependent on or are
in that cluster, while locations with a higher distance from the cluster center have a lower
dependency on the cluster. In this fuzzy technique, every section’s cluster investigated
the membership level of every location by repetitive updating. The following objective
function in this procedure is accomplished by minimizing [21]:

E =
k

∑
k=1

N

∑
i=1

βkilocationi − centerc
2|| (1)

βki = 1/

(
k

∑
j=1

(
locationi − centerc

locationi − centerj

))t

(2)

m

∑
k=1

βki = 1, βki ε [0, 1] (3)

where βki implies membership value of ith location regarding the C-th cluster, N indicates
the total of visited locations by each user U, k shows the number of clusters, centerc
demonstrates the center of C-th cluster, and the locationi indicates the i-th location of U.

In our proposed article, the time span is divided into 4 spans (00~06, 06:01~12,
12:01~18, 18:01~24), and each user and its corresponding friendship is selected. In other
words, all the visited locations are categorized based on the visiting time (Figure 1). Due
to applying such discrimination of the visited sites by the time among all the user friend-
ships, an increase in predicting the proper location in the ultimate result can be obtained.
Secondly, as is shown in Figure 2, each user’s whole locations in each span are clustered
into 5 clusters. We concluded that five clusters could obtain the best results in our datasets
based on the trial and error approach.
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Next, the percentage of the overlapping between the user’s clusters and friendship’s
clusters has been calculated for each user. Lastly, only 10% of the most overlapping clusters
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are selected. By doing this strategy along with other following algorithms, we are trying to
achieve greater precision of the final preference locations.

2.2. Convolutional Neural Network

Pattern recognition means the science of discriminating between different computer
patterns and is closely associated with artificial intelligence (AI) machine learning (ML). It
is utilized in the issue of computer vision for innumerable applications like data mining,
recommendation systems, and biological imaging [25,26].

In today’s pattern recognition techniques and their applications, the convolutional
neural network (CNN) models indicate an enormous data analysis breakthrough. The
CNN architectures mainly exploit the relation between some features or textural content.
They can be found at the core of everything from data mining to predict visiting new places
by people [27].

This network, based on neurons, has a grid-like topology that qualifies us to efficiently
exploit characteristics and key information from the POIs and friendships by passing
through a series of convolution layers with the pre-defined size kernels. This neuron-
based model encompasses many trainable weights and biases and is employed for feature
extraction, classification, and prediction. These trainable weights and biases can be applied
randomly at the start of training. The key and vital part of any convolutional neural
network (CNN) are outlined as the convolutional layer that computes dot product among
the filters (two-dimensional arrays for image and one-dimensional in our work) and input
data (such as POIs and friendships) [28–31]. Regularly, the first layer of CNN begins with a
convolution layer and plays a vital role in extracting input data features [27,32].

Moreover, the convolutional layers can successfully obtain spatial and temporal de-
pendencies. The algebraic operation which performs a dot product between each filter’s
values and related input data can be outlined as a convolutional operation [33]. The filter
(kernel) with any pre-defined size is a matrix that requires having as depth as input data.
For instance, if the size of the input data is 6 × 1 × 3, kernel size has to be ~ × ~ × 3, re-
spectively, where ~ is an odd number [27,28]. It should be noted that the first convolutional
layers are responsible for extract the low-level features, whereas the deeper convolutional
layer detects the higher-level features [29].

The batch normalization strategy is a useful approach when we are dealing with very
deep layers that scaling. It standardizes the output of each layer to an input of the next
layer for each mini-batch. Rescaling data accomplish this standardization process to have a
standard deviation and a mean of zero of one.

Since the vanishing gradient effect causes the difficulty, an arbitrary activation function
is applied based on our input data for each feature map that improves the computational
efficiency by diminishing sparsity [34,35]. Usually, the batch normalization or convolution
layer’s output is fed to an activation layer [30].

In our proposed study, the ReLU activation function based on the backpropagation of
errors has been applied to change the negative numbers to zero values. The Equation (4)
outlines the ReLU activation function [34].

y = max(0, x), (4)

where x, y in the ReLU activation function indicates the input and the output of it, respectively.
A Fully-Connected layer (FC) has also been utilized for achieving more robust high-

level features in the input data. In this layer, each node, along with its corresponding
learnable weight, multiplies to each input vector [28]. Before applying the result of the
convolution or activation layer to the fully connected layer, all the features need to be
flattened into one vertical vector [36,37].

In contrast to the convolutional layers, fully-connected layers comprise more parame-
ters that lead to them being harder to train [38]. The last layer for prediction in the CNN
architecture is the regression layer that makes the relationship between an ideal target and
one or more independent features (the input data) [30,39].
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Training a CNN means that the model has to be learned the best weights and biases in
each layer for minimizing a defined cost function. The procedure of the minimization of a
cost function is executed repetitively, utilizing a gradient descent technique that includes
the computation of fractional derivatives from the cost function [38].

2.3. Proposed CNN Architecture

As outlined in the former part, CNN models can exploit key information from an input
matrix. So, we proposed a new framework in this study based on all visited sites and related
time. The proposed RecPOID framework is illustrated in Figure 3. Our implemented CNN
model. Our approach uses six input feature maps including user’s ID, month, day, hour,
minute, and second of the visiting moment by each user. As is clearly shown in Figure 4,
there are 10 convolutional layers with a different number of the filter. We applied three
filters with the size of the 2 × 1 in the three first layers. We use the batch normalization
layer to improve the training and normalize the data values. Its output fed to an activation
layer, as mentioned in Section 2.2, the ReLU activation function is applied. The next layer
has 16 filter banks to extract features, followed by three layers and their corresponding 32
filters. We utilize the Batch normalization layer and the activation layer again. In the next
layer, there are 64 filters with the same dimensions. The batch normalization layer and
ReLU function are used to keep the output values within the normal range and prevent
the overfitting effect. The final convolution layers include two layers of 128 filters that are
followed by two flattened layers. Moreover, to decrease the overfitting effect using control
of the fitting process, we added two dropout layers [40] with a 0.01% dropout probability
into our CNN model to make neurons independently trained and less dependent on other
neurons. The value of 0.01 is based on trial-and-error. Two fully connected layers are then
applied to achieve robust high-level features. Finally, because the result is continuous, we
utilize the regression layer; the regression layer undertakes the responsibility of producing
two values that indicate the predicted longitude and location of the recommended locations
relying on the training data. The number of epochs for the training process is 800, and the
learning rate is 0.01. Algorithm 1 summarizes the detailed steps of the RecPOID algorithm.
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Algorithm 1 RecPOID algorithm

Input: user U, social relation G, check-in matrix R, DateTime T (month, day, hour, minute, and
second), location L (ID, latitude and longitude)
Output: top-K POIs for each user u based on friendship
K _cluster = 5
Epochs = 800
Learning rate = 0.01
Dropout probability = 0.01%
1. Identify each user’s friends
2. Divide the time span into 4 spans (00–06, 06:01–12, 12:01–18, 18:01–24)
3. part_time = (0.00–06.00, 6.01–12.00, 12.01,18.00, 18.01–24)
4. for i = 1: size(part_time)
5. clustering users and their friendship based on the fuzzy c-means algorithm
6. selecting 10 percent of the most overlapping between the user’s clusters and friendship
clusters
7. end
8. Utilized proposed CNN architecture
9. return predicted locations
10. error = calculate the distance between the predicted location and the user’s friendship
locations
11. if error = 0 then
12. return top-k POIs
13. else
14. Measure the shortest time distance with a similar friendship check-in pattern
15. return top-k POIs
16. end

In our proposed model, due to the network layers and their parameters, there is no
need for the data to be in a sequence. The user’s current position is considered, and it is
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unnecessary to know where he was a few minutes ago. In the training phase, it received
the essential training and randomly arranged the data.

These two outputs give us not exactly the proposed location, so in this step, we
need to calculate the distance between this predicted location and all possible locations
in the vicinity area based on top-related friendship investigated in the 2.1 steps. It means
that to calculate the distance, there are only those locations related to the same user and
other selected users based on the friendship. The proposed architecture’s key idea is to
categorize a bunch of clients with analogous user preferences to this target user with similar
past preferences.

Our CNN structure used the RMSE method [41] to minimize the loss in Equation (4),
which computes the discrepancy between actual and estimated (predicted) locations.

RMSE =

√
1
n

n

∑
i=1

(estimated− actual)2 (5)

where n specifies the number from predicted or real value (longitude and location).
Our proposed method’s general architecture to recommend appropriate and accurate

POIs to users illustrates in Figure 4.

2.4. Datasets

Spatial analysis has been performed on users’ check-ins on public datasets Yelp and
Gowalla, encompassing many check-in information about geography. So, the probability
of Point-Of-Interest co-occurrence of a user has been explored through investigating the
distance among pairs of check-ins. Check-in records have a great relation to user implicit
preference regarding a user for a place, which can be considered common interests. We
can investigate the correlation from check-ins by geographical proximity. As mentioned
in [42], user check-in behaviors demonstrate a phenomenon of geographical clustering
that is conducive for recommending POI. Social relations as Social friends are user–user
relationships and are expected to share routine choices of interest. It is a significant feature
in POI recommendations. Table 1 described more information on these two datasets.

Table 1. Data information.

Users POIs Records Social
Relations Sparsity (%)

Yelp 30,887 18,995 265,533 860,888 99.860
Gowalla 18,737 32,510 86,985 1,278,274 99.865

Yelp’s website, established in 2004, is a famous review website of merchants and
covers numerous merchants, like hotels, shopping centers, also restaurants. Users on
Yelp check-in the varied merchants, write comments, and rate on these viewed places.
Yelp dataset challenge round 7 (access date: February 2016) [43], contains of 30,887 users,
860,888 reviews, 265,533 social relations and 18,995 POIs. The Gowalla-related dataset is a
location-based system that allows clients to share experiences about what they hear and
see from family also friends. Gowalla dataset (access date: February 2009–October 2010),
includes of 18,737 users, 1,278,274 reviews, 86,985 social relations and 32,510 POIs.

2.5. Performance Metrics

The following four measures were calculated by matching each predicted location’s
result with its corresponding true locations to order top-K POIs of every user accurately.
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The considerable accuracy from RecPOID was assessed using Precision, and Recall that
metrics are outlined as follows [18]:

Precision @k = 1
|U| ×∑U

i=1
|TopK(Ui)∩ Li |
|TopK(Ui)|

Recall @k = 1
|U| ×

U
∑

i=1

|TopK(Ui)∩ Li |
|Li |

(6)

where TopK(Ui) outlines the top-K recommended Point-of-Interests in test samples relevant
for distinct strategies, Li demonstrate the POIs examined by the ith user in training samples.
K shows the varied number (5 to 50) of recommended Point-Of-Interests to analyze models’
effectiveness. Recall@K means that fraction from surveyed POIs with the intended client
is fruitfully recommended, while Precision@K means a fraction from top-K successfully
recommended Point-Of-Interests to the intended user.

Additionally, the two criteria to assess the proposed model’s accuracy are sensitivity
and specificity [31]. Sensitivity is a measure that indicates the probability that a relevant
POI is recommended. It is the ratio of correct and relevant recommended POIs to the total
number of relevant locations. Our goal is to have a high model sensitivity to suggest more
related POIs to users. Specificity is a fraction of the prediction POIs that the user is not
likely to see and is not suggested to the target user by the model. It is calculated as the
ratio of locations not properly suggested that are really irrelevant, to the total number of
irrelevant POIs. This is the probability that an irrelevant POI is not truly recommended.

3. Result and Discussion
3.1. Experimental Results

We implemented RecPOID in Matlab 2019b and ran the experiments on a com-
puter with Core i7- 3.4 GHz, a GTX 1050 Ti GPU, and 8 Gigabytes of RAM. In this ar-
ticle, three state-of-art algorithms are investigated to validate the performance of the
recommended RecPOID.

UFC [18]: UFC is a combination algorithm that integrates user preference, check-in
correlation, and friend importance. UFC incorporates three essential items, and with the
collaboration filtering technique, user preference is personalized.

LFBCA [19]: LFBCA investigates for each user the influence of social relationships for
recommends POIs. To characterize the check-in relation, locations and users are linked in
the graph. The likelihood of each client to the place is described on a graph-based method.

LORE [20]: For analyzing the impact of the sequential influence for location recommen-
dations, the dynamic location–location transition graph by additive Markov chain is devel-
oped by LORE [20] for incrementally mining sequential patterns from user check-in sequences.

Our research’s main goal is to get an accurate sequence of top-K point-of-interests
for each client. We investigate the performance from dissimilar approaches over popular
datasets Yelp and Gowalla concerning the K from the suggested point-of-interests by the
maximum recommendation value. The outcomes of our prediction structure on the Yelp
dataset are evaluated and reported in Figure 5.

The RecPOID evaluation results with other approaches to the Gowalla dataset are
reviewed in Figure 6.

3.2. Discussion on Performance

According to Figures 5 and 6, RecPOID consistently outperforms UFC, LFBCA, and
LORE expressively on both popular datasets in terms of two metrics, Recall@K, Preci-
sion@K. For instance, in Yelp, ours obtains 0.037 and 0.032 in terms of Precision@5 and
Precision@10, respectively. It means our RecPOID method exhibiting 0.01, 0.015, and 0.02
performance improvement compared with UFC, LFBCA, and LORE, respectively. This
superiority is perhaps outlined by the fact that the suggested RecPOID completely uti-
lized the combination of the clustering method and friendship relations to recommend
point-of-interests. As shown in Figures 5 and 6, it is interesting that even if we have small
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K, our strategy can attain great recommendation outcomes yet. Particularly, Recall@5 is
smaller than Recall@10, verifying the effectiveness of the suggested technique. However,
the LFBCA method’s performance does not perform better than our proposed model but
outperforms LORE consistently in all assessment metrics. LORE method does not perform
well in every evaluation metrics in both datasets. This finding approves that top-relation
based on the overlapping in obtained clusters is the POI recommendation’s principal item.
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The two evaluated data sets have different data sparsity. The results of the evaluation
illustrate that the proposed algorithm works better on the Gowalla dataset than Yelp, and
the significance of friends at Gowalla is greater than Yelp. It means there are richer social
relations in Gowalla and more under the influence of their friends’ check-ins.

Analyzing the other measures also confirms that the RecPOID model is well fitted for
the subject problem. That means the recommender method is very sensitive, i.e., 94.1%,
indicating that the technique is highly complete. Thus, the model can effectively and
(almost) completely learn users’ preferences according to behavior of similar friendships.
Moreover, the specificity of the RecPOID is also significantly high, exceeding 91.8%. There-
fore, the module can effectively identify irrelevant POIs. According to the specificity and
sensitivity metrics, it is clear that the model is highly capable of correctly identify desirable
and undesirable POIs.

To further analyze the outcomes, we conducted a paired t-test to compare the differ-
ences between RecPOID and the other techniques. We found that our method’s improve-
ment is statistically significant on all datasets (p-value < 0.01).

In summary, this research’s contributions provide a novel deep learning method to
recommend an accurate sequence of top-k POIs to users considering a similar pattern’s
friendship. The proposed RecPOID has improved the accuracy of POI recommendations
compared to other state-of-the-art methods.

4. Conclusions and Future Work

In this study, a novel framework for POI recommendation named RecPOID has been
proposed by incorporating check-in correlation, the significance of the friend, and user
preference. A fuzzy clustering approach has been utilized to find the more important
friendship to apply a powerful relationship in exploring user preference. The experiment
illustrates that compared to algorithms based on the simple location, the proposed CNN
structure, which utilizes other people’s experiences, can provide more suitable POI rec-
ommendations. We also demonstrate that considering only those user’s experiences with
the most similar pattern in visiting location (using clustering method) can be useful for
improving predictive performance. The comprehensive experiment has been performed
on Gowalla and Yelp’s well-known datasets. Obtained experimental outcomes uncover
that the RecPOID structure outperforms other state-of-the-art techniques. This research’s
limitations can be the amount of data required for network learning, and also because clus-
tering is used, there may be limitations within clusters. For example, in a region, we want
to suggest several restaurants. If the restaurants are too close, the algorithm may mistake
and put them all in one cluster. In future work, we plan to work on other datasets as well.
We also intend to consider reinforcement learning instead of convolutional networking
because it has the advantage of learning with fewer data.
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