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Abstract: Social media services make it possible for an increasing number of people to express their
opinion publicly. In this context, large amounts of hateful comments are published daily. The PHARM
project aims at monitoring and modeling hate speech against refugees and migrants in Greece, Italy,
and Spain. In this direction, a web interface for the creation and the query of a multi-source database
containing hate speech-related content is implemented and evaluated. The selected sources include
Twitter, YouTube, and Facebook comments and posts, as well as comments and articles from a
selected list of websites. The interface allows users to search in the existing database, scrape social
media using keywords, annotate records through a dedicated platform and contribute new content
to the database. Furthermore, the functionality for hate speech detection and sentiment analysis of
texts is provided, making use of novel methods and machine learning models. The interface can be
accessed online with a graphical user interface compatible with modern internet browsers. For the
evaluation of the interface, a multifactor questionnaire was formulated, targeting to record the users’
opinions about the web interface and the corresponding functionality.

Keywords: hate speech detection; natural language processing; web interface; database; machine
learning; lexicon; sentiment analysis; news semantics

1. Introduction

In today’s ubiquitous society, we experience a situation where digital informing
and mediated communication are dominant. The contemporary online media landscape
consists of the web forms of the traditional media along with new online native ones and
social networks. Content generation and transmission are no longer restricted to large
organizations and anyone who wishes may frequently upload information in multiple
formats (text, photos, audio, or video) which can be updated just as simple. Especially,
regarding social media, which since their emergence have experienced a vast expansion
and are registered as an everyday common practice for thousands of people, the ease of
use along with the immediacy they present made them extremely popular. In any of their
modes, such as microblogging (like Twitter), photos oriented (like Instagram), etc., they
are largely accepted as fast forms of communication and news dissemination through a
variety of devices. The portability and the multi-modality of the equipment employed
(mobile phones, tablets, etc.), enables users to share, fast and effortless, personal or public
information, their status, and opinions via the social networks. Thus, communications
nodes that serve many people have been created minimizing distances and allowing free
speech without borders; since more voices are empowered and shared, this could serve as
a privilege to societies [1–8]. However, in an area that is so wide and easily accessible to
large audiences many improper intentions with damaging effects might be met as well,
one of which is hate speech.

Future Internet 2021, 13, 80. https://doi.org/10.3390/fi13030080 https://www.mdpi.com/journal/futureinternet

https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://orcid.org/0000-0003-2900-4657
https://orcid.org/0000-0002-4801-0115
https://orcid.org/0000-0002-0697-8531
https://orcid.org/0000-0002-0286-2304
https://orcid.org/0000-0002-2636-2849
https://orcid.org/0000-0001-7923-9361
https://doi.org/10.3390/fi13030080
https://doi.org/10.3390/fi13030080
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/fi13030080
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/article/10.3390/fi13030080?type=check_update&version=2


Future Internet 2021, 13, 80 2 of 18

It is widely acknowledged that xenophobia, racism, gender issues, sexual orientation,
and religion among others are topics that trigger hate speech. Although no universally
agreed definition of hate speech has been identified, the discussion originates from dis-
cussions on freedom of expression, which is considered one of the cornerstones of a
democracy [9]. According to Fortuna and Nunes (2018, p. 5): “Hate speech is language
that attacks or diminishes, that incites violence or hate against groups, based on specific
characteristics such as physical appearance, religion, descent, national or ethnic origin,
sexual orientation, gender identity or other, and it can occur with different linguistic styles,
even in subtle forms or when humor is used” [10]. Although international legislation and
regulatory policies based on respect for human beings prohibit inappropriate rhetoric, it
finds ways to move into the mainstream, jeopardizing values that are needed for societal
coherence and in some cases relationships between nations, since hate speech may fuel
tensions and incite violence. It can be met towards one person, a group of persons, or to
nobody in particular [11] making it a hard to define and multi-dimensional problem. Specif-
ically, in Europe as part of the global North, hate speech is permeating public discourse
particularly subsequent to the refugee crisis, which mainly -but not only- was ignited
around 2015 [12]. In this vein, its real-life consequences are also growing since it can be a
precursor and incentive for hate crimes [13].

Societal stereotypes enhance hate speech, which is encountered both in real life and
online, a space where discourses are initiated lately around the provision of free speech
without rules that in some cases result to uncontrolled hate speech through digital technolo-
gies. Civil society apprehensions led to international conventions on the subject and even
further social networking sites have developed their own services to detect and prohibit
such types of expressed rhetoric [14], which despite the platforms’ official policies as stated
in their terms of service, are either covert or overt [15]. Of course, a distinction between
hate and offensive speech must be set clear and this process is assisted by the definition of
legal terminology. Mechanisms that monitor and further analyze abusive language are set
in efforts to recognize aggressive speech expanding on online media, to a degree permitted
by their technological affordances. The diffusion of hateful sentiments has intrigued many
researchers that investigate online content [11,13,15,16] initially to assist in monitoring the
issue and after the conducted analysis on the results, to be further promoted to policy and
decision-makers, to comprehend it in a contextualized framework and seek for solutions.

Paz, Montero-Díaz, and Moreno-Delgado (2020, p. 8) refer to four factors, media
used to diffuse hate speech, the subject of the discourse, the sphere in which the discourse
takes place, and the roots or novelty of the phenomenon and its evolution that each one
offers quantification and qualification variables which should be further exploited through
diverse methodologies and interdisciplinarity [17]. In another context, anthropological
approaches and examination of identities seek for the genealogy through which hate
speech has been created and sequentially moved to digital media as well as the creation
of a situated understanding of the communication practices that have been covered by
hate speech [13]. Moreover, on the foundation to provide a legal understanding of the
harm caused by hateful messages, communication theories [18] and social psychology [19]
are also employed. Clearly, the hate speech problem goes way back in time, but there are
still issues requiring careful attention and treatment, especially in today’s guzzling world
of social media and digital content, with the vast and uncontrollable way of information
publishing/propagations and the associated audience reactions.

1.1. Related Work: Hate Speech in Social Media and Proposed Algorithmic Solutions

Hate speech has been a pivotal concept both in public debate and in academia for
a long time. However, the proliferation of online journalism along with the diffusion of
user-generated content and the possibility of anonymity that it allows [20,21] has led to the
increasing presence of hate speech in mainstream media and social networks [22,23].

During the recent decades, media production has often been analyzed through the
lens of citizen participation. The idea of users’ active engagement in the context of main-
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stream media was initially accompanied by promises of enhancing democratization and
strengthening bonds with the community [24,25]. However, the empirical reality of user
participation was different from the expectations, as there is lots of dark participation,
with examples ranging from misinformation and hate campaigns to individual trolling
and cyberbullying; a large variety of participation behaviors are evil, malevolent, and
destructive [22]. Journalists identify hate speech as a very frequently occurring prob-
lem in participatory spaces [8]. Especially comments, which are considered an inte-
gral part of almost every news item [26], have become an important section for hate
speech spreading [27].

Furthermore, an overwhelming majority of journalists argue that they frequently
come upon hate speech towards journalists in general, while most of them report a strong
increase in hate speech personally directed at them [28]. When directed at professionals,
hate speech can cause negative effects both on journalists themselves and journalistic
work: it might impede their ability to fulfill their duties as it can put them under stark
emotional pressure, trigger conflict into newsrooms when opinions diverge on how to
deal with hateful attacks or even negatively affect journalists’ perception of their audi-
ence [28]. Hence, not rarely, professionals see users’ contributions as a necessary evil [27]
and are compelled to handle a vast amount of amateur content in tandem with their other
daily tasks [29].

To avoid problems, such as hate speech, and protect the quality of their online outlets,
media organizations adopt policies that establish standards of conduct and restrict certain
behaviors and expressions by users [30]. Community managers are thus in charge of
moderating users’ contributions [31], by employing various strategies for supervising,
controlling, and enabling content submission [32]. When pre-moderation is followed, every
submission is checked before publication and high security is achieved. However, this
method requires considerable human, financial, and time resources [27]. On the other
hand, post-moderation policies lead to a simpler and more open approach but can lower
the quality [33], exposing the platform to ethical and legal risks. Apart from manual
moderation, some websites utilize artificial intelligence techniques to tackle this massive
work automatically [34], while others implement semi-automatic approaches that assist
humans through the integration of machine learning into the manual process [35].

The automation of the process of hate speech detection relies on the training and
evaluation of models, using annotated corpora. The main approaches include lexicon-
based term detection and supervised machine learning. Lexicons contain a list of terms,
along with their evaluation concerning the relation to hate speech. The terms are carefully
selected and evaluated by experts on the field, and they need to be combined with rule-
based algorithms [36–38]. Such algorithms are based on language-specific syntax and
rules. Computational models such as unsupervised topic modeling can lead to insight
regarding the most frequent terms that allow further categorization of the hate-related
topics [39,40]. In supervised machine learning approaches, models are trained using
annotated corpora. Baseline approaches rely on bag-of-words representations combined
with machine learning algorithms [36–41]. More recent methods rely on deep learning and
word embeddings [42,43]. The robustness of a supervised machine learning algorithm and
its ability to generalize for the detection of hate in unseen data relies on the retrieval of vast
amounts of textual data.

Big data analytics of social media contents is an emerging field for the management
of the huge volumes that are created and expanded daily [44]. Most social media services
offer dedicated application programming interfaces (APIs) for the collection of posts and
comments, to facilitate the work of academics and stakeholders. Using a dedicated API, or
a custom-made internet scraper makes it easy to retrieve thousands of records automat-
ically. Twitter is the most common choice, due to the ease-of-use of its API, and its data
structure that makes it easy to retrieve content relevant to a specific topic [36,37,41]. While
textual analysis is the core of hate speech detection, metadata containing information about
the record (e.g., time, location, author, etc.) may also contribute to model performance.
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Hate speech detection cannot be language-agnostic, which means that a separate corpus or
lexicon and methodology needs to be formed for every different language [36,37,45]. More-
over, a manual annotation process is necessary, which, inevitably introduces a lot of human
effort, as well as subjectivity [36]. Several annotation schemes can be found in literature,
differing in language, sources (e.g., Twitter, Facebook, etc.), available classes (e.g., hate
speech, abusive language, etc.), and ranking of the degree of hate (e.g., valence, intensity,
numerical ranking, etc.) [37]. The selected source itself may influence the robustness of the
algorithmic process. For instance, Twitter provides a maximum message length, which
can affect the model fitting in a supervised training process [36]. Multi-source approaches
indicate the combination of different sources for analytics [46]. In [47] for example, Twitter
data from Italy are analyzed using computational linguistics and the results are visualized
through a Web platform to make them accessible to the public.

1.2. Project Motivation and Research Objectives

Based on the preceding analysis, there is missing a multilingual hate-speech detection
(and prevention) web-service, which individuals can utilize for monitoring informatory
streams with questionable content, including their own user-generated content (UGC)
posts and comments. More specifically, the envisioned web environment targets to offer an
all-in-one service for hate speech detection in text data deriving from social channels, as
part of the Preventing Hate against Refugees and Migrants (PHARM) project. The main
goal of the PHARM project is to monitor and model hate speech against refugees and
migrants in Greece, Italy, and Spain to predict and combat hate crime and also counter its ef-
fects using cutting-edge algorithms. This task is supported via intelligent natural language
processing mechanisms that identify the textual hate and sentiment load, along with related
metadata, such as user location, web identity, etc. Furthermore, a structured database is
initially formed and dynamically evolving to enhance precision in subsequent searching,
concluding in the formulation of a broadened multilingual hate-speech repository, serving
casual, professional, and academic purposes. In this context, the whole endeavor should
be put into test through a series of analysis and assessment outcomes (low-/high-fidelity
prototypes, alpha/beta testing, etc.) to monitor and stress the effectiveness of the offered
functionalities and end-user interface usability in relation to various factors, such as users’
knowledge and experience background. Thus, standard application development proce-
dures are followed through the processes of rapid prototyping and the anthropocentric
design, i.e., the so-called logical-user-centered-interactive design (LUCID) [48–52]. There-
fore, audience engagement is crucial, not only for communicating and listing the needs
and preferences of the targeted users but also for serving the data crowdsourcing and
annotating tasks. In this perspective, focusing groups with multidisciplinary experts of
various kinds are assembled as part of the design process and the pursued formative
evaluation [50–52], including journalists, media professionals, communication specialists,
subject-matter experts, programmers/software engineers, graphic designers, students,
plenary individuals, etc. Furthermore, online surveys are deployed to capture public
interest and people’s willingness to embrace and employ future Internet tools. Overall,
following the above assessment and reinforcement procedures, the initial hypothesis of this
research is that it is both feasible and innovative to launch semantic web services for detect-
ing/analyzing hate speech and emotions spread through the Internet and social media and
that there is an audience willing to use the application and contribute. The interface can be
designed as intuitively as possible to achieve high efficiency and usability standards so that
it could be addressed to broader audiences with minimum digital literacy requirements. In
this context, the risen research questions (RQ) elaborated to the hypotheses are as follows:

RQ1: Is the PHARM interface easy enough for the targeted users to comprehend and
utilize? How transparent the offered functionalities are?
RQ2: What is the estimated impact of the proposed framework on the journalism pro-
fession and the anticipated Web 3.0 services? Are the assessment remarks related to the
Journalism profession?
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2. Materials and Methods

As a core objective of the PHARM project is to build a software environment for
querying, analyzing, and storing multi-source news and social media content focusing on
hate speech against migrants and refugees, a set of scripts for Natural Language Processing
(NLP) has been developed, along with a web service that enables friendly user interaction.
Let the former be called the PHARM Scripts, the latter the PHARM Interface, and both
of them the PHARM software. All these implementations are constantly elaborated and
updated as the project evolves, the source code of the PHARM Scripts, along with the
required documentation, is publicly available as a GitHub repository (http://github.com/
thepharmproject/set_of_scripts, accessed on 18 March 2021), while the PHARM Interface
has the form of a website (http://pharm-interface.usal.es, accessed on 18 March 2021). The
detailed documentation of the algorithms is out of the scope of the current work, so only a
brief presentation of the relevant functionality follows. Comprehensive documentation
and use instructions for the interface are available online (http://pharm-interface.usal.
es/instructions, accessed on 18 March 2021) in English, Greek, Italian and Spanish.

2.1. Data Collection

The core outcome of the PHARM software concern a multi-source platform for the
analysis of unstructured news and social media messages. On the one hand, it is very
important for hate speech texts to include both data (texts of the news or social media
messages) and metadata (location, language, date, etc.). On the other hand, the diversity
of the sources is unquestionable and thus, mandatory. Therefore, several sources have
been selected for the collection of content related to hate speech, while all the required
technical implementations have been made to collect the necessary data from these sources.
The sources include websites in Greek, Italian, Spanish as well as Twitter, YouTube, and
Facebook and concern articles, comments, tweets, posts, and replies. The list of the
sources was initialized and updated by the media experts. The list of the sources includes
22 Spanish, 12 Italian, and 16 Greek websites that are prone to publishing hate speech
content in the articles or the comments section. Site-specific scripts for scraping have
been developed for the collection of semi-structured content (including the accompanying
metadata) from the proposed websites, while content from open Facebook groups and
pages, as well as websites that are not included in the list, are supported using a site-
agnostic scraping method. Tweets are gathered using a list of hashtags and filters containing
terms relevant to anti-immigration rhetoric and YouTube comments are collected using
search queries relevant to immigration. To store, query, analyze and share news and
social media messages, PHARM software adopts a semi-structured format based on JSON
(JavaScript object notation), adapted to media features.

2.2. Data Format

Taking into account the requirements of the project (i.e., the use of some relevant extra
information for hate speech analysis), the sources that are used for scraping content (i.e.,
website articles and comments, YouTube comments, tweets), interoperability and compat-
ibility considerations for importing and exporting data between the PHARM Interface,
PHARM Scripts, and third-party applications, some general specifications for the data
format have been set. The main field is the text (i.e., content), accompanied by the id,
annotations, and meta fields. The meta field is a container that includes all metadata. A
minimum set of metadata is used for all platforms (i.e., type, plang, pdate, phate, psent,
pterms, ploc). These fields are found for all records across different sources. Table 1 presents
the proposed data scheme.

http://github.com/
http://pharm-interface.usal.es
http://pharm-interface.usal


Future Internet 2021, 13, 80 6 of 18

Table 1. The common fields of the specified data format.

Field Description

id unique identifier
text content

annotations hate speech and sentiment annotations
meta/type type of text (tweet, article, post, comment, etc.)

meta/plang language detection via PHARM Scripts
meta/pdate datetime estimation via PHARM Scripts
meta/phate hate speech detection via PHARM Scripts
meta/psent sentiment analysis via PHARM Scripts

meta/pterms frequent terms collection via PHARM Scripts
meta/ploc geolocation estimation via PHARM Scripts
meta/meta unsorted metadata

In the cases of web scraping, metadata depends on the available data provided by
each site, whereas for YouTube comments and tweets, where the corresponding API is
used, specific metadata have been selected and are stored along with the text. Table 2
demonstrates the fields that are used for data that originate from the Twitter and YouTube
social media platforms.

Table 2. The metadata fields that are exploited for the YouTube and Twitter records.

Twitter YouTube

tweet id comment id
is retweet reply count
is quote like count
user id video id

username video title
screenname channel

location video description
follower count author id

friend count author name
date date

2.3. Data Analysis

The most notable analysis methods that are used in the PHARM software concern
date, time, and geolocation estimation, language detection, hate speech detection, and
sentiment analysis. Various software libraries have been deployed for implementing the
supported analysis methods, along with custom algorithms that have been developed
specifically for the PHARM software. A brief description of these methods follows.

Language Detection: The PHARM software mainly processes text produced in Greek,
Italian, and Spanish languages but many of the sources may contain texts in other languages
or local dialects [53]. To work with these three national languages, a procedure to detect
the language of the media text when it is not properly declared has been specified. An
ensemble approach for improved robustness is adopted, querying various language detec-
tion libraries simultaneously. Amongst the used libraries are the textblob and googletrans
Python libraries [54,55].

Geolocation Estimation: Geolocation identification of the collected texts is considered
useful for analysis [53]. Therefore, a method for detecting geolocation from text data
has been implemented. Named entities are extracted from texts and geocoded i.e., the
geographical coordinates are retrieved for the found entities. The named entities include
geopolitical entities (GPE) (i.e., countries, cities, states), locations (LOC) (i.e., mountains,
bodies of water), faculties (FAC) (buildings, airports, highways, etc.), organizations (ORG)
(companies, agencies, institutions, etc.). For this method, the Nominatim geocoder, along
with openstreetmap data are used [56].
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Datetime Estimation: Besides location and language, when metadata is available,
relevant extra information for hate speech analysis can be used. Some of this extra informa-
tion, such as date or time, may be available in different formats, introducing the necessity
of standardization. Therefore, a method for detecting and standardizing date and time
information from meta- and text- data has been implemented. A couple of Python libraries
(e.g., dateparser, datefinder, and parsedatetime) are exploited for detecting datetime objects
in texts. This is based on metadata analysis, where date information is commonly present.
If datetime detection fails for the metadata, the same workflow is applied to the text data.

Hate Speech Detection: Undoubtedly, hate speech detection is a core algorithmic
asset for the project. Therefore, a couple of methods for detecting hate speech have been
implemented, based on both an unsupervised and a supervised approach. The former
concerns a lexicon-based method relying on a dictionary containing static phrases, along
with dynamic term combinations (i.e., adjectives with nouns), while the latter refers to a
machine learning procedure. For both methods, a language model is loaded (according
to the language of the text) and common normalization practices are taking place (lower-
casing, lemmatization, stop-word and punctuation removal). In the first case, the targeted
terms are being searched and the text, while in the second, a recurrent neural network
(RNN) undertakes the task of detecting hate speech [41,57]. For this reason, a pretrained
tokenizer and a deep network consisting of an embedding layer, a gated recurrent unit
(GRU) layer, and a fully connected layer are deployed. The models and the tokenizer have
been trained using the Keras framework [58].

Sentiment Analysis: Similarly, two methods for sentiment analysis in the context of
hate speech against refugees have been embedded in the interface [45,59]. These follow the
same concepts as in hate speech detection but exploiting different lexicons and training
data. The unsupervised method adopts many key aspects of the SentiStrength algorithm,
such as the detection of booster, question, and negating words [60]. The supervised model
for sentiment analysis follows the same architecture as the one for hate speech detection,
trained on a different corpus.

Topic Modeling: The lexicons for both hate speech and sentiment analysis were
developed by a team of experts in the field of journalism, communication, and media.
To facilitate the process with automated text analysis, exploratory content processing
techniques for topic modeling and entity collection have been deployed as well. The
dictionaries have been built using frequent words, boosted by entity extraction based
on ter frequency (TF) for absolute entity counting and term frequency-inverse document
frequency (TF-IDF) for proportional counting, showing how important an entity is for the
document or even the entire corpus [39,59].

2.4. Project Analysis and Usability Evaluation

The defined research questions and the elongated conclusions were supported by
an empirical survey regarding the evaluation of the developed interface, while its statis-
tical results are presented in the respective section of the manuscript. In this context, a
multifactor questionnaire was formulated, targeting to record the users’ opinions about
the web interface and the corresponding functionalities. It has to be noted that in this
section, an overview of the questionnaire is exhibited, along with the survey identity, while
a detailed description can be accessed in the manuscript appendix. The evaluation process
was categorized into 8 major factors, namely the efficiency (7 items), usability (12 items),
learnability (5 items), satisfaction (11 items), navigation (4 items), content (6 items), inter-
activity (5 items) and design (3 items) of the web interface. Furthermore, the participants
were called to answer about the area that the web interface usage could cover according to
their interests (5 items) and the scope of utilization in public information and awareness
(6 items). Taking into account the main functionalities of the web interface, a stand-alone
question was posed regarding the assessment of the contribution of the project towards
the identification of hate speech mechanisms and sentiment loads in text data. All the
aforementioned metrics were measured on a 5-level Likert scale, ranging from 1—strongly
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disagree to 5—strongly agree. The demographic questions that were involved in the sur-
vey addressed gender (male, female, other, no answer), age (18–22, 23–30, 31–40, 41–50,
over 50), education (high school, vocational learning, bachelor, master, Ph.D.), computer
familiarity (Likert scale 1–5), Internet familiarity (Likert scale 1–5), news awareness (Likert
scale 1–5) and the profession (in 9 categories) of the participants. However, a dedicated
binary inquiry was inserted recording if the participant works/ has worked as a journalist
(yes-no), because of the additive value in the assessment of the web service that focuses on
hate speech detection. Table 3 summarizes the set of questions that were implicated in the
current survey.

Table 3. Overview of the formulated questionnaire.

# Questions/Factors Measure

1 Efficiency-7 items Likert Scale 1–5
2 Usability-12 items Likert Scale 1–5
3 Learnability 5 items Likert Scale 1–5
4 Satisfaction-11 items Likert Scale 1–5
5 Navigation-4 items Likert Scale 1–5
6 Content-6 items Likert Scale 1–5
7 Interactivity-5 items Likert Scale 1–5
8 Design-3 items Likert Scale 1–5
9 “Use for” scenarios-5 items Likert Scale 1–5
10 Public Information and Awareness-6 items Likert Scale 1–5
11 Contribution to hate speech/ sentiment detection Likert Scale 1–5
12 Gender Male/Female/Other/No answer
13 Age 18–22, 23–30, 31–40, 41–50, 50+

14 Education Highschool, Vocational Learning,
Bachelor, Master, PhD

15 Computer Familiarity Likert Scale 1–5
16 Internet Familiarity Likert Scale 1–5
17 News Awareness Likert Scale 1–5
18 Profession 9 Categories
19 Working/has worked as Journalist Binary Yes-No

The survey was conducted mainly via the social media channels of the authors, while
the final number of gathered responses reached n = 64. The temporal length upon the
completion of the survey ranged from 7 to 10 min, while in this duration the participants
had to navigate and interact with the website interface and at the same time to answer the
projected inquiries regarding its evaluation. The moderate number of responses can be
justified on the multidisciplinary nature of the conducted research, which prerequisites
more expertise and of course more time since several tasks were involved during the
assessment process. Nevertheless, the aforementioned argument favors the reliability of
the evaluation results because of the volunteered engagement of the 64 users in the survey.
Finally, it has to be highlighted that this is the first time that the project is assessed, aiming at
preliminary evaluation remarks for further optimizing crucial aspects of the interface based
on the participants’ opinions. A reliability test was conducted on the questionnaire, based
on Cronbach’s alpha, revealing the respective coefficient a = 0.87, therefore supporting
confident statistical results in the following section. Table 4 presents the basic demographic
information of the respondents.
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Table 4. Demographic Information of Participants.

# Question Answers-Distribution

1 Gender Male (28.1%), Female (71.9%)

2 Age 18–22 (12.5%), 23–30 (43.8%), 31–40 (34.4%),
41–50 (4.7%), 50+ (4.7%)

3 Education Highschool (14.1%), Vocational Learning (1.6%),
Bachelor (31.3%), Master (45.3%), PhD (7.8%)

4 Computer Familiarity 1 (3.1%), 2 (29.7%), 3 (20.3%), 4 (34.4%), 5 (12.5%)
5 Internet Familiarity 1 (1.6%), 2 (18.8%), 3 (9.3%), 4 (54.7%), 5 (15.6%)
6 News Awareness 1 (0%), 2 (3.1%), 3 (21.9%), 4 (37.5%), 5 (37.5%)
7 Working/has worked as Journalist Yes (46.9%), No (53.1%)

During the survey preparation, all ethical approval procedures and rules suggested
by the “Committee on Research Ethics and Conduct” of the Aristotle University of Thessa-
loniki were followed.

3. Results

The results of the current research concern the presentation of the functionality and
usability, along with the multi-faceted evaluation of the implemented web interface.

3.1. The Implemented Web Interface

The PHARM Interface serves as the front-end of the PHARM software. It is the
graphical interface for exposing data and functionality to the users and relies on the
back-end, which consists of the PHARM scripts. For the development of the interface,
the Python web framework Flask has been used. The choice is justified, as the NLP
and data analysis scripts are also written in Python and, following this approach, all the
functionality of the interface can be included within a common software project. The
graphical user interface (GUI) has been mainly designed in Bootstrap, a popular HTML,
CSS, and JavaScript library. Additional HTML, CSS, and JavaScript blocks have been
added where needed. The Flask project has been deployed on a virtual machine and is
served using the Waitress, a production-quality pure-Python web server gateway interface
(WSGI) with very acceptable performance. The PHARM Interface is accessible at http:
//pharm-interface.usal.es (accessed on 18 March 2021). The home screen of the Interface
gives some basic information about the PHARM project and provides a starting point for
accessing the supported NLP methods (Figure 1).

Let us further describe the software by analyzing the types of users and the actions that
have been formally specified. The core functions of the Interface are five: search, analyze,
scrape, annotate, and submit, whereas two types of users have been defined: the visitor and
the contributor. A visitor can search and analyze hate speech data, while the contributor
can also scrape, annotate and submit relevant content. The functions that are available to
all users can be considered as public, while the rest as private. The private functionality is
only accessible by registered users which are intended to be media professionals. Figure 2
demonstrates the succession of all functions in a single workflow, divided into the two
aforementioned groups. As the current work focuses on the public functionality of the
interface, only a brief description of the private functions is given.

http://pharm-interface.usal.es
http://pharm-interface.usal.es
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Figure 1. The home screen of the Preventing Hate against Refugees and Migrants (PHARM)
web interface.

Figure 2. The private (orange) and public (blue) functionality of the PHARM Interface.

Search: One of the main functionalities of the interface is the navigation through the
hate speech records contained in the database. The user can view records for any supported
language (English, Greek, Italian, Spanish) or, additionally, filter the results by applying a
variety of filters. The available filters are:

• Source selection (tweets, Facebook posts and replies, website articles and comments).
• Date and time selection (show results inside a specific period).
• Annotation filtering (hate/no hate, positive/neutral/negative sentiment).
• Keyword filtering (a search query for finding occurrences to texts).

The user can preview the records as a list, download them as a CSV or a JSON
file, or display detailed information for each item. The search results can be viewed
and downloaded either in the “simple” or the “scientific” form, disabling or enabling
the presence of metadata, respectively. Figure 3 presents the search results screen of
the interface.

Analyze: When a record is selected, or a text is placed on the home screen, a detailed
report appears. The location is marked on a map and the results of various text analysis
algorithms are presented with graphics (icons, bars, etc.). The results concern hate speech
detection and sentiment analysis (for both unsupervised and supervised classification
methods), frequent entity detection, and geolocation estimation. Figure 4 depicts the
analysis screen of the PHARM interface.
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Figure 3. The search results screen of the PHARM Interface.

Figure 4. The analysis screen of the PHARM Interface.

Scrape: The PHARM interface enables the mass-collection of text data from two
popular platforms: Twitter and YouTube. A user can collect hate speech data from Twitter,
by selecting language (Greek, English, Italian, or Spanish) and invoking the process. The
tweets are collected based on language-specific lexicons that have been developed in the
context of the project. The process stops after a user-configurable time interval and a link is
provided for downloading a JSON file that contains the data. These data may be further
used for annotation, submission to the PHARM database, or any other NLP task. In the
case of YouTube, instead of selecting the language, a search query should be set. The search
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query can include individual search terms or a combination of them, separated by a comma.
The resulting data can be downloaded as a CSV or JSON file.

Annotate: The annotation process is powered by the Doccano tool [61]. Doccano is an
annotation management system for text data and can be used for developing datasets for
facilitating classification, entity tagging, or translation tasks. In the context of the PHARM
project, it is used for text classification and each record should be labeled with specific tags
denoting hate speech and sentiment load.

Submit: Data entry can be executed either one by one or massively. Concerning the
first method, the user should set all data (text) and metadata (source, language, date, hate,
sentiment, etc.) via the corresponding input forms (i.e., text fields, radio buttons, etc.). If
data are already formed appropriately, they can be imported as a JSON file too.

3.2. Analysis and Usability Evaluation Results

The web interface was developed during the last year, while critical alpha evalu-
ation tests were conducted inside the research team. Furthermore, the implemented
interface was subjected to a beta assessment process by experts in the scientific fields
of web design, web graphics, etc., aiming at the detection and correction of problematic
aspects/ flaws at an early stage. Consequently, the final step of the evaluation was the
conducted broadened empirical survey via the formulated questionnaire of Section 2.4,
while in this section the extracted results are presented. Specifically, Figure 5 exhibits
the responses regarding the suitability of the web interface towards the hate speech and
sentiment loads detection mechanisms in text data, gathering 75% of agree/strongly agree
evaluation score.

Figure 5. Responses to the suitability of the PHARM interface.

As Table 5 presents, the eight evaluation factors are constituted by various numbers
of items, therefore for homogeneity and statistical purposes, the average scores of the
Likert-scaled items were computed for each metric. Table 5 exhibits the mean and standard
deviation values of the assessment factors based on the responses of the n = 64 participants.
The results showed that in all aspects the web interface grades are prone to four with
a lower to one standard deviation, therefore indicating a well-designed web interface,
with increased usability, presenting comprehensive content, navigation, and interaction
mechanisms, and being easy-to-learn. Of course, these general results are further processed
towards the determination of inner class correlations and group scores differentiations to
address the defined research questions of the survey.
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Table 5. Statistical values of evaluation factors.

# Factor Mean Standard Deviation

1 Efficiency 3.72 0.73
2 Usability 3.95 0.64
3 Learnability 3.97 0.68
4 Satisfaction 3.71 0.73
5 Navigation 3.93 0.82
6 Content 3.74 0.55
7 Interactivity 3.85 0.67
8 Design 3.66 0.88

One of the main concerns for the effective engagement of users into a web interface is
their knowledge background, possible previous experience in similar services, etc. There-
fore, while addressing RQ1, the evaluation metrics were examined in relation with com-
puter and Internet familiarity of the implicated users, towards the extraction of meaningful
results. Taking into consideration that the factors of computer familiarity and Internet
familiarity are answered in a 5-level Likert scale, the subjective judgment of knowledge
background is unavoidably inserted in the statistical analysis. Because of possible error
propagation due to the moderate number of participants and also the preliminary nature of
the conducted survey, the responses in these two factors are grouped into two major cate-
gories. Specifically, the recoded categories are poor familiarity (including Answers 1 and 2)
and good familiarity (including Answers 4 and 5), leaving out the moderate/ ambiguous
level of computer and Internet familiarity (Level 3 in Likert scale), therefore functioning in
a binary mode. Taking into consideration the continuous-form variables of the evaluation
factors and the nominal two-scaled grouping of computer and Internet familiarity items,
the statistical analysis proceeded into independent samples t-test methods, in order to com-
pute the average scores differentiations of the assessment values into the formulated groups
of participants.

Figure 6 graphically exhibits the crosstabulation matrices of average evaluation scores
of the groups, while Table 6 presents the calculated values of the conducted t-tests, with
significance level a = 0.05. In this context, statistically significant differentiations in
average scores between groups were computed for usability, learnability, navigation
in the computer familiarity groups, while only for the first two ones in the Internet
familiarity groups.

Because of the specific contribution of the PHARM Project in hate speech detec-
tion in textual data, affecting public news and awareness, the second research question
(RQ2) refers to the assessment of the web interface from participants that work (or have
worked) in journalism compared to simple users with other professions. For this rea-
son, a dedicated independent samples t-test was conducted for the evaluation scores of
these two groups (answering YES if they work/have worked as journalists and NO if not
the case).

Figure 7 presents the average values of the eight evaluation factors for the two subsets
of participants, while Table 7 exhibits the related t-test outputs, again in a = 0.05 significance
level. As can be observed, there was statistical significant difference in the average scores
of the two groups only for the efficiency evaluation factor.
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Figure 6. Average evaluation scores of the two groups for computer and internet familiarity variables.

Table 6. T-tests results for correlation between the evaluation factors and the groups of computer
and Internet familiarity variables.

# Factor
Computer Familiarity Internet Familiarity

t-Value p-Value t-Value p-Value

1 Efficiency 0.598 0.554 0.105 0.917
2 Usability −2.514 0.018 * −2.067 0.045 *
3 Learnability −2.283 0.030 * −2.217 0.032 *
4 Satisfaction −1.015 0.318 −0.821 0.416
5 Navigation −2.265 0.031 * −0.349 0.728
6 Content −1.267 0.215 −1.347 0.185
7 Interactivity −1.231 0.228 −0.525 0.602
8 Design −0.764 0.451 −0.517 0.608

* Statistically significant difference between groups at a = 0.05 significance level

Figure 7. Average evaluation scores of groups in Journalism variable.
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Table 7. Independent samples t-test of evaluation scores for the groups of working/ have worked as
journalists or not.

# Factor t-Value p-Value

1 Efficiency 2.230 0.029 *
2 Usability −0.399 0.691
3 Learnability 0.096 0.924
4 Satisfaction 0.275 0.784
5 Navigation −0.033 0.974
6 Content 0.425 0.672
7 Interactivity 0.750 0.456
8 Design −0.278 0.782

* Statistically significant difference between groups at a = 0.05 significance level

4. Discussion

Overall, as Figure 6 presents, the PHARM interface was positively evaluated by
the engaged participants (75%), while special attention was given to the remaining 25%
concerning possible problems or negative aspects and functionalities of the platform, for
subsequent developed versions. While referring to RQ1, the second column of Table 6
indicates that there is statistical significant difference between the mean scores of the groups
of computer familiarity with respect to usability (p = 0.018), learnability (p = 0.030), and
navigation (p = 0.031) evaluation factors of the interface. This fact is also validated in
Figure 6, since the average values for the computer poor familiarity group are substantial
lower versus the good familiarity one, in the factor of usability (2.96 vs. 4.01), learnability
(3.00 vs. 4.03) and navigation (2.50 vs. 3.97). These results imply that amateurs in computer
science participants confronted potential difficulties while navigating or learning how to
utilize the web interface. In this context, some modifications are necessary for further
optimizing the end-user interface to become more comprehensive, with increased usability.
Nevertheless, for the rest of five evaluation factors, there was no statistically significant
difference between the groups of computer familiarity, which is in accordance with the
similar average values in these cases of Figure 6. Consequently, the conducted tests
indicated towards the users’ satisfaction and web service efficiency, along with the inclusion
of adequate content, design, and interactivity mechanisms.

Almost the same results were retrieved for the two groups of Internet familiarity
(RQ2), since there was statistically significant difference only for usability (p = 0.045)
and learnability (p = 0.032) metrics (without any difference in navigation). The average
evaluation scores of Internet poor familiarity group were substantially lower compared to
the good familiarity one for usability (3.17 vs. 4.05) and learnability (3.20 vs. 4.09), while
there were no crucial differentiations for the remaining six evaluation factors. Taking into
consideration the aforementioned results, the web interface was, in general, positively
evaluated by all participants for most of its aspects, while specific actions are required
in further optimizations/evolvement of the platform, to address the low usability and
learnability scores for the less technologically experienced users. For instance, short
“how-to” videos and simplified versions of manuals are already discussed among the
research team members, to address the usability, navigation, and learnability deficiencies
for potential amateur users.

With regard to RQ2, the extracted p values of Table 7 indicate that there is a statistically
significant difference of evaluation scores between the two groups only for the factor of
the efficiency (p = 0.029) of the web platform, while the exact average values are 3.51 for
the subset who work/ have worked in journalism compared to 3.91 for those who have no
relationship with it. This fact implies that the first group remains somehow skeptical about
the effectiveness of the web service towards the detection of hate speech and emotional load
in text, which mainly relies on human-centric approaches due to the implicated subjectivity.
Therefore, the integrated natural language processing modules will be further evolved to
achieve maximum precision, persuading for applicability of the innovative automations
without human intervention. However, it has to be highlighted that in all other assessment
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metrics there was no substantial difference in the average evaluation scores, validating
the high-quality content, design, navigation mechanisms, etc., either for professionals or
simple users (with scores usually close to four for both groups).

The web service that has been presented in the current paper is part of a software
framework for the collection and analysis of texts from several social media and websites,
containing hate speech against refugees. The web service covers the functionality of
web scraping, annotating, submitting annotated content and querying the database. It
supports multi-language and multi-source content collection and analysis. This allows the
formulation of a comprehensive database that can lead to the development of generalized
hate speech and sentiment polarity modeling. This is expected to contribute significantly
in the enhancement of semantic aware augmentation of unstructured web content. Future
plans include an in-depth evaluation of state-of-the-art technologies in the big data volumes
that are collected and annotated constantly through the PHARM software. Providing the
functionality and the database online, makes it accessible to the public and allows more
people to get involved. The results of the formative evaluation that are presented validate
the appeal of the project to the target audience, and provide important feedback for the
improvement of future versions. Subsequent larger scale and more generalized evaluation
phases will follow, according to the adopted human-centered LUCID design.
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