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Abstract: The definition of suitable generative models for synthetic yet realistic social networks
is a widely studied problem in the literature. By not being tied to any real data, random graph
models cannot capture all the subtleties of real networks and are inadequate for many practical
contexts—including areas of research, such as computational epidemiology, which are recently high
on the agenda. At the same time, the so-called contact networks describe interactions, rather than
relationships, and are strongly dependent on the application and on the size and quality of the sample
data used to infer them. To fill the gap between these two approaches, we present a data-driven
model for urban social networks, implemented and released as open source software. By using just
widely available aggregated demographic and social-mixing data, we are able to create, for a territory
of interest, an age-stratified and geo-referenced synthetic population whose individuals are connected
by “strong ties” of two types: intra-household (e.g., kinship) or friendship. While household links
are entirely data-driven, we propose a parametric probabilistic model for friendship, based on the
assumption that distances and age differences play a role, and that not all individuals are equally
sociable. The demographic and geographic factors governing the structure of the obtained network,
under different configurations, are thoroughly studied through extensive simulations focused on
three Italian cities of different size.

Keywords: urban social network; graph model; data-driven; open source; simulator

1. Introduction and Background

Defining accurate models for real-world social networks is instrumental in several
research fields, e.g., in sociology [1], epidemiology [2], or marketing [3]. In particular,
computer-based simulations of these models may represent a valuable tool to understand
social phenomena, along with classic analytical studies. Dynamic processes, such as the
spread of a disease or a rumor, can be represented upon suitable networks that encode the
patterns of connection and interaction among the individuals of a population. The structure
of the network has a direct impact on the process, e.g., the topology of urban social
networks, their size, and demography, can affect disease spreading [4] in and within cities.
Moreover, the comparison of synthetic networks produced by different generative models
helps to infer how each factor contributes to the emergence of experimentally measured
properties of real networks [5].

In this paper, we present a novel computational model for urban social networks,
that combines a data-driven framework with a set of tunable parameters. A fully op-
erational open source implementation of the model is available under the GPL v3 at
https://gitlab.com/cranic-group/usn (accessed on 23 April 2021). The software makes
possible the generation of a synthetic social network of “strong ties” [6] among geo-
referenced and age-stratified individuals. The graph encodes information on the urban
social fabric and, as such, it increases the plausibility of dynamic (e.g., transmission) pro-
cesses that may be influenced by preferences and actions of agents and groups of related

Future Internet 2021, 13, 108. https://doi.org/10.3390/fi13050108 https://www.mdpi.com/journal/futureinternet

https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://orcid.org/0000-0002-1545-7711
https://www.mdpi.com/article/10.3390/fi13050108?type=check_update&version=1
https://doi.org/10.3390/fi13050108
https://doi.org/10.3390/fi13050108
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://gitlab.com/cranic-group/usn
https://doi.org/10.3390/fi13050108
https://www.mdpi.com/journal/futureinternet


Future Internet 2021, 13, 108 2 of 45

agents. On the one hand, our social graph may be used to simulate situations in which
friends and relatives may go out together, organize public or private meetings, and are,
in general, more likely to interact. This can be achieved by using proximity, measured on
the network, as a driving factor in the simulation of contacts and events. On the other hand,
the fact that the social graph is embedded into the urban landscape makes it possible to
consider both geographical constraints and social ties to comprehend how specific places
of aggregation foster interactions. Finally, this network can be used as a standalone tool
to characterize urban social relations patterns and to understand how these patterns are
influenced by the geography and the demography of a given territory.

The edges of our spatial network describe stable interpersonal relationships of two
types: intra-household (e.g., kinship) and friendship. Once the organization of the popu-
lation into households has been inferred from the available data, the household network
can be defined quite naturally as a set of cliques (i.e., complete subgraphs), one for each
household. However, the design of an accurate model for friendships is not so straight-
forward. Most simulation-based social studies claim a lack of reliable data and, therefore,
model social networks by using general random graph models, such as Erdos-Renyi (ER),
Small-world, or Scale-free graphs [7]. However, survey-based interaction networks, no-
toriously biased towards strong relationships [8], do not seem to follow any well-known
simple random model [9].

Inspired by both empirical studies [10–13] and previous modeling attempts [14] of
real world social networks, we designed our friendship network model on top of the
fundamental assumption that the probability Pr[u, v] of two agents u and v being friends is
ultimately governed by three key factors:

1. their age group, whose role in the edge creation process can be described by means
of a n × n social mixing matrix S = {si,j}, where si,j measures the frequency of
relationships among individuals of age groups i and j;

2. their geographical distance, whose impact can be controlled through a suitable non-
increasing function D(u, v) of the distance d(u, v) between u and v;

3. their sociability (i.e., the propensity of each of them to have friends), measured in our
model by a social-fitness score fu associated to each agent u.

While fu and D might be adjusted to the type and strength of the social ties that
one aims at reproducing, the coefficients si,j should instead be derived from social survey
data, when possible. Even in the absence of information about social relationships, publicly
available data regarding patterns of physical contacts and interactions should be regarded
as a valuable source to estimate the ratios of intra- and inter-age group connections. In the
proposed model, thus, D and fu only impact on the selection of edges that exist between any
two groups i and j, whereas the overall social mixing structure defined by the data-driven
S is preserved, at least on average. For the scope of the present paper, we estimate the
coefficients si,j based on data from Polymod [15], extracted through the recently released
SOCRATES [16] Data Tool (https://lwillem.shinyapps.io/socrates_rshiny/ (accessed on 23
April 2021)). The tool allows to easily specify parameters, such as age breaks, gender, day of
the week, duration, or location of the contacts. Moreover, it produces a social contact matrix
drawing from the best public survey datasets for the country of interest. Any suitable
mixing matrix can, however, be fed to the simulator through a dedicated configuration file.

Besides the available real-world data, the resulting network depends on a number of
design choices. Based on the related literature, we identified a set of minimum requirements
to guide the definition of suitable range of values for the parameters of our model, which
can be summarized as follows:

Tie strength: Our model aims at representing strong ties as the union of two layers:
the layer of households and the layer of friendship. The former is entirely data-driven,
and so is its average degree ν. Friendship ties, on the other hand, are generated using
a probabilistic model and, to retain control over the density of this layer, the average
number of friends µ is an input parameter. There are at least two reasons to only

https://lwillem.shinyapps.io/socrates_rshiny/
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consider fairly small values of µ: (i) friendship links should represent social ties
comparable to kinship and, as such, rare [6], with acquaintances modeled by short,
but >1, distances on the graph; (ii) a small value of µ ensures that our network is quite
sparse, a necessary feature in most practical applications.

Minimum connectivity: Recent works highlighted that spatial social networks are
generally well connected, with a single giant component covering the great majority
of the graph, at least for urban areas [11–13,17]. To represent social relationships in a
city in a faithful way, therefore, we argue that, while small enough to mimic strong
ties, µ must also be large enough so that the combination of household and friendship
edges guarantees connectivity.

Heterogeneity: The parameters fu and D are meant to break the homogeneity of the
network, in such a way to mimic well known features of real-world spatial social
and contact networks. In particular, previous works agree on a heavy-tailed (but not
fat-tailed) degree distribution [11,17–19] and on an inverse-power-law dependence on
the distance with exponents in the range [0.5, 2] [18,20,21]. Therefore, special attention
will be paid to the combination of fu following a (shifted) Lognormal distribution with
limited skewness and D = d(u, v)−β for suitable β.

Our network model is described in details in Section 2. The model is experimentally
evaluated by looking at a set of empirical regularities often observed in related real-world
social networks. In Section 3, we address the impact of single parameters and provide
evidence in support to the main design choices, including using all the available data. In
Section 4, we instead focus on a set of selected configurations, and we provide insights
into the structural properties of the resulting social graph. Finally, a summary of the
results, a few guidelines for the users of our simulator, and suitable directions for future
research activities are discussed in Section 5. For an overview of the model, that includes
the analysis of an epidemic use case, we refer the reader to Reference [22].

1.1. Related Work
1.1.1. Synthetic Population

The approaches used in the literature for the definition of a synthetic population can
be broadly classified in two major groups: Synthetic Reconstruction (SR) and Combinatorial
Optimization (CO). According to the SR [23] approach, the population is generated by
assigning to each agent some relevant socio-demographic variables drawn from suitable
joint-distributions deduced by putting together aggregate data covering the whole pop-
ulation with disaggregated data from a sample (usually gathered from surveys). In the
CO [24] approach, instead, the area of interest is divided into mutually exclusive zones
for which a set of marginal distributions is available, then a sample of real individuals
from the target population is directly used to generate the whole population through
replication/resampling methods. A comparison between SR and CO can be found in
Reference [25].

A peculiar shortcoming of the SR approach in its basic implementation [23] is that it is
not possible to satisfy joint distributions of attributes at either household or individual level
simultaneously. A way to overcome this problem is the reconstruction algorithm proposed
by Guo and Bhat [26]. Ye et al. [27] proposed to extend the usual Iterative Proportional
Fitting method (usually employed in the SR approach) with the Iterative Proportional
Updating (IPU) method where the algorithm adjusts and reallocates weights among house-
holds until both household and individual-level attributes match. Unfortunately both CO
and SR approaches require the collection of specific data which can be difficult to obtain. To
avoid this problem, a few sample-free models were proposed. The main objective of these
methods is to achieve a synthesis of the population starting from the most disaggregated
level that is actually available. Barthelemy and Toint [28] extended the SR approach by
generating a synthetic population based on households’ and individuals’ attributes for
589 municipalities of Belgium. For a comparison between sample-free and sample-based
methods, see Lenormand and Deffuant [29].
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Barrett et al. [9] proposed a “first principles” method for synthesizing populations
on both urban and national scale. Their method is capable of reconstructing the contact
network of the United States by simulating individuals in the population, their household
structure, demographics attributes and a 24-h activity sequence. To do so, they relied on a
large data set, including census data, activity location, traffic data, and roads network, as
well as several thousand responses to an activity, time-use survey, etc. The definition of
our synthetic population, described in Section 2.1 and analyzed in Appendix A, follows a
partially similar approach to Reference [9], but it requires significantly less data.

1.1.2. Social and Contact Network Models

A number of random graph models, proposed across decades of research, have been
widely used in computational social sciences [7]. The lack of available data about real-world
social ties fostered the choice of rather simple models (e.g., Erdös-Rényi [30], Barabasi-
Albert [31], and Watts-Strogatz [32]) which rely on just a few, easy to explain, assumptions.
While these models capture in a simple and elegant way some essential features of different
kinds of complex networks, it is well know that, in practice, they have significant limita-
tions. Models designed to mimic the scale-free degree distribution emerging in many real
networks, for instance, may fail to yield the expected clustering structure [33]. Exponential
random graphs have been shown to overcome some of these limits [34,35].

Generally speaking, a possible adjustment to those models consists in introducing a
homophily principle [36], according to the widely acknowledged insight that individuals
tend to socialize with their peers [37,38]. Among other aspects, such as education or
economy, age emerged as a critical element in the formation of social ties [10,39–41],
possibly thanks to the availability of age-related data at different spatial scales [42]. As far
as we know, however, there are no quantitative studies that report the relative frequency
of social links (i.e., relationships) by age, and previous network models that incorporate
real data on social mixing by age are designed to generate synthetic physical interactions.
Another widely studied type of homophily is spatial proximity, which gives rise to the
so-called spatial networks. Most authors considered variations of well known random
network models obtained by embedding the vertices in a metric space. The imposed spatial
constraints influence the topological properties of the network [43,44] and the imposed
penalty on “long” edges causes the spatial distribution of the vertices to impact on clusters,
path lengths, degree distribution, and more [5,45]. Again, there is not much research about
data-driven spatial social network models, in which the location of the individuals can be
retrieved from real data.

A somehow corresponding problem consists in inferring social or contact networks
from real data. For virtual populations, e.g., online social networks, relationships and
actually occurred interactions may be directly retrieved [12,17,46,47], at least to some
extent. The dependability of this information is, however, debatable because the virtual
population may convey significantly different information with respect to self-reported
friendships [48]. When the focus is, instead, on the physical interactions among the
individuals of a population, a synthetic version of the population may be created on the
basis of census and/or survey data [49]. The final goal is the definition of a set of human
mixing patterns (i.e., the frequency of contacts among people of different ages and/or in
different places) which allow to reproduce the dynamics of the network, for instance, to
model the diffusion of a disease in real populations [49–52]. This approach usually requires
to focus on a set of primary social settings (e.g., households, schools and workplaces) and to
collect sample data (e.g., surveys, questionnaires, diaries, mobility, etc.) [15,51,53], possibly
integrated with mobile/traffic/wearable sensors data [8,48,54,55] or online tools [52].
These data may be used to directly extract setting-specific contact matrices [9,15,51,53], or to
recreate realistic instances of such social settings and synthetic agendas used to feed an
agent-based simulator by which agent-to-agent interactions are reproduced [9,54,56–58].
It is worth noting that these studies target physical contacts rather than relationships. While
they provide valuable information about social mixing patterns, they do not aim to define a
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network of strong social ties. Moreover, in a recent call to action, several experts expressed
criticisms about most already existing tools and raised the attention towards the need for
accurate yet flexible and replicable approaches [59].

1.1.3. Empirical Spatial Networks and Urban Structure

Spatial social networks have been found to form a large connected component on both
mobile phone networks [11,13,17] and online social networks [12]. The average degree is
typically small, albeit dependent on the type of network considered: it ranges from ≈5
in mobile phone and online social networks [12,13,17], to ≈10 (when only strong ties are
considered) or ≈20 when the network is inferred from social surveys [60–62]. Despite
the limited average degree, most spatial social networks show the typical small-world
effect, with a short average path length close to the well-known “6 degrees of separation”
rule [11,12]. Another typical feature of social networks is the high clustering coefficient
(i.e., number of triangles) compared to random ER-like networks. Indeed, a clustering value
of ≈0.2 has been found in mobile phone [11,12] online social [17] and survey-based [19]
networks. A clear peculiarity of geographical social networks is instead the absence of very
large hubs, which are widely observed across multiple fields, including web graphs [63],
the Internet [64], and online social networks [47]. The maximum degree in geographical
social networks is apparently limited to a few hundreds, as emerged from both mobile
phone networks [11,13,18] and the LiveJournal Blog with geo-localization [17], and in
line with sociological studies [6,65,66]. In References [13,18], the authors found a power-
law distribution with ≈8 and ≈5 exponent, respectively, whereas References [11,17] only
highlighted the occurrence of a long-tailed distribution. In Reference [19], the degree
distribution is well approximated by a lognormal with σ = 0.9 and µ = 2.6.

A widely studied problem is characterizing the role of spatial proximity and pop-
ulation density in the edge creation process. The dependence of friendship on distance
has been found empirically to be an inverse power-law whose exponent β usually lies
in the range [0.5, 2] [11,12,17–19,21,60,62,67–69]. The measured edge length distribution
is, however, strongly dependent on the data source and on the size of the considered
territory, e.g., it may be almost flat up to 10 km [12] or present a spike for lengths <5
km [69]. Mobile phone networks, in particular, may cover hundreds or even thousands
of kilometers and generally provide geographic locations, and, thus, distances, with a
very variable granularity—from 1 km in densely populated urban areas to 10 km in rural
regions [11]. Using the network reconstructed from a survey, in Reference [19], the edge
length distribution shows two distinct regimes: β = 0.6 for short range contacts (<20 km)
and β = 1.8 for long range contacts. In general, a value β < 1 is not rare [17,67] and possibly
associated with urban networks, as is the case for the value β = 0.44 obtained for the city of
Dublin in Reference [68]. Furthermore, many studies agree on the existence of a significant
correlation between geographical proximity and community structure [10,11,46,68,69]. A
recent analysis of the urban area of New York based on the geo-localization of Facebook
accounts shows that most of the connections occur between adjacent zip codes and that the
underlying transportation infrastructure has a visible impact [46]. Studying a phone call
network, however, the authors of Reference [21] found a threshold effect, with a regular
increase in the geographical extension of the communities only observable for small clusters
with up to 30 members. This was confirmed by a later work, that detected highly clustered
connected components spanning across very large areas of the city [11]. Population density
is also often considered a factor in the formation of social bonds. In his seminal work [65],
Granovetter argued that personal networks in the cities—with respect to hinterland and
peripheries—are characterized by low clustering values and by a higher number of weak
ties. In Reference [69], an extensive empirical phone call network has been analyzed finding
that, while the density of individuals has a negligible impact on the size of each person’s
network, it induces a higher number of close-range contacts.

Despite the previous findings, there is wide evidence that the geographical factors
alone cannot explain the structure of spatial social networks [12]. Other forms of social
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proximity were estimated to be responsible of ≈1/3 of friendships in the LiveJournal Blog
network [17]. Studying a phone call network, the authors of Reference [11] found that the
number of intra-tower connections observed was higher than a pure geographical model
would generate, and that the small-world nature of the network was mostly related to
other forms of social cohesion, rather than geographical proximity. Other data-driven
modeling approaches of urban populations and territories are clearly possible, even if
they do not directly rely on a network-based paradigm. Through suitable mathematical
frameworks, a comparative analysis of local and global properties of the population may
reveal multi-scale patterns of cohesion/segregation, highlighting the role that different
socio-demographic covariates, such as income or ethnicity, play in the definition of urban
communities [70,71]. Further, stochastic differential equations may be used to formally
account for uncertainty in the description of urban flows, thus making it possible to estimate
the parameters of a spatial interaction model from the urban structure alone, characterizing
the impact of geographical distance upon individual cost/utility-based choices [72].

2. Materials and Methods

Our urban social network is obtained as the combination of a household network
with a friendship network. The construction of these networks requires to first map census
data to reconstruct the population and then model interpersonal connections. Formally,
the network is represented by an unweighted undirected graph G = (V, E), where V is
the vertex set of size N = |V|, and E is the edge set. In particular, we have E = EH t EF,
where EH is the set of household edges, EF is the set of friendship edges, and t denotes the
disjoint union. In the following, we explain how V, EH , and EF are defined in our model.
We will often use the expression household graph to denote the subgraph GH = (V, EH) and
the expression friendship graph to denote the subgraph GF = (V, EF). The notation and the
parameters used throughout this paper are summarized in Table 1.

2.1. Territory, Population and Vertex Set

We define the territory of interest in terms of an origin and a regular lattice of
T = Tlat · Tlon square tiles, i.e., by establishing the South-West corner of our bounding
box, the side l of each tile and the number of tiles Tlat and Tlon along the latitudinal and
longitudinal axes, respectively. For the scope of this paper, l = 1 km for all cities. We
then extract a geo-referenced population for the whole area of interest from the WorldPop
Project (https://www.worldpop.org/ (accessed on 23 April 2021)), which provides data of
the world population for 100 m × 100 m square cells. We resort to the overpass API of the
well known OpenStreetMap database (https://www.openstreetmap.org/ (accessed on 23
April 2021)) to find the minimal grid that contains the city’s boundary; we then select only
the tiles of the grid whose center lies inside it (see Appendix A). By mapping the WorldPop
data to our tiles, we obtain a very precise estimate of the real population living in each tile.

Albeit WorldPop—as well as other data sources—directly provides population den-
sities for different age groups, we believe that all demographic parameters should be
acquired from the same data source in order to improve the internal consistency of the
model. Thus, any desired age-stratification can be easily specified in the simulator’s con-
figuration file in the form of a set of age groups and their respective frequencies. For the
scope of this paper, we decided to rely on the Italian Institute of Statistics (ISTAT) (ISTAT
data used in this paper are available at https://www.demo.istat.it/pop2020 (accessed
on 23 April 2021)), which provides age distribution at the provincial level. The United
Nations Statistics Division (UNSD) makes available similar data for many other coun-
tries (https://unstats.un.org/unsd/demographic-social/census/censusdates/ (accessed
on 23 April 2021)).

Each vertex u ∈ V of our graph, which represents an individual of the population,
thus, is characterized by three attributes:

Tile The tile label tu ∈ {0, . . . , T − 1} is set equal to the unique index of the tile where
u resides.

https://www.worldpop.org/
https://www.openstreetmap.org/
https://www.demo.istat.it/pop2020
https://unstats.un.org/unsd/demographic-social/census/censusdates/
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Age The age label gu ∈ {0, . . . , n− 1} for vertex u is drawn independently at random
from the given age-stratification. These labels determine a partition of the vertex set
V into n disjoint subsets V0, . . . , Vn−1.

Fitness Inspired by previous work, that modeled degree heterogeneity by means of a
vertex-intrinsic fitness [14], we extract a sociability fitness attribute fu > 0 for each
u. The probability of a friendship edge between u and v is then set proportional to
fu and fv (see Section 2.3).

Table 1. Overview of the main parameters used in this paper.

Notation Description Definition

GH = (V, EH) A layer of edges that represent ties between
members of the same household

Data-driven based on ISTAT data (see Section 2.1)

GF = (V, EF) A layer of edges that represent ties between
people of different households

Generated with a probabilistic model (see Section 2.3)

G = (V, E) The urban social graph whose edges represent
generic “strong” social ties

Obtained flattening the GH and GF layers onto a single-
layer graph

N = |V| The number of nodes in the graph, equal to the
population size

Data-driven, based on the WorldPop database;
see Table 3 for the population of all cities

ν The average degree of the GH layer Data-driven, ≈2 for all cities (see Table 3)

µ The average degree of the GF layer An input parameter, set to 1, 5, or 10 in the experiments
(see Sections 3 and 4)

K = ν + µ The average degree of the graph G See above

gu The age label of node u, taking value in
{0, . . . , n− 1}, which determines a partition of
the population based on age

Drawn from a data-driven age distribution; the list of
age-breaks is parametric; in the experiments, we use
ISTAT data with age-breaks (0, 18, 35, 65)

Vi (and |Vi|) The set of nodes having age label i (and the
number of such nodes)

Deduced from the age labels assigned to the nodes of
the graph

mi,j The number of pairs of vertices (u, v), with
u 6= v, such that u ∈ Vi and v ∈ Vj

Computed based on |Vi| and |Vj| (see (1))

tu The tile label of node u, taking value in
{1, . . . , T}, which determines a partition of the
population based on the place of residence

Drawn from a data-driven population density; the tes-
sellation is parametric, the tile side is l, the grid is com-
posed of T = Tlat · Tlon tiles; in the experiments, we
used WorldPop data, l = 1, and grids, as reported in
Table 3

d(u, v) The approximated euclidean distance between
u and v

Computed as max
{

l
2 , d∗(tu, tv)

}
, where d∗(tu, tv) is

the euclidean distance between the center of the
two tiles

D(u, v) A non-increasing function of the distance
d(u, v)

An input parameter; in the experiments, we use
D(u, v) = d(u, v)−β with β ∈ {0.5, 2}

fu The real-valued fitness score of node u, that
quantifies its sociability

Drawn from a probability density function φ speci-
fied as an input parameter; in the experiments, we
consider a shifted Lognormal 1 + LN (ln(2), 0.25) or
a constant distribution

S = {si,j} The real-valued social mixing matrix whose
element si,j measures the frequency of social
ties between age groups i and j

Data driven; in the experiments, we compute S based
on contact data from Reference [15] extracted using
Reference [16]; we also consider a constant S

Approximating the position of each vertex with its tile is instrumental in simplifying
the computation of the household structure (see Section 2.2) and of pairwise distances. To
this end, we use the approximation d(u, v) = max

{
l
2 , d∗(tu, tv)

}
, where tu is the tile of u,

and d∗(tu, tv) denotes the distance between the center of tu and the center of tv.



Future Internet 2021, 13, 108 8 of 45

Our model does not put restrictions upon the choice of fu; yet, the distribution of fu
shall be chosen considering its impact on the degree distribution of the friendship graph.
Possible choices include a Lognormal, a Pareto, a uniform, and a constant distribution—all
of which are already supported by our simulator.

2.2. Household Edges

We group individuals into households according to a heuristics that uses the distri-
bution of “household roles” per age and the distribution of the number of children per
family, under the assumptions that: (i) all members of a household live in the same tile;
(ii) children are younger than their parents; (iii) partners have, on average, a similar age.
The algorithm is based on the concept of household role, represented as a pair of the form
(household-type, role), whose possible values, for Italy, are reported in Table 2. For instance,
ru =(single-parent, parent) means that u is a parent in a household of type single-parent,
where ru[0]=single-parent is the household-type and ru[1] = parent is the role. We make
use of two conditional distributions: Pr[r | g] is the probability that an individual has role
r given that she/he belongs to age group g; Pr[k | h] is the probability that a household
of type h has k members. This information is made available, as aggregate national data,
by the ISTAT for Italy and, e.g., by the UNSD for many other countries.

Table 2. Household types and roles deducible from ISTAT data.

Household Type Singles Single-Parent Couples Two-Parents Various

Role single parent peer parent various
child child

At a high level, the heuristics works as follows:

1. Based on the distribution Pr[r | gu], extract a role r for each vertex u.
2. For all u such that ru[0] ∈ {single-parent, two-parents}:

(a) if ru[0] = two-parents, select a random partner v for u such that tv = tu,
gv ∈ [gu − 1, gu + 1] and rv[0] = ru[0];

(b) based on the distribution Pr[k | ru[0]], extract the total number of members ku
for the household of u (and, in case, of v) and compute their total number of
children cu.

3. For i = 1, . . . , maxu cu:

(a) for all u such that cu ≥ i, select a random w such that tw = tu, gw < gu,
rw[0] = ru[0] and rw[1]= child, and assign w to the household of u.

4. For all u such that ru[0] = couples, select a random partner v for u such that tv = tu,
gv ∈ [gu − 1, gu + 1] and rv[0] = ru[0];

5. based on the distribution Pr[k | various], randomly compose the households of
type various.

In our simulations, the number of individuals not assigned to any household by the
heuristics is negligible, and the empirical distributions of household types and members
per type almost perfectly match the expected ones (see Appendix A for details). The
household edges EH are finally obtained as the union of all the cliques that connect all
members of the same household. Thus, the average degree of the household edges, denoted
ν, is entirely data-driven.
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2.3. Friendship Edges

As said, the age labels define a partition of the vertex set V into n disjoint subsets
V1, . . . , Vn. For each possible pair of groups (Vi, Vj), the number of pairs of vertices (u, v)
such that u ∈ Vi and v ∈ Vj is

mi,j =

{
|Vi| · |Vj| if i 6= j
|Vi |·(|Vi |−1)

2 if i = j
with ∑

i≤j
mi,j =

N · (N − 1)
2

, (1)

where |Vi| is the cardinality of Vi. Each pair (Vi, Vj) is also characterized by a mutual
preference coefficient si,j ∈ [0, 1]. For the scope of the present paper, we estimate the
coefficients si,j relying on the recent SOCRATES project [16] that makes it possible to
easily extract aggregated social contact matrices from public available and well-established
datasets. In Appendix B, we describe how we constructed the matrix S = {si,j}, and we
show that any constant S corresponds to a condition of age-homogeneous mixing, i.e., to edge
occurrence being independent of the age. To each pair (u, v) ∈ V ×V, we finally associate
a distance d(u, v) computed based on the tile labels tu and tv as explained in Section 2.1.

For each possible pair of vertices u, v that do not belong to the same household,
the existence of the edge (u, v) in the friendship graph GF depends on the outcome of a
Bernoulli trial with parameter Pr[u, v] = Pr[(u, v) ∈ EF], defined as follows:

Pr[u, v] =
µ · N

2
·

mgu ,gv · sgu ,gv

∑i≤j
(
mi,j · si,j

) · D(u, v) · fu · fv

∑u′∈Vgu ,v′∈Vgv
(D(u′, v′) · fu′ · fv′)

, (2)

where µ is a configuration parameter. In line with the guiding principles illustrated in
Section 1, Pr[u, v] is set proportional to: (i) the data-driven cohesion of groups gu and gv,
given by sgu ,gv ; (ii) the imposed distance-based penalization, quantified by D(u, v); and
(iii) the sociability of u and v, measured by fu and fv. By construction, (2) guarantees that,
on average for the entire graph GF, the age-based social mixing determined by the matrix S
is respected, and the average number of friends, i.e., the average degree of the graph GF, is
exactly µ. These and other aspects related to the interpretation of (2) and the characteristics
of GF are discussed in the following.

A different expression for Pr[u, v]: To each pair of age groups (i, j) with i ≤ j, we
can associate a subgraph as follows: if i = j, GF(i, i) = (Vi, EF,i,i) is the subgraph
of GF induced by the vertices in Vi; if i 6= j, GF(i, j) = (Vi t Vj, EF,i,j) is the bipartite
subgraph of GF induced by the vertices in the disjoint union Vi tVj and where only
edges (u, v) such that u ∈ Vi and v ∈ Vj are admissible. It is easy to verify that GF is the
disjoint union of these subgraphs, that is, EF = ti≤jEF,i,j. By construction, EF,i,j ≤ mi,j
and, if the edge probability was uniquely determined by si,j, the expected value of
|EF,i,j| would be M(i, j) = mi,j · si,j, whereas the expected value of |EF| would be M =

∑i≤j M(i, j). Let us define the attraction between u and v as a(u, v) = D(u, v) · fu · fv
and the total attraction between groups i and j as A(i, j) = ∑u∈Vi ,v∈Vj

a(u, v). We can
rewrite (2) as

Pr[u, v] =
µ · N

2
· M(gu, gv)

M
· a(u, v)

A(gu, gv)
≈ µ · N

2 ·M · 〈D〉 · 〈 f 〉2 · sgu ,gv · a(u, v), (3)

where 〈D〉 and 〈 f 〉 denote the mean value of the fitness score fu and of the distance
function D(u, v), respectively. The approximation in (3) is obtained under the assump-
tion that A(i, j) ≈ mi,j · 〈a(u, v)〉 = mi,j · 〈D〉 · 〈 f 〉2 for all i, j, which is accurate if all
age groups are large enough.

Edge density and social mixing: The expected value of EF,i,j in our networks is

E[|EF,i,j|] = ∑
u∈Vi ,v∈Vj

Pr[u, v] =
µ · N

2
· M(i, j)

M
·

∑u∈Vi ,v∈Vj
a(u, v)

A(i, j)
=

µ · N
2
· M(i, j)

M
(4)
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for all i ≤ j. The expected number of edges in the entire friendship graph is, thus,

E[|EF|] = ∑
i≤j

E[|EF,i,j|] =
µ · N

2
·

∑i≤j M(i, j)
M

=
µ · N

2
. (5)

This shows that, thanks to the normalization by A(gu, gv), the age-based social mixing
is respected, up to a scaling factor. In particular, the dependence of Pr[u, v] upon d(u, v)
does not affect the (expected) density of the friendship graph, which is entirely controlled
by µ. By tuning D(u, v), we may adjust only the physical length distribution of the edges—
arguably, in order to penalize long edges.

Expected degree: Thanks to the relation ∑u degF(u) = 2 · |EF|, it is easy to verify that
the expected friendship degree of a random u ∈ V is exactly µ. To guarantee that
Pr[u, v] ≤ 1 for all u, v, the choice of µ is subject to the condition

µ ≤ 2 ·M
N
·min

u,v

{
A(gu, gv)

M(gu, gv) · a(u, v)

}
≈ 2 ·M · 〈D〉 · 〈 f 〉2

N ·maxu,v
{

sgu ,gv · a(u, v)
} , (6)

where the approximation is obtained, again, assuming that A(i, j) ≈ mi,j · 〈D〉 · 〈 f 〉2,
and using that minu,v

mgu ,gv
M(gu ,gv)·a(u,v) = 1

maxu,v sgu ,gv ·a(u,v) . In other words, since, by in-
creasing µ, we evenly increase the probability of all edges, the choice of µ is possibly
constrained by the existence of pairs (u, v) for which the product sgu ,gv · a(u, v) is large,
so as to make the existence of the edge (u, v) significantly more likely than the average.
The expected degree of a vertex u having fitness fu, age gu and tile tu can instead be
computed as

µu = E[degF(u) | fu, gu, tu] = ∑
v

Pr[u, v] = ∑
t

∑
j

 ∑
v∈t,v∈Vj

Pr[u, v]


=

µ · N · fu

2 ·M ·∑
t

D(tu, t) ·∑
j

M(gu, j)
A(gu, j)

· ∑
v∈t,v∈Vj

fv

. (7)

µu is, thus, proportional to u’s social fitness fu and to µ, as expected. Equation (7) also
shows that µu depends upon the tile tu through a factor given by the average distance
of tu from all other tiles (included tu itself), weighted by the (group-weighted) total
sociability of each tile.

Scale invariance and parameter range: It is easy to verify that Pr[u, v] is invariant
under multiplication of si,j, D(u, v), fu and/or fv by any positive constant. This means
that any two approaches to derive the coefficients si,j from real data that only differ
by a constant factor, are equivalent for our model. Now, for (2) to be meaningful, we
need D(u, v) to be upper-bounded by a suitable constant Dmax. In our model, this
is achieved by imposing that all vertices belonging to the same tile are at distance
dmin = l

2 > 0 and that (with a slight abuse of notation) Dmax = D(dmin) < +∞. On
the other hand, to prevent the occurrence of vertices with expected degree ≈0—at
least, in a sufficiently large network— fu must be bounded away from 0. Summing up,
without loss of generality, we may assume that D(u, v) ∈ (0, 1] for all u, v ∈ V, that fu
is drawn from a probability distribution with support [1,+∞), and that ∑i≤j si,j = 1.
The latter condition suggests to interpret the coefficients si,j as the probability that a
randomly chosen edge of the graph connects groups i and j.
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Selected Configurations

Although our network model does not impose restrictions upon the choice of fu and
of the function D, we believe that the following configuration is of special interest:{

fu ∼ 1 + LN (ln(2), 0.25)
D(u, v) = d(u, v)−β with β ∈ {0.5, 2}

, (8)

where, throughout this paper, LN
(
λ, σ2) denotes a Lognormal distribution such that λ

and σ2 are the mean and variance of the associated Normal distribution.
The choice for the distribution of fu in (8) is motivated by the observation that

the degree distribution of our friendship graph will, at least partially, follow the fitness
distribution. Lognormally distributed data occur across different domains [73], and re-
cent work suggests that the degree distribution of real-world social networks makes no
exception [17,19]. In particular, a Lognormal degree distribution would fit the intuition that
only a few people have very few social links. The specific parameters have been chosen
to enforce limited skewness and variance, so as to guarantee that most vertices will have
a degree close to the average and that the hubs will be limited in both number and size.
It goes without saying that other choices may be preferred, some of which (e.g., a Pareto,
a uniform, and a constant distribution) are already supported by our simulator.

As to D, as extensively discussed in Section 1.1, there is a vast body of research
supporting the choice of a power-law decay for the dependence of social ties upon the
geographical distance between two individuals. There is no equal agreement regarding
the exponent β, with empirical findings suggesting a significant variability according to
the geographical scale of the analysis and to the type of interaction object of the study.
We decided to compare β = 0.5 and β = 2, which seem to lie at the two ends of the
spectrum of the values observed in the literature. In both cases, as already discussed, since
d(u, v) is bounded, so is D.

It is worth it to highlight that, for the considered set of models, the upper bound (6) for
the choice of µ is indeed rather loose in most practical cases, as we experimentally verified.

3. Impact of System Parameters

To sort out the role of the different system parameters in shaping our urban so-
cial network, we resort to an extensive experimental campaign focused on three Ital-
ian cities of different size: Florence (363,060 residents), Viterbo (66,598), and Sabaudia
(21,274). For the sake of readability, the results for Viterbo and Sabaudia are reported in
Appendices C and D, respectively.

For each city, we selected the administrative boundaries from OpenStreetMap and
filtered the population inside the city shape as described in Section 2.1. For Sabaudia and
Viterbo, the smallest boundary available is the municipality which encompasses a large
rural area with small urban agglomerates around the city. For Florence, we were able to
select the actual city boundaries which do not include neighboring areas. For each city, we
extracted the age labels based on ISTAT data aggregated at the provincial level. We then
built the households as described in Section 2.1. The obtained territories are depicted in
Figure 1 (and Figure A1 in Appendix A). An overview of the population and the territory
is reported in Table 3 for all cities. For further details, see Appendix A.
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Figure 1. A graphical representation of our territory and population, through a random sample of
1000 people on the territory of Florence and Sabaudia (some points may fall outside of the territory if
the center of the tile to which they belong falls inside).

Table 3. Reconstructed parameters for the three cities. The initials C, Y, A, E stay for children,
young people, adults, and elderly people, respectively. ν is the average degree of the reconstructed
household network GH , and Tlat and Tlon are the number of tiles along the two axes of the grid used
to cover the city territory.

City Boundary N C% Y% A% E% ν (Tlat, Tlon)

Florence City 363,060 15.1% 16.9% 43.1% 24.9% 2.08 (15, 12)
Viterbo Municipality 66,598 16.0% 17.8% 44.2% 22.0% 2.08 (16, 20)
Sabaudia Municipality 21,274 16.8% 18.1% 45.6% 19.5% 2.07 (26, 32)

In this section, we focus on a few basic properties of the network and on the design
choices needed to achieve them. As a side result, we show that any attempt to significantly
simplify our network model downgrades the resulting social graph, especially in terms
of heterogeneity and connectivity. It is worth it to underline that, to account for variance,
hereafter any configuration is evaluated by considering the results of 10 independent runs.

3.1. Safeguarding Connectivity

There are two main factors that impact on the overall connectivity of the graph: the
average number of friends µ and the reconstructed households structure. In Section 2.3,
we found that our efforts to introduce heterogeneity in the model while preserving certain
structural properties inferred from contact data yield an upper bound for µ. Albeit there
is no analogous strict lower bound, µ must be chosen large enough to guarantee that
the graph has the expected level of connectivity. To provide insights into the choice of
µ, we compare the graphs obtained with µ = 1 and µ = 5, measuring the percentage of
nodes belonging to the giant component for different configurations. We remind that the
household layer GH is composed of a set of cliques and has average degree ν ≈ 2 for all
cities—the average degree of the whole graph being instead K = ν + µ. In the following,
we will focus on the friendship layer GF alone and on the entire urban social network G.

To prevent the results from being influenced by the composition of the population,
we: (i) set the matrix S to a constant, to force homogeneous mixing between the different
age groups (see Appendix B); (ii) ignore the data-driven population density, considering
equally frequent age groups and distributing the individuals uniformly at random in the
given territory (Actually, we map individuals only to tiles that are non-empty according
to real data. This is meant to preserve the realism of the benchmark model by preventing
that people are found in uninhabitable areas, such as parks, lakes, sea, etc.). For what
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concerns the parameters fu and D, we focus on the special configurations highlighted in
Section 2.3—i.e., fu ∼ 1+LN (ln(2), 0.25) and D(u, v) = d(u, v)−β with β ∈ {0.5, 2}—and
we additionally compare them with the choice of a constant fitness fu ≡ 1 for all u.

Ideally, we would like a graph where (almost) all nodes belong to a single giant
component, in accordance with empirical findings from the literature [11]. In Table 4,
we present the case of Florence; similar results hold for the other cities and are listed
in Appendices C and D. Let us first focus on the friendship graph GF alone (i.e., no
households). The case µ = 1 clearly shows that this graph is very poorly connected if the
average degree is very low. When the fitness is Lognormally distributed, thanks to the
increased degree variability, the giant component includes ∼20% of the network. When
the fitness is constant, the giant component is instead significantly smaller, reaching a
critical 1.9% in the configuration that maximizes the homogeneity of the network. When
µ = 5, the giant component on the other hand, includes almost the entirety of the network.
Quite interestingly, in this regime, switching from a constant fitness to a Lognormal one
yields a slight decrease in the coverage of the giant component of the friendship network.
The rationale is that, in the latter case, most hubs occur in denser areas of the graph, thus
increasing the internal cohesion of the giant component to the detriment of its size. By
comparing the friendship graph with the whole graph, we finally see that, when µ = 1, the
households are capable to partially compensate for the limited number of friendship edges.
When µ = 5, finally, the households make it possible to even improve the already almost
perfect coverage of the giant component.

Table 4. (Florence) Percentage of nodes of the graph that belong to the giant component, on average,
for the friendship graph GF and the entire social graph G, as β, fu, and µ, vary. Five friends are
sufficient (on average) to ensure that the giant component covers almost the entirety of the network.

β fu
µ = 1 µ = 5

GF G GF G

0.5 1 1.9% 76.6% 99.3% 99.8%
0.5 1 + LN (ln(2), 0.25) 18.8% 75.8% 98.2% 99.4%
2 1 8.0% 76.0% 99.0% 99.7%
2 1 + LN (ln(2), 0.25) 20.9% 75.1% 97.9% 99.3%

3.2. Accounting for Age in Friendships

One fundamental design choice of our friendship graph model consists in enforcing
that the proportion of intra- and inter-age group connections adheres to publicly available
contact data. This information is encoded in the age-mixing matrix S and, as emerged in
Section 2.3, imposing this condition comes at the cost of additional constraints to the model.
To verify the importance of having age-dependent edges, we compare three different
configurations: (i) a homogeneous population connected using a constant matrix S; (ii)
a homogeneous population connected based on the real (i.e., data-driven) S; (iii) a real
(i.e., data-driven) population connected based on the real S. With homogeneous population
we mean that both the age distribution and the spatial density are taken to be uniform. The
constant matrix S corresponds to age-homogeneous mixing, as explained in Appendix B.
Again, we consider the combinations of parameters selected in Section 2.3, plus a fitness-
neutral model with fu ≡ 1 for all u. Finally, to guarantee that age-dependent preferences
and patterns in the friendship edge distribution are well visible, we only consider our
friendship graph, and we fix µ = 5, to obtain a network that is well connected but not
too dense.

For each of the four age groups, we computed both the average degree of the members
of each group in the whole friendship graph GF, and their average degree considering
friendship connections with their peers only, that is, within the subgraph of GF induced
by the set of individuals belonging to that group. In Figure 2, we report these data for
the city of Florence—the other cities show analogous patterns; see Appendices C and D
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for details. With homogeneous population and constant S (left panel) all age groups are,
de facto, equivalent and the age-stratification is irrelevant for friendships. Introducing
real nonuniform age-mixing coefficients si,j, even with a homogeneous population (central
panel), ensures that the data-driven internal cohesion of younger age groups is preserved,
but adults are more likely to establish links with other age groups. Finally, when the
population and the matrix S are both data-driven (right panel), we notice an increment
in the overall average degree of children and young people, which are <25% in the real
population, and a decrease in the overall average degree of adults, which instead constitute
≈43% of the population of Florence. Significantly, Figure 2 confirms that neither fu nor β
have any impact on the age-mixing patterns of the graph, as imposed by construction.

Figure 2. (Florence) Average degree of the individuals of each age group, in the whole friendship
graph GF and with their peers, under different configurations all with µ = 5. With respect to the
benchmark configuration where all age-groups are equivalent (left panel), the introduction of a
data-driven S increases the internal cohesion of younger age groups, but it fails to correctly model
inter-group connections (central panel), which are instead well captured if the population is also
data-driven (right panel).

For the sake of completeness, Figure 3 shows the percentage of the total number
of edges that link each age group with all others, for the friendship graph and for the
entire social graph obtained for the city of Florence using the real population and real
S—Figures A5 and A15, for Viterbo and Sabaudia. Figure 3a is essentially a visualization of
expression (4), and the value in each cell is, thus, proportional to the size of the two groups
and to their mixing coefficient si,j. We see that, albeit the adults have a lower average
number of friends than the younger groups, they are still involved, in total, in the majority
of friendship edges.

(a) Friendship network. (b) Entire social network.

Figure 3. (Florence) Percentage of edges between age groups in a configuration with data-driven
population and age-based mixing, for fu ∼ 1 + LN (ln(2), 0.25), µ = 5 and D(u, v) = d(u, v)−2.
The value in cell i, j is proportional to mi,j · si,j. Adults are still involved, in total, in the majority of
friendship edges, even if they have a lower average number of friends than the younger groups.
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3.3. Using Real Population Density and Distances

One of the main elements of novelty of our model resides in the use of a data-driven
population, in contrast with a body of research work on spatial networks that assumes a
certain regularity in the spatial distribution of the population (e.g., uniform or Gaussian).
The positioning of the individuals of the population and the level of penalization imposed
to geographically long edges impact on the final shape of our social graph at multiple
levels. To assess the relevance of using real data for the spatial density of the population,
we study the friendship network GF (i.e., no household edges, ν = 0 and K = µ) obtained
with either a data-driven population or a homogeneous population where individuals are
distributed uniformly at random in the given territory, but fixing in both cases the size of
the groups to be uniform, i.e., |Vi| = N

n for all age groups.
We consider three different options for D(u, v): D(u, v) = 1 for all u, v, D(u, v) =

d(u, v)−0.5 and D(u, v) = d(u, v)−2. Since one of the criteria for comparison will be the
connectivity of the network, we let µ vary as µ = 5 or µ = 10. Conversely, to isolate the
dependency of the edge distribution upon the spatial density, we take both S and fu to be
constant and equal to 1.

Table 5 and Figures 4–6 show the results of our tests for the city of Florence—for the
other two cities, see Appendices C and D. We repeated the construction of the social graph
10 times for each configuration. Since the variance is negligible and adds no valuable
element of discussion, for the sake of clarity, we only included in Table 5 the average value
for each metrics over each set of runs. Figures 4 and 5 instead report the mean distributions
over each set of runs with a 95% confidence interval. To measure the distance between
the data distributions and the Poisson distribution, we compute the relative entropy or
Kullback–Leibler (KL) distance; the values are reported in the caption of the figures. The
KL distance D(p||q) between distribution p and q measures the amount of information lost
when the distribution q is used to approximate the distribution p [74].

Table 5. (Florence) Main features of the friendship graph GF as the population type, D(u, v) and µ vary, for constant fu and
S. 〈dist〉 is the average path length, C is the global clustering coefficient, ρ is the degree assortativity, “# comp.” denotes the
number of connected components, and “giant %” denotes the percentage of nodes in the giant component. The use of real
population density and a distance-based penalization mostly impacts on the assortativity and connectivity of the network,
whereas the effect on its clustering is only visible for β = 2.

(a) Friendship Network for µ = 5. Expected Values for an ER Graph with µ = 5: 〈dist〉 ≈ 7.95, C = 1.38e-05.

µ = 5
Population D(u, v) 〈dist〉 C ρ # Comp. Giant %

homogeneous 1 8.13 1.5e-05 2.5e-04 2497.5 99.3%
homogeneous d(u, v)−0.5 8.11 1.4e-05 0.0018 2660.4 99.3%
homogeneous d(u, v)−2 8.08 7.2e-05 0.05 3385.9 99.0%
real 1 8.13 1.3e-05 −3.8e-04 2504.3 99.3%
real d(u, v)−0.5 8.09 1.3e-05 0.0044 2914.1 99.2%
real d(u, v)−2 7.83 5.6e-05 0.12 12443.8 96.3%

(b) Friendship Network for µ = 10. Expected Values for an ER Graph with µ = 10: 〈dist〉 ≈ 5.56, C = 2.75e-05.

µ = 10
Population D(u, v) 〈dist〉 C ρ # Comp. Giant %

homogeneous 1 5.81 2.7e-05 2.9e-04 17.6 100.0%
homogeneous d(u, v)−0.5 5.80 2.8e-05 0.0042 23.5 100.0%
homogeneous d(u, v)−2 5.84 1.5e-04 0.09 53.7 100.0%
real 1 5.81 2.8e-05 1.7e-04 16.1 100.0%
real d(u, v)−0.5 5.80 2.9e-05 0.0088 32.5 100.0%
real d(u, v)−2 5.79 1.1e-04 0.2 2317.6 99.3%
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Figure 4. (Florence) Degree distributions of friendship graphs with µ = 5 and corresponding Poisson distributions with
λ = 5. The data distribution lines show the mean, whereas the shaded areas around the lines represent the 95% confidence
interval. The Kullback–Leibler divergence between the Poisson and the empirical distribution are (left to right, top to
bottom): 1.6e-07, 2.87e-07, 1.1e-05, 5.2e-05, 0.0002, 0.004. The degree distribution diverges from a Poisson (which is the
expected behavior in ER-like graphs) as we incorporate geographic features in the network, and the effect is especially
significant when long edges are strongly penalized.
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Figure 5. (Florence) Degree distributions of friendship graphs with µ = 10 and corresponding Poisson distributions with
λ = 10. The data distribution lines show the mean, whereas the shaded areas around the lines represent the 95% confidence
interval. The Kullback–Leibler divergence between the Poisson and the empirical distribution are (left to right, top to
bottom): 2.5e-07, 2.01e-07, 3.2e-05, 0.0001, 0.0005, 0.009. The degree distribution diverges from a Poisson (which is the
expected behavior in ER-like graphs) as we incorporate geographic features in the network, and the effect is especially
significant when long edges are strongly penalized.

Figure 6. (Florence) Distribution of the size of the connected components other than the giant for friendship graphs with
µ = 5 and µ = 10. The lines show the mean, whereas the error bars (with “caps”) represent the 95% confidence interval
computed over each set of runs. All components other than the giant are, in general, very small, but the use of real data
does favor the occurrence of a higher number of connected components.

We can divide our tests in three main categories, based on the used combination
of parameters:
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1. Homogeneous/real population and D(u, v) = 1: Geographical distances and the
distribution of the population over the territory do not affect the graph construction
if we set D(u, v) = 1 and we impose a uniform size for all age groups. In this case,
we expect to create an ER graph because we are actually fixing the edge probability
Pr[u, v] to be the same for any node pair u, v. In an ER graph [64,75], the expected
clustering coefficient is C = µ

N−1 , where µ is the mean degree, the degree distribution
is a Poisson distribution (for large N), and the expected average shortest path is
〈dist〉 ≈ ln N

ln µ . The graphs of our tests have 363,060 nodes (the population of Florence);
thus, we expect the following values: C = 1.38e-0 for µ = 5, C = 2.75e-05 for µ = 10,
〈dist〉 ≈ 7.95 for µ = 5, and 〈dist〉 ≈ 5.56 for µ = 10. Our results (see Table 5, Figures
4 and 5) confirm the expected values and degree distributions. Therefore, if we do not
consider real population density and distances, we are de facto building an ER graph.

2. Homogeneous population and D(u, v) = d(u, v)−0.5/D(u, v) = d(u, v)−2: Geograph-
ical distances do affect the graph construction, under both regimes of β ∈ {0.5, 2},
even if we impose a uniform distribution of the population over the territory, other
than equal size age groups. Our results (see Table 5, Figures 4 and 5) show that β = 0.5
has a major effect on the assortativity of the network, whereas β = 2 affects both the
global clustering coefficient and the assortativity. The latter is always positive and
for β = 2 the global clustering coefficient is about 5 times greater than in all graphs
built in the previous cases. Again, these are desirable features in a social network
model [44,76]. Geographical distances have also an effect on the degree distribution,
but it is appreciable only for β = 2 (see Figures 4 and 5).

3. Real population and D(u, v) = d(u, v)−0.5/D(u, v) = d(u, v)−2: Finally, the com-
bined use of the real population and of a penalization for long edges is clearly visible
in our simulation, for both values of β, but especially when β = 2. Real density and
distances mainly influence the number of connected components and the assortativity
of the network. Notice that the number of connected components is also affected by
the average degree of the network: the higher the degree, the lower is the number
of connected components. Specifically, the use of real data seems to favor higher
assortativity values and a higher number of connected components. While a uniform
population density creates a giant component whose size is in line with the giant
component of an ER graph, a real density creates a smaller giant component and a
higher number of connected components (see Figure 6). For uniform densities, the
size of the connected components is almost always 1 (the same holds when we set
D(u, v) = 1); instead, for real densities, we have more components in which size is
more variable. Finally, as shown in Figures 4 and 5, the degree distribution is also
affected by real densities and distances. Preventing a Poisson degree distribution is
a further step toward the definition of a suitable model because social networks are
usually characterized by skewed degree distributions [44].

Summarizing, our tests show that penalizing long edges in (2) while using the real
population density allows to construct a friendship graph deprived of the typical character-
istics of ER-like homogeneous graphs. Even more, using real data, we are able to simulate
some of the features usually observed in social networks. These findings support the
rationale that a data driven approach is important: real population density and distances
must be taken into consideration for building urban social graphs. Finally, we observe that
the impact on graph construction of geographical distances, when β = 0.5, is negligible if
not combined with real densities, as shown by the degree distributions (Figures 4 and 5)
and values in Table 5.

4. Characterization of the Urban Social Network

In Section 3, we verified that each and every parameter of our model has a role in the
definition of the resulting urban social graph, and that making proper use of the available
data is paramount in order not to end up with a too simple network model (e.g., a ER-
like graph). In the following, therefore, we consider the fully data-driven version of our
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model: the synthetic population is constructed as described in Section 2.1 based on real
age-stratification data, real spatial density estimates, and real household composition data;
the dependence of the friendship edges upon the age of the individuals is inferred from
publicly available contact matrices. We study the topological features of the graph and their
relation with the imposed geographical constraints, as the remaining parameters vary as
follows: (i) µ = 5 or µ = 10; (ii) D(u, v) = d(u, v)−β with β = 0.5 or β = 2; (iii) fu ≡ 1 for
all u or fu ∼ 1 + LN (ln(2), 0.25). Notably, we already know from Section 3 that all these
configurations yield, albeit to different extents, desirable properties of social networks,
including good connectivity, decent network assortativity and global clustering coefficient,
and a non-Poisson degree distribution.

4.1. Global Metrics

We assessed the impact of using the real population density and an inverse-power-
law distance penalization in Section 3.3. In this section, we focus again on the main
global features of the graph, but considering the fully data-driven model that includes the
household layer GH and the age-based social mixing imposed through the matrix S (see
Appendix B).

By using the data-driven values of S, we are adding to the model an age-specific
homophily and we expect an increase in the assortativity of the resulting graph. Indeed,
for the city of Florence, considering the other parameters as in Section 3.3 with β = 2 and
µ = 10, the assortativity grows from 0.2 to 0.48. Moreover, by connecting with higher
probability nodes belonging to specific subsets (i.e., those in the same age groups), we report
a four-fold increase of the global clustering coefficient from 0.00012 to 0.0004. On the other
hand, the layer GH introduces, by construction, a large amount of cliques—albeit each has
a small size—so we can expect a great impact on the clustering coefficient (i.e., the number
of triangles). In fact, considering again the city of Florence, with the same parameters of the
previous example and adding the households, the global clustering coefficient increases
∼40 times from 0.0004 to 0.0151.

An overview of the resulting graph for the city of Florence with the parameter chosen
as described at the beginning of Section 4 is reported in Table 6—for Viterbo and Sabaudia
see Appendices C and D. For each set of parameters, we repeated the construction of
the social graph 10 times. The values reported in the table are the mean computed over
each set of runs, the variance is negligible for all the values, thus being omitted. By
looking at Table 6, we see that the contribution of the fitness to the clustering coefficient,
the assortativity and the connectivity is only marginal compared to S and to the households
(for a direct comparison with the configurations considered in Section 3.3, see Table 5). The
value of the global clustering is several orders of magnitude greater than the corresponding
ER graphs, it shows a small decrease with the fitness and for higher values of β (and µ).
Both circumstances favor the creation of hubs that attract edges from the rest of the graph,
thus making “local” triangles less likely to occur. Besides the presence of hubs, there will be
a higher number of nodes at a lower degree and, therefore, a higher probability of having
many connected components. The degree heterogeneity also penalizes the assortativity
which is consistently lower for the run with the fitness but increases with β. It is likely
that, on average, the higher value of β reinforces the group-to-group assortativity of S.
On the other hand, the average local clustering has the opposite behavior and constantly
increases with the fitness, β and µ. Local connections are favored by a stronger dependence
on distance and by the presence of local hubs. Almost regardless of the configuration,
the average shortest path length is comparable to ln(N)

ln(K) , where K = µ + ν is the average
degree of the graph G. This value is typical for small world networks.
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Table 6. (Florence) Main features of the social graph as fu, β and µ vary, for data-driven population
and S. K = µ + ν is the average degree, 〈dist〉 is the average path length, C and Cloc are the global
and average local clustering coefficients, ρ is the degree assortativity, “# comp.” denotes the number
of connected components, and “giant %” denotes the percentage of nodes in the giant component.
Our data-driven social network has the desired clustering and assortativity. The parameters fu and β

have a minor, albeit visible, impact.

(a) Social Graph for µ = 5.

µ = 5
fu β K 〈dist〉 C Cloc ρ # Comp. Giant %

1 0.5 6.82 6.72 0.053 0.074 0.261 4071.1 98.8%
1 2 6.81 6.72 0.050 0.089 0.334 6824.8 97.7%
1 + LN (ln(2), 0.25) 0.5 6.82 6.57 0.049 0.085 0.203 5357.4 98.4%
1 + LN (ln(2), 0.25) 2 6.81 6.58 0.046 0.100 0.258 8109.3 97.3%

(b) Social Graph for µ = 10.

µ = 10
fu β K 〈dist〉 C Cloc ρ # Comp. Giant %

1 0.5 11.81 5.36 0.017 0.027 0.317 463.1 99.9%
1 2 11.81 5.41 0.016 0.037 0.383 1726.9 99.5%
1 + LN (ln(2), 0.25) 0.5 11.81 5.26 0.016 0.033 0.211 924.9 99.7%
1 + LN (ln(2), 0.25) 2 11.82 5.32 0.015 0.044 0.260 2333.1 99.3%

4.2. Connectivity, Communities, Degree

Hereafter, we focus on the graph we obtained for the city of Florence, for which we
provide an overview of the main characteristics in Figure 7. Similar results hold for the
other two cities and are reported in Appendices C and D.

First of all, by looking at Figure 7a, we notice that the fragmentation of the graph into
connected components is very stable across different simulations and different configura-
tions. For all eight considered combinations of parameters, a single giant component exists,
covering at least 97.3% of the whole graph, with a few additional components having
tenths to hundreds of nodes and a constellation of isolated vertices.

We then focus on the modularity-based clustering obtained by applying to our network
the well-known Louvain algorithm. From Figure 7b, we see that some parameters do have
an impact on the organization of the graph into densely connected communities. In
particular, a steeper cluster size distribution is associated with a greater average degree and
with a stronger dependence of friendships on distance. These two conditions, in fact, favor
the emergence of just a few giant clusters and of a multitude of clusters of variable size.
When µ = 10 and β = 0.5, we notice a sudden drop of the cluster size, with no clusters
of size ≈ 100. Quite surprisingly, taking fu ∼ 1 + LN (ln(2), 0.25) seems to have a minor
impact from this point of view, albeit this choice is supposed to guarantee the existence
of large hubs. For the sake of completeness, in Figure 8, we compare the modularity of
the obtained clustering structure for different configurations. We see that the modularity
ranges from less than 0.3, when µ = 10 and β = 0.5, to ≈0.5 when µ = 5 and β = 2. Not
surprisingly and in line with previous findings, the density of the network has a major
impact on the quality of the obtained communities. Especially with denser networks,
the penalty applied to long edges also has a visible effect, contrarily to the fitness score.
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(a) (b)

(c) (d)

(e) (f)

Figure 7. (Florence) Overview of the urban social graph. Each plot shows the average with confidence interval for 10
independent runs with the same configuration. The plots are discussed in Sections 4.2 and 4.3. (a) Size of the largest
50 connected components. (b) Size of the largest 50 clusters (Louvain). (c) Degree distribution with Lognormal fit. (d)
Geographical distance between adjacent vertices. (e) Mean and max intra-cluster geographical distances. (f) Mean distance
to all other vertices vs. Degree.

In Figure 7c, we finally show the degree distribution of the graph (we remind that
household edges are included) for all configurations, in a log-log scale. At least when
fu ∼ 1 + LN (ln(2), 0.25), we expect the right tail of the degree distribution of the graph
to be heavy but not fat (i.e., subexponential but not power-law). To verify this insight, we
included in the plot the result of a Lognormal fit of the portion of the distribution corre-
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sponding to degrees ≥ µ. The fit looks indeed accurate when fu ∼ 1 + LN (ln(2), 0.25),
whereas when fu ≡ 1 the tail of the distribution is much shorter. The impact of the expo-
nent β is slightly but consistently visible in all plots: when D = d−2, the distribution is
more skewed than when D = d−0.5, with a larger portion of loosely connected vertices
compensated by the presence of greater hubs. This phenomenon is more visible in the
other cities (see Appendices C and D), where the territory is proportionally wider. The
rationale is that a weaker dependence on the distance pushes individuals living in central
and denser areas to connect to peripheral vertices, that would otherwise remain isolated.

Figure 8. (Florence) Modularity of the obtained clustering structure—distribution for 10 independent
runs per configuration. The quality of the obtained partition increases for small µ and large β, whereas
it is not influenced by fu.

4.3. Geography of the Graph

Since our model includes a factor purposely designed to penalize long friendship
edges, it is especially worth assessing the correlation between topological properties and
population density. To this end, we first show in Figure 7d the distribution of the edges’
physical length. We immediately see that, as expected, the fitness function and the average
degree appear to have a negligible impact on the distribution, contrary to the distance
function. Our graph model indeed guarantees that both µ and fu only impact on the number
of friends of u, whereas, regardless of µ and fu, D(u, v) is what ultimately determines
the ratio of friends v that u will have at any given geographical distance. Of course, this
works as long as the fitness is distributed independently of the location, which is true by
design on a probability base. For what concerns D, with respect to β = 2, setting β = 0.5
significantly favors the creation of long edges at the expenses of the very short ones.

We now look into the obtained communities to see if they are geographically con-
centrated and/or bounded. To this end, Figure 7e shows the mean and max intra-cluster
distance for the first 50 clusters of the graph. By comparing Figure 7e with Figure 7b,
we realize that, albeit long intra-cluster edges tend to disappear as the cluster size gets
smaller, only clusters that are at least 3 orders of magnitude smaller than the whole graph
are geographically bounded—a phenomenon that is especially visible when µ = 10, that
is, when the cluster size distribution is steeper. This is partially in line with a previous
work showing a sudden rise in the geographical extension of the communities of empirical
networks [21]. All sufficiently large clusters behave very similarly to each other and to the
whole graph: most intra-cluster edges connect nearby vertices, yet very long edges do exist
in each cluster. This plot underlines that the parameter β has a paramount role even in the
formation of clusters, with both the mean and max intra-cluster distance being consistently
greater when β = 0.5 compared to the case β = 2. In particular, the mean distance when
β = 2 is often less than the tile side l (set to 1 km as per Section 2.1), meaning that most
adjacent vertices are at one tile of distance or less; the mean distance is instead between 2l
and 3l when β = 0.5.

Finally, in Figure 7f, we plotted the average geographical distance of a vertex u from all
others against the degree of the vertex u. Since we introduced a penalization for long edges,
it is reasonable to expect that vertices that occupy a favorable position, closer, on average,
to the other vertices, will generally have a greater degree. However, setting D = d−0.5
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seems to be enough to significantly dissipate this effect, which is instead clearly visible
when D = d−2. Moreover, we also see that all large hubs have a very small average
distance from all other vertices, regardless of the specific configuration. In particular, when
fu ∼ 1 + LN (ln(2), 0.25), the greatest hubs correspond always to vertices having both a
large fu and a favorable position in the territory. Albeit the introduction of a social fitness
in the model allows to have medium-large hubs in sparsely populated regions, the greater
prevalence, on average, of hubs in densely populated areas may exacerbate the tendency
of other vertices to establish links with individuals in those areas.

4.4. Network Adjacency Matrices and Degree Density Plot

In Figure 9, for Florence (and in Figures A11 and A21 for the other cities), we report
the scatter plot of the adjacency matrices relative to the obtained social graph. In the plots,
nodes are ordered by their age and, within each age-group, by tile.

(a) β = 0.5. (b) β = 2.
Figure 9. (Florence) Adjacency matrix of the social graph with nodes (people) ordered by age-group.
In both cases, fu ∼ 1 + LN (ln(2), 0.25), µ = 10, and D(u, v) = d(u, v)−β, but β varies between the
two figures. The assortativity by age is clearly visible in both cases.

In all matrices, the prevalence of intra-groups edges (assortativity by age) over inter-
groups edges is clearly visible and in qualitative agreement with previous works on social
mixing patterns [49–52,57]. The white stripes, clearly visible for β = 2 (Figure 9b), are a
consequence of the sorting by tile (and of the use of tile-to-tile distances) and show the
impact of distance on connection patterns. In References [49,57], the authors also identified
sub-diagonals which account for parent-children contacts. These sub-structures cannot
be seen in our matrices because we used only four age-groups, while the aforementioned
studies relied on a stratification of the population into 5-year segments. In contrast, we
see that the adult group, which is the largest group in the population, dominates the
inter-groups contacts.

To further investigate the role of population density in shaping the graph, in Figure 10
(and Figures A12 and A22), we show the number of individuals living in each tile and
their average degree, for two selected configurations both with µ = 10, so that the average
degree of the whole graph is K ≈ 12. It is apparent that the average degree per tile
is strongly influenced by the choice of the distance function. While, in Figure 10b, the
situation is mostly homogeneous with few tiles above average, in Figure 10c, most tiles
are far below average, while the tiles surrounded by a densely populated area have a
high average degree. The increase of β has the effect of decreasing the probability of long
contacts, a condition that favors the concentration of hubs in high density areas.
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(a) Population in thousands. (b) Mean degree, β = 0.5. (c) Mean degree, β = 2.

Figure 10. (Florence) Heatmaps of the population and of the average degree per tile of the considered territory. The average
degree is obtained for a graph with fu ∼ 1 + LN (ln(2), 0.25), µ = 10 and D(u, v) = d(u, v)−β, for both β ∈ {0.5, 2}. With
β = 0.5 (b), the mean degree is weakly correlated with the population density, contrarily to what happens when β = 2 (c).

Finally, to assess the impact of fu, we consider two different configurations having
both µ = 10 and β = 2, but one with fu ∼ 1 + LN (ln(2), 0.25) and the other with
fu ≡ 1. Figure 11a shows the difference of the mean degree per tile between these two
configurations, which results being negligible across the whole city. Figure 11b instead
shows the difference of the maximum degree per tile, which is huge for central and densely
populated areas. In essence, for fixed µ, the distance function D governs the average degree
of each tile, whereas the fitness scores fu has a major impact on its variance, as already
emerged from Figure 7c for the whole graph. If fu ≡ 1, the degree distribution within a
single tile is almost flat, except for the age-based variance induced by the social mixing
matrix S. With a long-tailed distribution for fu, we instead obtain individuals with different
sociability inside each tile.

(a) (b)
Figure 11. (Florence) Impact of switching from fu ≡ 1 to fu ∼ 1 + LN (ln(2), 0.25) on the degree distribution of each
tile. In both cases, µ = 10 and D(u, v) = d(u, v)−2. fu has no impact on the mean degree of each tile (a), but setting
fu ∼ 1 + LN (ln(2), 0.25) yields individuals with very different sociability inside each tile (b). (a) Difference of the mean
degree of each tile between the configuration with fu = 1+LN (ln(2), 0.25) and the configuration with fu ≡ 1. (b) Difference
of the maximum degree of each tile between the configuration with fu = 1 + LN (ln(2), 0.25) and the configuration with
fu ≡ 1.

5. Discussion and Conclusions

We have defined and implemented a probabilistic model of the strong social ties
binding the population of a given territory, organized into households. Despite the abun-
dance of related empirical and modeling studies, there is no general agreement concerning
the mechanisms behind the formation of urban social networks. Our model is, therefore,
designed on top of just a few clear assumptions: (i) not all individuals are equally sociable;
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(ii) the geographical distance and the age difference play a role in the probability that two
individuals become friends; (iii) we shall make use of all available data, bearing in mind
their shortcomings. An overview of the main features of the model can be found in Refer-
ence [22], where the potential of the proposed framework is confirmed by the results of a
set of epidemic simulations on the obtained network. In this paper, we instead provided a
detailed analysis and an extensive experimental validation to assess the robustness and the
flexibility of our model.

The main goal of this work is permitting the recreation of synthetic social networks in
the common circumstance where aggregated demographic data and some estimate of the
age mixing patterns are the only available information. The ubiquitous use of online social
networks and wearable sensors offers the opportunity to analyze networks that span the
globe, but the extent to which they can be used to track real geographical networks and
infer relationships is still an open question. On the other hand, social surveys are rarely
available and intrinsically limited in the size of the reconstructed network. Data related
to mobile (and/or landline) phone calls may seem a good compromise, but they are also
difficult to acquire, often disaggregated among several operators, and variable in terms
of pervasiveness and geographical resolution. Our tool addresses these issues providing
a way to simulate a population within an arbitrary territory, whose individuals may be
positioned with (almost) arbitrary precision, and for which the social mixing patterns can
be inherited from any already existing dataset.

We extensively evaluated the resulting social network and its dependence on system
parameters, considering three Italian cities that differ for both the size of the population
and the geography of the territory. We found that setting the average number of friends
to 5 is sufficient to obtain a giant component that almost spans the entire network, even
in the absence of household edges. Age- and proximity-based homophily do provide the
intended benefits: imposing data-driven age-based mixing patterns is critical to guarantee
the internal cohesion of single age-groups—in particular, of young people; using the real
population density and penalizing physically long edges prevents a Poisson-like degree
distribution; both improve the assortativity and the transitivity of the network. The
clustering coefficient, however, is rather low in the friendship layer of our graph, albeit
the whole social network has strong clustering thanks to the complete subgraphs used to
represent data-driven households. If we introduce a variable (specifically, Lognormally
distributed) sociability, we obtain the often desired heavy-tailed degree distribution. This
helps connecting peripheral areas to the core of the network, especially when the average
degree is small. However, sociable hubs tend to concentrate in densely populated areas,
with the combined effect of exacerbating the correlation between favorable positioning and
degree. The configurations that favor the rise of large hubs (i.e., Lognormal social fitness
and strong penalization of long edges) slightly worsen the global transitivity, but they
improve the average local transitivity. If we increase the average number of friends, most of
the network distributes in just a few giant communities, a phenomenon that is amplified by
a weak penalization of long edges and not affected by the distribution of the social fitness.
Almost regardless of their size, the communities tend to have a large spatial extension,
even though the average distance of their members is small. Finally, by controlling the
penalization of long edges, we can not only control the distribution of the physical distance
between adjacent nodes but also the dependence of the average degree in a tile upon the
position of the tile. The variability of the degree internal to a tile is, however, entirely
controlled by the social fitness.

Our model is intrinsically conditioned by the meaning we give to the word “friend-
ship”, which is not only related to the value we assign to the average number of friends
µ. For instance, the experimentally measured dependence of u’s average degree upon the
density of vertices at different distances from u was already predicted by (7). However, we
mostly designed this simulator as a tool to study and possibly forecast interactions, e.g.,
for use in computational epidemiology, even when accurate data upon such interactions
are not available. When the friendship network is used to infer the likelihood of physical
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contacts, it may be reasonable to assume that living in a high density area implies being
part of a dense subnetwork of friends that have a greater chance to physically meet. In any
case, (7) also suggests that corrections to our model are possible to make it less sensitive to
population density, for instance, by imposing a limit to the total sociability of each tile or
using a density-aware D, such as the rank-based model defined in Reference [17]. Another
related element of discussion is the identification of the most suitable distribution for the
social fitness parameter, or even whether this parameter should be used in the first place or
not. While a heavy-tailed degree distribution characterizes many real-world networks [64],
it is widely acknowledged that even sociable human beings can establish a limited amount
of strong relationships [6,66]. In other words, since our urban social graph models strong
ties, whether a heavy-tail effect should be present and to what extent, is open to interpreta-
tion. A Lognormal fitness seems to yield the typical degree distribution of many real-world
networks, but setting fu ≡ 1 still guarantees that the maximum degree of the network is
5 to 6 times greater than the mode of the distribution, which may be preferable in many
practical cases. Finally, by not incorporating any preferential attachment mechanism other
than proximity and age-based homophily, our friendship graph model may fail to capture
some of the typical features of friendship networks. In particular, our simulations highlight
a limited tendency of friends to create triangles, which can be only partially ascribed to
the low average degree considered. In this sense, the model may benefit from the usage
of a fine-grained age-stratification, to intensify the internal cohesion of all age groups,
or from the definition of age-specific penalties for long edges, to foster triangles in certain
(e.g., school age) groups. Exploring all possible corrections to the model and providing a
final answer to these and other similar questions is way beyond the scope of the present
work. By making the simulator parametric and releasing it to the public as open source
software, we hope to stimulate the interest of a wide audience of users which may adjust
the simulator to their needs and possibly contribute to its further development.
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Appendix A. Population Synthesis: Territory and Households

The first step to building a synthetic, but realistic, population for a territory of interest
consists in the definition of the territory itself. We resorted to the well known Open-
StreetMap database by means of the overpass API: for each city/municipality of interest,
we download the shape file with its boundary. This is used, at first, to find out the territory
grid as the minimal rectangle that contains the shape and, later, to select only the tiles
of the grid whose center actually falls inside the shape. This simple technique allows to
reproduce with a high accuracy the actual number of people living in the selected area.
Comparing our reconstructed population with the ISTAT data, we observed a difference of
≈1% for all the three cities of Florence, Sabaudia, and Viterbo. Figure A1a is the analogous
to Figure 1a,b for Viterbo and shows the selected area with the city shape and a sample
population of 1000 individuals.

https://gitlab.com/cranic-group/usn
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Figure A1. A graphical representation of the Territory of Viterbo (a) and of the population of
Florence (b). (a) Random sample of 1000 people on the territory of Viterbo. (b) Population density
for the city of Florence.

As mentioned in Section 2.1, we aim at recreating a synthetic population that is
statistically indistinguishable from the real one. To this end, we selected the following
sources of information: (i) population density data from the WorldPop project [42]; (ii)
ISTAT age distribution data aggregated at the provincial level (for Sabaudia, we used
the Province of Latina, to which the city belongs); (iii) due to the absence of analogous
data at any greater resolution, we use ISTAT household composition and frequency data
aggregated at the national level. The reconstructed population density for the city of
Florence is depicted in Figure A1b. The set of available household types and roles based
on ISTAT data are reported in Table 2, where “various” comprehends all possible cases not
included in the previous instances (e.g., non-partner adults living together). It is worth it
to underline that acquiring all data from the same source was unfortunately impossible.
In particular, albeit WorldPop makes available an age-stratified population density, we
verified that using those data induces an age distribution that is inconsistent with ISTAT
data on household composition.

Based on the collected data, we extract the tile label tu and the age label gu for
each individual u of the population, as defined in Section 2.1. We also assign a role to
each agent based on the joint-distribution of age and household roles provided by ISTAT,
i.e., conditioning on gu when we draw u’s role ru. We then generate the households with
the algorithm described in Section 2.2.

We assess the robustness of the algorithm under perturbations to the age distribution,
by considering independent relative variations—either positive or negative—to the proba-
bility of each age-group, controlled by a real-valued parameter ω. Formally, if πi =

|Vi |
N is

the data-driven probability of age group i, the perturbed value π∗i is obtained as follows:
we draw ε ∼ 1

2N (ω, ω2) + 1
2N (−ω, ω2), where N (λ, σ2) denotes the normal distribution

with mean µ and variance σ2; we set π∗i = πi · (1+ ε); we normalize π∗i so that ∑n
i=1 π∗i = 1.

For both ω = 0.01 and ω = 0.1, we pick 20 different perturbed age distributions, and we
evaluate the quality of the resulting households under perturbation to the input data.

First, we address the problem that our heuristics does not guarantee that all individ-
uals of the population are assigned to some household. For instance, this may happen if
in any of the tiles the number of “single parents” exceeds the number of “children of a
single parent”. We, therefore, count the number of unassigned people in two different sets
of simulations: (i) we consider a single tile and vary the number of individuals in the tile
(see Figure A2a, with the range for the population size taken from the city of Florence); or
(ii) we consider the whole city and vary the side of the tiles used to define the grid (see
Figure A2b, again for the case of Florence). Figure A2a shows that the number of people
left out of all households is negligible, provided that the number of individuals in each
tile is large enough to guarantee that all roles are sufficiently represented. Accordingly,
Figure A2b shows that the number of unassigned people in the city drops very fast as soon
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as the tiles are large enough to contain, on average, a sufficient number of people; this
number approaches zero as the tile size grows, i.e., as the population of each tile approaches
the total population N. The quality of the heuristics decreases when the noise volume
ω grows, thus highlighting the importance of internal consistency in the data. However,
the plots show that the number of unassigned people stays safely below 1% of the total
population even in the presence of (reasonable) fluctuations in the input data.

(a) (b)

Figure A2. (Florence) Number of people not assigned to any household in different simulations,
as the size of the population, the side of each tile and the noise added to the age distribution vary.
(a) Number of unassigned people vs. population size. (b) Number of unassigned people vs. tile
size (Florence).

Next, we focus on the distribution of households by type and by number of children. In
Figure A3a, we plot the number of households of each type obtained for the city of Florence
with our heuristics, on both clean and noisy data, compared with an estimate based on
ISTAT data. In the plot, “ISTAT data” refers to the weighted average of the conditional
probability of being the head of a specific household type given the age, computed through
the law of total probability from ISTAT data. For instance, the number of households of
type “1 Parent w/Children” is computed as the weighted average of the role (single-parent,
parent). This approach allows to gain an estimate based on ISTAT data that takes into
account the specific age distribution of Florence. The figure shows that our results do
match the expected distribution almost perfectly and that the heuristics is very robust with
respect to noise. In Figure A3b, we instead show the distribution of the number of children
for the types of household composed of parents and children. In this case, “ISTAT data” is
obtained from the national aggregate distribution of the number of children per family; to
the best of our knowledge, equivalent data are unfortunately unavailable for the province
of Florence. The two distributions might significantly differ in light of the demographic
differences between the residents of the city and the entirety of the Italian population. This
difference may explain, at least in part, the divergence between the ISTAT data and the
results of our simulations. In any case, the results look reasonable and are, again, stable
with respect to perturbations in the input data.
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(a) Household distribution per type (b) Distribution of the number of children in families.

Figure A3. (Florence) Distribution of household types and number of children obtained with our heuristic, with and
without noise on the input data, compared with ISTAT data.

Appendix B. Social Contact Data

In our urban social graph, the probability Pr[u, v] of an edge connecting individuals
u and v is given by (2). The dependence of Pr[u, v] upon the age groups gu and gv is
determined by the matrix S which is defined by using the available social contact data
as follows.

Appendix B.1. Initial Data

We assume that social contact patterns among individuals of our age-stratified pop-
ulation are available in the form of a n × n social contact matrix Γ = {γi,j}i,j∈{0,...,n−1},
where n is the number of considered age groups. Following a systematic literature review,
the project SOCRATES [16] recently released an online tool (https://lwillem.shinyapps.
io/socrates_rshiny/ (accessed on 23 April 2021)) to extract and analyze social contact
patterns for a wide range of countries based on the best publicly available survey datasets.
The tool allows to select a number of parameters upon which social contact matrices are
usually dependent, such as age breaks, gender, day of the week, duration, or location of
the contact. Once the preferred dataset and the aforementioned parameters are selected,
the tool produces the desired square matrix with γi,j measuring the average number of
daily contacts. For the scope of this paper, we relied upon the SOCRATES tool (v1.32),
using the Polymod [15] dataset for Italy and the following set of parameters:

• Age breaks: 0, 18, 35, 65 (the choice was dictated by the available data from ISTAT to
build households);

• Type of day: all contacts;
• Contact duration: more than 15 min;
• Contact intensity: all contacts;
• Gender: all;
• Reciprocity: yes;
• Weigh by age: yes;
• Weigh by week/weekend: yes;
• Locations: all except Home (because we use households for home contacts).

While we have no particular reason to recommend the use of the SOCRATES tool
to determine Γ, we believe it is a valuable resource that perfectly fits our needs. More
generally, the construction of a social contact matrix Γ is a typical problem in computational
social science and our simulator simply assumes that γi,j is an estimate of the volume of
interactions/relationships that an individual of age group i has with any other individual
of age group j within a given time span. It goes without saying that the type of contacts
described by Γ is partially reflected on the final structure of the graph.

https://lwillem.shinyapps.io/socrates_rshiny/
https://lwillem.shinyapps.io/socrates_rshiny/
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Appendix B.2. Data Preprocessing

In general, the matrix Γ may be not symmetric because γi,j depends upon the habits of
the individuals of group i, whereas γj,i on the habits of group j. Using graph terminology,
in the bipartite graph composed of individuals of groups i and j, γi,j and γj,i are an estimate
of the average degree of vertices of type i and j, respectively. Even if asymmetric, the matrix
should be consistent, in the sense that its entries should guarantee the reciprocity of contacts.
At the population level, reciprocity means that, in the bipartite graph, the total number of
edges that “exit” group i must be equal to the total number of edges that “enter” group
j, i.e., that |Vi| · γi,j = |Vj| · γj,i. Since survey data rarely meet this requirement, it is
standard practice to introduce a reciprocity correction [52,77] by taking the arithmetic
mean 1

2
(
γi,j · |Vi|+ γj,i · |Vj|

)
as an estimate of the total number of edges in the bipartite

graph. When i = j, instead, the total number of intra-group contacts for group i is given
by 1

2 (γi,i · |Vi|) because the graph is not bipartite. This leads to a group-adjacency matrix
A = {αi,j} defined as follows:

αi,j =

{
1
2
(
γi,j · |Vi|+ γj,i · |Vj|

)
if i 6= j

1
2 (γi,i · |Vi|) if i = j

. (A1)

Finally, we divide each αi,j by the total number of potential edges mi,j (see (1) in
Section 2.3) to obtain the matrix S = {si,j} of inter-group edge frequencies:

si,j =
αi,j

mi,j
=


1
2

(
γi,j
|Vj |

+
γj,i
|Vi |

)
if i 6= j

γi,i
|Vi |−1 if i = j

.

It is worth underlining that different sub-territories of the same country may have
different age-group ratios, therefore requiring different corrections. The reciprocity cor-
rection, implicit in (A1), therefore, is necessary, regardless of whether the matrix Γ had
already been corrected beforehand. For instance, the SOCRATES tool implements the reci-
procity correction but with national age-group statistics. If the local and national age-group
statistics are identical, it is easy to verify that a double correction is useless yet harmless.

Appendix B.3. Age-Homogeneous Mixing

In the absence of any age-based homophily, we have γi,j = hi ·
|Vj |

N−1 if i 6= j and

γi,i = hi · |Vi |−1
N−1 if i = j, where hi is the average number of (e.g., daily) contacts of the

individuals of group i. This leads to si,j =
hi

N−1 for all j. If, additionally, all age-groups are
“equally sociable”, we have hi ≡ h for all i, leading to a constant si,j =

h
N−1 for all i, j. This

scenario represents a condition of age-homogeneous mixing, in which the age groups have no
impact whatsoever on the edge probability—this condition is used as a benchmark in part
of the analysis presented in Section 3.

As highlighted in Section 2.3, our model is invariant under multiplication of S by any
positive constant. This means that the value h is irrelevant and that age-homogeneous
mixing can be obtained by taking S to be any constant matrix, such as si,j ≡ 1. If we
choose to have si,j represent the probability that a randomly chosen edge of the graph
connects groups i and j, age-homogeneous mixing corresponds to si,j =

1
n2 for all i, j, so

that ∑i,j si,j = 1.

Appendix C. Results for the City of Viterbo

The same analysis discussed in Sections 3 and 4 for the city of Florence has been
carried out for the cities of Viterbo and Sabaudia. Except for a few details, mostly ascribable
to differences in the demographics and in the geography of the considered territories,
the same observations and conclusions drawn for the case of Florence apply to these other
two cities, as confirmed by the results shown in this and the next appendix. In the following,
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we report all plots and tables for the city of Viterbo, which are by all means analogous to
those already presented for Florence.

Table A1. (Viterbo) Percentage of nodes of the graph that belong to the giant component, on average,
for the friendship graph GF and the entire social graph G, as β, fu, and µ, vary.

β fu
µ = 1 µ = 5

GF G GF G

0.5 1 3.2% 76.1% 99.2% 99.7%
0.5 1 + LN (ln(2), 0.25) 19.4% 75.0% 98.1% 99.4%
2 1 15.5% 73.1% 98.3% 99.5%
2 1 + LN (ln(2), 0.25) 24.0% 72.7% 97.2% 99.0%

Figure A4. (Viterbo) Average degree of the individuals of each age group, in the whole friendship
graph GF and with their peers, under different configurations all with µ = 5.

(a) Without household edges. (b) With household edges.

Figure A5. (Viterbo) Percentage of edges between age groups in a configuration with data-driven
population and age-based mixing, for fu ∼ 1 + LN (ln(2), 0.25), µ = 5 and D(u, v) = d(u, v)−2.
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Table A2. (Viterbo) Main features of the friendship graph GF as the population type, D(u, v) and µ vary, for constant fu

and S. 〈dist〉 is the average path length, C is the global clustering coefficient, ρ is the degree assortativity, “# comp.” denotes
the number of connected components, and “giant %” denotes the percentage of nodes in the giant component.

(a) Friendship Network for µ = 5. Expected Values for an ER Graph with µ = 5: 〈dist〉 ≈ 6.9, C = 7.5e-05.

µ = 5
Population D(u, v) 〈dist〉 C ρ # Comp. Giant %

homogeneous 1 7.08 8.2e-05 −5.06e-04 458.9 99.3%
homogeneous d(u, v)−0.5 7.04 8.2e-05 0.005 546.9 99.2%
homogeneous d(u, v)−2 7.15 7.95e-04 0.13 1022.1 98.4%
real 1 7.08 8.2e-05 −1.91e-04 463.1 99.3%
real d(u, v)−0.5 6.94 9.2e-05 0.02 1053.9 98.4%
real d(u, v)−2 6.44 0.00025 0.2 9137.3 84.0%

(b) Friendship Network for µ = 10. Expected Values for an ER Graph with µ = 10: 〈dist〉 ≈ 4.82, C = 1.5e-04.

µ = 10
Population D(u, v) 〈dist〉 C ρ # Comp. Giant %

homogeneous 1 5.08 1.52e-04 −5.31e-04 4.1 100.0%
homogeneous d(u, v)−0.5 5.06 1.56e-04 0.011 8.0 100.0%
homogeneous d(u, v)−2 5.23 0.0016 0.22 42.9 99.9%
real 1 5.08 1.56e-04 −9.15e-04 4.8 100.0%
real d(u, v)−0.5 5.04 1.69e-04 0.04 55.8 99.9%
real d(u, v)−2 5.17 0.0005 0.31 4461.6 92.6%

Figure A6. (Viterbo) Degree distributions of friendship graphs with µ = 5 and corresponding
Poisson distributions with λ = 5. The data distribution lines show the mean, whereas the shaded
areas around the lines represent the 95% confidence interval. The Kullback–Leibler divergence
between the Poisson and the empirical distribution are (top to bottom, left to right): 8.4e-07, 7.2e-07,
6.03e-05, 0.001, 0.001, 0.03.
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Figure A7. (Viterbo) Degree distributions of friendship graphs with µ = 10 and corresponding
Poisson distributions with λ = 10. The data distribution lines show the mean, whereas the shaded
areas around the lines represent the 95% confidence interval. The Kullback–Leibler divergence
between the Poisson and the empirical distribution are (left to right, top to bottom): 1.41e-06,
1.003e-06, 0.0002, 0.003, 0.003, 0.05.

Figure A8. (Viterbo) Distribution of the size of the connected components other than the giant for
friendship graphs with µ = 5 and µ = 10. The lines show the mean, whereas the error bars (with
“caps”) represent the 95% confidence interval computed over each set of runs.
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(a) (b)

(c) (d)

(e) (f)
Figure A9. (Viterbo) Overview of the urban social graph for the city of Viterbo. Each plot shows the average with confidence
interval for 10 independent runs with the same configuration. (a) Size of the largest 50 connected components. (b) Size of the
largest 50 clusters (Louvain). (c) Degree distribution with Lognormal fit. (d) Geographical distance between adjacent vertices.
(e) Mean and max intra-cluster geographical distances. (f) Mean distance to all other vertices vs. Degree.
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Table A3. (Viterbo) Main features of the social graph as fu, β and µ vary, for data-driven population
and S. K = µ + ν is the average degree, 〈dist〉 is the average path length, C and Cloc are the global
and average local clustering coefficients, ρ is the degree assortativity, “# comp.” denotes the number
of connected components, and “giant %” denotes the percentage of nodes in the giant component.

(a) Social Graph for µ = 5.

µ = 5
fu β K 〈dist〉 C Cloc ρ # Comp. Giant %

1 0.5 6.795 5.902 0.052 0.078 0.264 894.2 98.5
1 2 6.789 6.081 0.045 0.130 0.420 3578.8 91.9
1 + LN (ln(2), 0.25) 0.5 6.788 5.786 0.048 0.089 0.207 1127.3 98.1
1 + LN (ln(2), 0.25) 2 6.781 5.970 0.041 0.138 0.320 3826.3 91.5

(b) Social Graph for µ = 10.

µ = 10
fu β K 〈dist〉 C Cloc ρ # Comp. Giant %

1 0.5 11.795 4.723 0.017 0.029 0.309 140.2 99.8
1 2 11.780 4.998 0.015 0.074 0.452 1947.3 96.0
1 + LN (ln(2), 0.25) 0.5 11.781 4.656 0.016 0.035 0.208 226.7 99.6
1 + LN (ln(2), 0.25) 2 11.791 4.924 0.014 0.080 0.311 2088.6 95.7

Figure A10. (Viterbo) Modularity of the obtained clustering structure—distribution for 10 indepen-
dent runs per configuration.

(a) β = 0.5. (b) β = 2.

Figure A11. (Viterbo) Adjacency matrix of the social graph with nodes (people) ordered by age-
group. In both cases, fu ∼ 1 + LN (ln(2), 0.25), µ = 10, and D(u, v) = d(u, v)−β, but β varies
between the two figures.
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(a) Population in thousands. (b) β = 0.5. (c) β = 2.

Figure A12. (Viterbo) Heatmaps of the population and of the average degree per tile of the considered territory. The
average degree is obtained for a graph with fu ∼ 1+LN (ln(2), 0.25), µ = 10 and D(u, v) = d(u, v)−β, for both β ∈ {0.5, 2}.

(a) (b)

Figure A13. (Viterbo) Impact of switching from fu ≡ 1 to fu ∼ 1 + LN (ln(2), 0.25) on the degree distribution of each tile.
In both cases, µ = 10 and D(u, v) = d(u, v)−2. (a) Difference of the mean degree of each tile between the configuration with
fu = 1 + LN (ln(2), 0.25) and the configuration with fu ≡ 1. (b) Difference of the maximum degree of each tile between the
configuration with fu = 1 + LN (ln(2), 0.25) and the configuration with fu ≡ 1.

Appendix D. Results for the City of Sabaudia

In this section, we report all plots and tables for the city of Sabaudia, which are by all
means analogous to those already presented for Florence and Viterbo.
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Table A4. (Sabaudia) Percentage of nodes of the graph that belong to the giant component, on aver-
age, for the friendship graph GF and the entire social graph G, as β, fu, and µ, vary.

µ = 1 µ = 5

β fu GF G GF G

0.5 1 3.8% 75.8% 99.3% 99.8%
0.5 1 + LN (ln(2), 0.25) 17.4% 74.7% 98.1% 99.4%
2 1 6.9% 75.0% 99.1% 99.7%
2 1 + LN (ln(2), 0.25) 20.3% 73.8% 97.9% 99.3%

Figure A14. (Sabaudia) Average degree of the individuals of each age group, in the whole friendship
graph GF and with their peers, under different configurations all with µ = 5.

Table A5. (Sabaudia) Main features of the friendship graph GF as the population type, D(u, v) and µ vary, for constant fu

and S. 〈dist〉 is the average path length, C is the global clustering coefficient, ρ is the degree assortativity, “# comp.” denotes
the number of connected components, and “giant %” denotes the percentage of nodes in the giant component.

(a) Friendship Network for µ = 5. Expected Values for an ER Graph with µ = 5: 〈dist〉 ≈ 6.2, C = 0.0002.

µ = 5
Population D(u, v) 〈dist〉 C ρ # Comp. Giant %

homogeneous 1 6.37 2.55e-04 −0.002 149.2 99.3%
homogeneous d(u, v)−0.5 6.36 2.43e-04 0.002 155.1 99.3%
homogeneous d(u, v)−2 6.49 0.0017 0.04 181.4 99.1%
real 1 6.37 2.47e-04 −5.67e-04 155.6 99.3%
real d(u, v)−0.5 6.25 2.95e-04 0.06 277.1 98.7%
real d(u, v)−2 6.93 0.0013 0.4 3356.8 80.9%

(b) Friendship Network for µ = 10. Expected Values for an ER Graph with µ = 10: 〈dist〉 ≈ 4.32, C = 0.0005.

µ = 10
Population D(u, v) 〈dist〉 C ρ # Comp. Giant %

homogeneous 1 4.59 4.78e-04 −0.001 1.8 100.0%
homogeneous d(u, v)−0.5 4.59 4.71e-04 0.004 2.2 100.0%
homogeneous d(u, v)−2 4.75 0.003 0.08 3.2 100.0%
real 1 4.59 4.84e-04 5.1e-04 2.1 100.0%
real d(u, v)−0.5 4.56 5.72e-04 0.12 6.3 100.0%
real d(u, v)−2 5.45 0.002 0.5 1156.6 94.0%
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(a) β = 0.5. (b) β = 2.

Figure A15. (Sabaudia) Percentage of edges between age groups in a configuration with data-driven
population and age-based mixing, for fu ∼ 1 + LN (ln(2), 0.25), µ = 5 and D(u, v) = d(u, v)−2.

Figure A16. (Sabaudia) Degree distributions of friendship graphs with µ = 5 and corresponding Poisson distributions with
λ = 5. The data distribution lines show the mean, whereas the shaded areas around the lines represent the 95% confidence
interval. The Kullback–Leibler divergence between the Poisson and the empirical distribution are (left to right, top to
bottom): 5.3e-06, 5.8e-06, 1.2e-05, 0.001, 0.0001, 0.05.
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Figure A17. (Sabaudia) Degree distributions of friendship graphs with µ = 5 and corresponding Poisson distributions with
λ = 5. The data distribution lines show the mean, whereas the shaded areas around the lines represent the 95% confidence
interval. The Kullback–Leibler divergence between the Poisson and the empirical distribution are (left to right, top to
bottom): 2.23e-06, 3.01e-06, 3.4e-05, 0.003, 0.0004, 0.08.

Figure A18. (Sabaudia) Distribution of the size of the connected components other than the giant for
friendship graphs with µ = 5 and µ = 10. The lines show the mean, whereas the error bars (with
“caps”) represent the 95% confidence interval computed over each set of runs.
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(a) (b)

(c) (d)

(e) (f)

Figure A19. (Sabaudia) Overview of the urban social graph for the city of Sabaudia. Each plot shows the average with
confidence interval for 10 independent runs with the same configuration. (a) Size of the largest 50 connected components.
(b) Size of the largest 50 clusters (Louvain). (c) Degree distribution with Lognormal fit. (d) Geographical distance between
adjacent vertices. (e) Mean and max intra-cluster geographical distances. (f) Mean distance to all other vertices vs. Degree.
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Table A6. (Sabaudia) Main features of the social graph as fu, β and µ vary, for data-driven population
and S. K = µ + ν is the average degree, 〈dist〉 is the average path length, C and Cloc are the global
and average local clustering coefficients, ρ is the degree assortativity, “# comp.” denotes the number
of connected components, and “giant %” denotes the percentage of nodes in the giant component.

(a) Social Graph for µ = 5.

µ = 5
fu β K 〈dist〉 C Cloc ρ # Comp. Giant %

1 0.5 6.751 5.389 0.052 0.076 0.270 238.2 98.8
1 2 6.743 6.140 0.041 0.145 0.524 1234.3 92.0
1 + LN (ln(2), 0.25) 0.5 6.733 5.297 0.048 0.087 0.206 312.3 98.4
1 + LN (ln(2), 0.25) 2 6.748 6.201 0.039 0.155 0.400 1309.9 91.5

(b) Social Graph for µ = 10.

µ = 10
fu β K 〈dist〉 C Cloc ρ # Comp. Giant %

1 0.5 11.733 4.310 0.018 0.028 0.317 28.5 99.9
1 2 11.724 5.114 0.018 0.080 0.553 543.5 96.9
1 + LN (ln(2), 0.25) 0.5 11.742 4.254 0.017 0.034 0.216 54.8 99.7
1 + LN (ln(2), 0.25) 2 11.759 5.033 0.018 0.089 0.393 588.7 96.6

Figure A20. (Sabaudia) Modularity of the obtained clustering structure—distribution for 10 inde-
pendent runs per configuration.

(a) β = 0.5. (b) β = 2.

Figure A21. (Sabaudia) Adjacency matrix of the social graph with nodes (people) ordered by age-
group. In both cases, fu ∼ 1 + LN (ln(2), 0.25), µ = 10, and D(u, v) = d(u, v)−β, but β varies
between the two figures.
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(a) Population in thousands. (b) β = 0.5. (c) β = 2.

Figure A22. (Sabaudia) Heatmaps of the population and of the average degree per tile of the considered territory. The
average degree is obtained for a graph with fu ∼ 1+LN (ln(2), 0.25), µ = 10 and D(u, v) = d(u, v)−β, for both β ∈ {0.5, 2}.

(a) (b)

Figure A23. (Sabaudia) Impact of switching from fu ≡ 1 to fu ∼ 1 +LN (ln(2), 0.25) on the degree distribution of each tile.
In both cases, µ = 10 and D(u, v) = d(u, v)−2. (a) Difference of the mean degree of each tile between the configuration with
fu = 1 + LN (ln(2), 0.25) and the configuration with fu ≡ 1. (b) Difference of the maximum degree of each tile between the
configuration with fu = 1 + LN (ln(2), 0.25) and the configuration with fu ≡ 1.
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