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Abstract: In Space–Air–Ground Integrated Networks (SAGIN), computation offloading technology
is a new way to improve the processing efficiency of node tasks and improve the limitation of
computing storage resources. To solve the problem of large delay and energy consumption cost
of task computation offloading, which caused by the complex and variable network offloading
environment and a large amount of offloading tasks, a computation offloading decision scheme based
on Markov and Deep Q Networks (DQN) is proposed. First, we select the optimal offloading network
based on the characteristics of the movement of the task offloading process in the network. Then,
the task offloading process is transformed into a Markov state transition process to build a model of
the computational offloading decision process. Finally, the delay and energy consumption weights
are introduced into the DQN algorithm to update the computation offloading decision process, and
the optimal offloading decision under the low cost is achieved according to the task attributes. The
simulation results show that compared with the traditional Lyapunov-based offloading decision
scheme and the classical Q-learning algorithm, the delay and energy consumption are respectively
reduced by 68.33% and 11.21%, under equal weights when the offloading task volume exceeds
500 Mbit. Moreover, compared with offloading to edge nodes or backbone nodes of the network
alone, the proposed mixed offloading model can satisfy more than 100 task requests with low energy
consumption and low delay. It can be seen that the computation offloading decision proposed in
this paper can effectively reduce the delay and energy consumption during the task computation
offloading in the Space–Air–Ground Integrated Network environment, and can select the optimal
offloading sites to execute the tasks according to the characteristics of the task itself.

Keywords: Space–Air–Ground Integrated Network; computation offloading; Markov decision
process; DQN

1. Introduction

Space–Air–Ground Integrated Network (SAGIN) is a large-scale and complex het-
erogeneous network system formed by the interconnection of space-based information
network, internet, and mobile communication network, which combines satellite network
with terrestrial network closely. Further, it collects, transmits, and processes space infor-
mation in real-time to meet the demand for communication services with global coverage.
The space–Air–Ground Integrated Network is a strategic and fundamental critical infras-
tructure network, which can drive the development of China’s emerging industries. In
the field of military and civilian information applications and Internet of everything era,
it plays a crucial role to deal with the demand for massive information services and will
be the inevitable trend of the future development of the network [1]. The space-ground
integrated network is a large complex hierarchical heterogeneous network, which mainly
consists of three parts: space-based backbone network, space-based edge access network
and ground-based backbone network. As shown in Figure 1, the space-based network
consists of satellites and satellite constellations as well as the corresponding ground infras-
tructure such as ground stations and network operation control centers. These satellites
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are in different orbits, and according to the altitude, the satellites can be divided into
Geostationary Orbit (GEO) satellites, Medium Earth Orbit (MEO) satellites, and Low Earth
Orbit (LEO) satellites [2]. Among them, the space-based backbone network is the core
infrastructure of the integrated space–ground information network, using satellites of
different levels at each orbital level to unite with each other to provide information trans-
mission and processing industry for the whole space information system. Space-based
edge access network contains various types of low-altitude vehicles, forming a single-layer
constellation, or dual constellation of low and medium orbit, information transmission
through satellite links, which can provide communication services to cover information in
the beam center gateway control station and various user terminals. The ground-based
network includes five theaters on the ground and various types of ground nodes (such as
cell phones, submarines, etc.), mainly consisting of cellular networks, mobile ad hoc net-
work (MANET) [3], Worldwide Interoperability for Microwave Access (WiMAX), Wireless
Local Area Network (WLAN) and other ground-based communication systems. Among
them, the ground-based backbone network is the ground infrastructure of the integrated
space–ground information network, connecting to the ground control station network and
communication gateway stations, thus forming a kind of information transmission method
for integrated scheduling of heaven and earth resources.

Figure 1. Architecture of the Space–Earth Integration Network. The structure of the Space–Air–
Ground Integrated Network is given from the perspective of network nodes, and the space-based
backbone network is the core infrastructure of the space–ground integrated information network
to meet the needs of various types of communications through the integration of space and
ground networks.

The GEO satellites have the characteristics of high coverage, high transmission rate,
and dynamic adaptation, but there are limitations of orbit fixation and high processing
task delay, while the low-medium orbits have the advantages of wide distribution and
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short distance, and the computing storage ability of ground base stations is strong. Using
air, space, and ground resources to work collaboratively can achieve multi-dimensional
strategic information services. However, due to the dynamic change of the Space–Air–
Ground Integrated Network topology, the number of tasks to be processed is huge and
the number of satellites is limited, so there are many problems such as limited computing
resources abilities of network nodes, and untimely task processing, resulting in some
important task processing to fail [4]. How to make the network nodes in different orbits
cooperate closely and collaborate in-depth to enable complex or large-scale tasks to be
processed efficiently, is an urgent problem should be solved at present.

At present, computation offloading technology [5] is widely used in Internet of things
and onboard network. It has become an important means of real-time processing and
lasting endurance of terminal business, mainly to solve the problems of lack of computing
capacity and limited storage resources of computing nodes. Computation offloading is the
key technology in Mobile Edge Computing (MEC), which can be executed by offloading
the business to other network sites with plentiful computational resources and powerful
computing capabilities, and then after the tasks are completed, the results are passed back
to the offloading terminal devices, thus saving the cost of the offloading terminal devices
and reducing the limitation of limited resources in the mobile system [6]. Therefore, in
the Space–Air–Ground Integrated Network, the computation offloading technology can
be used to decompose the compute-intensive tasks. Selecting any computing node in the
network that can take on the task offloading as the offloading site to perform tasks can
effectively alleviate the computational storage pressure of network nodes and improve the
efficiency of huge and complex tasks. The general process for task computation offloading
in the Space–Air–Ground Integrated Network is [7]: (1) Analysis whether any terminal
located in the space-based backbone network, the edge access network or the ground-
based backbone network requires task computation offloading. (2) Get the resources of
the network. (3) Analyze the state of the wireless channel, and determine whether the
task is executed locally or needs to be offloaded to other service devices for execution by
the computation offloading decision. (4) According to the decision instructions, the tasks
that need to be offloaded are split into several separate subtasks, the subtasks that do not
support offload are executed by the local terminal, and the subtasks that can be offloaded
are offloaded to other network nodes in the Space–Air–Ground Integrated Network.

The design of computation offloading mainly includes offloading decisions and opti-
mization of algorithms [8]. We consider the different types of computing nodes capabilities
of the space-based backbone network, the edge access network and the ground-based
backbone network in the Space–Air–Ground Integrated Network, and in-depth study of
computation offloading decisions and algorithms for optimization decisions that are suit-
able for the integrated network environment, in order to improve the execution efficiency
of huge and complex tasks in complex network environments.

2. Materials and Methods
2.1. Related Research

In recent years, computation offloading decisions [9] which aim at reducing delay
and energy consumption have become one of the hot topics of computation offloading
technology research, mainly considering whether user terminals need to be offloaded, the
number of offloads, and the choice of offloading location. Zhang et al. [10] combined the
auction theory to transform the computation offloading problem into a matching problem,
and proposed a multi-round sealed sequence combined auction mechanism to reduce the
delay in the computation offloading process. Kao and Krishnamachari [11] minimized the
application delay under the constraint of resource utilization, at the same time transformed
computation offloading into NP-hard problems, and proposed FPTAS online learning algo-
rithm to solve the problem of computation offloading delay in the dynamic environment.
Kamoun et al. [12] proposed a pre-computed offline solution to optimize the computa-
tion offloading process so that the terminal energy consumption could be minimized.
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Zhao et al. [13] proposed an optional offloading scheme based on the lightweight request
and access framework to reduce the energy consumption of devices. In reference [14], a
computation offloading decision based on the Lyapunov function was proposed. How-
ever, considering the topological dynamic characteristics of the network, this method is
not suitable for the wireless channel model with randomly changing. Du et al. [15] pro-
posed a low-complexity suboptimal algorithm, which used semi-deterministic relaxation
and randomization to obtain the optimal offloading decision to solve the computation
offloading problems in mixed fog/cloud computing systems. Liu et al. [16] transformed
the problem of computation offloading into the convex optimization problem, and pro-
posed an integrated fog and cloud computation offloading strategy, which offloaded a
series of applications to nearby fog nodes or cloud center and reduced the system delay.
Ren et al. [17] proposed an optimal joint communication and computing resource allocation
algorithm for the problem of resource allocation in computation offloading. Further, the
method of segmentation optimized partial offloading model was used to segment the data
to achieve the optimal resource matching under low delay. Chen et al. [18] proposed a
mixed-integer nonlinear computing task offloading decision, which transformed the prob-
lem of low-delay computation offloading into the problem of task offloading placement
and task resource allocation. This scheme effectively reduced the delay of the computation
offloading process in ultra-intensive networks. Yu et al. [19] aimed to reduce the delay
of the computation offloading process in the actual Internet of things and proposed a
completely polynomial-time approximate computation offloading strategy to rationally
allocate resources for applications and shorten the computation processing time. In Ref-
erence [20], a task priority algorithm of maximum energy saving was proposed, which
divided the tasks that need to be offloaded and applied the greedy algorithm to reduce
energy consumption in the computation offloading process. Chen et al. [21] considered
the computation offloading problem of mobile edge servers with energy collection devices
and proposed a task offloading strategy based on the Lyapunov algorithm and greedy
scheduling algorithm. When the server received a task offloading request, a centralized
and distributed resource scheduling strategy was adopted to reduce energy consump-
tion. Pham et al. [22] equalized the delay and energy consumption cost, and used the
dichotomy method to allocate computational resources to the mobile terminals that need
to be offloaded, while maximizing the number of offload tasks and effectively reducing
the total system cost. In Reference [23], the goal of minimizing delay and energy consump-
tion was achieved by combining OREO online algorithm and the Lyapunov algorithm
to dynamically optimize the server cache and the task computation offloading process
in the unknown system state scenario. In Reference [24], a task offloading algorithm for
distributed optimization of mobile edge computing was proposed to optimize the selection
of offloading terminals and the transmission power of CPU frequency, to reduce system
delay and energy consumption. Among the latest computation offloading techniques,
Naouri et al. [25] proposed a three-layer task offloading framework named DCC applied
to mobile terminals that distinguishes between types of application tasks and reduces
delay by shunting tasks with higher computational requirements to the cloudlet and cloud
layers, and placing low computational and high communication cost tasks to be executed
on the device layer. Zhang et al. [26] investigated task offloading in virtual vehicle servers
and proposed a fully distributed and infrastructure-less congestion avoidance and traffic
optimization system for vehicular ad-hoc networks in urban environments, called DIFTOS,
which divides the city map into a server with a hierarchical structure and has been demon-
strated in simulations under different traffic conditions its effectiveness and scalability.
Most of the existing computation offloading decision schemes have been applied in mo-
bile edge computing scenarios for mobile terminals or in-vehicle networks, but without
considering the time-varying factors of the network, the communication quality of the
channel, and the tasks’ attributes. For tasks of excessive magnitude, they are still unable to
effectively reduce delay and energy consumption in the task offloading process.
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The Space–Air–Ground Integrated Network has a complicated and changeable en-
vironment, and the amount of offloading tasks is huge so that the existing computation
offloading decision schemes are not applicable. Considering the Space–Air–Ground In-
tegrated Network structure, network channel states, task characteristics, and terminal
devices performance, combining the Markov State Transition Principle [27,28] and neural
networks, we propose a computation offloading decision method based on Markov and
DQN. This method performs data segmentation processing on the task, and abstracts the
computation offloading decision process of the task into the state transition process of
Markov model, and then uses the improved DQN algorithm to update the model, and
finally selects the most optimal offloading decision according to the attributes of the tasks
and the performance of the offloading sites.

2.2. Computation Offloading Decision Process

In this section, combining with Markov Decision Process Principle, the tasks are
offloaded to the ground-based backbone nodes, the edge access nodes, or the space-based
backbone nodes according to their own locations and requirements. Figure 2 shows the
model of the computation offloading decision process based on Markov Decision.

Figure 2. Markov State Transition Model. The Space–Air–Ground Integrated Network is abstracted
into an offloading network model represented by Markov states, with i denoting the task offloading
location and circles de-noting the Markov states in each decision period. Taking the edge access
network in the middle layer as an example, the whole Markovian decision process is given, which is
represented by gray circles.

The offloading terminals (offloader) of the Space–Air–Ground Integrated Network are
the terminal devices at various positions in the network, and the offloading sites (offloadee)
are offloaded sets that can provide a variety of computing nodes choices for tasks. The
terminal devices in the network are in high-speed movement states. When processing
high-intensity tasks, the signal strength of the wireless network coverage of the offloading
sites will be weakened due to the prolonged processing time. Therefore, the huge and
complex task is divided into several independent subtasks using the divide and conquer
thinking, and the continuous task processing process is abstracted into the state transition
process of the Markov model to reduce the series of effects caused by the dynamic change
of the position of the terminal devices. Taking the offloading tasks (offloader tasks) in the
edge access network as an example, the entire Markov decision process is constructed.
Define Vin as the i-th task of the current terminal device n.

The location of the offloading terminals and the offloading execution terminals are
not fixed. During the task offloading execution, the wireless channel performance from the
terminals to the servers in the space-based backbone network, the ground-based backbone
network, or edge access network is constantly changing. And the higher the transmission
delay, the more difficult it is to guarantee the transmission quality of the wireless channel.
Therefore, it is necessary to fully consider the factors that affect the network status during
the task offloading execution. In the process of task offloading, to minimize the delay and
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energy consumption of task computation offloading, it is necessary to keep the current
task offloading network as the most optimal network. When the terminal devices leave the
scope of the offloading network which is currently executed by the offloading task, or a new
offloading network that meets the offloading conditions is added, the original offloading
network will change. At this time, switching through the network should be considered to
complete the task offloading. Figure 3 shows the flow chart of network switching in the
process of task computation offloading of the Space–Air–Ground Integrated Network.

Figure 3. Network Switching Flowchart. This figure represents the network selection and switching
process during task offloading. Network switching is always present during the whole task offloading
process, always keeping the network where the current task is offloaded as the optimal network, so
that the delay and energy cost of task offloading are minimized.
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When the computational resources of the offloading sites do not meet the offloading
conditions, it’s essential to select new offloading sites or perform network switching or
abandon the task computation offloading and change to execute at local terminal devices.
However, due to the complex environment of the Space–Air–Ground Integrated Network,
the offloading network is prone to network interruption during the switching process. To
avoid network interruption caused by the change of offloading network, it is required to
select the most optimal offloading sites before computation offloading process, construct
the most optimal offloading network, and reduce the probability of network switching in
the decision process. Figure 4 shows the mobile model of the task offloading process.

Figure 4. Task Offloading Process Movement Model. The connection boundary of the wireless
network is a circular shape. Its center, O, is the transmitting and receiving antenna of the signal
of the offload terminal device, which represents the terminal location of the current task offload
of the network. The radius of the boundary circle (indicated by the dotted line) is the connection
range of the infinite network, and the solid line indicates the moving path of the terminal equipment
within the circle, where Point A represents the initial position of the offloading site when the task is
unloaded, and Points B, C and D are the positions of the offloading site in the process of moving.

Among the model, Point O represents the terminal position where the current task
of the network is offloaded, Point A represents the initial position of the offloading sites
when task offloading, and Points B, C, and D are the positions during the movement of
the offloading sites. When the offloading sites move to the boundary of D, but the task
offloading calculation has not been completed, the task offloading may be failing. Next,
we choose the offloading network by calculating the residence time of the offloading sites
within the network. From the Friss equation for calculating the turbulence transmission
loss in free space [29] and the wireless signal strength attenuation model based on cubic
spline interpolation [30], the signal strength PA of the offloading terminal at A point can be
obtained, as shown in Equation (1):

PA = Pξ − 10φ× log10(d) (1)

where Pξ represents the signal strength reference value, and φ represents the wireless
network signal attenuation factor.
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The distance dOA between the offloading terminal O and the initial position A of the
offloading site is shown in Equation (2):

dOA =
Pξ − PA

10φ
(2)

In the same way, the distance dOB from Point O to Point B can be obtained. From
the known moving speed v of the offloading terminal O and the time tAB required for the
offloading terminal to move in the AB segment, calculate the distance dAB between AB, as
shown in Equation (3):

dAB = tAB × ν (3)

OC is the vertical line of the offloading terminal’s moving path. According to the
triangle side length equation, triangle similarity theorem, and the known triangle side
length, the distance between AD can be calculated finally. The resident time Tresident

j of the
terminal device in the wireless network is as shown in Equation (4):

Tresident
j =

dAD
ν

(4)

A task i of the offloading terminal is offloaded to the offloading site j for execution,
and the maximum calculation amount fmaxgive provided by the offloading site j to the
terminal device in the network is calculated as Equation (5):

fmaxgive = (Tj
resident − Ts

i − Tr
i )× f j (5)

where Ts
i represents the transmission time of task i data offloading to the specified offload-

ing site, Tr
i represents the data return time after the task is calculated and processed at the

offloading site, and f j represents the computing capacity of the offloading node j.
In the task computation offloading decision process, the computing capacity of all

offloading sites in the current network is judged according to Tresident
j and fmaxgive, the

fmaxgive s are sorted according to the value, and then select the most optimal offloading
network. Use control parameters to represent the system state of the Markov decision
process model in the offloading network. The entire system state is composed of the
Markov decision process set. A single Markov decision process includes the system state
set, action set, state transition probability, cost function and strategy space. At each decision
moment of task offloading, the control parameters of the system correspond to the actions
in the Markov decision process. The state transition probability of the system controls the
dynamic changes of the state and control parameters at each stage. Further, the evaluation
metrics for the final task computation offloading are presented by the cost function.

In the three-layer network architecture of Space–Air–Ground Integrated Network,
select the offloading sites that meets fmaxgive ≥ win to constitute the target state set
Xtarget = {0, 1, 2, · · · , n, n + 1} in the Markov decision process, and win represents the
computing power required for the offloading task. Among them, the newly added state is
the initial state x0,0 of task computation offloading and the state xn+1,0 of task computation
offloading completed. The specific Markov decision process of the model in Figure 2 is
M = (S, A, Psa, R). During the decision period t, the offloading terminal selects the action
a (a ⊂ A) according to the system state information xt,i = (t, i, Υt), and transitions from
the current state s to the next state s′. Psa represents the state transition probability and the
reward function R represented as r(s′|s, a) , where s (s ⊂ S) represents the set of all states in
a single Markov process. In the system status information, Υt represents the channel status
between the current offloading terminal and the offloading site; i ∈ [0, k + 6 + 5] represents
the set of task offloading locations, where k represents the optional offloading sites in the
edge access network, and 6 represents the offloading sites of the space-based backbone
nodes, 5 represents the offloading sites of the ground-based backbone nodes. The state s is
determined by the channel state and the location of the task offloading site. Assuming that
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the initial channel state is good, the initial state of the system is expressed as x0,k = (0, k, g),
and the final state is expressed as xn+1,k = (n + 1, k, Υn+1). When the target state of the
offloading task transitions to the state xn+1,0 ∈ Xtarget, the task computation offloading
is completed.

2.3. DQN-Based Computation Offloading Decision Algorithm

In the Markov computation offloading decision process, the strategy space contains
countless kinds of strategies, and it is necessary to find the best state-action path as the
final optimal decision, and then the offloading environment performs state transition
according to the actions of the terminal selecting a certain offloading site in the network
and calculates the reward value through the reward function. If the reward value is positive,
the terminal is less likely to select that offloading site thereafter; if the reward value is
negative, the trend is reversed. In this process, a large number of state-action pairs are
generated. In this section, the DQN algorithm is used to process these state-action pairs,
and the convolutional neural network and Q-learning algorithm are fused to solve the task
offloading decision process model to find the best action corresponding to each state and
complete the optimal task computation offloading.

Using the Q-learning algorithm, the intelligent terminal transfers the state of the
offloading tasks through the real-time action value and the cumulative reward value.
During the task offloading process, the channel state in the network is estimated in advance
and the computing capacity of the terminal is monitored. During the Q-learning process,
the processing status of the task is represented as (Oi, wtotal), where Oi represents the
offloading site’s number of the current processing task, and wtotal represents the total
amount of task data processed up to the current state. The next action of the task is
represented as (Oi, wi), where wi represents the amount of data to be offloaded when the
next action is performed. Suppose the initial reward function is 0, and the instant reward
function of each step in the offloading task is calculated by the reciprocal of the linear
expression of total delay and total energy consumption. The expressions of delay CTi and
energy consumption CEi are as follows:

Tti = FTl
ti
= Tl

ti
+ RTl

ti
(executed local) (6)

Tti = FTed
ti

= Ted
ti

+ RTed
ti

(o f f loaded to edge compute node) (7)

Tti = FTb
ti
= Tb

ti
+ RTb

ti
(o f f loaded to bone cpmpute node) (8)

Eti = El
ti
= γin · win (executed local) (9)

Eti = Eed
ti

= Teds
ti

ps + Ted
ti

pc (o f f loaded to edge compute node) (10)

Eti = Eb
ti
= Tbs

ti
ps + Tbr

ti
pr (o f f loaded to bone cpmpute node) (11)

Considering that in the Space–Air–Ground Integrated Network offloading environ-
ment, both the offloading terminals and the offloading sites have mobility. In Equations (4)
and (5), the communication duration Tresident

j of the offloading terminals and the offloading
sites, and the maximum computing capacity fmaxgive which the offloading sites can provide
are essential constraint conditions. According to the conditions of fmaxgive ≥ win in the
Markov computation offloading decision process, the offloading sites that can theoretically
complete the calculation task are obtained. Among these offloading sites that can complete
the calculation task, select the offloading site with the smallest sum of delay and energy
consumption cost, and the computation offloading decision taken at this time is optimal.
The traditional measure of the performance of the offloading decision uses delay or energy
consumption as a single constraint and seeks another minimum value to select the optimal
offloading decision. To be able to balance the cost of delay and energy consumption, while
taking into account the characteristics of different offloading tasks, weight parameters [31]
α and β that the maximum value is 1 are set for the cost of the task, respectively repre-
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senting the weight of delay and energy consumption. Each task that executes offloading
selects the size of the parameter value α and β according to its characteristic attributes. For
example, for military emergency tasks, the parameter value α can be set bigger. The task
computation offloading optimization goals are as follows:

minimize

{
Totalcost(C) = α ∑

vi∈V

m

∑
i=1

CTin + β ∑
vi∈V

m

∑
i=1

CEin

}
(12)

st. ∀ : fmaxgive ≥ win (13)

α + β = 1 (14)

where m represents the number of subtasks of the offloading task v of the terminal device
n, i represents the number of currently executed subtasks 0 ≤ i ≤ m, and C represents the
weighted total cost of delay and energy consumption. After obtaining the above-mentioned
optimal strategy, it is also necessary to compare its total cost with the total cost of the local
execution of the task. If the offloading cost is greater than the local execution cost, the task
is executed locally, otherwise, the execution is offloaded.

For edge computing nodes, space-based backbone nodes, and ground-based backbone
nodes in the Space–Air–Ground Integrated Network, there are differences in the computing
storage performance of offloading sites. Therefore, the calculation equations for delay and
energy consumption of different offloading sites are given, as shown in Equations (6) to
(11), the reward function is shown in Equation (15).

rt = 1/[αTti + βEti ] (15)

Suppose the terminal takes action at at time t, the environment transitions from state
st to st+1, and the winning case is rt = r(st, at, st+1);st and at determine the probability
distribution of st+1 and rt, and Qt is the action estimate of the initial state action pair at time
t. The optimization process of action-value function in the Q-learning process is shown in
Equations (16) and (17).

Q(s, a) = r + γmax
a∈A

Q(s′, a′) (16)

Q(s, a) = (1− λt)Q(s, a) + λt

{
r + γmax

a∈A
Q(s′, a′)

}
(17)

where λt represents the learning rate. The larger the value of λt is, the faster the convergence
speed will be. However, the value should not be too large, otherwise, the convergence will
be unstable and the optimal computation offloading decision will be affected.

Since Q-learning cannot store all possible states that in the complex Space–Air–Ground
Integrated offloading network in a Q table, introducing the neural network to estimate
the Q(s, a) generated in Q-learning can reduce the state space in the process of compu-
tation offloading decision and accelerate the convergence rate of the offloading process.
Equations (16) and (17) is used to calculate the partial action Q(s, a) value of a single task
during the task offloading decision period t, which is stored as the experience value in the
memory bank Ω and used as the training data set of the convolutional neural network.
Then the vector containing the value of each action Q(s, a) is output through two fully
connected convolutional network layers. The neural network is used to convert a single Q
value into a Q network, and then the backpropagation and gradient descent methods are
used to minimize the loss function, as shown in Equation (18):

L = (r + γmax
a′

(s′, a′)−Q(s, a))2 (18)

Finally, Equations (8) and (11) choose the optimal offloading decision to execute
the task.
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The DQN computation offloading algorithm uses the deep convolutional neural
network to nonlinearly approximate the action-value function in Q-learning during the
computation offloading decision process, adopts the experience playback method to train
the Q-learning process, and randomly extracts experience data from the state space to learn.
This method breaks the correlation between past experiences so that it can quickly find
the best task computation offloading decision path in the strategy space of the Space–Air–
Ground Integrated Network. The specific computation offloading algorithm process is
shown in Algorithm 1:

Algorithm 1 Computation Offloading Algorithm Based on DQN

Input:task amount; training cycle; the offloading terminal state-action value; location of the
offloading terminals and the offloading sites; movement speed of the offloading terminals;

Output: total cost of task offloading C

1. initial the computation offloading service request of the offloading terminals; initial the
offloading terminal state-action value and read the task amount;

2. calculate the resident time of the offloading terminal inside the network. Tresident
j = dAD

ν ;

3. obtain information about offloading sites in the network;
4. calculate the maximum calculation amount that each offloading site can provide

fmaxgive = (Tj
resident − Ts

i − Tr
i )× f j;

5. Sort fmaxgive according to the size of the value and select the optimal offloading network;
6. repeat
7. detect the performance and amount of offloading sites;
8. perform data cutting based on the performance of each offloading site;
9. repeat
10. calculate the state of each state after selecting an action;
11. select the corresponding action at from the state st;
12. execute action at and return the excitation value rt and state st;
13. Q(st, at)← Q(st, at) + α[rt + γmax

a∈A
Q(st+1, a)−Q(st, at)]

14. for t = 1; t < n + 1; t ++ do
15. store experience value < st, at, rt, st+1 > in memory Ω.
16. train the Q network;
17. calculate the minimum value of the loss function

L = (r + γmax
a′

(s′, a′)−Q(s, a))2

18. end for
19. choose the best offloading site, corresponding to state st ← st+1
20. until end of each training cycle;
21. if the task status in (Oi, wtotal) is changed to xn+1,0 then
22. complete the task computation offloading;
23. Send the data to the offloading terminal;
24. end if
25. until Over task amount;
26. All task data processing completed.

3. Results

The Space–Air–Ground Integrated Network simulation scene is set as follows: Ac-
cording to the 6 + 5 + x structure of the Space–Air–Ground Integrated Network, two
space-based backbone nodes, two ground-based backbone nodes, and six edge access
nodes were selected for simulation. That is, there are one offloading terminal and ten
computation offloading sites, among which four are used to simulate the computation
offloading sites of space-based or ground-based backbone nodes (B_offloadee), and the
rest are computation offloading sites of edge computing nodes (E_offloadee), which are
randomly distributed in different latitudes, and all nodes are connected through the wire-
less network. The factors that affect the task computation offloading decision include the
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offloading terminal, offloading sites, and attributes of the task itself, as shown in Table 1.
Considering the diversity of offloading sites of space-based backbone nodes, ground-based
backbone nodes, and edge access nodes in the network, the performance of ten offloading
sites are set, as shown in Table 2, where B1 · · · B4 represents the performance of backbone
nodes and E5 · · · E10 represents the performance of six edge offloading sites.

Table 1. Factors Affecting Computation Task Offloading Decisions.

Type Factors Affecting Decision

Terminal (Offloader) Data privacy and location
Offloading sites (Offloadee) CPU performance, energy, storage space, memory size

Task characteristics Calculate the data size and execution delay of offloading tasks

Table 2. Performance of Each Offloadee.

Type Computing Frequency

B1 3 GHz
B2 3.5 GHz
B3 4 GHz
B4 5 GHz
E1 2 MHz
E2 3 MHz
E3 5 MHz
E4 1 MHz
E5 2.5 MHz
E6 4MHz

The simulation in this paper utilized Python 3.7 for algorithm simulation and al-
gorithm analysis, and the code run dependency libraries including Tensorflow, Keras,
Numpy, Scipy, Matplotlib, CUDA, etc. We used Spyder which the integrated development
environment (IDE) that comes with Anaconda, perform the simulation verification, and
the specific results are as follows.

Firstly, taking the weighted total cost of delay and energy consumption as indicators,
the optimization performance of the DQN computation offloading algorithm is compared
with that of traditional computation offloading algorithm including Lyapunov-based
methods and classical Q-learning-based methods. Figure 5 shows the comparison of the
total cost for delay and energy consumption weight of 0.5 each, indicating the need to
balance delay and energy consumption when offloading tasks. Figure 6 compares the total
delay and energy cost of the three computational offloading methods for delay-sensitive
offloading tasks. The curves obtained from the three computation offloading methods
in Figures 5 and 6 show an increasing trend, indicating that the total delay and energy
consumption cost for task offloading in the integrated network increases with the amount
of tasks to be offloaded, while the offloading strategy based on the DQN computational
offloading algorithm proposed in this paper can significantly reduce the delay and energy
consumption cost.
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Figure 5. Comparison of total cost of delay and energy consumption weight at 0.5. Black indicates
the computation offloading method based on Lyapunov algorithm, red indicates the computation
offloading method based on classical Q-learning algorithm, and green indicates the computation
offloading method of DQN algorithm proposed in this paper, comparing the cost of the three
approaches when the delay and energy consumption are equally important.

Figure 6. Comparison of total cost when the delay weight is 0.9. Black indicates the computation
offloading method based on Lyapunov algorithm, red indicates the computation offloading method
based on classical Q-learning algorithm, and green indicates the computation offloading method of
DQN algorithm proposed in this paper, comparing the time delay and energy consumption cost of
the three approaches under experimentally sensitive task requirements.
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Secondly, using the number of times of network switching as an indicator, we compare
and analyze the impact of the DQN computation offloading method, Lyapunov algorithm,
and Q-learning algorithm on the task offloading decision process under the Space–Air–
Ground Integrated Network environment. In the process of offloading, network switching
will increase the cost of task execution. To reduce the cost of delay and energy consumption,
the number of network switching needs to be offloaded as few as possible. The results of
this comparison are shown in Figure 7. The graphs of all three strategies show an increasing
trend, i.e., it shows that the number of network switches performed by all three strategies
gradually increases as the number of tasks increases in the Space–Air–Ground Integrated
Network. The Lyapunov algorithm-based computation offloading strategy always has
the highest number of network switches, and the DQN algorithm based computational
offloading strategy proposed in this paper has significant advantages when the number of
offloading tasks is high, with the lowest number of network switches and thus the lowest
additional cost during the computational offloading of tasks.

Figure 7. The change in the number of subtasks switching frequency changes in offloading. Blue
indicates the computation offloading based on Lyapunov algorithm, black indicates the computation
offloading based on classical Q-learning algorithm, and red indicates the computation offloading
method of DQN algorithm proposed in this paper. Compare the number of network switching with
task amount during task offloading of the three approaches.

Then, using the delay and energy consumption as indicators, according to the charac-
teristics of the three-layer architecture of the Space–Air–Ground Integrated Network and
the terminal’s dynamic movement, the effectiveness of the Markov computation offloading
decision process to maximize the use of the three types of computing nodes in the net-
work is verified. Classify task offloading into all offloading to edge computing nodes, all
offloading to backbone nodes, and mixed computation offloading at edge backbone nodes.
Figure 8 compare the energy consumption cost of the mixed computation offloading under
a certain work request volume with that of the mode in which the particular offloading
sites are selected separately, while Figure 9 compares the delay cost. The graphs for all
three task offloading modes show an upward trend as the workload (i.e., the number of
task requests) increases. The rising trend of the mixed compute offloading mode proposed
in this paper rises slowly compared to the computation offloading mode that offloads all to
the backbone nodes, while the computation offloading mode that offloads all to the edge
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nodes tends to saturate when the workload is high. Therefore, the mixed compute offload
mode for edge backbone nodes in this paper has lower energy and delay cost.

Figure 8. Comparison of energy consumption costs of different offloading sites. Blue indicates that
all tasks are offloaded to the backbone nodes of the network, yellow indicates that all tasks are
offloaded to the edge nodes of the network, and red indicates the mixed offloading mode proposed
in this paper, where some tasks are offloaded to the backbone nodes and the others are offloaded to
the edge nodes. Compare the energy consumption cost of the mixed computation offloading under
a certain work request volume with that of the mode in which the particular offloading sites are
selected separately.

Figure 9. Comparison of delay costs of different offloading sites. Blue indicates that all tasks are
offloaded to the backbone nodes of the network, yellow indicates that all tasks are offloaded to the
edge nodes of the network, and red indicates the mixed offloading mode proposed in this paper,
where some tasks are offloaded to the backbone nodes and the others are offloaded to the edge nodes.
Compare the delay cost of the mixed computation offloading under a certain work request volume
with that of the mode in which a particular offloading sites are selected separately.
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Based on the simulation results of the algorithm, the number of network switches
and the task offloading mode, the DQN-based offloading decision scheme can be ap-
plied to the Space–Air–Ground Integrated Network, which has large number of tasks
to be offloaded, the complex offloading environment and the limited network resources,
and it can effectively reduce the time delay and energy consumption during the task
offloading process.

4. Discussion

The main objective of this paper is to solve the problems of low computational offload
efficiency, high delay and energy consumption cost in Space–Air–Ground Integrated
Network due to the complex and variable network offloading environment, the large
amount of offloading tasks and the limited computational and storage resources of the
network nodes, and to investigate a computation offloading solution that can adapt to
these characteristics of the Space–Air–Ground Integrated Network. In this paper, we
investigate a computation offloading solution that can accommodate these characteristics
of the integrated network. In the following, we discuss and analyze the findings from
the algorithms, network switching times and task offloading modes of the computation
offloading application, and then explain and validate the effectiveness and applicability of
our proposed DQN-based computation offloading decision scheme.

For the comparison of computational offloading algorithms, the Lyapunov algorithm
is the most widely used in computation offloading technology, which can maintain the
stability of the offloading system when the amount of tasks increases and prevent the
system performance from deteriorating sharply. The classical Q-learning algorithm can
solve the Markov decision process model through the maximum cumulative reward
obtained by the state-action, but the algorithm has limited applicability and is inefficient
in the large-scale state space. We have compared the system cost of these three kinds of
computation offloading algorithms when dealing with different amounts of offloading
tasks to verify the effectiveness of the proposed computational offloading algorithm in
updating the computation offloading decision process in the Space–Air–Ground Integrated
Network. We set different weights for the delay-sensitive tasks that need to be offloaded
on the offloading terminal. As can be seen from Figures 5 and 6, for the task offloading
requirements with equal weighting of delay and energy consumption, and for offloading
task volumes above 500 Mbit, the proposed computation offloading strategy reduces on
average 68.33% compared to the traditional Lyapunov-based computational offloading
decision scheme, and 11.21% compared to the Markovian decision method based on the
classical Q-learning algorithm. Further, for delay-sensitive offloading tasks, the three
computation offloading algorithms can effectively reduce the total cost of the offloading
strategy under the condition that the delay-sensitive offloading tasks have a greater weight
than the weight of energy consumption. The total cost of the offloading strategy of the
three computation offloading algorithms shows an upward trend with the increase in
the number of offloading tasks. In contrast, the upward trend of the DQN computation
offloading algorithm slows down significantly, which can effectively reduce the total delay-
energy consumption cost of the task offloading strategy. In Figure 6, when the amount of
offloading tasks is less than 160 Mbit, the total cost of offloading strategy under the DQN
computation offloading algorithm is slightly higher than the Q-learning algorithm and
close to Lyapunov algorithm. This is because the DQN computation offloading algorithm
is more complex than the other two algorithms, but the number of tasks to be offloaded
in the Space–Air–Ground Integrated Network is huge. Therefore, the offloading strategy
based on the DQN computation offloading algorithm can effectively reduce delay and
energy consumption.

For the comparison of the number of network switches during task offloading for
different computation offloading methods, as shown in Figure 7, the Lyapunov-based
computation offloading method has the highest number of switches and the steepest
upward trend. When the number of offloading tasks is small, the number of network
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switching times based on the Q-learning computation offloading method is the least; when
the number of offloading tasks exceeds 130 Mbit, the number of network switching times
based on the DQN computation offloading method is the least. It can be seen that the
Lyapunov algorithm does not have the learning characteristics of the Q-learning algorithm
and the DQN algorithm, and is not able to monitor the offloading environment in real-time
for policy learning and updating, resulting in the highest number of network switches
during the task offloading. Therefore, compared to Q-learning and DQN algorithms, the
Lyapunov algorithm is not suitable for application in the complex Space–Air–Ground
Integrated Network. For the Q-learning algorithm, the learning environment of the of-
floading network is relatively simple with a lower algorithm complexity than the DQN
algorithm when the number of offloading tasks is small. However, considering the com-
plexity, dynamic characteristics, and the large number of tasks in the Space–Air–Ground
Integrated Network, the DQN-based computation offloading method can select the optimal
computation offloading decision and offloading network, ensuring fewer network switches
and effectively reducing the additional cost in the computation offloading process.

For the three different mission offloading modes of the Space–Air–Ground Integrated
Network, as shown in Figure 8, the task has the lowest energy consumption for edge-only
computation offloading, with the workload between 20 and 80 requests, which is close to
the energy consumption for edge backbone nodes mixed computation offloading but is
saturated with edge computing workloads above 80 requests. Only the backbone nodes
have the largest computation offloading energy consumption and the fastest increasing. In
contrast, the offloading task using the mixed computation offloading mode of edge and
backbone nodes has lower energy consumption and high workloads, which effectively
meets the work demands of a large number of offloading tasks in the Space–Air–Ground
Integrated Network. Figure 9 shows that the offloading task using a mixed-mode of edge
and backbone nodes computing has the lowest delay cost, and the delay cost tends to
increase more slowly than other offloading modes as the workloads increase. Specifically,
when the number of the network work requests exceeds 100, the proposed mixed offloading
approach is 61.54% lower in energy consumption and 71.01% lower in delay cost than
the full offloading to the network backbone nodes approach, and is able to satisfy a large
number of task offloading requests without saturation. Therefore, selecting the mix of edge
and backbone nodes for computation offloading is more suitable for the task offloading
environment of the Space–Air–Ground Integrated Network than selecting a pattern of
offloading sites individually.

5. Conclusions

In the context of the Space–Air–Ground Integrated Network, due to the complex and
variable offloading environment, the huge amount of offloading tasks, and the different
storage resources and computing capacity of different orbital nodes, this paper theoretically
analyzes the status of the offloading terminals and the offloading sites, and the selection
of the offloading network and proposes a computation offloading decision scheme based
on the Markov decision process and DQN algorithm. Specifically, segment the task data,
select the optimal offloading network and the optimal offloading sites, transform the task
processing process into the state transformation process of the Markov model, and use the
DQN computation offloading algorithm to optimize the Markov decision process and seek
the optimal offloading strategy. The experiment proved that the proposed computation
offloading strategy reduces 68.33% on average compared to the traditional Lyapunov-
based computational offloading decision scheme and 11.21% on average compared to the
Markov decision method based on the classical Q-learning algorithm when the number
of offloading tasks exceeds 500 Mbit and under the weighting requirements such as delay
and energy consumption. When the number of offloading tasks exceeds 130 Mbit, the
number of network switches required to select the optimal computation offloading decision
and offload the network by the computation offloading scheme proposed in this paper is
significantly lower than that of the Lyapunov-based and classical Q-learning algorithm-
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based computation offloading methods. Moreover, when the number of network work
requests exceeds 100, the proposed mixed offloading approach can satisfy a large number
of task offloading requests, and the energy cost and delay cost are 61.54% and 71.01% lower
than those of the offloading to the network backbone nodes and the offloading to the edge
nodes, respectively. Therefore, the proposed computational offloading scheme is suitable
for Space–Air–Ground Integrated Network, reduces the number of switching of offloading
networks, effectively reduces the delay and energy consumption cost of task computational
offloading, and improves the network resource utilization.

The Space–Air–Ground Integrated Network is the trend of future networks as a huge
system that integrates communication and aerospace telemetry to achieve full network
coverage. In previous research, computation offloading techniques that enable efficient
task processing have been applied to mobile phone terminals and vehicle terminals, but
in the future, as various terminal devices continue to develop and advance, and human
needs become more and more advanced, all terminal devices will be part of the Space–
Air–Ground Integrated Network, and the rational application of computation offloading
techniques to the Space–Air–Ground Integrated Network is of great theoretical importance.
The application of computational offloading technology to Space–Air–Ground Integrated
Network is of great theoretical significance and practical application. In this paper, the
existing computation offloading techniques are improved and applied to the Space–Air–
Ground Integrated Network, starting from the structural characteristics of the network.
On the one hand, according to the delay and energy consumption requirements of the
Space–Air–Ground Integrated Network’s task offloading, the task can be matched with
the offloading sites to effectively reduce delay and energy consumption while taking
into account the requirements. On the other hand, the mixed consumption offloading
model is able to cope with the huge volume of task processing requests in the future
Inter-net of everything era with limited network resources. Theoretically, it can contribute
significantly to the efficiency of task processing, thus addressing the impact and challenges
of the inherent shortcomings of the Space–Air–Ground Integrated Network on the future
development of the Internet.
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