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Abstract: Complex systems are fully described by the connectedness of their elements studying
how these develop a collective behavior, interacting with each other following their inner features,
and the structure and dynamics of the entire system. The forthcoming 6G will attempt to rewrite
the communication networks’ perspective, focusing on a radical revolution in the way entities and
technologies are conceived, integrated and used. This will lead to innovative approaches with the
aim of providing new directions to deal with future network challenges posed by the upcoming
6G, thus the complex systems could become an enabling set of tools and methods to design a self-
organized, resilient and cognitive network, suitable for many application fields, such as digital health
or smart city living scenarios. Here, we propose a complex profiling approach of heterogeneous nodes
belonging to the network with the goal of including the multiplex social network as a mathematical
representation that enables us to consider multiple types of interactions, the collective dynamics of
diffusion and competition, through social contagion and evolutionary game theory, and the mesoscale
organization in communities to drive learning and cognition. Through a framework, we detail the
step by step modeling approach and show and discuss our findings, applying it to a real dataset, by
demonstrating how the proposed model allows us to detect deeply complex knowable roles of nodes.

Keywords: 6G networks; complex networks; multiplex social network; epidemic spreading; evolu-
tionary game theory; cognitive networks; community detection

1. Introduction

The ongoing process of telecommunications evolution towards 6G, along with the
growing number of mobile users and the demand of bandwidth-intensive services and
high data-rate applications, are creating a large volume of traffic, making a complex
dare which needs to be addressed with innovative approaches [1,2]. The worldwide
research activity is focused on defining the next-generation 6G systems in order to take
into consideration a confluence of trends as densification, higher rate, massive antenna
and emerging trends that include innovations in terms of services and devices, complexity
and artificial intelligence (AI), computing and sensing [3]. Ranging from simple sensors to
sophisticated devices, and including different network scenarios as cellular, vehicular, Wi-
Fi, Internet of Things (IoT) and Internet of Everything (IoE) systems which connect millions
of people and billions of machines, we expected that the sixth generation systems will meet
the demands for a fully connected and intelligent network. Taking into consideration the
forthcoming 6th generation (6G) communication networks, it will address the constraints
and the performance requirements of the applications and innovative services which need
highly increasing resources, introducing new approaches and technologies as well as
revolutionary network features [2,4].

The designing and modeling processes of 6G network need new paradigms to move
the system from closed hierarchical structures towards open and distributed networks,
including self-organization, self-adaptation and optimization of interactions and functions
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of nodes. Thus, it can be achieved through the introduction of a complex systems approach.
The traditional attributes applied to measure and characterize communication networks
such as interference, coverage, throughput, robustness and costs are not able to describe
dynamics and crucial aspects of future wireless and mobile networks. That is why there is
growing interest in studying communication networks from a complex systems perspective,
taking into account methodologies and tools built to analyze emerging behaviors, and
cooperative and collaborative dynamics, among the elementary units of the system [2,5,6].
The upcoming 6G has the ambition to introduce heterogeneous interconnected elements
which can dynamically interact with each other as well as with their environment in an
unpredictable and unplanned way. Human beings, their devices and, consequently, their
behaviors are active elements of the networks, becoming a sort of heterogeneous and aggre-
gated things, with a crucial role in technical systems and in the design of the networking
functions, representing the interacting part of a complex socio-technical ecosystem [7,8].
From the mobile users and their devices (from wearable to hand-held) or the heterogeneous
smart devices that form the IoT networks to the plethora of entities of each sub-network
that constitute a 6G environment, these can be represented by nodes of a multiplex social
network, as shown in Figure 1.

6G  SCENARIO

 SUBNETWORKS

6G  MULTIPLEX NETWORK

 MULTIPLEXES

EVOLUTIONARY DYNAMICS OF STRUCTURES, 
COLLECTIVE PHENOMENA AND COGNITION

Figure 1. Multiplex representation mined from 6G subsystems. This figure shows the schematic
representation through the multiplex network of a 6G scenario, including different types of sub-
networks, various interactions and the evolutionary dynamics of collective phenomena.

The multiplex dimension offers a key change in perspective for the structural analysis,
and it represents the suitable representation to study the emergence of complex properties
of the network [9,10]. The 6G network is intrinsically suitable to be modeled as the
multidimensional relational systems of different sub-networks, represented by various
graphs that embed interacting elements in different ways [2].
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The designing, modeling and monitoring of the behavior of these systems will be chal-
lenges to address. Since we are rapidly moving from a closed to an open and distributed
system, and to a completely dynamic topology that will be characterized by a vast het-
erogeneity, this requires an intelligence at the node level. The node, in a fully user-centric
network architecture, plays a key role in content diffusion, learning, computation and
organization, and consequently, a new characterization is becoming necessary. For this
reason, we propose a node profiling process based on a complex network approach, which
embeds, step by step, the knowledge extracted from the introduction of the multiplex
dimension, the analysis of the dynamics of collective phenomena as diffusion and com-
petition, applying the epidemics spreading modeling and the evolutionary game theory,
from the mesoscale hierarchical organization of the network in communities. We detail the
profiling technique through the introduction of metrics and parameters that enables the
analysis of three different aspects, structural, collective dynamical and community-based.
The paper is organized as follows: in Section 2 we briefly introduce background and meth-
ods. In Section 3, we detail the modeling approach to the profiling, in terms of structural,
collective and community analysis. After, we show and discuss our findings in Section 4 to
conclude in Section 5.

2. Materials and Methods
2.1. Multiplex Social Network and Mesoscale Structure

In order to show the hidden dynamics of complex systems it is useful to rely on
multi-dimensional network representation, which is able to unveil interesting structural
properties and interdependence. A single graph representation, where elementary units
are mapped into network nodes and their interactions into links, can result in a loss of
knowledge about the structural complexity and connectivity [9,11]. Representing all the
links in an equivalent way can lead to a loss in details and information, and so, to an
incomplete description about phenomena of real-world networks. Multilayer networks
embody a generalization of traditional network theory, representing a novel framework to
study graphs, in which nodes have different layers of connectivity [12]. These networks
are able to properly describe the complex connectivity, by distinguishing in the different
layers the several channels of interactions, which can be different for relevance, context
and meaning [9,10,13]. The concept of multilayer networks extends to other mathemat-
ical objects, such as multiplex networks, that describe a large number of real networks,
including biological [14], social and technological systems, social networks and relation-
ships [15], epidemic and social contagions [16], air transportation networks and brain
computing [5,17–20].

The multiplexity constitutes an additional dimension of analysis which makes the
full characterization of behavior in complex systems possible, unveiling crucial structural
properties [21]. Furthermore, an even deeper analysis of complexity in connections can
be done characterizing interactions by a given cost, a distance or a weight, reflecting their
intensity in the different layers, like in the case of weighted multiplex networks [13].

Moreover, a multiplex network has a rich structure that is often reflected in its com-
munity [22]. In the literature, there are several algorithms proposed to detect communities
in complex networks [23]. Since there is a tendency of nodes of the networked systems
to cluster together in groups, triggering a non-trivial structure, it is interesting to ana-
lyze the mesoscale structure [22]. The aim is to unveil a hidden organization of nodes
and its interplay with the structure of multiplex network, nodes profile, nature of links,
and layers existence.

2.2. Collective Dynamics of Diffusion and Competition

The multiplex networks lead us to explore in what measure the heterogeneous nodes
and their ties in the different layers have an impact on emerging phenomena like cascading
failures, super-diffusion, spreading and epidemic dynamics [15,17–21,24]. The diffusion
dynamics can be modeled as a spreading process of diseases [5,25], social contagion
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of behaviors in networks [15] or misinformation and emotions spreading [26]. These
processes, based on classical epidemiological models [25], find applications in many fields,
from smart cities to healthcare [6,27], characterizing different collective phenomena that
spread inter-personally through the social networks [16,28]. The nature of social ties has a
pivotal role in shaping the structure, the heterogeneity of nodes and the diffusion in the
network. There is an upsurge of social and communication technologies and an increasing
in the need to embody what is traced about the activity of networked individuals. It is
interesting to investigate the effect of the diffusion processes that co-evolve in the network,
based on content exposure, event dynamics, collective attention and awareness, shifting
the dynamics of social behaviors, also impacting on the nature of nodes and ties [5,28].
To study the evolutionary dynamics of competition, we use the Evolutionary Game Theory
(EGT), which is an extension of the traditional Game Theory, and it was applied to the study
of genetics, adaptation, and frequency of gene’s appearance [29]. The focus is the dynamic
of changing strategies, and games are a way to investigate which behavior emerges from
the interaction among individuals and if it is able to persist. The purpose of these theories
is to use mathematical models to describe and predict what will happen, through games,
in real situations.

Games are defined by a set of N players who can choose among a set Ai = ai1, ai2, ..., ain
of available strategies; with each strategy, players receive a payoff, which acts as a feedback
and scores the preference [30]. EGT is useful to study the collective dynamics of cooperation
and competition, through the so-called social dilemmas. In these dilemmas, there are two
players and two possible strategies: cooperation and defection. They model conflict
situations in which the most profitable strategy for individuals does not correspond to
the most convenient for the entire social community. Thus, the players and the society
would benefit more from mutual cooperation, receiving a higher benefit than in the case
of mutual defection. Each of them is described by its payoff matrix representing the
interactions’ rules [14].

Players will both receive a reward R in correspondence of mutual cooperation and a
punishment P in the case of mutual defection. A defector will get the temptation payoff
T when playing against a cooperator, while the cooperator obtains the so-called sucker
payoff S. Here, we consider different social dilemmas as the Prisoner’s Dilemma (PD),
Snowdrift Game (SD), Stag-Hunt Game (SH), and Harmony Game (HG) [31,32], for the
investigation of the evolutionary dynamics of the cooperation.

3. Results
3.1. Scenario

We propose a nodes’ profiling technique based on a modeling framework, as we pre-
sented in Figure 2. The scheme put in evidence the introduction of the multiplex dimension
to detect a profiling in structural terms, also enabling the analysis of the diffusion and the
competition dynamics with the aim at analyzing the collective contribution to the characteri-
zation of nodes. Finally, the clustering techniques for the community detection enable us to
track down an added value to the nodes’ role linked to a mesoscopic point of view.
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MULTILINK COMMUNITIES  
The multilinks identify the connections 
existing between any two nodes of a 
multiplex. To enrich the knowledge about 
the structure and the role of node we 
detect community based on an aggregated 
graph multilink-based.

EVOLUTIONARY DYNAMICS OF  
HUMAN COOPERATION 
It is analyzed  through the Evolutionary 
Game Theory (EGT) that study the dynamics 
of changing strategies by the nodes - 
players around the problem of cooperation 
through social dilemmas.

6G NETWORK SCENARIO 
 a forthcoming scenario that will adopt 
approaches, tools and methods based on 
complexity with the challenge to design, 
control, model and monitor the self-
organizing, self-adapting, resilient and 
congnitive behavior of heterogeneous, social 
and interacitng components of the network. 

MULTIPLEX SOCIAL NETWORK 
 The best description of the 
coexistence of different types of 
interactions among elements of a 
complex system as a social network

MACROSCOPIC- MICROSCOPIC-
MESOSCOPIC ANALYSIS OF MULTIPLEX 
NETWORK 
Metrics, measures and structural properties 
in terms of quantification of the nodes and 
edges properties and their importance for 
the overall characterization of the 
multiplex network

Complexity Multiplexity

Nodes represent users, human beings, IoT devices, hand-held devices, MEC etc. and are 
the mathematical representation of aggragted elements of the 6G scenario. A node in 
the layers of the multiplex network represent the same unit of the system and the 
replicas of the same node are identified across the layers.  An Edge is established when 
there is an opportunity of social contact, real or virtual.  Due to the presence of multiple 
layers a pair of nodes can be connected through several edges representing real or 
viertual interactions. 

Structural Profiling

a. b.

c. d.

e. f.

Diffusion Competition

SPREADING DYNAMICS AND SOCIAL 
CONTAGION 
These are based on epidemiological 
models such as SIR-like models and 
describe phenomena that spreads 
interpersonally. 

Around an event, the social 
contagion, based on a diffusion 
of something as the awareness, 
has a key role in changing the 
nodes’ profiles, in terms of their 
behaviors , features and edges, 
thus in structural terms. Around a 
target as a common or public 
good, EGT is focused on the 
evolutionary dynamics of nodes 
that change strategies in 
response to their edges, in a 
social dilemma for the 
cooperation problem, impacting 
on nodes’ behaviors and their 
profiles. 

Collective Profiling

Clustering Learning

CONTROL MECHANISM IN  
HIERARCHICAL COMMUNITIES 
We detect communities from a node-based 
and link-based clustering by encompassing 
the roles of nodes in multiplex network 
both in terms of structure and behavioral 
dynamics. This mechanism unveils the 
mesoscale organization. 

The nodes acquire cognition on 
network, on their roles, on the 
structural features and on 
hierarchical communities. This 
gives a dynamical and evolutive 
boost on an improving on 
awareness and cooperative 
behavior since the entire 
network develop the ability of 
self-adaptation through the 
evolutionary dynamics of 
diffusion and competition 
shaped from the structural 
connectivity and the mesoscale 
organization.

Community Profiling

Figure 2. Modeling Approach: a technical scheme of nodes’ profiling in a 6G network scenario. The figure graphically
describes the various steps and the key aspects to profile the elements that constitute the 6G scenario into a complex network
heterogeneous environment of cognitive elements. The approach starts from the application of the complexity and the
multiplex representation and analysis to extract structural features as detailed, respectively, in (a,b). The scheme shows the
collective profiling based on the analysis of diffusion and competition, representing two co-evolving and interdependent
dynamics, as, respectively, detailed in (c,d). The community profiling, as in (e,f), is characterized by the detection of
communities based on node and link hierarchical clustering obtained through a multilink graph.

3.2. Structural Profiling

A complex network involves basic units connected to each other with multiple kinds
of relationships among them. Embedding the interactions in different layers in accor-
dance to their types, we can consider the multiplex social network representation and
analysis [5,9,10,15]. Following the scheme presented in Figure 2, we consider a multiplex
social network M, assuming that it can represent a 6G sub-network and it is referred to
different kinds of interactions among nodes. A node represents an aggregation of dif-
ferent basic units of the network (as wearable or hand-held devices, IoT systems, etc.).
The multiplex network consists of a population of N nodes and l = l1, l2, . . . , lM layers.
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Here, we consider M = 2 layers, where the layer l1 is referred to a real contact network,
extracted from a real case [33], while the second one is referred to a virtual layer following a
theoretical scheme as, for example, a Scale-Free network [34] or a Small-World network [35].
In the literature, the multiplex network is defined as a set of graphs G, with G = (V, E),
with vertices V and edges E. The set of nodes N is the same for each layer, whereas the set
of links E changes according to the layer [9]. Each network Gl is described by the adjacency
matrix, denoted by Al with elements al

ij, where al
ij = 1, if the node i and the node j are

connected through a link on a layer l, otherwise al
ij = 0. Alternatively, in the weighted

case, al
ij = wl

ij > 0, if there is a link between i and j with a weight wl
ij, otherwise al

ij = 0,
with wij a real positive number, namely the weight of the link between i and j. In this
case, a weighted multiplex network is completely specified by the weighted adjacency
matrix W l , with elements wl

ij [13]. With kl
i , we indicate the degree of the node i in a given

layer l, that considers the total number of connections. Moreover, other basic features
that we include in the profiling are represented by the edge overlap o[l1,l2]

ij , that take into
consideration the fact that a pair of nodes can be connected by ties in different layers,
and the overlapping degree oi [9]. In the case of weighted multiplex networks, the latter
are, respectively, expressed as weighted overlap ow

ij and weighted overlapping degree
ow

i [9,13]. The weights, which can be distributed heterogeneously, are strongly correlated
with the structure [13], shedding light on the relevance of the links in a layer of the multi-
plex network representation. For that reason and with the aim at embodying social aspects
into structural profiling, we apply the definition of the weights of the links as function of
some key metrics, as follows:

wl
ij = hl

ij|awi − awj| (1)

where hl
ij indicates the tendency to interact with similar nodes (as equal devices) or with

that ones that are in similar conditions (capacity, resources, etc.) [5,9,13]. Furthermore, we
include the gap value, between i and j, of the node awareness aw. In a fixed time T, in
which we observe the network and its activity, we define aw as the awareness level of a
node i, that represents acquired knowledge on the sub-network to which it belongs, that is
about activity about task requests, as a result of a complex discovering process. For that
reason, we estimate the awareness of a node i as function of the participation coefficient Pi,
and the atti attention level, as follows:

awi|t=T = awi|t=0 + ∑
T

atti|t−e + Pi (2)

The multiplex participation coefficient Pi ponders the awareness since it measures
the heterogeneity of the number of neighbors across the layers of each node at the edge of
the weighted link, measuring the probability of acquiring more knowledge as a result of
different interactions distributed across the layers of the multiplex network [5,9]. The Pi
value is added to incorporate the richness of the knowledge extracted from the intro-
duced multiplex dimension. Furthermore, the awareness can be computed as the result
of the monitoring of the attention level, traced through the analysis of the user-generated
data [28,36]. Data can be produced by devices in terms of willingness to cooperate for a set
of tasks in IoT cognitive systems or it can represent the activity of nodes produced in social
media during collective phenomena of interest, impacting on the widespread participation
of networked users, on the behaviors of each node and its interactions and decisions in the
dynamical evolution of the concerned phenomena [5]. We show the multiplex network M
in Figure 3.

A complete list of parameters and defined metrics with its fair meaning, referring to
the structural profiling, is summarized in Table 1.
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Figure 3. Multiplex Network Representation. The figure describes both layers of the multiplex
network M. The layer l1 is obtained from a real contact case, as explained in Section 3.2, while the
layer l2, follows a theoretical scheme. Here, l2 is represented as a scale-free network. We shed light on
the strength of each node (as the nodes’ size), and the awareness of each node (as the nodes’ color).

Table 1. Structural Profiling Parameters and Defined Metrics. Here, we summarize the general
formalism of the multiplex networks nodes’ parameters and some defined statistical estimators, used
to draw up the structural profiling of nodes in a 6G scenario represented and analyzed through the
proposed framework and the mentioned above mathematical methods and tools, based on complex
systems and networks.

Structural Profiling Formalism Description

Parameters [9,13] N Population of Nodes of the Multiplex M
M Numbers of Layers of the Multiplex M
Al Adjacency Matrix of the Layer l
aij Elements of the Matrix Al

kl
i Degree of Node i in the Layer l

oi Overlapping Degree of Node i
W l Weighted Adjacency Matrix of the layer l
ow

ij Weighted Overlap of edge i− j
ow

i Weighted Overlapping Degree of node i
sl

i Strength of node i in the layer l
Yl

i Inverse participation ratio of node i in the layer l
Pi Participation Coefficient of the node i
Hi Entropy of a node i

Defined Metrics wl
ij Weights of interactions between i− j

hij Homophily of a pair of nodes i− j
awi Awareness of a node i

atti|T−e Attention of a node i during T around e

3.3. Collective Profiling

Multiplex networks representation, as showed in Figure 3, constitutes the most suitable
network structure to understand and investigate on collective dynamical processes and
their complex interdependence [37]. In this second step, we consider key features extracted
from the analysis of parameters and statistical estimators of two interdependent and co-
evolving spreading processes and the evolutionary dynamics of the cooperation among
nodes. Firstly, we study the spreading of two interdependent processes in the multiplex
network M, modeled as disease spreading process [15] and thought of as “composed-SIR”
models, that is as an extension of the classical SIR epidemic model [38]. One process is
referred to a specific phenomenon as epidemic [5], collective attention [28] or a social
contagion [16], while the second one is related to the diffusion of the awareness on what is
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transmitted through the first one [15,39]. Heterogeneity and awareness, for each node, are
included in order to describe the impact of the diffusion and competition into the structural
connectivity and the evolutionary dynamics. Each node has a different awareness aw,
representing the acquired knowledge from an interest or participation on a collective
phenomena. As a consequence, each node, will be heterogeneously prone to join a diffusion
process, since the awareness acquired has an influence on the behaviors of nodes. Firstly,
we analyze two co-evolving spreading processes in the multiplex network M. The first one
is based on the content shared or a phenomena of interest. Taking into consideration the
nature of the phenomena or content, we can diagrammatically express the first process,
in terms of reaction-diffusion equations, following two different hypothesis as indicated
below as the Sh ISh or Sh IR spreading processes:

Sh IS⇒ Sh βα
i→ I

µ→ Sh (3)

Sh IR⇒ Sh βα
i→ I

µ→ R (4)

The Sh ISh can occurs when a node, based on its interactions, becomes prone to par-
ticipate to the diffusion, and after that it returns in the condition to the starting pools of
nodes. Differently, in the Sh IR the last transition is replaced by the step which occurs
when a node have acquired a permanent condition and it is not available to participate
again in the diffusion. Both models are characterize by the states Sh, defined as “hetero-
geneous susceptible state”, where a node is predisposed to be involved in the spreading
process [15]. The state I indicates the condition in which a node is involved or infected,
while R represents the recovered state. The probability of call off the diffusion is equal to µ,
while the βα

i is the diffusion rate for each node i at each layer α in the multiplex network M.
The latter represents the probability that a node i in the layer α is predisposed or susceptible
to be involved in the diffusion process. We assume that, the involvement for a node in the
network means that a node i is in the state of informed or infected. The heterogeneous
diffusion rate depends on the weighted structural connectivity through the measures of
inverse participation ratio Yα

i [13] and the rate of awareness λα
i , defined in Equation (8).

βα
i = 1

1+λα
i
· 1

Yα
i

(5)

Similarly, the second spreading process, focused on awareness diffusion, is diagram-
matically expressed in terms of reaction–diffusion equation also in two possible different
cases, as follows:

Uh AUh ⇒ U
λi→ A δ→ Uh (6)

Uh AF ⇒ U
λi→ A δ→ F (7)

with λα
i and δ, defined as transition rates. We distinguish between the rate of awareness

λα
i for each node i at each layer α of the multiplex M and the rate of awareness after being

aware. The Uh state expresses a condition in which a node is heterogeneously unaware,
while in A, it is aware about the phenomena that spreads inter-personally in the network.
In the second case, the state F is introduced as the “faded state”, in which a node decreases
the attention and the interest to improve its knowledge about the phenomena of interest.
The rate of awareness is expressed as follows:

λα
i =

sα
i

1+sα
i
· λ (8)

where sα
i is the strength of node i in the layer α of the multiplex network M [13].

Starting from the assignment of a state probability for each node i in M, to be in one of
the initial states as (SU)-(SA)-(IA), and choosing the suitable spreading models for the co-
evolution process, as indicated in Figure 4 and expressed in Equations (3) and (4), we add,
in the profiling process, some features extracted from the analysis of the co-evolution in
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the multiplex network considered. To obtain the contagion threshold, we need to apply the
MMCA method, investigating the steady state of the system, indicated as βc. The Dynamic
Microscopic Markov Chain Approach (MMCA) enables us to explore the dynamics of the
co-evolution on a weighted multiplex network. Following the mathematical approach,
as expressed in [5], we get the density of involved nodes ρi:

ρI =
1
N

N

∑
i=1

pIA
i (9)

where pIA
i are the probabilities of being involved and aware. On this matter, it is important

to underline that the threshold model depends on the complex dynamical interplay between
social contagion and the awareness spreading in M and the values of βα

i that change in
accordance with the awareness state λα

i , the network structure of M, and the double
heterogeneity expressed in S state and U state. Consequently, the aw awareness of a node
as expressed in Equation (2) also depends on the β and λ value in terms of attention which
represents the social-aware factor that varies in function of the two rates. Both processes
co-evolve modeling the sharing or participation in terms of content, interests, attention
and awareness, and in terms of active or passive involvement [6,16,39]. Furthermore, we
inspect the cooperative behaviors and its dynamics among nodes, which include social
factors in their aggregated nature, by introducing the game theoretical approach [14]. We
introduce different dilemmas as the iterated forms of Prisoner’s Dilemma game (PD),
Snowdrift game (SD), Stag-Hunt game (SH) and Harmony game (HG) [31]. In the analysis
of the interdependent collective dynamics, we run and compare the dilemmas for a number
of rounds such that a dynamical steady state is reached, in order to describe not only the
problem of cooperation, but also its evolution. Nodes are treated as players that, in each
elementary round of the game can decide to change or maintain its strategy, playing the
game with all its neighbors in both layers of the multiplex M, in line with the Fermi function
W(Sx −→ Sy), expressed as follows:

W(Si −→ Sj) = ciηi
1

1 + exp[
Pi−Pj
δijK

]
(10)

Figure 4. Density of Involved Nodes i(t) versus time t, on the two processes in co-evolution.
The outbreak of spreading in time is subjected to statistical variability. After a common exponential
growth, we shed light on how the density of involved (“involved” means informed or infected) nodes
i(t) change in two different cases (respectively, orange and red) of the co-evolving processes that can
converge to zero (Sh IR − Uh AF) or to a constant number (Sh IS − Uh AU).

Firstly, with this function we take into account the payoff difference Pi − Pj, the ho-
mophily measure δxy, a communicability measure ηx and a noise factor K to evaluate the
probability that a player i on the layer l1 decides to adopts the strategy Sj of node j playing
on the layer l2 [14]. Accounting for that, at time step t, each node can occupy one state of
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the co-evolving spreading processes, and considering that, qi(t) represents the probability
of node i not being involved and with ri(t) the probability of unaware node i staying
unaware at the same time step t, we include in the Fermi function the dependency from
the ci factor, defined as follows:

ci =
1− qi
1− ri

(11)

This includes the joint impact of the co-evolving spreading processes and the evolu-
tionary dynamics of the cooperation among nodes in the multiplex network M, assessed in
the temporal window T. We summarize parameters and defined metrics of the collective
dynamics aspects in Table 2.

Table 2. Collective Profiling Parameters and Defined Metrics. Here, we summarize the general
formalism linked to the analysis of the collective dynamics of diffusion and competition that involve
the networks nodes in the multiplex network M. We list the key parameters and some defined
statistical estimators used to compose the collective profiling of nodes in a 6G scenario represented
and analyzed through the proposed framework and the mentioned above mathematical tools, based
on complex systems and networks.

Collective Profiling Formalism Description

Parameters [5] Sh Heterogeneous Susceptible State
I Involved State
R Recovered State

Uh Heterogeneous Unaware State
A Aware State
F Faded State
µ Probability to transit from state I to state R
δ Fading Rate
ρI Density of Infected Node

Defined Metrics βα
i Heterogeneous involvement rate

λα
i Heterogeneous awareness rate

W(Si −→ Sj) Fermi function
ci Impact factor of the co-evolving processes

3.4. Community Profiling

The whole multiplex network M can be also described via its multilink [22] with the
aim at describing a mesoscopic dimension. Every pair of nodes in M is connected by a mul-
tilink −→m ij = (m[l1]

ij , m[l2]
ij ) with l1 and l2, layers of the multiplex M, with ml

ij = al
ij indicating

the set of all links connecting these nodes in the different layers [22]. If −→m = 0 there are
no interactions between the two nodes in the multiplex M. This measure shows the basic
motif [9] that contributes to the unveiling of correlations between structure and function of
a network [12]. We construct a weighted aggregated network Ĝw, based on the multilink
−→m ij, with the adjacency matrix Aij = θ(∑ a[l]ij ), with θ(x) a step function [22]. For detecting

community, we introduce the multidegree k
−→m
i for each node i of the population, showing

how many multilinks −→m are incident on the node i [13]. In line with the previous steps
of profiling, we propose two community detection methods introducing the mesoscopic
analysis of the network. The resulting hierarchy embeds both the richness of the structure
and the collective dynamics in the cognitive profiling since each node belongs to a com-
munity with a specific role that dynamically tunes in response to the changes in behaviors
and social factors. Thus, we combine the different interdependent steps of profiling and
we apply two hierarchical clustering technique to the multiplex network, respectively, a
node-based and a link-based technique. The node-based hierarchical clustering analyzes
a set of dissimilarities through the application of an agglomeration method. We define a
dissimilarity structure based on the distance between each pair of nodes in function of the
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number of cooperations nci, the social dilemma, the between-ness centrality cb, and the
multidegree k

−→m
i [9,22]. We construct a dendrogram via hierarchical clustering method

containing information about the structure and based on the dissimilarity matrix. More
specifically, we evaluate a defined score function for each pair of nodes to estimate the
distance between them, as indicated below:

hcij |Ĝ =
cb(i)

nci + k
−→m
i

− cb(j)

ncj + k
−→m
j

. (12)

With this approach, each node belongs to a community with a role in the hierarchical
organization of the multiplex network M. Similarly, by constructing the aggregated graph
multilink-based Ĝ, we furthermore apply a hierarchical clustering by grouping instead
the links in different communities showing a hidden mesoscale structural organization,
highlighting how nodes can belong, at the same time, to different link-based communities.
We summarize parameters and defined metrics of the community profiling aspects in
Table 3. We detail the output of these methodologies in the next section.

Table 3. Community Profiling Parameters and Defined Metrics. Here, we summarize the general
formalism linked to the mesoscale analysis applied to the multiplex network M. We list the key
parameters and some defined metrics used to compose the community profiling of nodes in a 6G
scenario represented and analyzed through the proposed framework and the mentioned above
mathematical tools, based on complex systems and networks.

Community Profiling Formalism Description

Parameters [9,13] −→m ij Multilink between i, j
Ĝw Weighted Aggregated Network
Aij Elements of Ĝw

k
−→m
i Multidegree of node i

nci Number of cooperations
cb Between-ness Centrality

Defined Metrics hcij |Ĝ Score Function for dissimilarity structure

4. Discussion

Simulations have been performed considering a weighted multiplex network M as
explained in Section 3. To build the model, do computation and obtain our results, we used
the programming language R and the IDE RStudio. The figures were generated thanks
to the package Plotly and Linkcomm [40–43]. We consider a population N = 61 in the
two layers l1, l2 representing two distinct kinds of weighted interactions and connectivity
between nodes. In the first layer l1, the interactions are based on the graph extracted from
a real contact network [33], while in l2, we consider a theoretical scheme for the same
population of nodes N. In Figure 5, we can observe how the structural heterogeneity in
the multiplex representation of the networks leads to highlight several key aspects for the
structural roles of nodes. For a heterogeneous weighted multiplex network, we study how
certain metrics are distributed across different layers and in the whole structure. We have
computed the degree kl

i , the strength sl
i and the overlapping degree oi as indicated in the

two heath-map plots. Both plots display metrics for the multiplex M composed by the first
layer based on real contact network while through the second layer we can compare the
case of a scale-free network (in the top-left plot) with a small-world network (in top-right
plot). For the sake of clarity, we indicate the first resulting multiplex M as RC− SF, and the
second one as RC− SW. As shown in Figure 5, our findings exhibit two different levels
of heterogeneity. We can notice how in the RC− SW case, there is a small heterogeneity
due to a high clustering and modularity, meaning that there are groups of nodes more
highly connected than the rest of the network with an abundance of high degree nodes
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that act as hubs of the network. Instead, in the RC − SF case, there are few hubs in the
network since it exhibits a highly heterogeneous and high degree correlations. In the other
two panels below in Figure 5, the curves correspond to the distribution of the participation
coefficient Pi, in the range [0, 1], considering this variation in function of the Z-score of the
overlapping degree, z(oi). We extract profiling features structurally classifying the nodes of
the multiplex in three classes, focused, mixed and multiplex nodes, putting in evidence the
fitness based on the two cases RC− SF and RC− SW, the awareness distribution of awi
and the homophily distribution of the values hij, in accordance with the modeling approach.
Our findings highlight an increasing of the Pi value in both cases (RC − SF–RC − SW),
and a higher density of regular multiplex nodes. Decreasing the homophily (from the
left plot to the right plot below), the findings exhibit a decreasing of Pi for the RC− SW
case that has a more homogeneous distribution with a higher density of regular mixed
nodes. Differently, in the same condition, in the RC− SF, the findings show an increasing
of z(oi) and a higher density in the multiplex hubs, since, although there is a higher value
of homophily, the structural heterogeneity of the topology produces a more heterogeneous
distribution of nodes’roles.

Figure 5. Roles of Nodes from Structural Analysis. We show four panels to shed light on the roles of each node in M as a
result of the structural profiling. At the top, the two heat-maps show with a color-code the value of degree kα

i , strength sα
i

and overlapping degree oi for each node, from the largest (darkest) to the smallest (brightest) in both cases of scale-free
(SF) and small-world networks (SW) as assumption for the graph of the second layer of the multiplex that describes a
social-based interaction graph, jointly with the first layer based on a real contact network (RC). Below, the other two panels
show two cartography obtained by plotting, for each node, the multiplex participation coefficient Pi versus the Z-score of
the total overlapping degree oi in the cases of a theoretical distribution with high standard deviation δ for low homophily
and low standard deviation δ for high homophily, referring to the distribution of similarity features among nodes. In both
plots, comparing the cases RC− SF and RC− SW, we identify specific roles of nodes put in evidence by the plots, in terms
of focused, mixed, multiplex, regular or hubs nodes.

Figure 6 points out the profiling features embedding a measure of how a node of
the multiplex structure is involved in the collective dynamics. We show the findings of
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diffusion and competition dynamics, by displaying the trend of infection rate βi in function
of the awareness rate λi jointly with our modeling approach presented in Section 3.

Figure 6. Roles of Nodes from Collective Dynamics Analysis. We show four plots to shed light on the roles of each node of
the population considered for the multiplex network M as a result of the collective profiling. The plots display, in the plane
λ-β, the trend of involved rate in function of the awareness rate, comparing both cases of scale-free (SF) and small-world
(SW) networks as assumption for the graph of the second layer of the multiplex that describe a social-based interaction
graph, jointly with the first layer based on a real contact network (RC), showing in red color the RC− SF case, while in
yellow the RC− SW case. In accordance with the model and the interdependence between the evolutionary dynamics
linked to the co-evolving spreading processes and the evolutionary game theory, we set and compare the four social
dilemmas (PD-SD-HG-SH) displaying the trend of the spreading dynamics in relation to the number of cooperation nc for
each node (as dot size variation) of the multiplex network M.

The plots show the resulting trend, in the plane λ-β, of the spreading dynamics
in conjunction with the cooperative behavior of nodes in the multiplex M, taking into
consideration the two cases RC− SF and RC− SW, and the four social dilemmas PD-SD-
HG-SH. Since the diffusion dynamics impact on the evolutionary dynamics of cooperation,
we compare the modeling of the conflict situations with the different dilemmas. We find out
how the increasing of the awareness rate λi, and the consequently decreasing of infections
rate βi produce an impact on the collective cooperation dynamics. Namely, in case of
social dilemmas in which the cooperation dominates the defection as SD, HG and SH,
a more homogeneous number of cooperations for each node is more evident in the case
of RC − SW. Differently, in the plot referred to the PD game, in case of RC − SF we
detect a more heterogeneous distribution of cooperative behavior. In addition, in the PD,
the increasing of λi results in a decreasing of βi, in both cases RC− SF and RC− SW, while
in the other social dilemmas cases, this impact is stronger in RC− SW then in RC− SF.
What is more, in the RC− SF case and SD-HG-SH, the decreasing of βi with the increasing
of λi is up to a specific threshold, resulting in a change in strategy, in accordance with the
Fermi function as expressed in Equation (10), shedding light on the increased size of nodes
in line with the increasing average in number of cooperation for each node.
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In Figure 7, we show four panels linked to the community profiling detailed in the
Section 3.4. By defining the dissimilarity between nodes based on Equation (12) we apply a
hierarchical clustering of nodes as showed in the (a), (b) plots of Figure 7, that, respectively, ex-
hibits the dendrogram and the graph based colored partitions of the six different communities.
The detected groups of nodes based on a complex score function that take into consideration
the structural and collective dynamical properties, show a community connectivity lower
than the multiplex one. This unveils how the multiple interactions in the multiplex structure
of each node represent a key point in a hierarchical characterization of the nodes’ roles. In the
plot (c) and (d) (produced through the R package “linkcomm” [43]) of Figure 7, we find out
results linked to the multilink and the link-based hierarchical clustering to reveal the richness
of the network at the mesoscale level. We show in (c) the cluster dendrogram and the sixteen
communities detected, and in (d) a graph visualization of the multilink-based aggregated
graph Ĝ. This methodology sheds light on in what measure the nodes of the multiplex
structure, independently of its layer activity, can belong to different communities, revealing
the hidden information extracted from the mesoscale structure organized in communities.
The findings demonstrate that since the nodes belongs to multilinks communities, on average
they have a high community activity, suggesting that the network can be expanded in many
layers of different interactions. Moreover, the plot (d) of Figure 7 also underlines the brokering
function of certain nodes among whose belonging to many communities (dots with multiple
colors), playing a pivotal role in the cognitive collective dynamics.

Figure 7. Roles of Nodes from Community Analysis. In the (a,b) panel, we display the findings of the hierarchical clustering
of nodes based on the score function hcij |Ĝ. In (a), we show the cluster dendrogram, with each colored square shedding
lights on different node communities, determined by cutting the dendrogram at a specific height. In panel (b), we display
the visualization of nodes communities using graph highlighting the six communities of the weighted aggregated graphs Ĝ,
whose interaction are referred to existing multilinks between a pair of nodes, and it is extracted from the multiplex network
M. Moreover, we underline the multidegree values k

−→m
i for each node in accordance with their size. In the panel (c,d), we

exhibit the findings of a link-based clustering of the graph Ĝ of the multiplex M, to detect the links communities. In (c),
we show the cluster dendrogram highlighting the sixteen clusters detected. In (d), we illustrate the visualization of links
communities using graph. Panel (d) shows a Spencer circle layout with numbers around the circumference of the circle that
are referred to community ID.
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5. Conclusions

Over the last few years, the analysis and modeling of communication networks as
complex dynamical systems has attracted high interest, especially in the interdisciplinary
research. The 6G network is intrinsically suitable to be modeled as a multidimensional
relational system of different sub-networks, represented by various graphs which embed
elements that interact in different ways. These elements represent connected heterogeneous
things that can share resources, archives, and tasks to provide services. These ecosystems
involve devices with constrained resources and computational capabilities and call for
novel algorithms and a new characterization for dynamically managing lightweight and
simple services as a microservice. It represents a task for a physical edge element of the
network, that in a virtual space is connected with other elements, seen as resources able
to perform different tasks with the aim at providing an application that is in line with
the consumer’s requirements. Heterogeneous things and devices (as sensors or hand-
held devices), virtualized in edge cloud represent data and computational resources for
tasks. In the proposed work, the elements are physical, virtual and concatenated resources.
The interest mainly falls on the fact that those systems can be effectively described as
complex networks, leveraging on the complex systems theory to engineer, design and
model a 6G network. The complex approach for 6G systems will envision distributed
artificial intelligence, to implement a fully user-centric network architecture. Introducing
complexity through the proposed profiling approach, in 6G network, allows nodes to
acquire cognition ability, as the results of processes able to disentangle grades of knowledge
on their connectivity and behaviors on multiple different channels by deepening the
investigation of structural and social aspects of the network, the collective dynamics of
diffusion and competition, and the learning of belonging to various communities. In this
paper, we propose a node profiling process that, step-by-step, allows defining of different
aspects extracted from a complex network analysis, to shape a profile which embeds
macroscopic, microscopic, mesoscopic, dynamical and learning properties. Our proposed
profiling framework describes a set of inter-operable abstract classes referred to processes
which constitute a cognitive level for nodes and community of nodes in network. We detail
metrics and parameters, theory and analytical tools to study the coexistence of various
type of interaction among nodes, the multiplex dimension of the network and the interplay
of collective dynamics and the mesoscale organization.
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