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Abstract: Current two-stage object detectors extract the local visual features of Regions of Interest
(RoIs) for object recognition and bounding-box regression. However, only using local visual features
will lose global contextual dependencies, which are helpful to recognize objects with featureless
appearances and restrain false detections. To tackle the problem, a simple framework, named Global
Contextual Dependency Network (GCDN), is presented to enhance the classification ability of two-
stage detectors. Our GCDN mainly consists of two components, Context Representation Module
(CRM) and Context Dependency Module (CDM). Specifically, a CRM is proposed to construct multi-
scale context representations. With CRM, contextual information can be fully explored at different
scales. Moreover, the CDM is designed to capture global contextual dependencies. Our GCDN
includes multiple CDMs. Each CDM utilizes local Region of Interest (RoI) features and single-scale
context representation to generate single-scale contextual RoI features via the attention mechanism.
Finally, the contextual RoI features generated by parallel CDMs independently are combined with
the original RoI features to help classification. Experiments on MS-COCO 2017 benchmark dataset
show that our approach brings continuous improvements for two-stage detectors.

Keywords: object detection; global contextual dependency; multi-scale representations; attention
mechanism

1. Introduction

Object detection aims at locating and recognizing object instances from predefined ob-
ject categories [1]. The significant progress of Convolutional Neural Networks (CNNs) [2,3]
has brought excellent breakthroughs in object detection. In general, CNN-based detectors
could be divided into two types, two-stage, and single-stage detectors. Our focus is on
two-stage detectors. In current two-stage approaches, the Region of Interest (RoI) head
extracts visual features of RoIs to predict specific categories and refine locations. While
the theoretical receptive field of each RoI is large, the effective receptive field [4] remains
limited, which makes the local visual features of RoIs lack global contextual dependencies.

In the physical world, visual objects have natural context dependencies relationships
with the particular environment (i.e., background) and other related objects (i.e., fore-
ground) [5]. For instance, as shown in Figure 1a, a person, tennis racket, and sports ball
often appear together on the tennis court. The context dependencies are helpful to recognize
objects with featureless appearances or restrain noisy detections [6]. As shown in Figure 1b,
only part of the tennis racket appears in the image, and the lack of visual features makes
the tennis racket unrecognizable (left). Taking into account the person and even the clothes,
the tennis racket is correctly detected (right). On the other hand, as shown in Figure 1c,
the background, traffic light, and clock are discriminative clues for eliminating the false
detection of sports balls.
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Figure 1. Examples and effects of the context dependencies. (a) Person, tennis racket and sports ball
often appear together on the tennis court. (b) recognizing featureless objects. (c) restraining noisy
detections.

Various methods have attempted to capture the context dependencies by modeling
the visual and spatial relationships between RoIs [7,8]. However, the sampled RoIs may
only cover a part of the image, leading to the omission of information in some regions.
Global context refers to image-level context and is useful to capture global contextual
dependencies [9,10]. In practice, simple use of global context (i.e., global average pooled
context representation and RoI features are concatenated before recognition) leads to
improvements. However, there are two challenges in efficiently utilizing the global context.
On the one hand, the global context also contains noisy information, making us aware
that a careful identification of global contextual dependencies contained in the global
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context is desired. On the other hand, it’s noted that the global context lacks explicit spatial
information such as location and size. To close the gap, exploring the visual features in the
global context from a spatial perspective is essential.

To achieve the goal, we present a simple Global Contextual Dependency Network
(GCDN), which captures global contextual dependencies over local visual features to
further enhance the local RoI feature representations. Considering that visual objects varies
substantially in scale and are distributed in different locations, a Context Representation
Module (CRM) is exploited to construct multi-scale context representations. Furthermore,
to capture global contextual dependencies, we utilize the attention mechanism and design
a Context Dependency Module (CDM). Our GCDN consists of multiple CDMs. Each CDM
generates single-scale contextual RoI features based on the local RoI features and single-
scale context representation via affinity computation and context aggregation. Multi-scale
contextual RoI features generated by parallel CDMs independently are fused with the
original RoI features to predict the labels of the RoIs.

Comprehensive experiments are performed to validate the effectiveness and generality
of GCDN. Our GCDN improves 1.5% and 1.2% Average Precision (AP) on MS-COCO 2017
benchmark dataset [11] with ResNet-50 for Feature Pyramid Network (FPN) and Mask
R-CNN, respectively. Ablation studies show that the CRM and CDM complement each
other to improve the detection results.

Our contributions are summarized as follows:

• We present a novel Global Contextual Dependency Network (GCDN), as a plug-and-
play component, to boost the classification ability of two-stage detectors;

• A Context Representation Module (CRM) is proposed to construct multi-scale context
representations, and a Context Dependency Module (CDM) is designed to capture
global contextual dependencies;

• Our proposed GCDN significantly improves detection performance and is easy to
implement. Furthermore, we propose a lite version for little calculation.

2. Related Work
2.1. Object Detection

Deep learning technology learns feature representations end-to-end and has made
extraordinary progress in object detection [12], semantic segmentation [13,14] and other
vision applications [15,16]. In general, deep learning-based detectors are mainly divided
into two types, single-stage (e.g., YOLO [17], SSD [18]) and two-stage detectors (e.g., Fast
R-CNN [19], Faster R-CNN [20]). Two-stage approaches generally have slower speeds than
single-stage approaches but have better detection performance [21].

As a classic two-stage detector, Faster R-CNN [20] designs a novel Region Proposal
Network (RPN) to generate rectangular proposals and promotes the emergence of follow-
up works [22,23]. For instance, Feature Pyramid Network (FPN) [22] addresses multi-scale
problems using feature pyramid representations. Mask R-CNN [24] proposes an RoIAlign
layer to align the visual features of objects exactly. These methods improve the quality of
local visual features while neglecting the context dependencies. As a complement to these
works, we concentrate on capturing context dependencies to further enhance the local RoI
feature representations.

2.2. Context Dependency for Object Detection

Appropriate modeling of context dependencies is beneficial to object detection and
recognition [25]. Current methods have explored exploiting context dependencies to im-
prove performance via self-attention mechanism or recurrent neural networks [8,26–28].
Structure Inference Network (SIN) [29] uses Gated Recurrent Unit (GRU) to propagate mes-
sages among objects and the scene. Relation Network [7] introduces the self-attention mech-
anism [30] to model the context dependencies relationships between RoIs. Inside-Outside
Net (ION) [31] exploits spatial recurrent neural networks to capture global contextual
dependencies but leaves spatial relationships such as size out of consideration.
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The context dependencies captured by the above methods involve visual and spatial
relationships between RoIs. However, RoIs are sampled regions in the image, which may
cause some other important regions to be ignored. On the other hand, the modeling of
spatial relationships plays an important role in capturing context dependencies. In contrast,
this work captures global contextual dependencies and integrates spatial relationships into
visual relationships implicitly.

3. Global Contextual Dependency Network

This part starts from the Global Contextual Dependency Network (GCDN) framework
overview (see Figure 2). Firstly, a Context Representation Module (CRM) is employed to
construct multi-scale context representations to explore contextual information at different
scales. Then, multiple Context Dependency Modules (CDMs) are designed to capture
global contextual dependencies. Specifically, each CDM generates single-scale contextual
RoI features for each scale context representation independently. Finally, the multi-scale
contextual RoI features generated by parallel CDMs and the original RoI features are fused
to predict specific categories. The details of the CRM and CDM are elaborated as follows.

RoI Align
Context DependencyModule

ContextRepresentationModule

2fc

Concat

BOX
CLASS��

Image RoI

Global context

RPN

X
Backbone

Figure 2. An overview of our Global Contextual Dependency Network (GCDN).

3.1. Context Representation Module

Visual objects appearing in an image often have various sizes and different locations.
To integrate spatial information into visual features, the Context Representation Module
(CRM) aims to construct multi-scale context representations.

As shown in Figure 2, the backbone CNN (e.g., ResNet) is firstly employed to extract
visual features of the input image. Formally, the output convolutional feature map of CNN
(e.g., the output of ResNet conv5) is denoted as global context X ∈ RC×H×W , where C
represents the channel dimensionality, H and W represent the spatial height and width,
respectively. Assuming that the stride between the input image and the global context is
D (i.e., the downsample ratio of backbone CNN), then each position in X may represent a
region containing D× D pixels in the input image. The single receptive field scale prevents
us from fully exploring the contextual information.

To bridge the gap, the CRM generates multi-scale context representations based on X
with S pyramid scales. Taking one scale s as an instance (see Figure 3), we firstly regard
s× s positions in X as a region, and then aggregate its contents into a position by average
pooling. By this way, a single-scale context representation Xs ∈ RC×bH/sc×bW/sc is obtained,
and each position in Xs may represent a region containing Ds× Ds pixels in the input
image. The other scales are processed similarly. With multi-scale context representations,
the visual features of objects with large size variations are captured exactly.
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Figure 3. An illustration of the context representation operation (better viewed in color).

3.2. Context Dependency Module

As shown in Figures 2 and 4, GCDN includes multiple Context Dependency Mod-
ules (CDMs) organized in parallel. Each CDM takes RoI features and single-scale context
representation as input and generates single-scale contextual RoI features by affinity com-
putation and context aggregation. The multi-scale contextual RoI features generated by
parallel CDMs and the original RoI features are concatenated to perform classification.
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Figure 4. The pipeline of multiple Context Dependency Modules (CDMs).

Mathematically, let R = {ri}N
i=1 and Xs = {xs

j}
h×w
j=1 denote the RoI features and the

single-scale context representation with pyramid scale s, respectively. ri is the representation
vector of ith RoI, and N is the number of RoIs. xs

j is the representation vector of jth position,
and h× w denotes the total number of positions in Xs.

3.2.1. Affinity Computation

The computation of affinity is given as follows:

ωij =
1

C(Xs)
fθ(ri)

T fφ(xs
j ), (1)

where ωij denotes the impact of jth position on ith RoI. fθ(·) and fφ(·) are the query
transform function and the key transform function respectively (implemented as 1× 1
convolution). To reduce computational cost, θ and φ are dimensionality-reduction layers.
C(Xs) is a normalization factor whose value is h× w.



Future Internet 2022, 14, 27 6 of 10

3.2.2. Context Aggregation

After computing affinity between each RoI and each position in Xs, the single-scale
contextual RoI features are reallocated according to the affinity and the context representaion:

ys
i =

h×w

∑
j=1

wijg(xs
j ), (2)

where ys
i denotes the single-scale contextual feature of ith RoI, g(·) is the value transform

function (implemented as 1 × 1 convolution). Let Ys = {ys
i }N

i=1 denote the single-scale
contextual RoI features.

3.2.3. Feature Fusion

As shown in Figure 4, the multiple Ys generated from parallel CDMs independently
are concatenated as the multi-scale contextual RoI features Y:

Y = Concat(Y1, . . . , YS), (3)

where Y has the same channel dimension as R (i.e., the number of channel dimensionality
d shown in Figure 4 is related to the number of CDMs).

Concatenated with the contextual RoI features, the original RoI features are enhanced
to form the final RoI features Z:

Z = Concat(R, Y). (4)

The enhanced RoI features Z firstly pass through a f c head which includes one linear
layer with ReLU activation (keep the same channel dimension as R) and are then used to
predict the labels.

4. Experiments

Our GCDN could be used as a plug-and-play component for two-stage detectors. To
verify the effectiveness and generality, we experiment on the MS-COCO 2017 benchmark
dataset [11], which contains rich contextual information. MS-COCO 2017 contains 80 object
categories of various sizes. All models are trained on the 118K training images and evalu-
ated on the 5K validation (val) images. The Average Precision (AP) with IoU thresholds
from 0.5 to 0.95 and 0.05 interval is taken as the evaluation metric. Two popular detectors,
Feature Pyramid Network (FPN) [22] and Mask R-CNN [24], are taken as our baselines.
Both two baselines have made significant improvements in extracting local visual features,
thus better reflecting the role of GCDN.

4.1. Implementation Details

Our approach is based on MMDetection [32] codebase and all models follow the given
settings. The short side of the input image is resized to 800 and the long side is no more
than 1333. Random horizontal flipping is used as the only data augmentation operation
during training. ImageNet [33] pre-trained ResNet-50 and ResNet-101 [3] are taken as
backbone networks (ResNet-50 is taken unless specified otherwise). All models are trained
with a batch size of 8 images for 12 epochs on 4 GPUs. The learning rate is initialized with
0.01 and decreased by 0.1 after 8 and 11 epochs, respectively. SGD with 0.9 momentum
and 0.0001 weight decay is used as the optimizer. Pyramid scales {1, 2, 3, 6} are adopted
unless specified otherwise.

4.2. Comparisons with Baselines

The overall performance of our GCDN with different baselines and different backbones
on MS-COCO 2017 val are shown in Table 1. Our model achieves continuous gains with all
baselines. In particular, our GCDN improves 1.5% and 1.2% AP with ResNet-50-FPN for
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FPN and Mask R-CNN, respectively. Furthermore, it is observed that the improvements
for medium objects (APm) are significant. We conjecture that the visual features of medium
objects are slightly insufficient and their existences are more dependent on the context.
As powerful complementary information, the global contextual dependencies make the
original RoI features more discriminative.

Table 1. Comparisons with baselines on MS-COCO 2017 val.

Backbone Method GCDN AP AP50 AP75 APs APm APl

ResNet-50-FPN FPN 37.4 58.1 40.8 21.4 40.8 48.5
ResNet-50-FPN FPN X 38.9 60.3 41.9 22.7 42.6 49.8

ResNet-50-FPN Mask R-CNN 38.2 58.9 41.5 22.4 41.6 49.7
ResNet-50-FPN Mask R-CNN X 39.4 60.5 42.8 23.0 43.5 50.6

ResNet-101-FPN FPN 39.6 60.6 43.3 22.7 43.6 52.2
ResNet-101-FPN FPN X 40.3 61.5 43.8 23.8 44.5 53.0

ResNet-101-FPN Mask R-CNN 40.2 60.4 44.1 22.9 44.1 53.3
ResNet-101-FPN Mask R-CNN X 41.0 62.1 44.6 24.0 45.1 53.7

4.3. Ablation Studies

In this section, two ablation experiments are conducted to analyze the presented
modules.

4.3.1. Context Operations

This part investigates the effects of our CRM and CDM in our GCDN framework.
Specifically, the CRM constructs multi-scale context representations, and the CDM aggre-
gates context representation by attention mechanism. For fair comparisons, the global
average pooling operation (denoted as “GAP”) is also utilized to aggregate context rep-
resentation. Table 2 shows the experimental results. As aforementioned, just simply
concatenating global average pooled context representation with RoI features before recog-
nition improves 0.4% AP. In addition, a careful identification using the attention mechanism
brings another 0.7% AP improvement. Finally, the CDM gives 0.4% AP improvement. The
results verify that the CDM effectively identifies the global contextual dependencies and
the CRM successfully captures the contextual information at different scales.

Table 2. Effects of different context operations on MS-COCO 2017 val.

Method CRM GAP CDM AP AP50 AP75 APs APm APl

FPN 37.4 58.1 40.8 21.4 40.8 48.5
FPN X 37.8 59.1 41.0 21.9 41.4 48.3
FPN X 38.5 59.9 42.0 22.6 42.6 49.4
FPN X X 38.9 60.3 41.9 22.7 42.6 49.8

4.3.2. Pyramid Scales

Table 3 shows the experimental results of the different settings of pyramid scales. It can
be observed that single-scale GCDN (1st row) is inferior to multi-scale GCDN, indicating
that multi-scale context representations are helpful to capture the visual features of objects
with large size variations. Moreover, GCDN with larger pyramid scales is better at detecting
large objects (APl increases from 1st row to 4th row).
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Table 3. Impacts of different pyramid scales on MS-COCO 2017 val.

Method Pyramid Scales AP AP50 AP75 APs APm APl

FPN {1} 38.5 59.9 42.0 22.6 42.6 49.4
FPN {1,2} 38.8 60.0 42.1 23.1 42.6 49.6
FPN {1,2,3} 38.8 60.1 42.2 22.8 42.6 49.7
FPN {1,2,3,6} 38.9 60.3 41.9 22.7 42.6 49.8

4.4. Lite Version

To reduce the computational cost, this work also presents a lite version of our method.
For the lite version, the strategy to construct multi-scale context representations is changed.
Specifically, for scale s, the global context X is divided into s × s subregions. For each
subregion, we aggregate its contents by average pooling. By this way, the single-scale
context representation Xs ∈ RC×s×s is obtained. Both two version methods (i.e., lite and
full) adopt the same pyramid scales of {1, 2, 3, 6}. Table 4 shows the experimental results.
Compared with the FPN baseline, our lite version improves 1.1% AP without causing a big
speed drop (runtime is evaluated on a single 2080 Ti GPU).

Table 4. Comparisons with lite version of our GCDN on MS-COCO 2017 val.

Method Lite Full AP AP50 AP75 APs APm APl Runtime FPS

FPN 37.4 58.1 40.8 21.4 40.8 48.5 15.3
FPN X 38.5 59.8 41.7 22.4 42.5 49.3 14.8
FPN X 38.9 60.3 41.9 22.7 42.6 49.8 14.2

5. Conclusions

This paper presents a novel Global Contextual Dependency Network (GCDN) frame-
work, which captures global contextual dependencies to further enhance the local visual
features of Regions of Interest (RoIs). The representation module and dependency module
are designed to explore contextual information at different scales and generate contex-
tual features, respectively. Comprehensive experiments validate that our approach brings
consistent improvements for two-stage detectors and two modules complement each
other. The key to capturing global contextual dependencies is to exactly model seman-
tic and spatial relationships in the scene. Our next step is to efficiently capture global
contextual dependencies.
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