
Citation: Akhilesh, R.; Bills, O.;

Chilamkurti, N.; Chowdhury, M.J.M.

Automated Penetration Testing

Framework for Smart-Home-Based

IoT Devices. Future Internet 2022, 14,

276. https://doi.org/10.3390/

fi14100276

Academic Editor:

Ishaani Priyadarshini

Received: 31 July 2022

Accepted: 19 September 2022

Published: 27 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

future internet

Article

Automated Penetration Testing Framework for
Smart-Home-Based IoT Devices
Rohit Akhilesh 1, Oliver Bills 1, Naveen Chilamkurti 2 and Mohammad Jabed Morshed Chowdhury 2,*

1 Department of Cybersecurity, School of Engineering and Computer Sciences, University of Southampton,
University Road, Southampton SO17 1BJ, UK

2 Department of Computer Science and Engineering, La Trobe University, Bundoora VIC 3086, Australia
* Correspondence: m.chowdhury@latrobe.edu.au

Abstract: Security testing is fundamental to identifying security vulnerabilities on smart home-based
IoT devices. For this, penetration testing is the most prominent and effective solution. However,
testing the IoT manually is cumbersome and time-consuming. In addition, penetration testing
requires a deep knowledge of the possible attacks and the available hacking tools. Therefore, this
study emphasises building an automated penetration testing framework to discover the most common
vulnerabilities in smart home-based IoT devices. This research involves exploring (studying) different
IoT devices to select five devices for testing. Then, the common vulnerabilities for the five selected
smart home-based IoT devices are examined, and the corresponding penetration testing tools required
for the detection of these vulnerabilities are identified. The top five vulnerabilities are identified from
the most common vulnerabilities, and accordingly, the corresponding tools for these vulnerabilities
are discovered. These tools are combined using a script which is then implemented into a framework
written in Python 3.6. The selected IoT devices are tested individually for known vulnerabilities using
the proposed framework. For each vulnerability discovered in the device, the Common Vulnerability
Scoring System (CVSS) Base score is calculated and the summation of these scores is taken to calculate
the total score (for each device). In our experiment, we found that the Tp-Link Smart Bulb and the
Tp-Link Smart Camera had the highest score and were the most vulnerable and the Google Home
Mini had the least score and was the most secure device of all the devices. Finally, we conclude that
our framework does not require technical expertise and thus can be used by common people. This
will help improve the field of IoT security and ensure the security of smart homes to build a safe and
secure future.

Keywords: internet of things (IoT); penetration testing (PT); smart home; IoT devices; Common
Vulnerability Scoring System (CVSS)

1. Introduction

IoT devices are physical objects which offer services through online connectivity. They
are equipped with sensors, actuators, and controllers. Any device that can connect, interact,
and exchange data with the internet is an IoT device [1]. It is a new way of data exchange,
where devices interact with each other for the delivery of services [2]. In recent times,
there has been a rapid expansion of the IoT and because of being in a highly technological
society, people are surrounded by networked smart devices designed to enhance produc-
tivity, efficiency, and efficacy. These devices operate interactively and anonymously and
encompass most of the Internet of Things. Therefore, it can be established that the IoT is
far more ubiquitous than many realize and based on a recent statistic, the total number
of IoT devices (worldwide) is expected to be around 22 billion (2018) and is expected to
reach 50 billion by the year 2030 [3]. This expansion is expected to cause an evolution
in the government and majorly in the fields of transportation, education, and finance,
along with a few other fields [4]. This expansion, with the help of network virtualization,

Future Internet 2022, 14, 276. https://doi.org/10.3390/fi14100276 https://www.mdpi.com/journal/futureinternet

https://doi.org/10.3390/fi14100276
https://doi.org/10.3390/fi14100276
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://orcid.org/0000-0002-5396-8897
https://doi.org/10.3390/fi14100276
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/article/10.3390/fi14100276?type=check_update&version=1

Future Internet 2022, 14, 276 2 of 18

communication capabilities, and cloud computing, has enabled a new connection between
the virtual and the physical world.

IoT devices have different applications across various fields through which informa-
tion can be shared and communicated via the Internet [5]. These devices fall into different
categories, such as information technology and enterprise devices; operation technology
like SCADA (supervisory control and data acquisition) [6], process control, medical devices;
consumer devices like smartphones, smart bulbs, smart kettles; and various other single-
purpose devices [4]. Another good example is wearable devices; they are a transformation
of ordinary wearable products into smart devices such as clothes, shoes, or watches, which
can be worn on the user’s body and can interact with their surroundings [7]. Additionally,
the concept of smart homes which comes under consumer devices is of great interest in the
field of IoT.

Smart homes are an environment built using smart IoT devices. In other words, a
smart home “is a house or living environment that contains the technology to allow home
devices and systems to be controlled automatically” [8]. There is no formal definition for
a smart home but the most suitable was one found in one research paper: “A residence
equipped with a communications network, linking sensors and domestic devices and
appliances that can be remotely monitored, accessed or controlled, and which provide
services that respond to the needs of its inhabitants” [9]. All the IoT devices present in
such an environment are smart home-based IoT devices. Deployed at home, these devices
generally communicate with the servers on the cloud and access the network (directly or
indirectly) through protocols like ZigBee, Wi-Fi, and Bluetooth [10].

There are six important components surrounding the architecture of smart homes [11]:

1. Hardware: It includes all the physical components of the device (including the
firmware).

2. User interface: The devices used by the user to access the IoT devices (i.e. The user’s
PC or Mobile Phone).

3. Web Application: It helps in configuring, accessing, or controlling a device. In most
cases, it is hosted on a web server residing in the device itself.

4. Mobile Application: It is like a web application, but with more features and is more
practical for the user’s use.

5. Network and Cloud: All the communications between the devices and the applica-
tions happen to go through the network and the data is stored in the cloud.

6. API (Application Protocol Interface): This plays a crucial role in making interoper-
ability and interaction between the device, application, and the cloud possible.

An example of the architecture described above is shown in Figure 1.

Future Internet 2022, 14, 276 3 of 18

Future Internet 2022, 14, x FOR PEER REVIEW 3 of 18

Figure 1. The architecture of a Smart home.

Above Figure 1 represents the connections between the components surrounding the
architecture of smart homes. The figure briefly explains how the user connects and inter-
acts with the smart home-based IoT devices in the hardware layer (the IoT lock, the IoT
camera and the IoT bulb) using his smartphone or computer (shown in the User Interface
layer of the figure). Each device has an application associated with it, which can be used
by the user through his smart device to control and interact with the IoT device. This ap-
plication establishes a connection with the device through its corresponding API that is
present between the app and the IoT device. Each application has a corresponding API
(shown in the API layer of the figure) that establishes a connection with the specific IoT
device. Apart from this, there is also a database layer which contains the cloud and local
database. All the data corresponding to the interactions between the user and the IoT de-
vice get stored in this layer. Each uniquely coloured line in the figure represents the con-
nections corresponding to one set of interactions between the user interface and the hard-
ware.

In recent times, the Internet of Things (IoT) has been a very fast-growing and trend-
ing technology. People are surrounded by Internet of Things (IoT) devices in their daily
life in one way or another. There would not be a day in which people are not using at least
one of these devices in their day-to-day life. However, the emphasis on the functionality
of these devices is so high that the manufacturers, and the people, are ignoring or forget-
ting another very important aspect to take into consideration, i.e., ‘Security’. As a result,
these devices are manufactured with very basic security issues, such as outdated software,
default passwords, improper configurations, and poor logging. These vulnerabilities
make the devices primary targets for potential hackers, as the hackers can easily brute
force the passwords, use a known software vulnerability or exploit the improper config-
uration to gain access to the device. These devices also contain a lot of sensitive, personal
data about the consumer, which upon getting into the wrong hands can have a severe
impact on the consumer’s life. Along with the concern for the safety of civilians, and their
devices, these IoT devices can also be used as potential botnets to attack major digital
infrastructures. Several such successful attacks have been reported and there has been an
exponential increase in the number of attacks on the IoT every year [12]. Therefore, keep-
ing these repercussions in mind, security testing of IoT devices is what is relevant and
very much necessary in today’s day and age.

Figure 1. The architecture of a Smart home.

Above Figure 1 represents the connections between the components surrounding the
architecture of smart homes. The figure briefly explains how the user connects and interacts
with the smart home-based IoT devices in the hardware layer (the IoT lock, the IoT camera
and the IoT bulb) using his smartphone or computer (shown in the User Interface layer of
the figure). Each device has an application associated with it, which can be used by the
user through his smart device to control and interact with the IoT device. This application
establishes a connection with the device through its corresponding API that is present
between the app and the IoT device. Each application has a corresponding API (shown
in the API layer of the figure) that establishes a connection with the specific IoT device.
Apart from this, there is also a database layer which contains the cloud and local database.
All the data corresponding to the interactions between the user and the IoT device get
stored in this layer. Each uniquely coloured line in the figure represents the connections
corresponding to one set of interactions between the user interface and the hardware.

In recent times, the Internet of Things (IoT) has been a very fast-growing and trending
technology. People are surrounded by Internet of Things (IoT) devices in their daily life in
one way or another. There would not be a day in which people are not using at least one
of these devices in their day-to-day life. However, the emphasis on the functionality of
these devices is so high that the manufacturers, and the people, are ignoring or forgetting
another very important aspect to take into consideration, i.e., ‘Security’. As a result, these
devices are manufactured with very basic security issues, such as outdated software, default
passwords, improper configurations, and poor logging. These vulnerabilities make the
devices primary targets for potential hackers, as the hackers can easily brute force the
passwords, use a known software vulnerability or exploit the improper configuration to
gain access to the device. These devices also contain a lot of sensitive, personal data about
the consumer, which upon getting into the wrong hands can have a severe impact on the
consumer’s life. Along with the concern for the safety of civilians, and their devices, these
IoT devices can also be used as potential botnets to attack major digital infrastructures.
Several such successful attacks have been reported and there has been an exponential
increase in the number of attacks on the IoT every year [12]. Therefore, keeping these
repercussions in mind, security testing of IoT devices is what is relevant and very much
necessary in today’s day and age.

Future Internet 2022, 14, 276 4 of 18

Currently, the most prominent and viable solution to evaluate the overall security of
an IoT device, from the attacker’s perspective, is Penetration Testing (PT). Although there
is no approach yet that completely evaluates the security of an IoT device (yet), PT is the
most favoured approach [13]. However, PT of the IoT manually can be cumbersome and
time-consuming. Additionally, it might be difficult for a regular user as PT requires a deep
knowledge of the possible attacks and the available hacking tools. Therefore, it is evident
that automation is required to make PT more efficient, and this also makes it easy for a
normal user to evaluate the security of his IoT device as there’s no need to have a deep
understanding of the topic, unlike in the case of manual PT. This is also what the current
IoT security research aims to do, i.e., automation.

In this paper, we aim to build an automated PT framework and test it on five smart
home-based IoT devices to discover the most common vulnerabilities present in them.
The Common Vulnerability Scoring System (CVSS) base score is evaluated based on the
vulnerabilities discovered for each device, and they are compared based on the scores to
identify the most secure device. The contributions of our paper are as follows:

1. Design and implement an automated penetration framework, which can be used by
both technical and non-technical persons with ease.

2. Demonstrate how to use an automated penetration testing framework to test the
security of different available smart home solutions.

The rest of the paper is as follows: The second section focuses on reviewing current
IoT PT techniques and selecting a suitable technique for the paper. In the third section, we
propose an automated PT framework. In the fourth section, we provide the results along
with a Common Vulnerability Scoring System (CVSS) analysis of the results. In the fifth
section, we discuss the Scope, Reflection, Risks, Constraints and Contingency planning for
the research work, along with the limitations and future works. In the last section, based
on the results achieved by the framework, we provide a brief conclusion to the paper.

2. Background and Related Work

PT means performing attacks on a system, for example, an IoT device, to discover
its vulnerabilities. It is a well-known technique that makes use of different kinds of tools
employed by malicious hackers to simulate attacks and identify the security vulnerabilities
in a device. There are numerous methods and techniques to do this, some of which are
reviewed and compared in this section, and later the most suitable method is selected.

Ref. [1] describes one such technique, where there was a security analysis performed
in an IoT test environment, with the provided requirements using a few PT methodologies,
such as port scanning, fingerprinting, process enumeration, and a vulnerability scan. They
performed this on devices like Amazon Echo, Nest Cam, Philips Hue, and a few others,
and found that these devices are vulnerable. However, there are various loopholes in this
research, for example, the vulnerability scanner only scans for known vulnerabilities (CVE),
but what if there are some vulnerabilities that are not listed in CVE? The paper talks about
scanning for vulnerabilities, which means that it is only detecting them, but not testing
them, i.e., exploiting the vulnerabilities and checking them; therefore, there is a possibility
of false positives. It also lacks security testing for IoT protocols. Additionally, one major
drawback is that it is using a testbed and not a real scenario; what if the results change
when you change the conditions of the testbed? Ultimately, all these constraints denote
that this is not a proper penetration technique to ensure security.

Another way to conduct PT is described in [2]. This is done using an online tool called
PENTOS or penetration testing tool for IoT devices (used on Kali Linux). It is a compilation
of PT tools that are used for the security testing of IoT devices. This tool is also user-friendly,
i.e., it does not require any major security experience as is it quite straightforward. It also
helps novice users increase their security awareness by conducting PT.

This technique overcomes a few of the drawbacks of the first technique, for instance,
it does not just scan for known vulnerabilities, it tries to exploit them and check for false
positives. The scenario here is a real scenario, unlike a testbed. It also performs attacks

Future Internet 2022, 14, 276 5 of 18

like password attacks, Wi-Fi attacks, and Web scanning, among others, unlike the first
technique, which just does scanning for vulnerabilities. Although PENTOS is better than
the first technique in most aspects, its scope is limited to PT over the network. It does not
test for security issues on the software or the OS. This is one major drawback of PENTOS as
software vulnerabilities are equally important. Additionally, IoT protocols like MQTT and
CoAP cannot be tested using PENTOS, and the ZigBee PT module is still being developed.

To overcome these limitations or drawbacks, a more enhanced version of these manual
PT techniques is needed, i.e., automated tools. The usage of automated techniques for
the security assessment of IoT devices would lead to a prominent increase in the level of
security of IoT devices, while also making sure that the costs are contained [14].

This is done by the following method shown in [15], where PT is divided into three
types of specialized testing methods called:

1. Interface Testing: Performed on the interfaces that interact with IoT devices, which
handles input validation testing.

2. Transport Testing: Performed on the network of the IoT devices, the associated
cryptographic schemes and communication protocols for messages (protected).

3. System Testing: Performed on the software, firmware, Oss, and system services to
test implementation flaws, insecure system settings, and other known vulnerabilities.
It also involves intelligent grey-box testing.

To deal with the heterogeneity, large number, and resource constraints of IoT devices,
the above technique involves a combination of principles of modularization and intelligence
along with the manual PT tools and techniques. Modularization helps in providing the
flexibility to test various targets and intelligence is used for enlarging test coverage and
improving accuracy. Therefore, this technique is better than the second technique as it not
only does everything that the PENTOS tool does, i.e., information gathering, password
attacks, and many more through interface testing and transport testing, but it also tests the
software and the OS of the device for vulnerabilities through system testing. Apart from
that, using intelligence ensures that a lot of time and effort can be saved when compared to
manual testing.

Another similar technique with the same idea, automation, is mentioned in [13]. This
paper follows a layer-based PT approach, like the technique mentioned above, but the
differentiation of the layers is the difference between the two techniques. In this technique,
the layers are the perception layer, the hardware part of the IoT, the network layer, and the
application layer, handled by the user. The network layer connects the application layer
and the perception layer. The PT is done for each layer individually, hence, the layer-based
PT approach. This paper has a lot of similarities with our paper in establishing the context
and the security problem, but the techniques are completely different from each other. Their
technique follows a Belief-Desire-Intention (BDI) based automation approach, whereas
our technique follows a framework-based approach. It was not possible to comment on
the accuracy or the effectiveness of their technique as their results lacked detail, and their
research was probably in its initial stages.

After a thorough review and analysis, and keeping the scope of the research in mind,
the most suitable method for the research work has been selected, as shown in Figure 2, as
it helps in identifying vulnerabilities specifically in smart home-based IoT devices. This
method is based on the PT Execution Standard (PTES). The method has various stages and
procedures respective to each stage. Given below is a flow chart representing the stages
and the procedure in each stage [11].

Future Internet 2022, 14, 276 6 of 18Future Internet 2022, 14, x FOR PEER REVIEW 6 of 18

Figure 2. UML activity diagram of the manual penetration testing method. Note: The
procedures that are at the same level can be executed in parallel, but one can only pro-
ceed to the next level if all the procedures in that level are completed.

3. Proposed Framework
3.1. Design of the Framework

The idea behind the research is to make sure the framework developed can detect the
most common vulnerabilities present in smart home-based IoT devices. For this, we have
decided to go with a list of the top five most common vulnerabilities found in smart home-
based IoT devices. The selection of these top five vulnerabilities has been done by taking
the OWASP top 10 IoT vulnerabilities [16] along with the research paper [11], and the
OWASP top 10 have been filtered to the top five by considering the scope of the research,
i.e., only the Network-based, Web Interface based, and Firmware based, vulnerabilities
have been selected. Therefore, based on these the top five vulnerabilities selected are given
as follows:

Figure 2. UML activity diagram of the manual penetration testing method. Note: The procedures
that are at the same level can be executed in parallel, but one can only proceed to the next level if all
the procedures in that level are completed.

3. Proposed Framework
3.1. Design of the Framework

The idea behind the research is to make sure the framework developed can detect
the most common vulnerabilities present in smart home-based IoT devices. For this, we

Future Internet 2022, 14, 276 7 of 18

have decided to go with a list of the top five most common vulnerabilities found in smart
home-based IoT devices. The selection of these top five vulnerabilities has been done by
taking the OWASP top 10 IoT vulnerabilities [16] along with the research paper [11], and
the OWASP top 10 have been filtered to the top five by considering the scope of the research,
i.e., only the Network-based, Web Interface based, and Firmware based, vulnerabilities
have been selected. Therefore, based on these the top five vulnerabilities selected are given
as follows:

1. Insecure Web Interface: IoT-based devices come with a corresponding application
that handles the operation of the device. In the present era, all these applications
are mobile-based, however, some devices still use a web application or have a web
interface for handling their operation. For such devices, the framework has been
designed to detect the presence of any web interface-based vulnerabilities, i.e., if the
device has a web interface. The framework scans for any common web interface-
based vulnerabilities, such as SQL injection, cross-site scripting, and many others, and
reports its findings. This is done by using a tool called ‘Owasp Zap’.

2. Remote Access Vulnerability (Improper Authentication): Some of the IoT devices
can be accessed remotely from another system by using various remote access proto-
cols. The most known remote access protocols for IoT devices are SSH and Telnet [11].
Any IoT device can be remotely accessed only if the ports corresponding to SSH and
Telnet protocols are open, i.e., Port 22 (SSH) and Port 23 (Telnet), respectively. For such
devices, the framework has been designed to detect any remote access vulnerabilities
present by brute-forcing a password list on a user, mostly root, or a list of users. It
scans for both SSH and Telnet-based remote access vulnerabilities. The tool used in
the framework for doing this is ‘Medusa’.

3. Insecure Network Services: Some IoT devices might be having unwanted services,
unwanted ports open or services like FTP, Telnet or SSH, on open ports, which might
be dangerous as attackers can use these ports to gain access to the device [17]. The
framework is designed to detect any such insecure network services vulnerabilities by
reading the captured pcap files and through the Nmap frameworks using the Nmap
Search Engine (NSE).

4. Lack of Transport Encryption: Most IoT devices, even after several updates, still tend
to use the HTTP protocol instead of the HTTPS protocol, which can be dangerous
as most of the information transported over the internet in such a manner is usually
unencrypted. An attacker can easily intercept the traffic and analyse an HTTP packet
and retrieve all the sensitive information about the device [18]. The framework is
designed to detect any such vulnerabilities by following a similar methodology. It
detects if any of the sensitive information is transported in an unencrypted manner,
i.e., using the HTTP protocol. This is done using the tool ‘tshark’.

5. Insecure Firmware/Software: IoT devices need to be updated quite often as manu-
facturers keep fixing bugs in the software. Some of these devices, while going through
an update, use the HTTP protocol to get the firmware files from the cloud. This can be
vulnerable if someone intercepts the traffic; the firmware files can be captured easily
as they would be unencrypted and according to OWASP top 10 IoT vulnerabilities,
if the update file is transferred via HTTP or if it is unencrypted (human-readable),
then it is an insecure firmware vulnerability [19]. The framework is designed to detect
these types of vulnerabilities using ‘tshark’.

The design of the framework, as shown in Figure 3, is based on a modified and
automated version of the selected manual penetration technique described in the Literature
Review section. The following is a brief UML activity diagram that describes the algorithm
followed by the framework. It is based on the use case view of the architectural description
mentioned in the papers [20,21].

Future Internet 2022, 14, 276 8 of 18Future Internet 2022, 14, x FOR PEER REVIEW 8 of 18

Figure 3. UML activity diagram for the algorithm followed by the framework.

Based on the Figure, the design of the framework is such that it can be divided into
five parts, which are executed one after the other. This division of the framework into
different parts is done to make the explanation of the algorithm easier.

The different parts are as follows:
1. Reconnaissance part (Net Discover and Nmap Scan): Initially, the framework does

a Net Discover scan over an interface, usually the one to which the IoT device is con-
nected, and retrieves the IP Address and the MAC Vendor Name (device manufac-
turer name) of the device. After that, a Nmap scan is done by the framework over the
IP Address that has been retrieved through the Net Discover scan, and the results of
this scan, which contains the list of open ports and the corresponding services run-
ning on them, are stored in a corresponding Nmap log file. The framework reports
these results and proceeds to the next part.

2. Check for Remote Access Vulnerability: In this part, the framework uses Medusa to
conduct a brute force password attack over the IP Address of the device, retrieved
via the ‘Net Discover’ part, to check whether any remote access vulnerabilities are
present. It takes the user to run the check on, the password list, and the remote access
protocol to check as an input, and executes the ‘Medusa’ tool with these correspond-
ing flags to detect if the device can remotely be accessed using any of these passwords
in the given password list. The input can vary between one user and a list of users,
and the protocols it checks on are ‘SSH’ and ‘Telnet’, which are the two most common
protocols used by IoT devices. The framework stores the output of the ‘Medusa’ tool
executed with the provided input flags in a corresponding log file; this log file is
scanned to check whether any of the passwords in the list could successfully brute

Figure 3. UML activity diagram for the algorithm followed by the framework.

Based on the Figure, the design of the framework is such that it can be divided into
five parts, which are executed one after the other. This division of the framework into
different parts is done to make the explanation of the algorithm easier.

The different parts are as follows:

1. Reconnaissance part (Net Discover and Nmap Scan): Initially, the framework does
a Net Discover scan over an interface, usually the one to which the IoT device is
connected, and retrieves the IP Address and the MAC Vendor Name (device manufac-
turer name) of the device. After that, a Nmap scan is done by the framework over the
IP Address that has been retrieved through the Net Discover scan, and the results of
this scan, which contains the list of open ports and the corresponding services running
on them, are stored in a corresponding Nmap log file. The framework reports these
results and proceeds to the next part.

Future Internet 2022, 14, 276 9 of 18

2. Check for Remote Access Vulnerability: In this part, the framework uses Medusa to
conduct a brute force password attack over the IP Address of the device, retrieved via
the ‘Net Discover’ part, to check whether any remote access vulnerabilities are present.
It takes the user to run the check on, the password list, and the remote access protocol
to check as an input, and executes the ‘Medusa’ tool with these corresponding flags
to detect if the device can remotely be accessed using any of these passwords in the
given password list. The input can vary between one user and a list of users, and
the protocols it checks on are ‘SSH’ and ‘Telnet’, which are the two most common
protocols used by IoT devices. The framework stores the output of the ‘Medusa’ tool
executed with the provided input flags in a corresponding log file; this log file is
scanned to check whether any of the passwords in the list could successfully brute
force and provide access. If yes, a remote access vulnerability is recorded and reported
and the framework proceeds to the next part.

3. Check for Insecure Web Interface: This part can be divided into two steps.

i. Step 1: The framework first checks whether the device has a corresponding
web interface. For this, it uses the ‘whatweb’ tool, which checks whether HTTP
is running over the device and reports its status, since HTTP is required for any
device to have a web interface. If ‘whatweb’ detects HTTP running over the
device, then it proceeds to the next step, or else the framework checks whether
port 80 (HTTP) or port 443 (HTTPS) are open, and asks the user manually if he
wishes to check for an insecure web interface. This step has been added for the
cases where the ‘whatweb’ tool cannot detect ‘HTTP’, or when the devices use
‘HTTPS’, or when these protocols run over different ports, among others. If the
framework detects the presence of a web interface it proceeds to the next step,
else it reports that the device does not have a corresponding web interface.

ii. Step 2: If the framework detects the presence of a web interface, this step gets
executed, or else the framework moves to part four. In this step, the framework
uses the tool Zap-Cli with corresponding flags as input, and actively scans the
web interface for all the vulnerabilities like SQL Injection, Cross-Site Scripting,
Cross-Site Request Forgery, and many others. The results of this scan are
stored in a corresponding log file and this log file is then string processed to
check for any vulnerabilities detected by Zap-Cli. If the framework detects
issues in the log file, then an insecure web interface vulnerability is recorded
and reported and the framework proceeds to the next part.

4. Automated Traffic Capture: In this part, initially, the framework asks the user whether
he wishes to capture the traffic automatically using the framework or manually cap-
ture using Wireshark. This has been added as sometimes automated capture cannot
guarantee accurate results if the testing environment is not rightly configured. This
provides the user flexibility to capture the files manually or automatically, depend-
ing on his will. This part of the framework gets executed only if the user selects
‘Automatically’. Otherwise, the framework proceeds to the next part.

Once the automatic option is selected, the framework asks the user for the state
of the device, there are four possible states which are: Booting device, when the
device boots up; Mobile Application Interaction, when the device interacts with its
corresponding mobile application; Firmware mode, when the device goes through
a firmware update; and Offline Mode when the device does not have an internet
connection. The framework takes these states as input to capture the traffic in four
different states and stores it in four different .pcap files (for analysing later). The
capture is done using ‘pyshark’. The framework prompts the user to capture in all
the states to ensure completeness of the capture. Once the capture is complete the
framework proceeds to the next part.

Note: the user needs to make sure manually that the device is in these states while
selecting that corresponding state as input in the framework.

Future Internet 2022, 14, 276 10 of 18

5. Vulnerability detection through traffic analysis: After the capture is complete, either
automatically through the framework or manually, the framework then analyses these
captured .pcap files and checks for vulnerabilities present in them. To make the
explanation easier, this part has further been divided into three parts, which are
executed one after the other.

i. Check for Insecure firmware: Initially, the framework asks the user whether
the firmware files have been captured during a firmware update or down-
loaded from the manufacturer’s website. If neither is true, then the framework
proceeds to the next step.

If the firmware files have been captured:
The framework uses ‘tshark’ to read the .pcap file, captured during the

firmware update, to fetch the URL link to the binary image file of the firmware
(which is on the cloud interface of the device). Once, it gets access to the
URL link, the framework automatically downloads the binary image file (.bin
file) and stores it in the same directory on the user’s system. The framework
then extracts the firmware file system from the .bin file using the ‘binwalk’
tool. After that, the extracted firmware file system is searched using the
‘firmwalker’ tool for any firmware-based vulnerabilities. The framework
records and reports an ‘insecure firmware vulnerability’ once it finds the URI
link in ‘HTTP’, or once the download is successful, irrespective of whether
the extraction of the firmware file system through binwalk or the firmwalker
search was successful or not [19]. Post the ‘firmwalker’ scan, and once the
check is complete, the framework proceeds to the next part.

If the firmware files have been downloaded from the manufacturer’s
website:

The framework extracts the firmware file system from the .bin file using
the ‘binwalk’ tool. After that, the extracted firmware file system is searched by
the framework using the ‘firmwalker’ tool for any firmware-based vulnerabili-
ties. If the firmwalker tool finds any firmware-based vulnerabilities, then the
framework records and reports them, or else the framework proceeds to the
next part.

ii. Check for Lack of transport encryption: The framework uses ‘tshark’ to
read the pcap file, captured during the firmware update, to fetch the URL
link, through which the device communicates with its corresponding cloud
interface; generally, this is like the .bin file HTTP link, as above. Once it gets
access to the URL link, the framework checks whether the device uses HTTP
to communicate with the cloud interface to download the firmware files [18].
If the device uses HTTP, then ‘lack of transport encryption vulnerability’ is
recorded and reported, or else the framework proceeds to the next part.

iii. Check for Insecure Network Services: The framework uses ‘tshark’ to read all
the pcap files, captured in all the different modes, and to check for any insecure
network-based vulnerabilities. This is done by checking the following:

• Any unwanted or unknown services are on open ports.
• If services like SSH, Telnet, and FTP, are on open ports.
• If any of the protocols like TCP, SSL, or TLS, have vulnerable older ver-

sions.
• If the services used by the device are not properly authenticated by the

server.

If the framework detects any of the above, then the ‘Insecure Network Ser-
vices’ vulnerability is recorded and reported. If not, the framework proceeds
to the next part.

Post this, an additional part is added to the framework to ensure a more comprehensive
check of the Insecure Network Services. In this part, the framework uses Nmap along with

Future Internet 2022, 14, 276 11 of 18

some Nmap search engine (NSE) frameworks to detect any network-based vulnerabilities.
The framework stores the output of the network-based nmap scan in a corresponding log
file and scans this log file for any vulnerabilities detected by Nmap. If the framework finds
any issues or vulnerabilities, it records and reports them, else with this the design of the
device is complete.

In addition to the UML activity diagram, the following are the UML component,
shown in Figure 4, and UML deployment diagrams of the framework, shown in Figure 5,
added to gain a broader perspective and understand the architectural description of the
design of the framework, based on [20,21].

Future Internet 2022, 14, x FOR PEER REVIEW 11 of 18

Figure 4. UML component diagram of the framework.

Figure 5. UML deployment diagram of the framework.

Figure 4. UML component diagram of the framework.

Future Internet 2022, 14, 276 12 of 18

Future Internet 2022, 14, x FOR PEER REVIEW 11 of 18

Figure 4. UML component diagram of the framework.

Figure 5. UML deployment diagram of the framework. Figure 5. UML deployment diagram of the framework.

3.2. Implementation

The implementation of the automated PT framework is carried out based on the
algorithm mentioned above in the design section. We used the algorithm to write a
framework in Python 3.6. This framework contains a combination of tools executed in
a specific order, at the user’s discretion. The framework uses these tools to detect the
most common vulnerabilities in the IoT device (mentioned in the Design section). To be
specific, each vulnerability has a corresponding method, a tool or combination of tools,
that is used by the framework to detect that specific vulnerability. Most of the tools used
by the framework are available in Kali Linux, by default. The tools that are used by the
framework are Net Discover, Nmap, OWASP ZAP (zap-cli), Medusa, WhatWeb, Wireshark
(t-shark and pyshark), Binwalk, and Firmwalker.

We used the implemented framework to test the security of five smart home-based
IoT devices: Tp-link smart plug; Tp-link smart bulb; Tp-link smart camera; Google home
mini; and the LIFX Smart bulb, to find the most common vulnerabilities present in them.
In addition, we calculated the Common Vulnerability Scoring System (CVSS) Base Score
for each device individually, based on the vulnerabilities detected by the framework, to
identify the most secure device (mentioned in the Results section).

We did the testing on the Kali Linux operating system, which is contained in a Virtual
Machine (VM) on the Windows Operating system (host). Ideally, the VM should have a
base memory of 4096MB and four processors at least, to ensure that the framework does
not slow down. Additionally, the network adapter of the VM should be of the Network
Address Translation type (NAT), so that the host, machine, and VM, are on the same
network. After that, a Wi-Fi-based hotspot needs to be established on the Windows OS
with a network band of 2.4 GHz as IoT devices fail to connect to a network band that is
higher than this. The device that is being tested should be set up accordingly, based on the
setup instructions provided for each device, and connected to this Wi-Fi hotspot; this is
done by selecting the network of the Wi-Fi hotspot as the network to connect the device to,
on the corresponding mobile application of the device. Once the device connects to this

Future Internet 2022, 14, 276 13 of 18

network, the device, the VM, and the host machine are all on the same network as the host
machine and VM are connected through a NAT adapter.

4. Results and Analysis

Before the testing, the following ‘pip3’ based packages and tools need to be installed
for the framework to work. For testing environment Kali Linux, here are some prerequisites:

• Pip3-based packages ‘pyshark’ and ‘scapy’ need to be installed using the commands
“pip3 install pyshark” and “pip3 install scapy”, respectively, on the terminal.

• Zap-Cli needs to be installed using the command “pip3 install –upgrade zap-cli” on
the terminal, and the $ZAP_PATH and $ZAP_PORT environment variables need to be
set [22].

• Firmwalker needs to be installed in the same directory in which the folder containing
the script is present. It can be installed using the command “git clone https://github.
com/craigz28/firmwalker.git” [23].

After configuring the testing environment, we connected each device to the Wi-Fi
hotspot individually and used the PT framework on the devices to detect the vulnerabilities
present in them. A summary of the results of the testing for each device, along with the
execution time taken by the framework for testing it, is shown in Table 1.

Table 1. Results of testing.

Test Case Description Device Tested
Vulnerabilities
Detected by the

Framework

Execution Time
for Testing by

the Framework

1

Used the framework
to test for the top

vulnerabilities in the
Smart plug.

Tp-Link Smart
Plug

A probable
Insecure Network

Services
vulnerability.

2–3 s
(approximately)

2

Used the framework
to test for the top

vulnerabilities in the
Smart bulb.

Tp-Link Smart
bulb

Lack of Transport
Encryption and

Insecure Firmware
Vulnerability.

5–8 s
(approximately)

3

Used the framework
to test for the top

vulnerabilities in the
Smart Camera.

Tp-Link Smart
Camera

Lack of Transport
Encryption and

Insecure Firmware
Vulnerability.

5–8 s
(approximately)

4

Used the framework
to test for the top

vulnerabilities in the
Google Home Mini.

Google Home
Mini

No Vulnerabilities
were detected.

1–2 s
(approximately)

5

Used the framework
to test for the top

vulnerabilities in the
LIFX Smart bulb.

LIFX Smart bulb No Vulnerabilities
were detected.

1–2 s
(approximately)

Note: The execution time is an approximate range as it was difficult to calculate the actual time, due to several
manual inputs to execute the framework. However, we can confirm that the time taken by the framework was
minimum and at a generally acceptable range.

For the smart plug, the framework was able to detect that the DNS server was not
authenticated for requests and responses which could be vulnerable. This is a probable
Insecure Network Services vulnerability; therefore, it has been noted.

For the Tp-link smart bulb and smart camera, by taking the firmware update pcap file
as the input, the framework was able to find the HTTP request URI link that the device uses
to fetch the binary image firmware file from its corresponding cloud interface. The link to
the bin file was as follows: http://download.tplinkcloud.com/firmware/smartBulb_FCC_
1.8.6_Build_180809_Rel.091659_2_1536546605436.bin.

https://github.com/craigz28/firmwalker.git
https://github.com/craigz28/firmwalker.git
http://download.tplinkcloud.com/firmware/smartBulb_FCC_1.8.6_Build_180809_Rel.091659_2_153 6546605436.bin
http://download.tplinkcloud.com/firmware/smartBulb_FCC_1.8.6_Build_180809_Rel.091659_2_153 6546605436.bin

Future Internet 2022, 14, 276 14 of 18

Once, the bin file was found, the framework was able to download the file from its
cloud interface and store it in the same directory as the framework. The firmware file
system contained in this bin file was not recognised by the ‘binwalk’ tool, so the framework
could not completely extract it from the downloaded bin file. As the extraction of the
firmware file system was not properly executed, the framework could not detect any
firmware-based vulnerabilities using the ‘firmwalker’ tool. However, since the update
file was unencrypted and was transmitted via the HTTP protocol, this device has an
Insecure Firmware Vulnerability. Similarly, by taking the same firmware update pcap
file as input, the framework was able to find the HTTP link to the cloud interface (i.e.,
http://download.tplinkcloud.com/). Therefore, as the device communicates with its
corresponding cloud interface through HTTP, the framework detected a Lack of Transport
Encryption Vulnerability in the device.

The framework could not detect any vulnerabilities in the Google Home Mini and
LIFX Smart bulb devices.

An example of the output results (‘results.txt’) file when the Tp-link smart bulb was
tested by the framework is shown in Figure 6 (given below).

Future Internet 2022, 14, x FOR PEER REVIEW 14 of 18

An example of the output results (‘results.txt’) file when the Tp-link smart bulb was
tested by the framework is shown in Figure 6 (given below).

Figure 6. Security testing results for the Tp-link Smart bulb.

Based on the vulnerabilities detected, we calculated the Common Vulnerability Scor-
ing System (CVSS) score for each device. The scope of this research work is mainly focused
on the base metrics and impact metrics, i.e., the base score for determining the severity of
the vulnerability [24]. A summation of the base scores for each vulnerability in the plat-
form (IoT device) is taken and the total score is calculated for each platform. Based on the
total scores, the platform with the highest score would be the least secure. The results of
the Total Common Vulnerability Scoring System (CVSS) base scores evaluated for each
device are shown in Table 2.

Table 2. Total CVSS scores for each device.

Device Total Score
Tp-Link Smart Plug N/A
Tp-Link Smart Bulb 14.4

Tp-Link Smart Camera 14.4
Google Home Mini 0

LIFX Smart Bulb 0

For the Tp-link smart plug, even though the vulnerability detected for this device
was a probable Network-based vulnerability, it was not the kind of vulnerability listed in
[16] and, therefore, the base metrics and impact metrics for such a vulnerability would be
uncertain. So, for this device, the Common Vulnerability Scoring System (CVSS) Base
score could not be calculated.

For the Tp-link Smart bulb and the smart camera, the base scores for the Insecure
Firmware and lack of transport encryption vulnerabilities were 6.5 and 7.9, respectively.
Therefore, the total score for both devices was the same, i.e., 14.4, as the vulnerabilities
detected for these devices were also the same. The scores of the Google Home Mini and
the LIFX Smart bulb were ‘0’ as there were no vulnerabilities found in these devices. How-
ever, after further research, we found that although no vulnerabilities were found in both
these devices, the Google Home Mini has an additional security feature in which the user
is prompted to connect both the device and the corresponding mobile handling the device
to the same network. Whereas, in the case of the LIFX Smart Bulb, an external user can
connect to the device through a different Wi-Fi network, which could be vulnerable. Ad-
ditionally, the Google Home Mini uses the latest versions of its protocol, e.g., TLS v1.3, in
comparison with the LIFX Smart Bulb, e.g., TLS v1.2.

5. Discussion
When compared with testing the devices manually for each vulnerability, this

method can save us a lot of time and effort. Any user having no, or limited PT experience,
can also use the framework to test the devices at their home; all they need to do is execute
the framework and follow the instructions provided. For someone with thorough PT ex-
perience, it provides a scope to improvise as the user can use different inputs to get better
results. It makes the life of a user easy by giving an insight into the security loopholes of

Figure 6. Security testing results for the Tp-link Smart bulb.

Based on the vulnerabilities detected, we calculated the Common Vulnerability Scoring
System (CVSS) score for each device. The scope of this research work is mainly focused on
the base metrics and impact metrics, i.e., the base score for determining the severity of the
vulnerability [24]. A summation of the base scores for each vulnerability in the platform
(IoT device) is taken and the total score is calculated for each platform. Based on the total
scores, the platform with the highest score would be the least secure. The results of the
Total Common Vulnerability Scoring System (CVSS) base scores evaluated for each device
are shown in Table 2.

Table 2. Total CVSS scores for each device.

Device Total Score

Tp-Link Smart Plug N/A

Tp-Link Smart Bulb 14.4

Tp-Link Smart Camera 14.4

Google Home Mini 0

LIFX Smart Bulb 0

For the Tp-link smart plug, even though the vulnerability detected for this device
was a probable Network-based vulnerability, it was not the kind of vulnerability listed
in [16] and, therefore, the base metrics and impact metrics for such a vulnerability would
be uncertain. So, for this device, the Common Vulnerability Scoring System (CVSS) Base
score could not be calculated.

For the Tp-link Smart bulb and the smart camera, the base scores for the Insecure
Firmware and lack of transport encryption vulnerabilities were 6.5 and 7.9, respectively.
Therefore, the total score for both devices was the same, i.e., 14.4, as the vulnerabilities
detected for these devices were also the same. The scores of the Google Home Mini and the
LIFX Smart bulb were ‘0’ as there were no vulnerabilities found in these devices. However,

http://download.tplinkcloud.com/

Future Internet 2022, 14, 276 15 of 18

after further research, we found that although no vulnerabilities were found in both these
devices, the Google Home Mini has an additional security feature in which the user is
prompted to connect both the device and the corresponding mobile handling the device to
the same network. Whereas, in the case of the LIFX Smart Bulb, an external user can connect
to the device through a different Wi-Fi network, which could be vulnerable. Additionally,
the Google Home Mini uses the latest versions of its protocol, e.g., TLS v1.3, in comparison
with the LIFX Smart Bulb, e.g., TLS v1.2.

5. Discussion

When compared with testing the devices manually for each vulnerability, this method
can save us a lot of time and effort. Any user having no, or limited PT experience, can
also use the framework to test the devices at their home; all they need to do is execute
the framework and follow the instructions provided. For someone with thorough PT
experience, it provides a scope to improvise as the user can use different inputs to get better
results. It makes the life of a user easy by giving an insight into the security loopholes of
the device so that the user can protect himself from any cyber-criminal attacks. It makes the
life of a user easy by giving an insight into the security loopholes of the device so, that the
user can protect himself from any cyber-criminal attacks. It also has minimal processing
and execution time, in comparison to using the same techniques manually.

There is also a major advantage in using software patterns for the security problems
of IoT devices. These software security patterns can solve IoT security problems [25]. It
is also important to note that integrating software patterns like blockchain technology in
the environment of IoT can help in ensuring trust amongst IoT devices, and thus increase
their level of security [26]. This aspect can be extended to be used for our framework, i.e.,
considered for future work [25,26]. In addition, a simulated cyber-attack could also be a
good way to test the security of the system [27].

5.1. Scope

Given below is a list of points that cover the scope of this research work:

• The framework can run on other Unix platforms (apart from Kali Linux) provided that
Python 3.6, the tools mentioned in the Design chapter, and the python-pip packages
like ‘scapy’, and ‘pyshark’ are installed.

• This research only deals with the top five list of vulnerabilities mentioned in the Design
subsection of the Proposed Framework section. It does not involve detecting cloud,
mobile application, hardware, and physical device vulnerabilities.

• Although the Common Vulnerability Scoring System (CVSS) score depends on several
metrics, this research mainly focuses on the base metrics and impact metrics, i.e., the
base score for determining the severity of the vulnerability.

• Currently, the framework can only test the devices which are accessible over the
network and, preferably, on the same network.

• Currently, this research does not involve providing a fix for the vulnerabilities found,
it only involves discovering them.

5.2. Risks and Constraints

The following are possible risks and constraints that could arise during the research
work:

• Each device has its configuration process, so there is a risk of not being able to configure
them properly for testing. Therefore, there is a possibility that devices may not be
successfully configured, or misconfigured.

• It might be challenging to divert the network traffic from the IoT device to Kali Linux
as its gateway. i.e., configuring a hotspot on Kali Linux.

• The automated network traffic capture of the framework might not work properly in
case the testing environment is not properly configured, i.e., the traffic from the device
does not have the testing OS Kali Linux as its gateway.

Future Internet 2022, 14, 276 16 of 18

5.3. Contingency Planning

In case there is a risk of misconfiguration of the device, initially, we would try to reset
the device and configure it once again taking necessary precautions. If that still does not
work, then as a backup plan five devices are selected for the research and the idea is to test
at least three of them successfully. So, even if one or two devices do not work properly,
then there is a high probability that the others would.

In case configuring a hotspot on the Kali Linux does not work, our other idea was to
use ARP spoofing where we can do a man-in-the-middle attack between the IoT device
and the gateway to capture the traffic. However, after a bit of research, we realised that it
would not be ideal to do this as some devices, such as the ‘Google Home Mini’, are secure
and do not support ARP spoofing. Another idea we had was to misconfigure a wireless
router (by changing its configuration settings), make it an access point, and have the Kali
VM as the gateway so that all the traffic from the router goes to Kali. However, it was not
practically feasible to do this.

So, finally, we decided to add the option of manual or automated capture in the
framework and manually capture the traffic by hosting a Wi-Fi hotspot on windows and
connecting the device to it. The captured traffic was stored into .pcap files by using
‘Wireshark’ on windows. These ‘pcap’ files would be provided as input to the framework
to detect vulnerabilities in them. In this way, although the automated capture part of the
framework works, the user needs to make sure that the device and the testing environment
(Kali Linux VM) are on the same network.

5.4. Limitations

The framework is designed to detect only the top five vulnerabilities in IoT devices.
This aspect can be extended, and the framework can be made to detect all the OWASP
top IoT vulnerabilities with more tools, as required. Secondly, the framework can be
configured in such a way that the automated capture part works even if the framework
runs on a different network (w.r.t the device). This can be done by adding an extensive
ARP Spoofing part to the framework. Thirdly, the Common Vulnerability Scoring System
(CVSS) Base score calculation part can also be automated by adding it to the end of the
framework. Fourthly, the framework can be extended to test non-Wi-Fi-based IoT devices,
i.e., the IoT devices that are not accessible over the network. Additionally, the scope of the
project can be broadened, and the research can be extended to provide a possible fix for the
detected vulnerabilities. Moreover, the Insecure Network Services part of the framework
can be improved by ensuring a more automated and extensive check of all the aspects
of a captured ‘.pcap’ file. In addition, a more extensive user input error handling can be
added to some parts of the framework to ensure that the framework is free from any buffer
overflow, or command-line injection errors.

In terms of future work, in this project, the framework is designed to detect only the
top five vulnerabilities in IoT devices. This aspect can be extended, and the framework
can be made to detect all the OWASP top IoT vulnerabilities with more tools, as required.
Secondly, the framework can be configured in such a way that the automated capture part
works even if the framework runs on a different network (w.r.t the device). This can be
done by adding an extensive ARP Spoofing part to the framework. Thirdly, the CVSS Base
score calculation part can also be automated by adding it to the end of the framework.
Additionally, the scope of the project can be broadened, and the research can be extended
to provide a possible fix for the detected vulnerabilities.

6. Conclusions

In this paper, we initially introduced the concept of Internet of Things, Smart homes,
and Smart home-based IoT devices. We then discussed the importance of IoT security,
why it is necessary, and how PT is the best possible solution to evaluate the security of IoT
devices. After that, we discussed the current IoT security research, the current research on
PT of IoT devices, and how the current PT research is shifting towards automation. We

Future Internet 2022, 14, 276 17 of 18

reviewed different PT techniques, spoke about their limitations, and selected a manual
penetration technique that is most suitable, according to the scope of the research work.
Then, we proposed an automated PT framework for smart home-based IoT devices, which
is an automated version of the selected technique. We tested five different smart home-
based IoT devices using this framework to discover the most common vulnerabilities
present in them. Then, we calculated the Total Common Vulnerability Scoring System
(CVSS) Base scores for the vulnerabilities found in each device and found that the Tp-Link
Smart bulb and the Tp-Link Indoor Camera both had a high score of 14.4, as they had two
vulnerabilities, which makes them comparatively less secure than the rest of the devices.
The Tp-Link Smart bulb is next in line, i.e., comparatively more secure, as there was only
one probable Insecure Network Services Vulnerability found in it. So, from the results
obtained, we initially deducted that the Google Home Mini and the LIFX Mini Smart Bulb,
with a CVSS total score of ‘0’, were the most secure devices in comparison with the others.
However, after further research (mentioned in the Results section), we found that the
Google Home Mini had some additional security features in comparison to the LIFX Smart
Bulb, therefore making it the most secure device of the five devices.

Finally, there is no denying the fact that we need IoT devices to make our lives easier,
but ensuring their security is very much equally important and for this purpose having an
automated testing framework of this kind will certainly help in improving the current state
of the field of IoT security. It is a progressive step into a safe, secure, and brighter future.

Author Contributions: Conceptualization, R.A. and O.B.; methodology, R.A. and O.B.; software, R.A.;
validation, R.A. and O.B.; writing—original draft preparation, R.A. and M.J.M.C.; writing—review
and editing, R.A. and M.J.M.C.; supervision, M.J.M.C. and N.C. All authors have read and agreed to
the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Acknowledgments: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Source Code: Ref. [28] contains the link to the source code repository of the framework.

References
1. Sachidananda, V.; Toh, J.; Siboni, S.; Bhairav, S.; Shabtai, A.; Elovici, Y. Let the Cat out of the Bag: A Holistic Approach towards

Security Analysis of the Internet of Things. In Proceedings of the 3rd ACM International Workshop on IoT Privacy, Trust, and
Security, co-located with ASIA CCS 2017, New York, NY, USA, 2 April 2017; pp. 3–10. [CrossRef]

2. Visoottiviseth, V.; Akarasiriwong, P.; Chaiyasart, S.; Chotivatunyu, S. PENTOS: Penetration Testing Tool for Internet of Thing
Devices. In Proceedings of the IEEE Region 10 Annual International Conference, Proceedings/TENCON, Penang, Malaysia, 5–8
November 2017; pp. 2279–2284. [CrossRef]

3. Papatsimouli, M.; Lazaridis, L.; Ziouzios, D.; Dasygenis, M.; Fragulis, G. Internet Of Things (IoT) Awareness in Greece. SHS Web
Conf. 2022, 139, 3013. [CrossRef]

4. Patton, M.; Gross, E.; Chinn, R.; Forbis, S.; Walker, L.; Chen, H. Uninvited Connections: A Study of Vulnerable Devices on the
Internet of Things (IoT). In Proceedings of the 2014 IEEE Joint Intelligence and Security Informatics Conference, JISIC 2014, The
Hague, The Netherlands, 24–26 September 2014; pp. 232–235. [CrossRef]

5. Zhang, Z.K.; Cho, M.C.Y.; Wang, C.W.; Hsu, C.W.; Chen, C.K.; Shieh, S. IoT Security: Ongoing Challenges and Research
Opportunities. In Proceedings of the IEEE 7th International Conference on Service-Oriented Computing and Applications, SOCA
2014, Matsue, Japan, 17–19 November 2014; pp. 230–234. [CrossRef]

6. Duggan, D.P. Penetration Testing of Industrial Control Systems; Sandia National Laboratories: Albuquerque, New Mexico; Livermore,
CA, USA, 2005.

7. Lee, J.; Elovici, Y.; Shabtai, A.; Tippenhauer, N.O.; Siboni, S. Advanced Security Testbed Framework for Wearable IoT Devices.
ACM Trans. Internet Technol. 2016, 16, 1–25. [CrossRef]

8. Bing, K.; Fu, L.; Zhuo, Y.; Yanlei, L. Design of an Internet of Things-Based Smart Home System. In Proceedings of the 2nd
International Conference on Intelligent Control and Information Processing, ICICIP 2011, Harbin, China, 25–28 July 2011;
Volume 2, pp. 921–924. [CrossRef]

http://doi.org/10.1145/3055245.3055251
http://doi.org/10.1109/TENCON.2017.8228241
http://doi.org/10.1051/shsconf/202213903013
http://doi.org/10.1109/JISIC.2014.43
http://doi.org/10.1109/SOCA.2014.58
http://doi.org/10.1145/2981546
http://doi.org/10.1109/ICICIP.2011.6008384

Future Internet 2022, 14, 276 18 of 18

9. Ghaffarianhoseini, A.; Ghaffarianhoseini, A.; Tookey, J.; Omrany, H.; Fleury, A.; Naismith, N.; Ghaffarianhoseini, M. The Essence
of Smart Homes: Application of Intelligent Technologies towards Smarter Urban Future. Artif. Intell. Concepts Methodol. Tools
Appl. 2016, 1, 79–121. [CrossRef]

10. Yu, M.; Zhuge, J.; Cao, M.; Shi, Z.; Jiang, L. A Survey of Security Vulnerability Analysis, Discovery, Detection, and Mitigation on
IoT Devices. Future Internet 2020, 12, 27. [CrossRef]

11. Costa, L.; Barros, J.P.; Tavares, M. Vulnerabilities in IoT Devices for Smart Home Environment. In Proceedings of the 5th
International Conference on Information Systems Security and Privacy–ICISSP 2019, Prague, Czech Republic, 23–25 February
2019; pp. 615–622. [CrossRef]

12. Myridakis, D.; Spathoulas, G.; Kakarountas, A.; Schinianakis, D. Smart Devices Security Enhancement via Power Supply
Monitoring. Future Internet 2020, 12, 48. [CrossRef]

13. Chu, G.; Lisitsa, A. Penetration Testing for Internet of Things and Its Automation. In Proceedings of the 20th International
Conference on High Performance Computing and Communications, 16th International Conference on Smart City and 4th
International Conference on Data Science and Systems, HPCC/SmartCity/DSS 2018, Exeter, UK, 28–30 June 2018; pp. 1479–1484.
[CrossRef]

14. Rak, M.; Salzillo, G.; Granata, D. ESSecA: An Automated Expert System for Threat Modelling and Penetration Testing for IoT
Ecosystems. Comput. Electr. Eng. 2022, 99, 107721. [CrossRef]

15. Chen, C.K.; Zhang, Z.K.; Lee, S.H.; Shieh, S. Penetration Testing in the IoT Age. Computer (Long Beach Calif) 2018, 51, 82–85.
[CrossRef]

16. OWASP Internet of Things Project–OWASP. Available online: https://wiki.owasp.org/index.php/OWASP_Internet_of_Things_
Project#tab=IoT_Top_10 (accessed on 29 July 2022).

17. Smith, C. Top 10 2014-I3 Insecure Network Services–OWASP. Available online: https://wiki.owasp.org/index.php/Top_10_2014-
I3_Insecure_Network_Services (accessed on 29 July 2022).

18. Smith, C. Top 10 2014-I4 Lack of Transport Encryption–OWASP. Available online: https://wiki.owasp.org/index.php/Top_10_2
014-I4_Lack_of_Transport_Encryption (accessed on 29 July 2022).

19. Smith, C. Top 10 2014-I9 Insecure Software/Firmware–OWASP. Available online: https://wiki.owasp.org/index.php/Top_10_2
014-I9_Insecure_Software/Firmware (accessed on 29 July 2022).

20. Kruchten, P.B. The 4+1 View Model of Architecture. IEEE Softw 1995, 12, 42–50. [CrossRef]
21. Górski, T. The 1+5 Architectural Views Model in Designing Blockchain and IT System Integration Solutions. Symmetry 2021, 13,

2000. [CrossRef]
22. Grunwell, D. GitHub–Grunny/Zap-Cli: A Simple Tool for Interacting with OWASP ZAP from the Commandline. Available

online: https://github.com/Grunny/zap-cli (accessed on 20 September 2019).
23. Smith, C. GitHub–Craigz28/Firmwalker: Script for Searching the Extracted Firmware File System for Goodies! Available online:

https://github.com/craigz28/firmwalker (accessed on 20 September 2019).
24. CVSS v3.1 Specification Document. Available online: https://www.first.org/cvss/v3.1/specification-document (accessed on 29

July 2022).
25. Fernandez, E.B.; Washizaki, H.; Yoshioka, N.; Okubo, T. The Design of Secure IoT Applications Using Patterns: State of the Art

and Directions for Research. Internet Things 2021, 15, 100408. [CrossRef]
26. Kumar, R.; Sharma, R. Leveraging Blockchain for Ensuring Trust in IoT: A Survey. J. King Saud Univ.–Comput. Inf. Sci. 2021.

[CrossRef]
27. Adhikari, U.; Morris, T.; Pan, S. WAMS Cyber-Physical Test Bed for Power System, Cybersecurity Study, and Data Mining. IEEE

Trans. Smart Grid. 2017, 8, 2744–2753. [CrossRef]
28. GitHub - Rocky9624/Automated-Penetration-Testing-Framework. Available online: https://github.com/rocky9624/Automated-

Penetration-testing-Framework (accessed on 18 September 2022).

http://doi.org/10.4018/978-1-5225-1759-7.ch004
http://doi.org/10.3390/fi12020027
http://doi.org/10.5220/0007583306150622
http://doi.org/10.3390/fi12030048
http://doi.org/10.1109/HPCC/SmartCity/DSS.2018.00244
http://doi.org/10.1016/j.compeleceng.2022.107721
http://doi.org/10.1109/MC.2018.2141033
https://wiki.owasp.org/index.php/OWASP_Internet_of_Things_Project#tab=IoT_Top_10
https://wiki.owasp.org/index.php/OWASP_Internet_of_Things_Project#tab=IoT_Top_10
https://wiki.owasp.org/index.php/Top_10_2014-I3_Insecure_Network_Services
https://wiki.owasp.org/index.php/Top_10_2014-I3_Insecure_Network_Services
https://wiki.owasp.org/index.php/Top_10_2014-I4_Lack_of_Transport_Encryption
https://wiki.owasp.org/index.php/Top_10_2014-I4_Lack_of_Transport_Encryption
https://wiki.owasp.org/index.php/Top_10_2014-I9_Insecure_Software/Firmware
https://wiki.owasp.org/index.php/Top_10_2014-I9_Insecure_Software/Firmware
http://doi.org/10.1109/52.469759
http://doi.org/10.3390/sym13112000
https://github.com/Grunny/zap-cli
https://github.com/craigz28/firmwalker
https://www.first.org/cvss/v3.1/specification-document
http://doi.org/10.1016/j.iot.2021.100408
http://doi.org/10.1016/j.jksuci.2021.09.004
http://doi.org/10.1109/TSG.2016.2537210
https://github.com/rocky9624/Automated-Penetration-testing-Framework
https://github.com/rocky9624/Automated-Penetration-testing-Framework

	Introduction
	Background and Related Work
	Proposed Framework
	Design of the Framework
	Implementation

	Results and Analysis
	Discussion
	Scope
	Risks and Constraints
	Contingency Planning
	Limitations

	Conclusions
	References

