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Abstract: Object detection is a computer vision task of detecting instances of objects of a certain
class, identifying types of objects, determining its location, and accurately labelling them in an
input image or a video. The scope of the work presented within this paper proposes a modern
object detection network called NextDet to efficiently detect objects of multiple classes which utilizes
CondenseNeXt, an award-winning lightweight image classification convolutional neural network
algorithm with reduced number of FLOPs and parameters as the backbone, to efficiently extract and
aggregate image features at different granularities in addition to other novel and modified strategies
such as attentive feature aggregation in the head, to perform object detection and draw bounding
boxes around the detected objects. Extensive experiments and ablation tests, as outlined in this
paper, are performed on Argoverse-HD and COCO datasets, which provide numerous temporarily
sparse to dense annotated images, demonstrate that the proposed object detection algorithm with
CondenseNeXt as the backbone result in an increase in mean Average Precision (mAP) performance
and interpretability on Argoverse-HD’s monocular ego-vehicle camera captured scenarios by up to
17.39% as well as COCO’s large set of images of everyday scenes of real-world common objects by up
to 14.62%.

Keywords: CondenseNeXt; object detection; PyTorch; deep learning; convolutional neural network

1. Introduction

Artificial Intelligence (AI) is a branch of computer science that is widely studied by
scientists and engineers to build machines to mimic human intelligence. Driven by curiosity
and demand, humans have been trying to infuse AI into modern machines built to perform
labor-intensive tasks. Mainstream research fields related to AI include, but not limited
to, computer vision and pattern recognition, robotics and automation, natural language
processing and their current real-world applications include Amazon Rekognition, an
automated image and video analysis tool, to Tesla’s Full Self-Driving software [1,2].

Deep Convolutional Neural Network (Deep CNN) is a subset of Deep Neural Network
(DNN) popular in the field of AI and commonly used for designing innovative techniques
and algorithms for computer vision systems to perform complex operations such as image
classification and object detection using multiple layers of neurons to simulate natural
vision perception of human beings. Practical applications such as autonomous vehicles and
autonomous robots using edge devices require accuracy and inference times close to that
of human visual system. Existing real-time object detectors which provide higher accuracy,
do not operate in real-time and require multiple Graphics Processing Units (GPU) to train
the network on large datasets [3], which has fueled a need to develop efficient algorithms
and innovative techniques to detect objects and perceive the surrounding environment
using computer vision.

In this paper, we propose a modern object detector called NextDet, with a goal to
improve overall object detection accuracy whilst maintaining computational efficiency of
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CondenseNeXt [4], a light-weight CNN, which is designed to reduce number of Floating-
Point Operations (FLOPs) and parameters. The work presented within this paper can be
summarized into three points as follows:

1. An efficient and a powerful object detector is being proposed which can be trained on
a single GPU.

2. State-of-the-art algorithms and methodologies such as FPN [5], PAN [6], YOLO [7],
GIoU_Loss [8], etc. have been modified and implemented into the design of the
proposed object detector.

3. Extensive training and evaluation experiments have been performed on two large-
scale multi-class datasets: Argoverse-HD [9] and Microsoft COCO [10].

4. The remainder of this paper has been partitioned as follows: Section 2 provides
the reader a detailed information about object detection models in general and its
related works. Section 3 defines the methodology of the proposed NextDet object
detection network. Section 4 evaluates the NextDet object detector by benchmarking
on different datasets and Section 5 concludes this paper.

2. Anatomy of Object Detectors and Related Works

A modern object detector is tasked to determine where and what type of object is in
each input image. It is composed of three main parts: a backbone to extract features to
provide a feature map representation of the input image using a robust image classifier, a
neck linked to the backbone which acts like a feature aggregator by collecting feature maps
from different stages of the backbone and fuses these multi-level features together, and
a head to determine bounding boxes and perform class predictions. Figure 1 provides a
visual representation of backbone, neck, and head of a modern object detector.
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Figure 1. Backbone, neck, and head modules of a modern object detector. The backbone module
utilizes a robust image classifier to extract features from an input image’s multiple resolutions and
the neck, which is linked to the backbone, acts like a feature aggregator to fuse features of multiple
resolutions. The head module then determines bounding boxes and predicts classes.

An object detector’s head is further classified into two main types: one-stage ob-
ject detectors (dense predictions) such as You Only Look Once (YOLO) [3], Single Shot
Detector (SSD) [11], RetinaNet [12], CornerNet [13], and CenterNet [14], and two-stage
object detectors (sparse predictions) such as R-FCN [15], Relation Network [16] and family
of R-CNN [17] namely Fast R-CNN [18], Faster R-CNN [19], Mask-RCNN [20], Cascade
R-CNN [21] and Libra R-CNN [22].

Two-stage detectors such as the family of R-CNN perform these tasks separately in
different modules by utilizing a Region Proposal Network in the first stage to generate
sparse region proposals to obtain Region of Interest (RoI) and then passing down these
region proposals for object classification and bounding-box regressions in the second stage
resulting in an increase in object detection accuracy but leading to a time complexity bottle-
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neck and therefore, an increase in demand of computational resources for implementation
purposes. On the other hand, one-stage detectors such as YOLO and SSD execute image
classification and object detection tasks in a single module but may not be able to achieve a
desirable real-time inference performance due to constrained computational resources on
edge devices. In comparison, YOLO obtains a better inference performance at the cost of
detection performance whereas SSD obtains a better detection performance at the cost of in-
ference performance [23]. State-of-the-art YOLO algorithm is a popular choice in designing
modern object detectors because of its speed and accuracy performance. Figure 2 provides
a visual comparison between a one-stage object detector and a two-stage object detector.
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Figure 2. A visual comparison between a one-stage object detector vs. a two-stage object detector.

An object detector’s neck is comprised of multiple top-down and bottom-up paths
linked to the backbone of the detection network to facilitate fusion of multi-level features.
Popular techniques implemented in the neck of the network include incorporating addi-
tional blocks such as Spatial Pyramid Pooling [24] and/or Receptive Field Block [25] or
utilizing path-aggregation blocks such as Feature Pyramid Networks [5], Path Aggregation
Network [6] and/or adaptively spatial feature fusion (ASFF) [26], to name a few. The
backbone architecture is usually implemented using a robust image classifier as shall be
seen in Section 3.

In general, a modern object detector model is made up of a combination of the follow-
ing techniques within each module:

• Input: Images
• Backbone: A robust image classifier (CNN) such as CondenseNeXt [4], CondenseNet [27],

MobileNetv3 [28], VGG16 [29], ResNet-50 [30], SpineNet [31]
• Neck:

# Additional Blocks: SPP [24], RFB [25], ASPP [32]
# Path Aggregation Blocks: FPN [5], PAN [6], ASFF [26]

• Head:

# One-Stage Predictions (Dense): YOLO [7], SSD [11], RetinaNet [12],
CornerNet [13], CenterNet [14]

# Two-Stage Predictions (Sparse): R-FCN [15], Relation Network [16], R-CNN [17],
Fast R-CNN [18], Faster R-CNN [19], R-FCN [15], Mask-RCNN [20], Cascade
R-CNN [21], Libra R-CNN [22]

3. NextDet

This paper introduces a modern object detection network, NextDet, built upon
YOLOv5 [33] object detection framework for efficient monocular sparse-to-dense streaming
perception, especially for autonomous vehicles and autonomous rovers using edge devices.
NextDet is faster, lighter and can perform both, sparse and dense object detection efficiently,
as seen from experiments performed on different datasets in Section 4, from which results
are extrapolated accordingly.
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3.1. Backbone

A backbone of a modern object classifier incorporates a robust image classifier to
extrapolate essential features from an input image, at different levels of coarseness. For de-
vices with constrained computational resources, it is crucial to consider computational per-
formance along with prediction accuracy of the image classifier. The versions of the officially
published YOLO [7] family utilize Darknet53 architecture as the backbone of the network
which results in an improved detection performance at the cost of heavy parametrization.

NextDet incorporates a modified version of the CondenseNeXt [4] CNN architecture
as the backbone of the proposed object detection network. CondenseNeXt belongs to the
family of DenseNet [34] which provides a novel technique of extracting spatial information
from each layer and forwarding it to every other subsequent layer in a feed-forward fashion,
allowing this information to be extracted at different levels of coarseness. CondenseNeXt
utilizes multiple dense blocks at its core, as seen in Figure 3, and depthwise separable
convolution and pooling layers in between these blocks to change feature-map sizes so that
features can be extrapolated more efficiently at different resolutions from an input image
and then fuse this information to address the vanishing-gradient problem.
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Figure 3. A general visual representation of convolution and pooling layers used to change feature
map sizes between multiple (n) dense blocks of CondenseNeXt architecture which allows it to
efficiently extract information of features from an input image.

CondenseNeXt backbone utilized in the proposed object detection network, NextDet,
is re-engineering to be furthermore lightweight than its initial design for image classification
purposes, by deprecating final layers of classification in order to make it compatible and to
allow to link the backbone to the neck module as discussed in Section 3.1.1 and visually
represented in Figure 4.

3.1.1. CondenseNeXt CNN

NextDet is designed with CondenseNeXt [4] CNN as the backbone. It is an efficient,
yet robust image classification network designed to reduce the amount of computational
resources required for real-time inference on resource constrained computing systems. It
utilizes depthwise separable convolution wherein, a depthwise convolution layer applies
3 × 3 depthwise convolution K̂ to a single input channel instead of all input channels
mathematically represented by Equation (1), and then a 1 × 1 pointwise convolution
K̃ performs a linear combination of all the output obtained from depthwise convolution
mathematically represented by Equation (2) as follows:

Ŷk,l,m = ∑
i,j

K̂i,j,m · Xk+1−1,l+j−1,m (1)

Yk,l,n = ∑
m

K̃m,n · Ŷk−1,l−1,m (2)

Here, X represents input feature map of size Dx × Dx × I and Y represents output
feature map of size Dx × Dx ×O where I corresponds to the number of input channels
and O corresponds to the number of output channels. Figure 5 provides a graphical
representation of the depthwise separable convolution.
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Figure 4. A visual representation of the overall mechanism of the proposed NextDet object detection
network. The backbone of this proposed network consists of CondenseNeXt image classifier, the neck
consists of Feature Pyramid Network (FPN) with Spatial Pyramid Pooling (SPP) and Path Aggregation
Network (PAN) methodologies, and the head consists of an attention block and YOLO pipeline.
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Figure 5. A 3D representation of the efficient Depthwise Separable Convolution (DSC) operation. In
this image, DSC operation performs a 3 × 3 depthwise convolution operation on an input image
which transforms the image and then performs a 1 × 1 pointwise convolution which elongates
this transformed image to over 128 channels. For example, a blue (B) channel from RGB image is
elongated only one to obtain different shades of blue channel, instead of transforming the same image
multiple times.

The design of CondenseNeXt also incorporates group-wise pruning to prune and to
exorcise inconsequential filters before the first stage of the depthwise separable convolution
during the training process which is arbitrated by L1-Normalization and balanced focal
loss function techniques to smoothen the harsh effects of the pruning process. Equation (3)
defines the count of inconsequential filters exorcised during this pruning stage, where G
denotes group convolution, C denotes cardinality and p is a hyper-parameter defined for
the training process to indicate a desired number of filters to be pruned, as follows:

G·Cx = I·C− p·I (3)

A new dimension is added into the design of this CNN, called Cardinality, to help
improve and recover accuracy lost during the filter pruning process. To help improve the
classification accuracy performance even further, ReLU6 (Rectified Linear Units capped at
6) [35] activation function has been implemented into the design by allowing the network
to learning sparse features earlier than it would using ReLU activation function. ReLU6
also addresses ReLU’s exploding gradient problem [36]. ReLU6 can be mathematically
defined as follows:

f (x) = min(max(0, x), 6) (4)

CondenseNeXt utilizes multiple dense blocks at its core where ReLU6 activation
function, Batch Normalization (BN) and convolution blocks sequentially constitute a single
dense block, as seen in Figure 4. Such a dense block with n number of convolutions can be
defined by the following operation where yi denotes feature maps obtained from a Ai(·)
non-linear function, as follows:

yn = An([x0 , x1 , x2 , x3 , · · · , xn−1]) (5)

3.2. Neck
3.2.1. FPN and PAN

The neck module of a modern object detector is linked to the backbone module
which acts like a feature aggregator by collecting feature maps from different stages of the
backbone and fusing them together with the help of pyramid networks such as Feature
Pyramid Networks (FPN) [5] and Path Aggregation Network (PANet or PAN) [6]. The neck
of the proposed object detector is implemented by connecting the PAN to the FPN. The
FPN provides feature maps of different sizes in order to fuse different features together.
However, since the feature maps are of different sizes in the feature pyramid, the bottom
features cannot be fused with the features on the top. To address this issue, the PAN
is connected to the FPN and up sampled by a factor of two using the nearest neighbor
approach, allowing bottom features to be connected to the top features. The bottom-up
approach provides strong positioning features, and the top-down approach provides strong
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semantic features, resulting in an improvement in object detection performance. Figure 6
provides a simple graphical representation of this technique.
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Figure 6. A graphical representation of the PANet implementation of neck of the proposed NextDet.

3.2.2. SPP

Spatial Pyramid Pooling (SPP) [24] is a novel pooling strategy to boost recognition
accuracy performance of CNNs by pooling responses of every filter in each local spatial
bin and maintaining this spatial information, inspired by the famous Bag of Words [37]
approach in computer vision. This approach utilizes three different sizes of max-pooling
operations in order to identify analogous feature maps irrespective of varying resolutions
of input feature patterns. The output from these max-pooling operations is then flattened,
concatenated, and sent to the Fully Connected (FC) layer with fixed-size output irrespective
of the input size, as seen in Figure 7. The fixed-size output constraint of the CNNs is due
to the FC layer, not the convolution layer. Hence, in the design of the proposed object
detection network, SPP is implemented in the final stages of feature extraction, as seen in
Figure 4.
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3.3. Head

The head module of a modern object detector determines bounding boxes and outputs
detection results such as object class, score, location, and size. The general design of such
systems incorporates multiple head modules in order to precisely detect objects in an input
image and predict scores by exploiting a common feature set from earlier in the network.
The design of the proposed NextDet object detection network utilizes 3 heads using the
YOLO layer as seen in Figure 4.

Each head of the proposed NextDet network incorporates a highly efficient Spatial
Attention Module (SAM) block, introduced in Convolutional Block Attention Module
(CBAM) [38], for attentive feature aggregation. In this approach, a spatial attention map
is generated with a focus on more important parts. Average-pooling and max-pooling
operations along the channel axis is utilized to obtain inter-spatial relationships of features
and can be defined mathematically as follows:

y = σ
(

N f (x)
)
× x (6)

Here, x denotes the input feature map, y denotes the output feature map and N f

denotes non-linear function for computing a SAM block’s output. σ
(

N f (x)
)

corresponds
to the attention function which assigns a value up to 1 for spatial features of a higher
priority and a value down to 0 for spatial features of a lower priority of the input x.

3.4. Bounding Box Regression

The complex task of object detection can be divided into following two sub-tasks
for simplicity: object classification and object localization. The task of object localization
depends on Bounding Box Regression (BBR) to locate an object of interest within an image
and draw a predicted rectangular bounding box around it by overlapping the area within
the predicted bounding box and the ground truth bounding box. This overlap area is called
as Intersection over Union (IoU) loss. IoU, also known as Jaccard Index, is a popular metric
used to measure diversity and similarity of two arbitrary shapes. It can be defined as the
ratio of the intersection and union of the predicted bounding box (A) and the ground-truth
bounding box (B), and can be mathematically defined as follows:

IoU(A, B) =
A ∩ B
A ∪ B

(7)

IoU loss is a popular BBR approach, but it does not work when predicted bounding
box and the ground truth bounding box do not overlap i.e., when IoU(A, B) = 0. To
overcome this disjoint condition of A and B in IoU, Generalized IoU (GIoU) [8] loss has
been implemented into the design of the proposed NextDet object detector. GIoU solves
IoU’s disjoint problem by increasing the overlap area size between the predicted bounding
box and the ground truth bounding box, and slowly moving the predicted bounding box
towards the target ground truth box. GIoU loss can be mathematically represented by
Equation (8) as follows:

LGIoU = 1− IoU +
|C− A ∪ B|
|C| (8)

Here, C is the smallest box covering A and B. Experiments in [8] demonstrate that
GIoU achieves an improved performance over Mean Squared Error (MSE) and IoU losses.
Furthermore, the experiments demonstrate that GIoU is effective in addressing vanishing
gradients in non-overlapping cases.

4. Experimental Analysis

A modern object detector not only determines where the object is in an image but also
determines what type of object it is by drawing rectangular bounding boxes around the
object in consideration. Such an object detector is usually trained on a dataset contained
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labelled images, also known as ground-truth values. These ground-truth values provide
pre-labelled images with class and object labels along with bounding boxes for each object
within an image.

4.1. Datasets

Robustness of the proposed modern object detector, NextDet, is evaluated on two pub-
licly available multi-class datasets: Argoverse-HD [9] and Microsoft COCO [10]. These
datasets provide annotated images and bounding boxes for object detection, tracking and
forecasting for autonomous driving, everyday objects, and humans. Each dataset is split
into a pre-defined train and test sets where each set contains a fixed number of images.
Figure 8 provides an overview of images from each of the two datasets utilized to train
and test the proposed object detector. Table 1 provides a statistical overview and compar-
ison between these two datasets. The two datasets chosen possess images with unique
features and characteristics, as seen in Table 1 and Figure 8, in order to provide an extensive
evaluation of the proposed object detector.
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and dense multi-class objects from the COCO dataset in grayscale and RGB color space respectively.
These datasets contain multiple images containing objects of different classes, complex scenarios, and
diverse lighting.



Future Internet 2022, 14, 355 10 of 16

Table 1. Statistics of the two datasets utilized in training and testing the proposed object detector.

Dataset Type Number of Classes
Number of Images

Resolution Class Overlap
Train Test

Argoverse-HD Road 8 39,384 15,062 1200 × 1920 True

COCO Common 80 1 118,287 5000 Multi-scale True
1 COCO dataset features 80 object classes and an additional 11 stuff categories with missing object cate-
gories/labels.

4.1.1. Argoverse-HD

Argoverse-HD [9] dataset, where HD stands for High-framerate Detection, was intro-
duced for Streaming Perception Challenge competition in August 2020 and is a derivative
of Argoverse 1.1 dataset [39]. It offers diverse urban outdoor scenes composed of 204 linear
kilometers in the city of Miami and 86 linear kilometers in the city of Pittsburgh using a
high frame-rate camera sensor data at 30 FPS.

To satisfy the purpose of monocular sparse-to-dense streaming perception evaluation
of the proposed object detector, only images from the center ring RGB camera of the
Argoverse 1.1′s ego-vehicular camera setup is utilized for training and testing purposes.
This dataset contains 8 annotated object classes related to common world driving scenarios
such as bicycle, bus, car, motorcycle, person, stop sign, traffic light, and truck with a total
of 66,953 images of a fixed 1200 × 1920 resolution and 1.26 million bounding boxes.

4.1.2. COCO

Common Objects in Context (COCO) [10] is a popular large-scale object detection, seg-
mentation, and captioning dataset introduced by Microsoft in 2014 containing 328,000 multi-
scale resolution images and 2.5 million labeled instances of everyday scenes of common
objects in their natural environment.

To increase the diversity in training and evaluation of the proposed object detector,
COCO dataset was chosen. Some of the object classes including all of the 8 object classes
from the Argoverse-HD dataset are person, bicycle, car, motorcycle, airplane, bus, horse,
sheep, cow, and train, to a name a few. In total, COCO dataset offers 80 object classes and an
additional 11 stuff object classes with missing object labels and no clear boundaries such as
grass, street, sky, etc. also provide significant contextual information. It, therefore, provides
numerous challenging scenarios to further evaluate the performance of the proposed
object detector.

4.2. Model Evaluation Metrics

An object detector is assumed to have detected target objects successfully upon ful-
filling the following two constraints. Using a grid search approach, IoU threshold of
0.2 is selected and utilized throughout all models and datasets outlined in this paper.
A two-step evaluation procedure is performed to evaluate the proposed object detector,
NextDet as follows:

1. Calculating the predicted bounding box and the ground-truth bounding box ratio:
IoU defined in (7) is utilized to calculate this ratio of overlap. If the calculated IoU
value is greater than a pre-determined threshold, it is determined that the object
detector has detected the target object within an image successfully.

2. Matching the ground-truth and predicted bounding box class labels: After it is de-
termined that an object has been successfully detected in step 1, class label of the
predicted bounding box is matched to the ground-truth bounding box accordingly.

Different metrics are used to evaluate an object detector [40]. The Mean Average
Precision (mAP) is a popular evaluation and benchmarking metric defined as the average
of the Average Precision (AP) calculated for all classes. AP corresponds the area under the
Precision-Recall (PR) curve where Precision (P) measures the ability for a model to identify
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target objects i.e., the percentage of predictions that are correct, and Recall (R) measures the
ability a model to find all positives among all relevant ground truths. These metrics can be
defined mathematically as follows:

P =
TP

TP + FP
=

TP
all detections

(9)

R =
TP

TP + FN
=

TP
all detections

(10)

AP =
ΣP

number o f objects
(11)

mAP =
ΣAP

number o f classes
(12)

Here, True Positives (TP) denotes a correct detection when IoU value is greater than
or equal to the threshold usually set between 50% to 95%, False Positives (FP) denotes a
wrong detection when IoU value is smaller than the threshold, and False Negative (FN)
indicates ground truth not being detected.

4.3. Experiment Setup

The proposed object detector, NextDet, is implemented using the Python programming
language, and has been designed and developed using the latest version of the PyTorch [41]
framework (at the time of paper submission). For training, a batch size of 8 and cosine decay
is used in order to facilitate resetting of the learning rate after each epoch, for 300 epochs.

Single-GPU training for experiments presented within this paper were performed
on one node of Carbonate supercomputer’s GPU partition, a large-memory computer
cluster with 24 GPU-accelerated Apollo 6500 nodes, specialized for deep learning research.
Each node of the Carbonate’s GPU partition is provided and managed by the Research
Technologies division at the Indiana University, which supported the work presented
within this paper, in part by Shared University Research grants from IBM Inc. to Indiana
University and Lilly Endowment Inc. through its support for the Indiana University
Pervasive Technology Institute [42], and consists of:

• NVIDIA Tesla V100 PCIe 32 GB GPU
• Intel 6248 2.5 GHz 20-core CPU
• 1.92 TB solid-state drive
• 768 GB of RAM
• PyTorch 1.12.1
• Python 3.7.9
• CUDA 11.3

4.4. Experiment Results

Ablation studies are crucial for any deep learning research and in this paper, an
extensive analysis is performed on a single GPU by removing and/or replacing certain
parts from the proposed complex deep neural network in order to better understand the
network’s performance. Six different versions of the proposed NextDet network have
been created, trained, and evaluated on two aforementioned datasets to determine the
importance of each module

Furthermore, to test robustness and obtain a fair comparison result, other PyTorch
versions of lightweight networks such as ShuffleNet [43] and MobileNetv3 [28] are attached
as backbone with NextDet and benchmarked in Tables 2 and 3. ShuffDet + PAN and
Mob3Det + PAN denotes ShuffleNet and MobileNetv3 CNNs with the proposed FPN and
PAN networks, ShuffDet + FPN and Mob3Det + FPN denotes ShuffleNet and MobileNetv3
CNNs with only FPN in its neck design respectively. Table 4 provides a comparison
of image classification performance of the backbones [4,28,43] in terms of floating-point
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operation and number of trainable parameters, and Table 5 provides a description of each
version of the object detector used in this experimental analysis utilized in experiment
analyses described in Tables 2 and 3.

Table 2. A summary of performance comparison benchmarked on the Argoverse dataset.

Architecture Name Backbone Mean
Precision mAP AP50 AP75

NextDet CondenseNeXt 61.90% 35.10% 48.95% 38.20%

NextDet + FPN CondenseNeXt 58.06% 33.88% 45.16% 36.91%

NextDet-SAM CondenseNeXt 59.70% 34.49% 45.82% 37.20%

ShuffDet + PAN ShuffleNet 58.31% 30.30% 42.21% 32.95%

ShuffDet + FPN ShuffleNet 53.95% 28.97% 40.80% 31.54%

Mob3Det + PAN MobileNetv3 54.80% 29.90% 41.57% 32.53%

Mob3Det + FPN MobileNetv3 52.97% 28.56% 40.09% 31.05%

Table 3. A summary of performance comparison benchmarked on the Microsoft COCO dataset.

Architecture Name Backbone Mean
Precision mAP AP50 AP75

NextDet CondenseNeXt 66.80% 58.00% 81.63% 63.73%

NextDet + FPN CondenseNeXt 64.86% 56.76% 79.65% 61.87%

NextDet-SAM CondenseNeXt 65.36% 57.14% 80.41% 62.27%

ShuffDet + PAN ShuffleNet 59.40% 51.10% 72.40% 56.33%

ShuffDet + FPN ShuffleNet 57.51% 50.78% 71.02% 55.00%

Mob3Det + PAN MobileNetv3 54.50% 50.60% 70.95% 54.69%

Mob3Det + FPN MobileNetv3 53.83% 50.12% 70.18% 54.23%

Table 4. Comparison of light-weighted CNN backbone performance with a scaling factor of 0.5 on
CIFAR-10 dataset.

Light-Weight CNN FLOPs 1 Parameters Top-1 Accuracy 2

CondenseNeXt 26.8 million 0.16 million 92.28%

ShuffleNet 43.43 million 0.25 million 91.48%

MobileNetv3 36.34 million 1.84 million 88.93%
1 FLOPs: The number of floating-point operations to measure computational complexity. 2 Top-1 Accuracy:
Indicates correct prediction rate for a class with highest probability.

Table 5. A summary of acronyms of different versions of object detection architectures utilized in
training and analysis phase.

Architecture Name Description

NextDet The proposed NextDet architecture in this paper.

NextDet + FPN NextDet architecture with FPN network only.

NextDet-SAM NextDet architecture without spatial attention modules.

ShuffDet + PAN NextDet architecture with ShuffleNet backbone and PAN network.

ShuffDet + FPN NextDet architecture with ShuffleNet backbone and FPN network.

Mob3Det + PAN NextDet architecture with MobileNetv3 backbone and PAN network.

Mob3Det + FPN NextDet architecture with MobileNetv3 backbone and FPN network.
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Extrapolating benchmarking results from Tables 2 and 3, it can be observed that
the proposed object detector, NextDet, achieves a notable performance in Argoverse’s
monocular streaming perception as well as general-purpose multiclass object detection
in Microsoft COCO datasets. Furthermore, it can be observed that eliminating certain
strategies and techniques such as attention modules, results in degradation of performance
of NextDet. Likewise, replacing the ultra-efficient backbone, CondenseNeXt, with other
popular lightweight CNNs such as MobileNetv3 and ShuffleNet, degrades NextDet’s object
detection performance significantly, and appositely corresponds to performance metrics in
Table 4. Thus, the experiments conclude that the backbone and head of an object detector
play a crucial role in boosting an object detector’s detection performance than the neck
because backbone emphasizes on locating an object in an input image, and the head focus
on detecting and refining the location of the bounding boxes.

The proposed NextDet object detector is a combination of such novel and modified
techniques and strategies in the backbone, neck and head which results in a notable
performance benchmarked in Tables 2 and 3. In addition, Figure 9 provides a heatmap
of class activation mapping of an input image from the COCO dataset, using gradients
of two objects passing through final convolution layers of the proposed object detection
network highlighting salient regions of the input image crucial for the object detection task.
Finally, Figure 10 provides the results of object detection on the validation set of images of
Argoverse-HD and COCO datasets respectively.
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Figure 9. An example of a person riding a skateboard image from COCO dataset’s training set.
Image (a) is an input image, and images (b,c) are heatmaps of class activation mapping of two object
classes: a person and a skateboard respectively. The red regions of the heatmap indicate stronger
activations utilized for prediction by the proposed NextDet object detection network. Darker regions
of (b,c) indicates points in the image where no activations have occurred.
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Figure 10. Test results of the proposed NextDet’s sparse and dense object detection along with
confidence scores on the validation set of images. Image (a) provides object detection result on the
Argoverse-HD dataset, and image (b) provides object detection result on the COCO dataset.

5. Conclusions

Object detection is a complex computer vision task that involves image classifica-
tion to predict class of an object, and object localization to identify where the object is
located within an image and draw a bounding box(s) around it. The scope of the work
presented within this paper proposes a modern object detection network to efficiently
detect objects of multiple classes within an image using a modified version of the highly
efficient CondenseNeXt CNN as the backbone along with path aggregation network con-
nected to the feature pyramid network and spatial pyramid pooling in the neck, and
spatial attention module blocks for attentive feature aggregation in the head design of the
proposed object detector’s architecture. Extensive analysis has been performed on two
publicly available multi-class datasets: Argoverse-HD and Microsoft COCO, which provide
numerous temporarily sparse to dense annotated images and bounding boxes for object
detection, tracking and forecasting for autonomous driving, everyday objects, and humans.
To further test robustness and obtain a fair comparison result, other PyTorch versions of
lightweight CNNs are replaced and attached as backbone with NextDet’s architecture and
benchmarked. NextDet results in good performance and an impressive interpretability on
Argoverse-HD’s monocular ego-vehicle camera captured scenarios and COCO dataset’s
images of everyday scenes of common objects in their natural habitat.
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