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Abstract: In recent years, image and video super-resolution have gained attention outside the com-
puter vision community due to the outstanding results produced by applying deep-learning models
to solve the super-resolution problem. These models have been used to improve the quality of videos
and images. In the last decade, video-streaming applications have also become popular. Conse-
quently, they have generated traffic with an increasing quantity of data in network infrastructures,
which continues to grow, e.g., global video traffic is forecast to increase from 75% in 2017 to 82%
in 2022. In this paper, we leverage the power of deep-learning-based super-resolution methods
and implement a model for video super-resolution, which we call VSRGAN+. We train our model
with a dataset proposed to teach systems for high-level visual comprehension tasks. We also test
it on a large-scale JND-based coded video quality dataset containing 220 video clips with four dif-
ferent resolutions. Additionally, we propose a cloud video-delivery framework that uses video
super-resolution. According to our findings, the VSRGAN+ model can reconstruct videos without
perceptual distinction of the ground truth. Using this model with added compression can decrease
the quantity of data delivered to surrogate servers in a cloud video-delivery framework. The traffic
decrease reaches 98.42% in total.

Keywords: super-resolution; deep neural networks; GAN; streaming traffic; CDN; video delivery; cloud

1. Introduction

Currently, video is the most popular medium for entertainment, communication,
and online educational communities. The launch of well-known video services, the ad-
vancement of networking technology, and the widespread use of mobile devices were all
watershed moments that paved the way for the popularity of online videos. Furthermore,
the ability to create and share video content at low cost increased the appeal of video
applications, making video the new dominant Internet application.

Internet traffic reports have exposed the considerable amount of bandwidth consumed
by such applications and affordable devices capable of playing HD and UHD content,
creating scenarios in which this demand will continue into the coming years. Cisco’s
annual Internet traffic analysis [1] forecasts that 82% of global traffic will be related to
video by 2022 and that 22% will be composed of VoD applications serving HD (57%) and
UHD (22%).

The primary source of this traffic is the well-known VoD services, deployed using
a multilayer technology solution [2], which deliver a TV-like experience anywhere and
anytime. These services embrace adaptive video bitrate technology in the content layer
to provide content that matches the audience’s playback resources. In the transport layer,
the shortening of playtime [3], i.e., the time between hitting the play button and content
screening, happens by using CDNs that serve adaptive bitrate content from the point
closest to audiences. In the computing layer, the management of content-access patterns
established by large and diverse audiences is achieved by cloud computing.
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With the adoption of adaptive bitrate technologies, published videos are encoded to
fit a set of screen resolutions and playback bitrates as defined by the targeted audiences.
This preprocessing stage happens in the cloud infrastructure, and the output, i.e., a bundle
of video files, is moved around through contracted transport infrastructure. Content
placement algorithms find the best fit between those files and targeted audiences, subject
to strict cost-cutting goals.

All of these efforts are constrained by the practices established in traditional video-
publishing workflows, i.e., encoding recipes that set the target resolution and streaming
bitrates as output by the end of the encoding phase. Based on these recipes, videos are
downward encoded, bundled, and then moved and stored on selected surrogate servers.
Moreover, despite all the recent advances in video-compression techniques, moving and
storing encoded videos are naturally resource-demanding operations. For instance, a five-
second video sequence can demand up to 97 MBytes to store and 156 Mbps to maintain its
encoding bitrate during a streaming session that targets HD devices.

A state-of-the-art video workflow implements per-title encoding using machine-
learning techniques. These workflows find a set of distinct bitrates that have perceptual
meaning to their audiences. In other words, switching from low-bitrate to high-bitrate
streaming will improve the video session’s perceived quality. Static-encoding recipes can-
not deliver such assurances due to their generality. In [4], the per-title effectiveness was
evaluated and showed an impressive 84% savings due to fewer bits per segment and fewer
quality changes by the client. However, in such a video workflow, there is a set of encoded
videos that require movement and storage to shorten the playtime.

The optimization of Internet video delivery is the subject of many works [2,5–8], and
these cover CDNs, HAS, CDN-P2P, CDN assisted by fog computing, and video SR on
the client side, among others. However, video delivery still has many challenges to be
solved [2,9]. For example, the amount of video traffic on the Internet has been increasing
yearly, heading towards an Internet bottleneck [1,10]. Furthermore, international data
traffic provided by Tier-1 ISPs is more expensive than regional and local traffic (Tier-2 and
Tier-3 ISPs) [11].

Conversely, the computational power at the edge clouds has increased, which has
likewise increased the volume of idle computing resources at the backend servers [12]. In
addition, many video-processing tasks can be performed by GPUs, which have gained
increased computational power in recent years. This trend in GPU performance has been
reducing the processing costs of cloud services [13,14]: e.g., in early 2020, Google Cloud
reduced its GPU prices by more than 60% [15].

Using these resources to reconstruct and transcode videos at the edges will relieve the
bottleneck that is restricting international Internet traffic in exchange for bringing content
and processing closer to the consumers. Moreover, video-delivery and cloud-computing
companies could establish a symbiotic business relationship.

Machine learning (ML) has seen an unprecedented boom in applications that address
problems and enable automation in a variety of disciplines [16,17]. This is owing to an
increase in data availability, significant advances in ML approaches, and breakthroughs in
computational capabilities. Recent findings in neural deep learning have provided new
venues for publishing videos on the Internet [18–25]. These findings have shown that
two neural deep-learning models, CNNs and GANs, can input low-resolution images and
upscale them to high resolution [26]. This technique is called image SR, and according
to such studies, its output and original images are similar in terms of perceptual quality.
These models are the basis of our research, which yields the following contributions:

• We propose a cloud-based content-placement framework that substantially reduces
video traffic on long-distance infrastructures. In this framework, low-resolution videos
move between servers in the cloud and the surrogate server deployed on the server
side. An efficient SR GAN-based model reconstructs videos in high resolution.
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• We created a video SR model as a practical solution to use in a video-on-demand
delivery system that upscales videos by a factor of 2 with perceptual quality indistin-
guishable from the ground truth.

• We present a method for mapping the perceptual quality of reconstructed videos to
the QP level representation of the same video. This method is essential for comparing
the quality of a video reconstructed by SR with the representation of the same video
at different compression levels.

• Finally, we evaluate the contribution of SR to reducing the data and compare it
with reduction by compression. Additionally, we analyze the advantages of the two
approach combinations. Our experiments demonstrated that it is possible to reduce
the amount of traffic in the cloud infrastructure by up to 98.42% when compared to
video distribution with lossless compression.

We organized this paper as follows. Section 2 discusses works on image and video
super-resolution and perceptual video quality metrics. Section 3 presents the video frame-
work proposed in this study. Section 4 offers the proposed SR model and its perceptual loss
function. The datasets used to train and test models are presented in Section 5. Section 6
shows the video quality assessment metrics used in this work. The parameters, training
details, and numerical results are shown in Section 7. Finally, in Section 8, our conclusions
and future work are presented.

2. Background and Related Work

In this section, the body of work on SR using DNNs is presented, followed by studies
that evaluate DNN-based SR models for video distribution on the Internet. Finally, we
consider a body of work on video quality assessment.

2.1. Super-Resolution Using Convolutional Networks

Image and video super-resolution has gained momentum in different research communi-
ties. In recent years, the number of papers published that address the super-resolution problem
and appear in qualified conferences and journals has shown an upward trend [26,27]. Combin-
ing CNNs, perceptual loss functions, and adversarial training to solve typical SR challenges
has fostered this momentum.

Video SR refers to scaling low-resolution frames f LR ∈ VLR into high-resolution
frames f SR ∈ VSR of video Vf , where f = 1, · · · , N, and each frame f has dimensions
W : H : C, defined by width W, height H, and RGB channel C. f LR are low-resolution
frames taken from high-resolution frames f HR ∈ VHR using a downscaling process defined
by a factor r. In the following, we present super-resolution models built to upscale images
in the context defined by video.

In [28–30], the authors approached the SISR problem using a CNN. The proposed
model, called SRCNN, upscales an image using a two-step procedure. The first step scales
the low-resolution frame f LR by a bicubic interpolation function to produce f Y, which has
the target resolution. The second step uses f Y to evolve the super-resolution frame f SR to
reach the quality measured in the original frame f HR. A three-layer CNN performs this
quality-evolving process. The main drawback of the SRCNN model is the computational
cost associated with the convolution process using an already-high-resolution frame f Y.
Despite the smoothing artifacts, which are easily detected by the human vision system, the
SRCNN model showed high scores in evaluations using pixel-wise metrics, such as PSNR
and SSIM [29].

The model CISRDCNN [31] is a deep convolutional neural-network-based super-
resolution algorithm for compressed images. The model is composed of three main blocks.
The first part receives low-resolution and compressed images as input, and this part
operates to reduce compression artifacts. The second part performs the upscaling operation,
and the last part is responsible for quality enhancement and works on the HR image with a
considerable computational cost. In addition, the output images show smoothing artifacts.
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In [32], the authors introduced the ESPCN model to face constraints due to high-
resolution input frames f HR. The ESPCN model is a three-layer CNN that performs image
up-scaling after the CNN’s third layer in an additional subpixel convolutional layer. Image
up-scaling deconvolutes the n layers of features extracted from the low-resolution frame
f LR. Compared to the SRCNN model, the ESPCN has lower computational demands and
similar image quality, although smoothing remains an unresolved issue.

Johnson et al. [33] trained a CNN using a perceptual loss function defined using high-
level image features for smoothing the image restoration. The authors use a pre-trained
convolutional network to extract those features. Ledig et al. [21] proposed the SRResNet
and SRGAN models, which are CNN-based models with 16 RBs. However, the SRGAN
model has a perceptual loss function and uses adversarial training. The evaluations of the
SRGAN model showed that the perceptual quality of up-scaled images was better than
those models based on mean-error loss functions. Its primary drawback is the training
instability, which occasionally leads to image artifacts due to BN, a deep-learning training
technique that is broadly applied to the image classification task.

Wang et al. [22] proposed the ESRGAN model. It has residual scaling, 23 RRDBs, and
a RaD. The latter measures the probability that the generated data are more realistic than
the actual data and vice versa. This model helps build fast and stable training sessions
and improves the images’ perceptual quality. The ESRGAN model is the state-of-the-art
SISR technique. However, the model’s dense and deeper architecture shows a prohibitive
computing cost for up-scaling HD and 4K videos in real applications.

In recent years, several multi-frame super-resolution methods [34–39] have manifested
higher performance compared with SISRs. Multiframe-based methods explore temporal
information from neighboring frames in addition to spatial information. In other words,
exploring temporal information means that these methods include multiple frames as input
to the neural network. To our knowledge, there are no practical solutions for videos with
multiple scene changes in the multi-frame super-resolution model.

The proposed multi-frame super-resolution methods have been tested with video
datasets [40–43] that present sequential frames recording movements in static background
scenarios. In addition, such methods have been tested in low-resolution video datasets
since they have a higher computational cost. This cost comes from the convolutional
layer designed to receive multiple input images. Moreover, this convolution requires
considerable memory for HD videos, which causes frequent GPU memory overflows. In
this paper, we assume that videos are HD and FHD encoded with frequent changes in the
background scenario. Therefore, our method is SISR-based and does not explicitly explore
temporal information.

This paper proposes a novel SR model assuming that a cloud-based video service
manages all super-resolved videos. The built model, called VSRGAN+, has a low com-
putational cost compared to the state-of-the-art approaches and is an improved version
of our previous VSRGAN model [44]. The primary enhancement in VSRGAN+ is the
introduction of RRDBs, a new perceptual loss function, and a RaD as shown in Section 4.
This enhancement enables the generation of sharper images compared with the previous
model VSRGAN. Table 1 shows the main characteristics of each SR-related model described
in this section. We present the proposed model in Section 4.

2.2. DNN Super-Resolution for Internet Video Delivery

In [9], the authors addressed the challenges of Internet video delivery by running DNN-
based super-resolution models on the client side. On the server side, videos were clustered
based on their content and encoded at low resolution. In each cluster, a DNN-based super-
resolution model was proposed and served along with each video. On the client side, the
built DNN model super-resolves the delivered content and creates a streaming session
at the expense of transmitting low-resolution content and running a DNN model. The
principal assumption was that client devices have the resources to run a DNN model in a
feasible time window.
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Table 1. The main characteristics of SR-related models.

Models CNN Sub-
Pixel RB RRDB Skip

Connection
Perceptual

Loss GAN Dense Skip
Connections RaD Residual

Scaling
Video

SR

SRCNN [28]
√

ESPCN [32]
√ √ √

CISRDCNN [31]
√ √

SRResNet [21]
√ √

16
√

SRGAN [21]
√ √

16
√ √ √

ESRGAN [22]
√ √

23
√ √ √ √ √ √

VSRGAN [44]
√ √

3
√ √ √ √ √

VSRGAN+ (ours)
√ √

3
√ √ √ √ √ √ √

In [6], the authors considered a bitrate adaptive streaming session as the input of the
DNN-based super-resolution model proposed in [9]. The rationale was to super-resolve
low-resolution segments that arrive during the session and decrease the computing burden
of super-resolving all video segments. The authors chose a state-of-the-art adaptive bitrate
algorithm to control the quality of the streaming session. Experimental studies showed
perceptual improvements using super-resolution models compared to streaming sessions
performed without these models.

These two papers super-resolved videos on the client side, in contrast to the approach
taken herein. We use super-resolution models in the surrogate servers of a cloud-based
video service, intending to overcome the computing deficit on the client side while, at the
same time, reducing the traffic between video injection points and surrogate servers.

2.3. JND-Based Video Quality Assessment

The JND is the difference between two signals at the threshold of detectability[45]. It
is applied to understand the sensitivity of the human visual system. In [46], the author
introduced the JND concept as a metric for measuring video quality. In [47], the author
proposes an interactive JND-based method to establish the encoding bitrate of consecutive
video representation, which makes encoding distortions noticeable to the human eye. A
dataset of encoded videos using this method was created and presented by [48]. This
dataset includes 220 videos with four resolutions and 52 encoding representations. By
applying the JND methodology, three JND points per resolution were defined, showing the
inefficiency of video encoding in the 52 range.

In [49], the authors presented a metric called LPIPS, which measures the perceptual
distance between two images. The extraction of features uses a deep neural network and
defines the LPIPS values. The authors compared the LPIPS and JND outcomes to conclude
that there is a strong correlation between the extracted features and the artifacts that catch
the attention of the human visual system.

In this work, we use the dataset presented in [48] to conduct experimental studies.
Moreover, a novel method is presented based on the LPIPS metric mapping JND points of
super-resolved videos.

3. Cloud-Based Content Placement Framework

Well-known video-streaming services, for instance, Netflix and Hulu, use a CDN to
improve the QoE of video sessions by reducing the delay and increasing the throughput.
CDNs use two architectures: enter deep and bring home [50]. The first architecture pene-
trates the ISPs deeply by placing content distribution servers in the ISP PoPs. The second
architecture brings ISPs closer to their customers by concentrating massive content distribu-
tion centers in a few critical areas and linking them with private high-speed connections.

Due to today’s audience segmentation of video-streaming services, the CDN content
placement policies deployed on those architectures require moving large quantities of
data to multiple surrogate servers, which are the audience’s closest access points. The
cost of approximating content and its audience is the transmission cost. IaaS, one of the
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cloud-computing-service models, has been used to address the natural fluctuations in
computing resource demands for those operations. Despite the advantages of the pay-as-
you-go pricing of the IaaS model, there are costs associated with moving large files around
the Internet, e.g., the congestion of dedicated links and increases in the time to market.

In this paper, we propose a content-placement framework for reducing the quantity
of data delivered between the source server and surrogate servers. This framework can
support VoD streaming services using both CDNs enter-deep and bring-home architectures.
Figure 1 shows the content-placement framework considered in this work.

In this framework, the super-resolution procedure starts after the content placement
policy establishes which video V has to be stored on the surrogate server S. The high-
definition version of selected video V, VHR, is stored in the original server and encoded to
output its low-definition representation VLR. This downscaling process reduces the actual
scenes by a factor of r.

Client-sideCloud-Based Video Delivery Service

VHR

V LR

Original Server

VSR

VLR

Surrogate Server

VSRGAN+

VSR

VLR

VSRGAN+

...

process
Downscaling

process
Upscaling

process
Upscaling

Surrogate Server

Figure 1. The content-placement framework of cloud-based video-streaming services.

The low-resolution representation is replicated in the surrogate servers, in contrast to
the all-version approach. The DNN runs a factor r procedure to upscale that representation
in surrogate servers. This procedure’s output is served as mono-bitrate video sessions or is
involved in the multi-bitrate publishing workflow.

We designed this framework for VoD streaming services, and thus the SR tasks are
performed offline and run based on a pre-established schedule. Additionally, we assume
that surrogate server GPUs have the computing resources to complete the SR tasks using a
parallel-processing model.

The Video-Size Optimization Problem

Problem and Goal. To pursue a high level of engagement, video services must deal
with audience fragmentation. These services have to move and store a large amount of
data to surrogate servers close to the audience to keep the QoE of video sessions at high
levels, i.e., reduced delay and suitable streams. In this scenario, the cost of moving the
video content is highly affected by the size of the encoded videos. Hence, the challenge
is in solving the trade-off between decreasing the media size to be moved, consequently
lowering the operating costs, and keeping the QoE at a high standard.
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In the following, we present the formulation of this challenge, which is a video-size
minimization problem involving the QP and video resolution subject to a quality threshold
(Equation (1)).

min
q,p

K

∑
i

SizeVLR
i
(q, p)

s.t. VQ
(

DNN(VLR)
)
−VQ

(
VHR

)
6 VQT

∀i, q ∈ {0, · · · , 51}
∀i, p 6 VLR

T

(1)

where SizeVLR
i

is the size of the low-resolution video i (in bytes). K is the number of
videos involved in the operation. The quality of DNN-based super-resolved videos is
VQ

(
DNN(VLR)

)
, the quality of the ground truth videos is VQ

(
VHR), and the threshold of

the target quality degradation is VQT . q and p are the QP and the resolution of low-quality
videos, respectively. The aspect ratio of the low-quality video is 16:9. VLR

T is the threshold
of the low-resolution video.

Approach. The DNN(.) model is trained to satisfy a threshold of levels of compression
artifacts and defines the quality threshold restriction. Finding the optimal solution is
unfeasible because changes in the artifact levels require the DNN model updating. Thus,
we address this problem using JND as a threshold for VQT based on studies presented
in [48] for an extensive video dataset.

4. Video Super-Resolution with GAN

This research assesses the video super-resolution technique to address the delivery of
high-quality video content. More specifically, in the context of a cloud-based video service,
a super-resolution model is utilized to lower the cost of conventional methods that address
end-to-end network congestion. The SR model is a generative adversarial network, i.e., a
deep-learning model for image up-scaling that super-resolves sharper and more realistic
images [19,22]. We named the proposed model improved Video Super-Resolution with
GAN (VSRGAN+) and present it in the following subsections.

4.1. VSRGAN+ Architecture

The adversarial network architecture includes a generator network G( f LR) and a
discriminator network D(G( f LR)), which compete against each other during training. G(.)
learns how to generate frames, f SR that are indistinguishable from the ground truth frames,
expecting to go undetected by D(.). D(.) learns how to distinguish the generated frames
from the ground-truth frames. In other words, adversarial training works to balance these
two dynamics.

In [51], the authors classified adversarial networks as a min–max problem. In this
work, we use this classification to define an adversarial network for video super-resolution
as follows:

min
θG

max
θD

V(DθD , GθG ) =

f HR ∼ ptrain( f HR)
[
log DθD ( f HR)

]
+

f LR ∼ pG( f LR)
[
log
(
1− DθD (GθG ( f LR))

)]
,

(2)

where we train the discriminator network DθD to maximize the probability of its outcomes
correctly classifying both frames: the ground-truth and the super-resolved frames. The
generator network GθG learns how to generate more realistic frames f SR by tuning the
parameters θG to minimize log

(
1− DθD (GθG ( f LR))

)
, where θG = {W1:L; b1:L}. W are the

weights, and b is the bias of the L-layer neural network that is optimized by a loss function
LG during training.
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During the generator network training sessions, we use a set of frames, f LR
i , encoded

at a low bitrate, and their counterparts f HR
i , subject to the minimization of the following

loss function.

θG = arg min
θG

1
N

N

∑
i=1

LG

(
GθG ( f LR

i ), f HR
i

)
(3)

where LG is the generic function that computes the loss between the super-resolved image
and the ground truth image; in Section 4.2, this loss function is presented in detail.

The generator network has a pre-residual block (part 1) containing a convolution
layer (k9n64s1)—namely, 64 filters sized 9× 9 and one stride, and the PreLu activation
function [52]. The core of the generator network (part 2) has B residual-in-residual dense
blocks (RRDBs) [22] with dense skip connections. Each RRDB has five convolution layers,
with this k3n64s1 setup followed by the activation LeakyReLU [53]. At the output of each
RRDB, there is a residual scaling β [54].

After the RRDBs, there is a residual scaling value β, a skip connection from the pre-
residual block, and a convolution layer set as k3n64s1, followed by another pre-residual
skip connection.

For upscaling resolution, G(.) has log2(r) blocks (part 3), where r is the scaling factor,
which is a multiple of 2. Each block has a convolution layer set as k3n256s1, followed by a
SubpixelConv2D and PReLU [32]. Finally, the last part of G(.) has two convolution layers,
set as k9n64s1 and k9n3s1.

The discriminator has two parts, C (part 4) and RaD (part 5). C consists of convolution
k3n64s1, followed by an activation LeakyReLU with α = 0.2. The core of C has seven blocks
composed of a convolution layer, a BN layer, and LeakyReLU activation with α = 0.2.
The convolution layer of the first block consists of k3n64s2. The other blocks conduct
convolution with three sizes of filters; the number of filters varies for each pair of blocks
in 128, 256, and 512, with the first pair having one stride and the second having two
strides. The final part of C includes a dense layer with 1024 neurons, LeakyReLU activation,
dropout of 40%, and a dense layer with only one neuron.

Generally, a standard discriminator, D, is used to calculate the probability of a real-
istic frame. This discriminator is defined by D( f SR) = σ(C( f SR)) ∀ f SR and D( f HR) =
σ(C( f HR)) ∀ f HR, with C being the output of the discriminator before σ activation. We
chose a different approach to accomplish this; we used a relativistic average discrimina-
tor (RaD).

Figure 2 (part 5) presents the applied RaD, described in [55]. The RaD function
uses the information coming from the C component, i.e., RaD( f HR, f SR) = σ(C( f HR)−
E[C( f SR)]) ∀ f HR and RaD( f SR, f HR) = σ(C( f SR)− E[C( f HR)]) ∀ f SR, where E[.] repre-
sents the C output average for all frames in a minibatch. In other words, the RAD(.) gives
the probability that f HR is relatively more realistic, on average, compared with a random
sample of f SR and vice versa. The use of RaD helps the generating network learn how to
super-resolve sharper images [22].

4.2. Perceptual Loss Function

In [56], the authors proposed mean-based loss functions that generate good quality
pixel-wise images, according to PSNR and SSIM. However, the human eye quickly detects
the smoothing artifacts of these images. In other words, mean-based loss functions are
insufficient to capture human visual perception, which has inspired a new body of work
on perception-oriented loss functions; see [21,22,33,57,58].

In [21,22,33], the authors proposed a perceptual loss function that has three compo-
nents: (i) the perceptual component, (ii) the adversarial component, and (iii) the content
component; see Equation (4).

LG = Lpercept + λLRaD
G + ηL1 (4)
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The calculation of the perceptual loss component (Lpercept) uses the mean-error loss
defined by the space established using features extracted from the super-resolved frames
f SR and their high-resolution counterparts f HR. These features are the output of an image
classification procedure of VGG19; a deep neural network presented by [59]. This feature
classification occurs at the fifth block before the activation function in the fourth convolution
layer of the VGG19, called VGG54. The coefficients λ and η weigh each component.

Figure 2. The generator architecture and relativistic average discriminator networks: (1) Pre-residual
blocks in the generator; (2) Residual in residual blocks in the generator; (3) Upscaling blocks in the
generator; (4) Discriminator blocks; and (5) The relativistic average discriminator component.

Equation (5) presents the perceptual loss component.

Lpercept =
1

W.H

W

∑
x=1

H

∑
y=1

(
VGG54( f HR)x,y −VGG54

(
f SR
)

x,y

)2
, (5)

where W and H are the dimensions of the feature space.
The adversarial loss component LRaD

G is a cross-entropy function as given by Equation (6).

LRaD
G =−Exr

[
log
(

1− DRaD(xr, x f )
)]

−Ex f

[
log
(

DRaD(x f , xr)
)]

,
(6)

where xr = f HR and x f = G( f LR).
The content loss component (L1) is given by Equation (7)

L1 =
1

WH

H

∑
x=1

W

∑
y=1

∣∣∣ f HR
x,y − G( f LR)x,y

∣∣∣, (7)

where W and H are the dimensions of f HR.
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5. Datasets

Two datasets are considered for training and testing the proposed models in this work.
The first is a high-definition image dataset used to train the proposed models. The second
is a video dataset used to test the models. Due to its diversity of scenarios, the first dataset
demonstrated excellent fitting for training the models. It includes 1.8 million images from
365 categories in the training set; and 36,500 images, 100 per category, in the validation set.
In [60], the authors presented and named this dataset as Places365-Standard.

The dataset of videos has 220 five-second video clips, each with four resolutions:
1080p, 720p, 540p, and 360p. This range of video resolutions targets the prevalence of 1080p
and 720p in video-streaming applications for widescreens, e.g., smart TVs and laptops, and
the prevalence of 540p and 360p in video-streaming applications for small screens, e.g.,
smartphones and tablets. This dataset was presented in [48] and is called VideoSet.

H. 264/AVC encoded all clips in the color space YCbCr4:2:0, and QP in [0; 51]. QP = 0
indicates that the videos are losslessly encoded, and QP = 51 means that the videos have
the highest compression ratio, which shows the highest (lowest) bitrate and best (worst)
image quality per frame, respectively.

In [48], 30 subjects evaluated the video quality of all pieces of the VideoSet. Each
subject watched encoded videos and identified three JND points, splitting the encoded
videos into four sets, with Q1 presenting the best-perceived quality and Q4 the worst quality.
The QP values range in [7, 47]; hence, encoded videos with QP in [0, 6] have unperceived
quality changes, and those with QP in [48, 51] have unacceptable quality.

Qi =


Q1 if QPVi < QP1st JND∈Vi

Q2 if QP1st JND 6 QPVi < QP2nd JND∈Vi

Q3 if QP2nd JND 6 QPVi < QP3rd JND∈Vi

Q4 if QPVi > QP3rd JND∈Vi

The VideoSet comprises five-second clips sampled from videos of various subjects.
Table 2 shows the video titles, the number of samples, and the number of FPS of each sample.

Table 2. VideoSet’s content and quality.

Title # of 5 s Samples Quality (FPS)

El Fuente 31 30
Chimera 59 30
Ancient Thought 11 24
Eldorado 14 24
Indoor Soccer 5 24
Life Untouched 15 30
Lifting Off 13 24
Moment of Intensity 10 30
Skateboarding 9 24
Unspoken Friend 13 24
Tears of Steel 40 24

The general conclusion is that VideoSet’s contents and qualities are representative
samples of the available content in today’s video service. For instance, the title Tears of
Steel is a cartoon-like action movie, El Fuente is a TV-like drama series, and Unspoken
Friend is a 90-min movie. All of this content is encoded to target multiscreen audiences.

6. Video Quality Assessment Metrics

We used three metrics to assess the quality of super-resolved videos. The first metric is
pixel-wise, i.e., looking to the pixels to determine the quality. The other two are perceptual-
wise, i.e., attempting to mimic the human visual system in perceiving quality.
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6.1. Pixel-Wise Quality Assessment

The peak signal-to-noise ratio (PSNR) assesses the quality of videos, calculating the
ratio of the maximum value of a signal and the power of distortion noise in decibels. The
PSNR highest value indicates the best video quality; see Equation (8).

PSNR =
1
N

N

∑
i=1

20 log10
max( f HR

i )√
MSE( f HR

i , f SR
i )

, (8)

where N is the total number of frames. The MSE is given by

MSE =
1

WH

H

∑
x=1

W

∑
y=1

(
f HR
x,y − f SR

x,y

)2
, (9)

where W and H are the dimensions of the frames.
Although the PSNR inconsistently captures human visual perception [21,61], it has been

applied to the video quality assessment revealing the difference between the two signals.

6.2. Perceptual Quality Assessment

Assessing video quality through human vision/audience feedback is desirable but
costly. However, a body of qualitative assessment works has been developed based on the
mechanisms of human vision. In the following, we present two perceptual metrics.

6.2.1. Learned Perceptual Image Patch Similar—LPIPS

The LPIPS [49] assesses the perceptual distance between the distorted and original
videos. Zero-distance means that two videos are perceptually equivalent. This distance
assessment uses a space established by high-level video features. For building this space,
deep neural networks, conceived to image classification, are used to identify and extract
those features, namely: VGG [59], SqueezeNet [62], and AlexNet [63].

In this work, we built the LPIPS feature space using SqueezeNet due to its reduced
computational cost and similar outcomes compared to VGG and AlexNet as shown in [49].
In the same work, the authors showed that these three networks learned world representa-
tions related to perceptual judgments. Therefore, the LPIPS strongly correlates with human
perceptual metrics, such as JND. Moreover, the LPIPS generalizes different distortions,
including those streamed by the SR algorithms.

6.2.2. Video Multimethod Assessment Fusion—VMAF

The VMAF [64,65] correlates subjective evaluations to determine the quality perceived
by human vision. It assesses the quality of the distorted video and its ground truth in
a two-step procedure. First, it computes elementary metrics for both videos and fuses
all calculated values in the first step through an SVM regression. The VMAF final score
ranges from zero to 100, with a score of 100 indicating perceptual similarity between the
two videos. The video streaming industry has used VMAF, i.e., Netflix (https://medium.
com/netflix-techblog/vmaf-the-journey-continues-44b51ee9ed12, accessed on 19 April
2022), supported by its strong correlation with perceptual evaluations.

7. Experimental Results

This section presents the results of a large body of numerical experiments. Section 7.1
shows the parameters and training details of the SR models. After that, we assess the video
quality using qualitative and pixel-wise metrics. Section 7.3 presents evidence that the
human system lacks accuracy, as it only detects significant image distortions.

Additionally, we show that the human visual system perceives the SR videos and
their ground truths as similar. In Section 7.4, we analyze the trade-offs brought by the
processing time and the video quality. Finally, we examine the improvements that video

https://medium.com/netflix-techblog/vmaf-the-journey-continues-44b51ee9ed12
https://medium.com/netflix-techblog/vmaf-the-journey-continues-44b51ee9ed12
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super-resolution brings to content replication policies deployed by cloud-based video
services, subject to setup concerning the video-encoding rate and resolution.

7.1. Model Parameters and Training

The training of models used a high-definition image dataset and a server with GPU
NVIDIA GeForce GTX 1080Ti-11GB, CPU i7-7700, 3.60 GHz, and 62 GB RAM. The testing
used a laptop with GPU NVIDIA GeForce GTX 1070Ti-8GB, CPU i7-8700, 3.20 GHz, and
32 GB RAM.

Models were coded using API Keras (https://keras.io, accessed on 19 April 2022)
and TensorFlow (https://www.tensorflow.org, accessed on 19 April 2022). We followed
the training methodology associated with each baseline model. Table 3 shows the main
parameters defined by each model used in the experimental study.

The proposed SR model, i.e., VSRGAN+, was trained using HR and LR images from
the Places365-Standard [60] dataset, grouped in batches of 16. We cropped the HR images to
produce a set of 128 × 128 crop and downscaled each one by 2 using bicubic interpolation
and GaussianBlur (https://pypi.org/project/opencv-python/).

Table 3. Model setup.

Models Setup

SRCNN

Filter = 64, 32, 3 for each layer
Filter size = 9, 1, 5 for each layer, respectively
Optimizer: SGD with a learning rate of 10−4

Batch size: 128
HR crop size: 33 × 33
Loss function: L2
Number of iterations = 8× 107

ESPCN

Filter = 64, 32, r2 × 3 for each layer, respectively
Filter size = 5, 3, 3 for each layer, respectively
Optimizer: Adam with a learning rate of 10−4

Batch size: 128
HR subimage size: 34× 34
Loss function: L2
Number of iterations = 8× 107

CISRDCNN

Block DBCNN: K1 − 1 CNN layers use 64 filters
of size 3× 3 +BN+ReLU, K1-th layer uses three filters
of size 3× 3, and uses residual learning
Block USCNN: K2 − 1 CNN layers use 64 filters
of size 3× 3 +BN+ReLU, K2-th is a deconvolutional
layer that uses three filters of size 9× 9
Block QECNN is similar to DBCNN
Loss function: L2
K1 = 20, K2 = 10, K3 = 10, and QF = 20

SRResNet

Residual blocks: 16
Optimizer: Adam with a learning rate of 10−4

Batch size: 16
HR crop size: 96× 96
Loss function: L2
Number of iterations = 106

SRGAN

Residual blocks: 16
Optimizer: Adam with a learning rate of 10−4/learning rate of 10−5

Batch size: 16
HR crop size: 96× 96
Loss function: Perceptual loss + adversarial loss
Number of iterations = 105/105

https://keras.io
https://www.tensorflow.org
https://pypi.org/project/opencv-python/
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Table 3. Cont.

Models Setup

VSRGAN+

B = 3
Optimizer: Adam with a learning rate of 2× 10−4/learning rate of 10−4

Batch size: 16
HR subimage size: 128× 128
Loss function: L1/ LG + LRaD

G
β = 0.2
λ = 5× 10−3

η = 10−2

Number of iterations = 106/5× 105

Training based on a large image dataset, such as the Places365-Standard [60], can lead
to a general model due to the great diversity of scenes. On the other hand, training with a
small database can lead to overfitting, and the trained model can become specialized in
restoring a limited set of scenes. As our model does not explore temporal information, we
skipped training with videos. Indeed, training using videos can lead to overfitting due
to the nature of the video frames, and it takes time for the model to converge and show
good performance.

The training happens in two steps. First, we conducted a 106-iteration training pro-
cedure in a generator network with loss function L1 (see Equation (7)), initial learning
rate equal to 2× 10−4, and decaying factor of 0.5 subjected to periods of 2× 105 iterations
or 50 iterations without reduction in loss validation. Second, we performed a 5× 105-
iteration training procedure on a GAN setup defined by loss function LG (see Equation (4)),
λ = 5× 10−3, η = 10−2, initial learning rate equal to 10−4, and decaying factor set to 0.5
in each [50× 103, 100× 103, 200× 103, 300× 103] iteration. The generator setting up has
weights determined in the first step.

7.2. Results of Video Quality Assessment

First, we tested the trained models using the VideoSet 360p and 540p samples with
lossless compression (QP = 0). Then, according to the SR model training setup, we upscaled
the samples by a factor of 2. Finally, we used the PSNR, LPIPS, and VMAF to assess and
compare the quality of SR and the ground truth videos. Figure 3 shows the average values
measured using PSNR, LPIPS, and VMAF with a confidence interval of 95%. High values
of PSNR and VMAF indicate that the quality of the video can engage the audience. A high
LPIPS value means that the assessed video quality can disrupt the audience.
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Figure 3. Restoration video quality assessment using PSNR, LPIPS, and VMAF. (a) The PSNR quality
assessment. (b) The LPIPS quality assessment. (c) The VMAF quality assessment.

The assessment of video quality using the PSNR metric (see Table 4) showed that
the SRResNet and VSRGAN+ models had the best outcomes of 38.44 dB (±0.47) and
38.09 dB (±0.49) in super-resolved 720p video resolution, and 39.65 dB (±0.37) and
39.34 dB (±0.39) in super-resolved 1080p video resolution, respectively. In the same
scenario, the worst outcome was recorded by the SRGAN model, with 33.69 dB (±0.56) and
34.14 dB (±0.56), respectively. The SRCNN and ESPCN models showed middle-ground
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outcomes of 35.89 dB (±0.51) and 35.68 dB (±0.50) in super resolving 720p video resolution,
and 37.19 dB (±0.43) and 37.01 dB (±0.42) in super-resolved 1080p video resolution. The
SRGAN’s outcome is due to the perceptual nature of its loss function, with little attachment
to the video artifacts measured by the PSNR metric.

The assessment of video quality using the LPIPS metric showed that the VSRGAN+
and SRGAN models had the best outcomes, i.e., the shortest LPIPS distances, among the
evaluated models. The VSRGAN+ super-resolved videos, at resolutions of both 720p
and 1080p, had LPIPS values equal to 0.039 (±0.003) and 0.046 (±0.004). The SRGAN’s
LPIPS values were 0.044 (±0.003) and 0.050 (±0.004). The other three models ranked first
among the longest LPIPS distances, with 0.057 (±0.007) and 0.063 (±0.007) as recorded
by SRResNet; 0.064 (±0.004) and 0.066 (±0.005) as recorded by SRCNN; 0.064 (±0.004)
and 0.066 (±0.005) as recorded by ESPCN. Both 720p and 1080p super-resolved video
resolutions recorded these values.

Table 4. Video quality assessment values.

Methods Resolution SRCNN ESPCN SRResNet SRGAN VSRGAN+

PSNR
720p 35.89 (±0.51) 35.68 (±0.50) 38.44 (±0.47) 33.69 (±0.56) 38.09 (±0.49)

1080p 37.19 (±0.43) 37.01 (±0.42) 39.65 (±0.37) 34.14 (±0.56) 39.34 (±0.39)

LPIPS
720p 0.064 (±0.004) 0.064 (±0.004) 0.057(±0.007) 0.044 (±0.003) 0.039 (±0.003)

1080p 0.066 (±0.005) 0.066 (±0.005) 0.063 (±0.007) 0.050 (±0.004) 0.046 (±0.004)

VMAF
720p 78.52 (±1.80) 92.53 (±0.66) 79.37 (±1.27) 81.41 (±1.12) 96.62 (±0.55)

1080p 82.48 (±1.72) 93.64 (±0.80) 82.30 (±1.13) 83.63 (±1.01) 97.08 (±0.47)

The assessments of video quality using the VMAF metric showed that the VSRGAN+
model had the best outcomes among the evaluated models. These assessments showed
VMAF values of 96.62 (±0.55) and 97.08 (±0.47) for the 720p and 1080p video resolutions,
respectively. The ESPCN model’s VMAF values were 92.53 (±0.66) and 93.64 (±0.80)
for 720p and 1080p video resolutions. The other three models, SRGAN, SRResNet, and
SRCNN, presented the lowest VMAF values.

Second, we applied VMAF to evaluate the perceptual quality of the videos by changing
the bitrate through QP in [0; 51]. We compare the quality of two-fold upscaled videos, i.e.,
540p to 1080p, using VSRGAN+ and the other models in Table 1. We also compare them
with compressed videos within the range of 0 to 51 alone.

Figure 4 presents the assessed perceptual quality. In Figure 4a, the quality considers
the compression levels in bitrates; Figure 4b includes the compression levels according to
the QP. The results show that the VSRGAN+ model outperformed the quality presented by
the other models for compression levels up to 42 QP; only for compression levels greater
than 42 QP did the CISRDCNN model outperform VSRGAN+.

The training of models uses images of the Places365-Standard dataset [60], except
for the model CISRDCNN, which uses images with compression artifacts, defined by the
quality factor (QF) 20 JPEG, applied for the same dataset. Although the CISRDCNN model
targets images with compression artifacts, it did not stand out in our experiments even
when we used compressed videos. We assess the quality using the VMAF, a perceptual
metric, and the training of CISRDCNN works to optimize the pixel-wise quality. However,
pixel-wise metrics, such as PSNR, struggle to express human visual perception [21,33,58].

The general conclusion is that the VSRGAN+ model showed the best outcomes among
the three metrics: VMAF, PSNR, and LPIPS. The model’s loss function (Equation (4)) con-
siders pixel-wise and perceptual-wise features. This shows the versatility of the proposed
model by learning how to score high values concerning those metrics.

The VSRGAN+ model showed the highest results regarding perceptual quality among
the evaluated SR models. We used state-of-the-art SISR [22] building blocks, namely:
(i) GAN with a relativistic discriminator; (ii) residual-in-residual dense blocks; (iii) skip
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connections; (iv) enhanced perceptual loss function, and (v) upsampling with the subpixel
layer. Adversarial training with a perceptual loss function contributes to a model capable
of super-resolving videos with sharp images that are perceptually indistinguishable from
the ground truth.
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Figure 4. Perceptual quality assessment of videos 2× upscaled by SR methods given videos with
different bitrates. (a) VMAF scores for videos encoded at different bitrates. (b) VMAF scores for
videos encoded with different quantization parameters.

7.3. Perceptual Quality and JND

This subsection analyzes how the perceptual and pixel-wise metrics perceive video
compression distortions. First, we examine the JND mapping, using the QP to obtain the
desired video bitrates. Then, for the same set of video bitrates, we examine the PSNR
mapping. Wang et al. [48] presented JND mapping of the analyzed video sequences.

Figure 5a shows the outcomes for a 1080p video sequence, #112 of the VideoSet dataset.
This video sequence was encoded using a broad range of bitrates from 94 kbps (QP = 47)
to 264, 088 kbps (QP = 7). From a pixel-wise point of view, the general conclusion was that
the encoding bitrate increases quickly as the quantization parameter decreases. A small QP
indicates that the encoding process uses a low compression rate. Moreover, PSNR mapping
can capture the changes in the encoding bitrate as it transitions from low to high values.
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Figure 5. Visual perception analysis of VSR super-resolved videos. (a) Comparing JND and PSNR
sensitivity to video distortion. (b) Comparing VSR encoded with QP = 0, 15, 20 and the JND points
1st, 2nd, and 3rd.

From a perceptual point of view, the JND mapping identified three distortion points,
i.e., QP = {21, 27, 31}, perceived by the human vision system. In other words, QP values
taken from the encoding spectrum [0, 21[ will result in encoding distortions unnoticed by
the human visual system. Similar conclusions were derived for other encoding spectra:
QP = {[21, 27[, [27, 31[, [31, 51]}. These values are closely related to the analyzed video
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sequence. Still, the general conclusion is that human vision cannot perceive visual quality
improvements among encoded videos in the same encoding spectrum.

The super-resolved video sequences (VSR) were analyzed to determine their closest
ground-truth encoded versions (VHD) and map the reconstructed video sequence to the JND
encoding spectrum associated with the ground-truth video sequence. Equation (10) calculates
the distance between the reconstructed video sequence and all encoded video sequences.

QPVSR
i,k

= j, where j = min
(

D
(

VSR
i,k , VHR

i,j

))
(10)

D is the perceptual distance LPIPS; k = {0, 15, 20} is the QP used to encode the video
sequence that was in the restoration, among i = {1, . . . , 220} possibilities; j = {7, . . . , 47} is
the QP of encoded video sequences VHR; VSR

i,k is given by

VSR
i,k ∈



Q1, if QPVSR
i,k

< QP1st JND,i

Q2, if QP1st JND,i ≤ QPVSR
i,k

< QP2nd JND,i

Q3, if QP2nd JND,i ≤ QPVSR
i,k

< QP3rd JND,i

Q4, if QPVSR
i,k
≥ QP3rd JND,i,

where QP1st JND,i, QP2nd JND,i, and QP3nd JND,i ∈ QPVHR
i

.
Figure 5b shows all 1080p video sequences from the VideoSet dataset, with JND points

calculated using Equation (10). We calculated these points for video sequences encoded
using QP = {0, 15, 20} and those super-resolved by the VSRGAN+ model. When the
ground-truth video sequences were encoded using QP = {0, 15}, the evaluation showed
that 100% of the super-resolved video sequences were within the set Q1. The ground-truth
video sequences, encoded with QP = 20, included 91.4% of the super-resolved video
sequences in Q1 and 8.6% in Q2. In summary, the super-resolved video sequences had a
perceptual quality similar to their ground-truth counterparts.

7.4. Runtime Analysis

Figure 6 shows the average run time of experiments that super-resolved video se-
quences that lasted one second and were encoded in high definition, i.e., 720p and 1080p.
The quality of these super-resolved sequences was assessed by the VMAF metric. The
proposed model, i.e., VSRGAN+, had a middle-ground computational cost. It was higher
than the cost of the SRCNN and ESPCN models but lower than that of the SRResNet and
SRGAN models. This middle-ground performance paid off by enabling the VSRGAN+ to
achieve the highest perceptual quality assessed by the VMAF metric.
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Figure 6. The average running time versus the VMAF assessed video quality. (a) Video sequence
with 720p. (b) Video sequence with 1080p.
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The proposed video distribution architecture supports VoD applications; see Section 3.
In this scenario, any publisher committed to high-standards of perceptual quality would
agree to postpone the content release time to have the best output for the publishing step.
This reasoning reinforces the importance of balancing the computational cost and the
perceptual quality of super-resolved video clips, which is the case of the VSRGAN+ model.

7.5. Data Transfer Decrease

This subsection presents the evaluation to measure the decrease in the amount of
data that flows throughout the networking infrastructure. This infrastructure connects the
video source and surrogate servers that distribute video sequences in mono-resolution and
multi-resolution modalities.

In the first scenario, we show the decrease in data transfer for a mono-resolution
modality. In this modality, the assumption is that low-resolution videos VLR encoded
in 360p or 540p are super-resolved using a 2× factor, and engaged audiences access this
content at 720p or 1080p resolution (see Figure 7a).
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Figure 7. The super-resolution-based content distribution policy for mono- and multi-resolution services.
(a) Monoresolution service: 720p or 1080p resolution. (b) Multiresolution service: 360p, 540p, 720p,
and 1080p.

Figure 8a shows the CDF of the decrease in data transfer for the mono-resolution
modality. The low-resolution streams, i.e., 360p and 540p, have the highest quality (QP = 0),
and we used 220 video sequences. Equation (11) gives the decrease in the amount of data.

Decreasing(Vi) = 1−
size(VLR

i )

size(VHR
i )

(11)

In the 360p mono-resolution modality, the probability is zero that the decrease in data
transfer will reach a value less than 69.48%, and the probability is 100% that the decrease in
data transfer will reach 82.23%. In other words, this decrease will be in the range of 69.48%
and 82.23%. The decrease in the 540p mono-resolution modality will be from 66.67% to
81.61%.

Numerically, the 360p mono-resolution modality has 220 video sequences that demand
13.64 GB on data transfer, i.e., 2.6 GB (360p) and 11.04 GB (760 p), a decrease equal to 76.45%
results in less than 8.44 GB going into the video service infrastructure. The 560p mono-
resolution modality has 220 video sequences, the demands on data transfer are 6.0 GB
(540p) and 25.9 GB (1080p), and a decrease equal to 76.8% results in less 19.9 GB going into
that infrastructure.

Figure 8b shows the CDF of the multi-resolution modality, i.e., we transmit 360p and
540p video sequences to surrogate servers and super-resolved them to 720p and 1080p,
respectively. In this scenario, four versions of each video sequence are available to audiences
as shown in Figure 7b.
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Equation (12) gives the decrease in data transfer.

Decreasing(Vi) = 1−
size

(
Vi

LR
360p + Vi

LR
540p

)
size

(
Vi

LR
360p + Vi

LR
540p + Vi

HR
720p + Vi

HR
1080p

) (12)

Figure 8b shows the CDF of the decrease in data transfer for the multi-resolution
modality. The decrease ranges from 75.67% to 84.59%. Numerically, 8.63 GB is the amount
of data demanded by low-resolution videos (360p and 540p). In contrast, 45.57 GB is the
amount of data after the super-resolving procedure, which includes the four resolutions,
i.e., 360p, 540p, 720p, and 1080p, resulting in an absolute gain of 36.94 GB. This results in
81.06% fewer data going into the distribution infrastructure to serve the audience from the
surrogate servers.

x (%  Decrease)

(a)

x (%  Decrease)

(b)

Figure 8. CDFs of the gain in data volume: 2× factor SR in mono-resolution and multi-resolution
modalities. (a) CDFs of the gain in a mono-resolution. (b) CDFs of the gain in a multi-resolution
adaptive stream.

7.6. Data Reduction Using Super-Resolution vs. Compression

We analyzed the reduction in data when super-resolution was used and compared
it with data reduction when applying compression. The general approach uses levels of
compression, i.e., changing the QP, during the video encoding step to reduce the amount
of data.

The study in Section 7.3 sheds light on how we can combine super-resolution with
compression without affecting the perceptual quality of videos. In this regard, we also
analyzed the data transfer decrease when we combined those two approaches.

Table 5 shows the average sizes with a 95% confidence interval of the 220 video samples
at resolutions of 360p, 540p, 720p, and 1080p and presents the variation in compression
levels as a function of QP = {0, 10, 15, 20, 25}.

Table 5. The average size of videos with QP = {0, 10, 15, 20, 25} variations.

QP 360p 540p 720p 1080p

0 11.80 Mb (±0.54) 27.43 Mb (±1.20) 50.18 Mb (±2.16) 117.71 Mb (±5.07)
10 4.74 Mb (±0.44) 11.20 Mb (±0.97) 21.42 Mb (±1.75) 53.76 Mb (±4.13)
15 2.38 Mb (±0.29) 5.01 Mb (±0.62) 9.00 Mb (±1.09) 22.81 Mb (±2.54)
20 1.24 Mb (±0.18) 2.35 Mb (±0.35) 3.80 Mb (±0.58) 8.18 Mb (±1.28)
25 0.65 Mb (±0.10) 1.18 Mb (±0.20) 1.80 Mb (±0.32) 3.38 Mb (±0.59)

Figure 9a,b show exponential decay in the average size of the videos as we reduce
the resolution and compression in QP levels. It suggests that reducing the volume of data
transmitted by applying compression and reducing resolution is possible. To prove this,
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we analyzed the decrease in the amount of data transmitted using videos with QP = 0 as
the baseline.
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Figure 9. The average size of videos encoded in different resolutions and levels of compression and
the decrease in networking traffic for mono-resolution and multi-resolution modalities. (a) Average
video size in Mb with variation QP = {0, 10, 15}. (b) Average video size in Mb with variation
QP = {15, 20, 25}. (c) Decrease in mono-resolution and multi-resolution distribution with SR and
compression. (d) Boxplot of gains in mono-resolution and multi-resolution distribution.

Table 6 shows the decrease for the mono-resolution (720p and 1080p) and multi-
resolution modalities as shown in Figure 7. All the points are average values with a 95%
confidence interval.

Figure 9c shows the decrease in data transfer. The super-resolution decrease in 2×
(SR 2×) is better than the compression decrease with QP = 10 in mono-resolution and
multi-resolution. The combination of SR 2× with QP = 15 decreased more than QP = 15
or QP = 20, and the highest decrease happened when combining SR 2× + QP 20. This
achieved 97.4%, 98.14%, and 98.42% for 720p, 1080p, and multi-resolution and mono-
resolution modalities, respectively.

Table 6. Decrease over mono-resolution and multi-resolution delivery and compression level.

Data
Reduction

Mono-Resolution
720p

Mono-Resolution
1080p

Multi
Resolution

SR 2× 76.35% (±0.38) 76.52% (±0.35) 80.99% (±0.23)
QP10 60.67% (±1.73) 57.83% (±1.78) 59.28% (±1.69)
QP15 84.13% (±1.23) 82.80% (±1.22) 83.12% (±1.18)
QP20 93.34% (±0.69) 93.91% (±0.65) 93.37% (±0.68)
SR 2×+QP15 95.62% (±0.36) 96.07% (±0.34) 96.74% (±0.27)
SR 2×+QP20 97.74% (±0.22) 98.14% (±0.20) 98.42% (±0.16)



Future Internet 2022, 14, 364 20 of 23

We also analyzed the amplitude of the decrease in the 220 samples as illustrated in
the boxplot in Figure 9d. The decreases from compression were more dispersed than the
decreases from SR, which, in Table 6, showed larger confidence intervals for compression.
Such dispersion occurs more in compression because it is intrinsically related to how the
compression exploits the pixels and frames of the videos, i.e., the compression may be
higher or lower depending on the correlation of frames. In the SR, the decrease is more
uniform since there is a reduction in the resolution size; therefore, it presents less dispersion
in decreases, bolded by smaller amplitudes of the SR boxplots in Figure 9d.

8. Conclusions

In a cloud-based video streaming framework, we super-resolved low-resolution videos
using the VSRGAN+ neural network model to reduce the costs associated with the data
traffic between the original server and the surrogate servers. We upscaled videos using
the VSRGAN+ model, a deep neural network with a perceptual-driven loss function and
tailored layers fitting the limited computing resources of the surrogate servers. We showed
that the proposed framework promoted a decrease in data traffic of up to 98.42%, when com-
paring the SR-based content placement approach and a lossless compression-based one.

To assess the quality of the super-resolved videos, we considered these three metrics:
LPIPS, VMAF, and PSNR. We showed that super-revolved videos obtained by a 2x-factor
training VSRGAN+ model preserved the perceptual quality, i.e., the super-resolved videos
were indistinguishable from the original videos.

The future direction of this research looks at edge-computing paradigms to explore
computing resources on edge servers and end-user devices to support real-time SR. This
could improve the quality of video sessions under severe restrictions on throughput on
both fronthaul and backhaul networks.
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Abbreviations
The following abbreviations are used in this manuscript:

API application programming interface
BN batch normalization
CDF cumulative distribution function
CDN content delivery network
CISRDCNN super-resolution of compressed images using deep convolutional neural networks
CNN convolutional neural network
dB decibéis
DNN deep neural network
ESPCN efficient sub-pixel convolutional neural networks
ESRGAN enhanced super-resolution generative adversarial networks
FHD full high definition
FPS frames per second
GAN generative adversarial network
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GPU graphics processing unit
HAS HTTP-based adaptive streaming
HD high definition
IaaS infrastructure as a service
ISP internet service provider
JND just-noticeable-difference
LeakyReLU leaky rectified linear unit
LPIPS learned perceptual image patch similarity
ML machine learning
MSE mean squared error
P2P peer-to-peer
PoP point of presence
PReLU parametric rectified linear unit
PSNR peak signal-to-noise ratio
QoE quality of experience
QP quantization parameter
RaD relativistic average discriminator
RB residual block
RGB red, green, and blue
RRDB residual-in-residual dense block
SGD stochastic gradient descent
SISR single image super-resolution
SR super-resolution
SRCNN super-resolution convolutional neural networks
SRGAN super-resolution generative adversarial networks
SRResNet super-resolution residual network
SSIM structural similarity
SVM support vector machine
UHD ultra high definition
VMAF video multi-method assessment fusion
VoD video on demand
VSRGAN+ improved video super-resolution with GAN
YCbCr Y: luminance; Cb: chrominance-blue; and Cr: chrominance-red
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