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Abstract: To date, the protracted pandemic caused by the severe acute respiratory syndrome coro-
navirus 2 (SARS-CoV-2) has had widespread ramifications for the economy, politics, public health,
etc. Based on the current situation, definitively stopping the spread of the virus is infeasible in many
countries. This does not mean that populations should ignore the pandemic; instead, normal life
needs to be balanced with disease prevention and control. This paper highlights the use of Internet of
Things (IoT) for the prevention and control of coronavirus disease (COVID-19) in enclosed spaces. The
proposed booking algorithm is able to control the gathering of crowds in specific regions. K-nearest
neighbors (KNN) is utilized for the implementation of a navigation system with a congestion control
strategy and global path planning capabilities. Furthermore, a risk assessment model is designed
based on a “Sliding Window-Timer” algorithm, providing an infection risk assessment for individuals
in potential contact with patients.

Keywords: Internet of Things; indoor navigation; COVID-19 pandemic; epidemiology investigation

1. Introduction

COVID-19 has resulted in a devastating pandemic, which seems uncontrollable in
some countries. By December 2021, the total number of COVID-19 cases had exceeded 286
million, and more than 543 thousand people had died. Regardless of the pathogens that
cause infectious diseases, the most effective strategies to prevent them are obvious, such
as controlling the source of infection, cutting off the route of transmission, and protecting
vulnerable people [1]. The prevention and control of infectious diseases, especially COVID-
19, is not only a medical problem but is also influenced by politics, culture, the economy, etc.
In practice, appropriate and strict prevention and control measures in epidemiology cannot
always be conducted in terms of social management [2]. A case in point is the difficulty in
promoting the use of vaccines [3]. Some individuals are reluctant to receive the vaccine
because they may deem it futile, noxious, troublesome, etc.

SARS-CoV-2 is one of the most infectious viruses, and it has a wide range of trans-
mission routes: respiratory droplets from coughs and sneezes, contact via contaminated
objects, aerosols, etc., may cause an infection [4,5]. Some variants of SARS-CoV-2 have a
long incubation period, even with asymptomatic infections. The sensitivity of reagents
for detecting infections also needs to be improved. Although the various stringent lock-
down policies have contributed significantly to COVID-19 prevention and control, some
necessary economic and political activities have been hindered, causing a number of other
losses, which have had serious consequences for some countries [6]. Nevertheless, ignoring
the pandemic also results in numerous casualties [7]. Hence, the authorities are required
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to prevent and control the pandemic as much as possible without excessively hindering
normal life.

In this paper, by “enclosed spaces”, we mainly refer to airless places, such as airport
terminals, factory workshops, and shopping malls. Ventilating facilities exist sometimes,
but they are not specifically designed for medical use. Compared to open-air areas (plazas,
parks, playgrounds, etc.), the risk of infection is much higher in these locations. COVID-
19-positive individuals inevitably pollute the air, contaminate the surfaces of objects, and
generate aerosols containing virus particles [8]. All these factors make enclosed spaces
dangerous during the pandemic period; moreover, these spaces cannot always be made
inaccessible for COVID-19 prevention and control.

Many scholars are conducting research on COVID-19 prevention and control at the
macro level. Articles exist that evaluate pandemic prevention policies [9,10]; some re-
searchers focus on the use of big data to address COVID-19 macroscopically [11]; some
researchers are interested in the application of machine learning, which is considered to
significantly contribute to overall COVID-19 prevention and control [12,13], etc. In this
paper, we mainly focus on the use of Internet of Things for implementing some pandemic
control and prevention guidelines in enclosed spaces. Our main concern is how to imple-
ment COVID-19 prevention and control measures in specific places. This is an ineluctable
compromise between pandemic handling and normal life.

In many cases, COVID-19-positive individuals are not aware of their illness; they
unintentionally act as a virus “broadcaster”. Firstly, restricting social gatherings greatly
reduces the probability of virus transmission. A COVID-19-positive individual in a large
group of people causes in more infections than in a scattered crowd [14]. Thus, a booking
algorithm is specifically contrived, guiding individuals to obtain an official permit before
entering a region; users are encouraged to apply to enter an area and stay there for a
reasonable period of time. In order to obtain a permit as soon as possible, users ought
to consciously abide by pandemic prevention guidelines. In addition, a path-planning
algorithm presented thereinafter also seriously considers congestion control [15], i.e., as
people attempt to move to an enclosed space, the algorithm provides a navigation service
that conducts background congestion control. The congestion control also utilizes the
booking algorithm.

Furthermore, it is necessary to prevent COVID-19-positive individuals from entering
several locations. If a COVID-19-positive individual idles, a great many virus particles
may exist in the places where he passes. A path-planning algorithm accelerated by a
Graphics Processing Unit (GPU) is introduced, ensuring that the individual swiftly reaches
his destination.

The system tracks users, and related information is sent to the risk assessment model.
There is a high risk of infection in an area where a COVID-19-positive individual is located,
but after he leaves, this risk will gradually decrease over time. The “Sliding Window-Timer”
algorithm is responsible for risk level assessment. If a patient has entered an enclosed space
before, other related people will be identified, and an infection risk level is assigned. In
addition, the authorities can also obtain an analysis report for subsequent measures.

The fundamental aspect of the system is the indoor navigation service. Considering
cost-effectiveness and convenience, Bluetooth Low-Energy (BLE) devices (iBeacon) are
selected as hardware support [16,17]. With the received signal strength indication (RSSI)-
based indoor positioning algorithm, the tracking of the real-time location of an individual
becomes possible. Positioning technology based on the fingerprint database is introduced.
Initially, in the offline stage, Bluetooth beacons are deployed; then, the RSSI values of the
Bluetooth beacons are collected at reference points; the fingerprint of each reference point
is confirmed step by step [18]. In the online positioning stage, the collected signals are
transformed into real-time positioning fingerprints, and then the trained model is used
to match the fingerprint in the RSSI fingerprint database; the positioning coordinates are
determined with the matching results [19,20]. We use KNN as the matching algorithm in
the online stage.
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In this paper, we first review studies related to COVID-19 and indoor positioning.
Then, a booking algorithm is introduced. After this, a means to establish an indoor
positioning system is presented, which is the fundamental navigation service, and we
also introduce the risk assessment model. By testing these parts, the reliability of the indoor
positioning system and the performance of the path planning algorithm are demonstrated.
Furthermore, privacy and compliance are considered in depth.

The structure of the system is shown in Figure 1. The first layer illustrates functions
from a user or manager’s perspective. The middle layer presents related algorithms and
models supporting the functions. The bottom is the hardware layer in which programs run.
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2. Related Work

Many scholars are currently conducting research on COVID-19 prevention and control
in their research fields. Gandhi, Rajesh T. et al. [21], Tian, Wenmin et al. [22], and Morens,
David M. et al. [23] clarify the characteristics and transmission routes of SARS-CoV-2, and
they demonstrate that the pandemic can be prevented and controlled. These studies are
scientific evidence with which a system can be designed. Huang, Lianzhou et al. [24]
and Leask, Julie et al. [25] claim that there are no specific drugs or vaccines which can
definitively avoid infections, so routine ways such as keeping social distance, tracking
individuals who have contact with COVID-19-positive individual, and isolating COVID-
19-positive individual can function well to tackle the pandemic. Our research assists in the
implementation of these pandemic prevention and control guidelines. Many researchers
such as Alsunaidi, Shikah J. et al. [26], Ghaleb, Taher A. et al. [27], and Agbehadji, Israel
Edem et al. [28] use big data and IoT, which can track people, diagnose individuals, predict
a new outbreak of COVID-19, etc. Nevertheless, these studies mainly function effectively at
the macro level. We need to pay attention to minimizing the impact of the pandemic on the
population. D’angelo, Daniela et al. [29] emphasize the importance of precise prevention
and control measures. Thus, it is necessary to devise a series of schemes for an indoor
environment.

It is feasible to track a person in an enclosed space. Outdoor positioning infrastructures
(BeiDou, Galileo, GPS, etc.) cannot function effectively in indoor environments because
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of the signal attenuation (Kaiser, Sean A. et al. [30] and Tang, Yongwei et al. [31]). Deng
Zhongliang et al. [32] and Zhu, Wenqi et al. [33] describe various methods for deploying
an indoor positioning system. Song, Wook et al. [34] and Yadav, Rohan Kumar et al. [35]
show the advantages of BLE technology in indoor positioning: low power, cost effective,
easy to deploy, etc. Compared to Ultrawideband (UWB) used by Zhu, Xiaomin et al. [36],
ZigBee used by Cheng, Chia-Hsin et al. [37] and Radio Frequency Identification (RFID)
used by Bernardini, Fabio et al. [38], etc., a BLE-based indoor positioning system is an
optimal choice; those positioning methods that require special devices are not applicable
to a large-scale application. Among various positioning methods such as Time of Arrival
(TOA) used by Bernardini, Fabio et al. [39], Angle of Arrival (AOA) used by Bergen, Mark
H. et al. [40], and Time Difference of Arrival (TDOA) used by Wang, Mei et al. [41], a
common means is to create an RSSI fingerprint database like Li, Fei et al. [42], and then the
database can be accessed when in the online stage to obtain a predicted location.

For the purpose of matching in the fingerprint database, Zhou, Rui et al. [43] highlight
the use of a Support Vector Machine (SVM). However, the original SVM algorithm can only
solve the binary classification problem (Chauhan, Vinod Kumar et al. [44]); thus, a number
of binary classifiers are required, and it takes a long time to train the model. In the research
carried out by Zhang, Xiaona et al. [45], the Bayes algorithm is crucial to their implementa-
tion. It is a probability-based algorithm, requiring a prior probability. The accuracy and
reliability of the positioning system is affected by a complex indoor environment. It is
certain that more advanced matching algorithms exist, such as long-short term memory
(LSTM) used by Maghdid, Halgurd S. et al. [46], and multilayer perceptron (MLP) utilized
by Li, Da et al. [47]; however, the difficulty and cost of training these models have increased
significantly, which makes managers less interested in deploying these systems. Though
KNN is not the most popular algorithm in the machine learning field nowadays, it is often
used when deploying wireless networks for positioning. It is insensitive to outliers, and
the overall effect satisfies the requirements (Tran, Huy Quang et al. [48]).

There are various scheduling algorithms widely applied in different cases. Raheja,
Supriya [49] mentions the Highest Response Ratio Next (HRRN) algorithm, which is
often used in implementing a Central Processing Unit (CPU) scheduler. Compared to
other scheduling algorithms such as First Come First Serve (FCFS), Short Job First (SJF),
and Highest Possible Frequency (HPF) (Wang, Meng et al. [50] and Al-maweri A, Nasr
Addin et al. [51]), both waiting time and service time are considered. There are few
scheduling (booking) algorithms specifically used for COVID-19 prevention and control in
enclosed spaces. Therefore, we modify the HRRN algorithm to adapt to the need. Pradhan,
Anu et al. [52] make use of the parallel Dijkstra algorithm to find the shortest path in a
graph. These methods can be modified and then introduced to the system to control social
gatherings and find the shortest path to the destination.

3. Materials and Methods

In this section, the proposed booking algorithm is able to control social gatherings. The
indoor positioning technology is crucial for providing navigation services with congestion
control strategies, and the risk assessment model also requires people’s locations.

3.1. Booking Algorithm

Subareas exist in an enclosed space, e.g., different shops and dining rooms are in a
shopping mall. Physically, each subarea is able to contain plenty of people; nevertheless,
gathering crowds lead to higher infection risks. Hence, an optimized booking algorithm
is introduced.

Here, an example to explain how to calculate w, s, and r is shown in Table 1. There are
4 people (A, B, C, and D) applying to enter an area which can only contain 1 person.
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Table 1. Symbol table of the algorithm.

Name Abbreviation

Waiting Time w
Service time s

Response Ratio r
Modified Waiting Time f(w)
Modified Service Time f(s)

Related details are shown below (Table 2). At 12:00, A applies to enter the area, and he
plans to stay there for about 1 minute (service time). At 12:01, B attempts to enter the area
and the request is then immediately satisfied. At 12:02, C should wait for B until 12:05, and
so should D. At 12:05, the waiting time for C and D is 3 minutes and 1 minute, respectively.

Table 2. Information about bookings.

Person Name Booking Time Service Time

A 12:00 1 min
B 12:01 4 min
C 12:02 6 min
D 12:04 0.5 min

The booking algorithm is a variant of the original HRRN algorithm. In the original
HRRN algorithm, r is defined as below (Equation (1)).

r =
w + s

s
= 1 +

w
s

(1)

The main idea of the HRRN algorithm is to allocate the CPU resource to the job or
process waiting longer (greater w) and requiring less service time (less s), i.e., the job or
process with greater r has higher priority to get the CPU resource. In the booking algorithm,
an area is seen as a CPU, and people are seen as processes. If the space can contain the
amount of people who are requesting to enter, their requests will be satisfied immediately
(e.g., 3 people concurrently apply to enter an area with 5 free vacancies).

Nonetheless, pandemic guidelines do not encourage a person to spend too much time
waiting. Additionally, for fairness, individuals requiring too little service time are also
not encouraged. Therefore, the original definitions of waiting time and service time are
modified. In Equations (2)–(4),

f (w) =

{
w, 0 ≤ w < w0

C1 ln w + w0 − C1 ln w0, w ≥ w0, C1 > 0
(2)

g(s) =

C2 ln
1
s
+ s0 − C2 ln

1
s0

, 0< s ≤ s0, C2 >0

s, s > s0

(3)

r = 1 +
f (w)

g(s)
(4)

C1 and C2 are constant values preliminarily set by the manager of an area.
Other related scheduling algorithms such as FCFS, SJF, and HPF are unsuited for

COVID-19 prevention and control. FCFS ensures that a person who comes earlier can also
get an earlier permit. However, people who only need to stay in an area for a short time
may wait for a long time. The sum of waiting time of all people will not be the minimum.
Though SJF is conducive to getting a minimum total waiting time, it is unfair for people
needing to stay in an area for a longer time, leading to bad user experience. As for HPF,
we cannot confirm the priority values for individuals easily in advance. Therefore, the
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HRRN is a compromise which considers both COVID-19 prevention and control and user
experience.

Let C1 = C2 = 1, w0 = s0 = 1. Hence, Equations (5) and (6) are presented.

f (w) =

{
w, 0 ≤ w < 1

ln w + 1, w ≥ 1
(5)

g(s) =

ln
1
s
+ 1, 0 < s ≤ 1

s, s > 1
(6)

In Equations (7) and (8), the response ratio r always increases with w ( ∂r
∂w > 0), and

∂2r
∂w2 < 0 (w ≥ 1), viz., 1 minute is the threshold value for the encouraged waiting time.

∂r
∂w

=
1

g(s)
∗ d f

dw
(7)

∂r
∂s

=
f (w)

g2(s)
∗ dg

ds
(8)

Excessive waiting does not contribute much to the increase in priority. Because
∂r
∂s < 0 (0 < s ≤ 1), similarly, 1 minute is the threshold value for the encouraged service
time. All these strategies should be told to users first in a user-friendly way, and then they
can make their own choices. To get a higher priority (higher r) to enter an area, people
ought to consciously follow pandemic prevention and control policies.

The result of applying Equations (5) and (6) to the example in Table 2 is shown in
Table 3. The status “In” indicates that a person is in the area with permission. Statuses
“Left” and “Not Arrived” mean that a person is not in the area. When the region is full, a
new user wanting to enter must wait. At 12:05, C and D compete for the vacancy and D is
satisfied because of their higher r (1.59 > 1.35).

Table 3. Process of the example in Table 2.

A B C D

12:00 In Not Arrived Not Arrived Not Arrived
12:01 Left In Not Arrived Not Arrived
12:02 Left In Waiting Not Arrived
12:03 Left In Waiting Not Arrived
12:04 Left In Waiting Waiting
12:05 Left Left Waiting (r = 1.35) In (r = 1.59)

The algorithm does not ensure the first person will get the first permit, which some-
times makes people unhappy. The manager of the area may take some measures for
compensation, e.g., in a shopping mall, it is acceptable to give e-coupons.

Reservation and booking approaches are widely adopted nowadays, especially in the
pandemic period, e.g., a scenic spot may sell fewer tickets and ask tourists to queue up to
enter the scenic spot in batches. When using the algorithm, a manager of a region should
help people to understand and follow the pandemic prevention and control guidelines.
Sometimes, urgent entry requests (jumping the queue) should be also processed in time.

3.2. Indoor Positioning

In an enclosed place, the relationship between a location and corresponding RSSI
vector is built by selecting reference points and collecting RSSI values from iBeacon nodes
at each reference point. R =

[
r1, r2, r3 . . . rp

]T denotes a series of RSSI values; ri represents
the RSSI value from node i. At each point, a receiver (usually a mobile phone) gets RSSI
values steadily in a period from iBeacon nodes. The vector r = [r1, r2, r3 . . . rn]

T is a vector
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of RSSI values from an iBeacon node via repeated measurements. The simplest way is to
average the values in the vector r (in Equation (9)).

RSSI =
1
m

m

∑
i=1

ri (9)

Nevertheless, this simple method is unable to adapt to the real situation, especially
when the indoor environment is complex and volatile. Kalman filtering (KF), a linear,
minimum variance estimation method, is required to be used; the KF algorithm consists
of a gain calculation loop (filter gain, estimation error, and prediction error) and a filter
calculation loop (state prediction and state estimation) [53,54]. The covariance of the
observation noise R is calculated by averaging the variance of the RSSI at each reference
point. The system process noise is Q, and the state transition is T (the RSSI value is expected
to be stable). The observation is H. The first estimated error covariance of the point is
shown in Equation (10).

P1 =
1
N

N

∑
i=1

(Zl
1 − E

[
Zl
]
)

2
(10)

Z1
l is the first sample RSSI of reference point l. E[Zl ] is the expected RSSI value of the

corresponding point. N is the number of elements of the vector r.
The prediction error covariance of the t-th sample RSSI is shown in Equation (11).

Pl
t,t−1 = Pl

t−1 + Q (11)

The filter gain of the t-th sample RSSI is denoted by Jl
t (Equation (12)).

Jl
t = Pl

t,t−1

[
Pl

t,t−1 + R
]−1

(12)

The estimated error covariance of the t-th sample RSSI is confirmed by Equation (13)
(U is the unit vector).

Pl
t−1 =

[
U − Jl

t

]
Pl

t,t−1

[
U − Jl

t

]T
+ JRJl

t
T (13)

The predicted value of the t-th RSSI is calculated via Equation (14).

Xl
t,t−1 = TXl

t−1 (14)

In order to gain the predicted value of the t-th sample of RSSI, we put the filter gain
into the filter calculation (Equation (15)).

Xl
t = Xl

t,t−1 + Jl
t

[
Zl

t − Xl
t,t−1

]
(15)

Through the KF algorithm, the error of RSSI measurement can be reduced so that we
can gain more accurate RSSI values. For the fingerprinting database, a more reliable offline
fingerprinting database is established. Figure 2 shows the process of building a fingerprint
database (offline stage) and real-time positioning (online stage).

The distance between a received RSSI vector and fingerprint vector Ri needs to be cal-
culated. The corresponding location for Ri is Pi(xi, yi). Firstly, we calculate the first k largest
distances and record the corresponding Pi, then we generate an ascending distance vector
D = (d1, d2, d3 . . . dn). The method of calculation is shown below Equations (16)–(18).

xpredict =
∑k

i=1(wi ∗ xi)

∑k
i=1

1
di

(16)
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ypredict =
∑k

i=1(wi ∗ yi)

∑k
i=1

1
di

(17)

wi =

1
di

∑k
m=1

1
dm

(18)Future Internet 2022, 14, x FOR PEER REVIEW 8 of 19 
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The implementation of an indoor positioning system requires some experiments. An
ideal place for testing the feasibility of the algorithm is a typical enclosed space. Firstly, we
select points, and at each point we carry out positioning many times. Then, the positioning
errors at each point are averaged and recorded. Among all of the different values of k, the
value which can make the positioning results stable and accurate is acceptable. Though a
larger k may make the result more accurate, we should consider the computation pressure
of server computers. In this process, k is determined.

After that, we select a fixed point to carry out continuous positioning to observe the
distribution of positioning results. This can verify the static stability and reliability of
positioning. However, individuals are always moving in an enclosed space; thus, it is
needed to move and form a trajectory, and then compare the real trajectory to the predicted
trajectory. This experiment demonstrates dynamic stability and reliability. The indoor
positioning system should be reliable whether people are moving or not.

3.3. Path-Planning Algorithm with Congestion Control

The main function of the path-planning algorithm is to guide users to destinations as
soon as possible, which reduces the infection risk. For a COVID-19-positive individual,
fewer contaminants will be unconsciously emitted; and for a healthy person, the exposure
time to contaminants will be reduced.

The path-finding algorithm is introduced to solve the Single-Source Shortest Path
problem with efficiency. The Dijkstra algorithm is a ubiquitous and typical solution to
find the shortest path between two given vertices. In the statement of Dijkstra, V is a set
saving all nodes in the graph, and S is initialized to store nodes whose shortest paths from
the start vertex are found. Every time, we select a node u with the shortest distance from
start vertex s in V − S (difference set between V set and S set). After that, the vertex u can
be considered as the intermediary point, and then the shortest distance between the start
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vertex s and any vertex v that can be reached from u is optimized [55]. The pseudo code of
the sequential Dijkstra algorithm is presented in Algorithm 1.

Algorithm 1: Sequential Dijkstra Algorithm

Input: vertex s, graph G
Output: None

1. set collected;
2. double_array d[];
3. while(1){
4. node v = get_min_node();
5. if(v is null)break;
6. collected.insert(v);
7. for(w in v.adjacent_vertices())
8. if(w not in collected)
9. if(d[v] + G[v][w] < d[w])
10. d[w] = d[v] + G[v][w];
11. }

However, for a public area in which many people stay, a single-thread Dijkstra algo-
rithm implementation is of low efficiency for handling a great many simultaneous requests.
An increase in the use of the General-Purpose Graphics Processing Unit (GPGPU) offers
massive-scale parallel computing capabilities. The GPGPU is based on a single-instruction,
multiple-thread (SIMT) execution model, i.e., each thread executes the same code. CUDA
(Compute Unified Device Architecture) is a parallel computing framework enabling pro-
grammers to develop GPU-accelerated applications on major architectures including x86,
Arm and POWER. It dispatches GPU parallelism for general-purpose computing and
retains performance. It is developed based on industry-standard C++. CUDA consists of a
small set of extensions to enable heterogeneous programming [56].

Algorithm 2: Parallel Dijkstra Algorithm

Input:
vertex s, graph G
Output: None

1. generate subgroups;
2. while (there are vertices not in collected){
3. for (vertices in the subgroup but outside collected){
4. select the locally closest vertex;
5. }
6. find the globally closest vertex;
7. }

In the sequential algorithm, the outer loop must be executed in order. Subgroups for
every V/P vertices are partitioned. P is the number of computation units, which is set by
programmers according to the need, and V is the number of vertices. Each core finds its
closest vertex to the source vertex, selects the globally closest one, and broadcasts the result
to all cores. In Algorithm 2, at each loop, the value for O(V) cores is updated separately,
and the gross execution time is O (V2 + V/log(P)) [57,58].

After surveying and mapping, the original graph of an enclosed space is generated,
and then it is converted to an adjacency table or adjacency matrix. The graph is sometimes
a multi-graph (e.g., Figure 3). The edges represent roads, and the numbers indicate the
distance between two vertices. The vertices are marked by the manager of the enclosed
space as needed.
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An appropriate path is generated very soon after a user selects a destination. The

maximum number of people that each road can accommodate should be set in advance,
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limit. In Figure 4, the limitation information for Figure 3 is presented (the numbers refer to
a number limit).
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It is required to make statistics and record the roads (edges in the multi-graph) most
prone to congestion (or manually analyze which roads have higher probabilities for conges-
tion), and these roads are stored in a set Es. Every time a user sends a request for navigation,
the multi-graph needs to be converted to a simple graph.

Edges between two vertices (e.g., three edges between A and C with weight 5, 6,
and 7, respectively) are divided into two categories: “congestion edges” and “ordinary
edges”. Congestion edges with probability of p and ordinary edges with probability of
1− p, (p < 1− p) are selected. If the congestion edges are selected, they are stored in list1.
Then, let D1 = [d1, d2, d3 . . . dn]

T , and di denotes the distance of the i-st edge in list1. Let
L1 = [l1, l2, l3 . . . ln]

T , and li represents the number limit of the i-st edge. The probability
of selecting Di follows Equations (19) and (20).

ρi =
li
di

(19)

pi =
eρi

∑n
m=1 eρm

(20)



Future Internet 2022, 14, 40 11 of 19

The probability of finally selecting Di follows Equation (21).

p f _i = p ∗ pi (21)

Indicator ρ is the “capacity density”. An edge with greater capacity and shorter
distance has a larger capacity density. Edges with a higher capacity density are more likely
to be selected. The strategy for selecting ordinary edges is similar.

After this process, a simple graph Gs is generated. The navigation for a user is based
on Gs. Each person’s real-time location is marked on a multi-graph Gm, and the number of
people on each edge is monitored in real time. If a user is moving and the server finds that
the number of people on the next planned edge ep has reached the limit, it will open any
adjacent edge near ep. The next vertex vp is selected as the start vertex to find the shortest
path to the destination. If all edges have reached the number limit, the booking algorithm
in this paper is applied to wait for an edge.

As shown in Figure 5, a person plans to go to A from D, and the path is D ≥ C ≥ A
(e1 is selected among e1, e2, and e3). The number inside parentheses indicates the current
number of people on this edge. When the person is on the edge between C and D and
about to reach C, the number of people on e1 and e2 exceeds the limit, and C is chosen
as the start vertex to find the shortest path from C to A. Rollback is not allowed, and the
person will go through e3. In the case where the number of people on e1, e2, and e3 has all
reached the limit, the booking algorithm will work.
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Though the parallel algorithm is fast, we introduce a cache strategy which can greatly
reduce the computation pressure on the server. An unordered map is a hash-based data
structure which stores key-value pairs. On the premise of a proper hash algorithm im-
plementation, the value can be accessed in constant time complexity via the key. The
key of the unordered map is a combination of information (the differences between the
original multi-graph and simple graph, and the start vertex with the destination vertex).
For example, a key-value pair is (Key: (Delete e1, e2, and edges between A and B, Move
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from D to A), Value: (A path)). Every time the parallel algorithm finds the shortest path,
the path is stored in the unordered map if it is never added to the cache. Additionally, we
can even adopt a more aggressive cache strategy: it is feasible to generate and store most of
the possible paths as early as possible.

In this paper, our purpose is not to build a high-performance computing center, and the
hardware budget is also limited. Because of the cache strategy, the computing pressure on
the server is reduced. When the cache has not been established or there are many changes to
the multi-graph, the real-time path-planning algorithm will work, which often takes much
more time than loading a path from the cache. In general, there is no need to invoke the
parallel algorithm. The test of cache is relatively simple. The time consumption of loading
a path from the cache should be within a reasonable time. To examine the performance
of the path-finding algorithm, we generate different scales of graphs, and use the parallel
algorithm to find out all of the shortest paths (the shortest path for any two vertices is
generated). The sequential algorithm is applied for comparison. Ideally, when the scale of
a graph is large, the parallel algorithm will be faster than the sequential algorithm.

3.4. Risk Assessment Model

Potential COVID-19-positive individuals may enter an enclosed place, putting others
at risk. As a whole, the closer an uninfected person is to an infected person, the greater the
risk of infection. Moreover, due to the pollutants produced by infected individuals, the
space is still at risk of infecting people after infected individuals leave, and the infectivity
of pollutants left in the site will gradually decrease with the passage of time. The risk
assessment model will assess the infection risk of all relevant people during the period from
the time the infected individual enters the enclosed space to the time when he is diagnosed
with COVID-19. Ideally, all relevant people should be isolated and nucleic acid tested, and
even the whole city should be shut down. However, this is an impossible measure in many
countries, so a relatively accurate risk assessment model is necessary. The model divides
people into different risk levels and provides information for them and managers. It is up
to the authorities and regulations to decide what measures to take.

Nowadays, many countries that have adopted strict measures are also gradually
improving the efficiency of pandemic prevention and control. Recently, the concept of
“possible contacts in time and space” has been put forward by the health departments
in China, and people who appear in the same area as infected individuals for a certain
period of time are likely to meet this definition. At present, this is mainly realized by
base station positioning technology, which requires the cooperation of base stations and
mobile phones. This model based on the indoor positioning technology provide accurate
assessment services.

The enclosed space is divided into many grids (each grid 20 m × 20 m) such as
Figure 6, and every person’s arrival and leaving times at a grid are recorded. In Figure 6,
a COVID-19-positive individual is in a grid, and the location of this grid is denoted as
(a, b), and the risk level of this grid is seen as “Extremely High” at this moment. There
are four risk levels for each grid: “Extremely High = 1”, “High = 2”, “Medium = 3”, and
“Low = 4”. They change in real time. Risk levels at this moment of other grids (x, y) follow
Equation (22).

Risk Level =


Extremely High, x = a, y = b
High, |x− a| = 1, |y− a| = 1

Medium, 1 < |x− a| ≤ 4, 1 < |y− a| ≤ 4
Low, Other

(22)
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Figure 6. Divide the enclosed space into grids. “H” means high risk level, and “M” means medium
risk level.

Let us assume that the patient disappears directly at this moment. Then, every grid
launches a timer. Suppose the time from the disappearance of the patient is t, and the
principles of risk level changes follows Table 4.

Table 4. The principles of risk level changes.

T Extremely High High Medium

0 < t ≤ 1 h Extremely High High Medium
1 < t ≤ 6 h High Medium Low

6 h ≤ t < 1 day Medium Low Low
t ≥ 1 day Medium Low Low

When 0 < t ≤ 1 h, the risk level of all grids remains unchanged. The second row in
the table represents that when 1 < t ≤ 6 h, the former grid with “Extremely High” risk
level is “High”, etc. The risk level can only be reduced by two levels at most.

A patient cannot disappear directly in a grid. He can only leave from the boundary.
When he moves, the new grid he steps in will be subsequently defined as “Extremely
High” level and other grids will change their levels according to Equation (22). Visually,
it is like “sliding” the original risk distribution window with the patient’s footsteps. The
risk level is influenced by both Equation (22) and Table 4, and the final risk level of a grid
is the highest result. An example is presented in Figure 7. At 12:00, a patient was at D
and all grids are defined as “High” risk level (except D). He entered E at 12:05 without
leaving. After 5 h, the timer at E defines the risk level as “High” according to Table 4, but
Equation (22) considers E as “Extremely High”, so the final definition is “Extremely High”
for “Extremely High > High”. Each grid may start more than one timer because of the
continuous movement of a patient, and we only recognize the results that are considered
the riskiest.
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Figure 7. An example for risk level changes.

A user with a mobile phone sends an RSSI vector to the server and the server matches
information in the fingerprint database with the vector to return a location, which means it
is simple to associate the location with time. After dividing the enclosed space into grids,
when a person enters the grid, when he leaves the grid, and how long he stays are recorded.
Thus, many statistics are available, including but not limited to the following:

• Viewing a patient’s track on the timeline.
• Viewing a user’s track on the timeline.
• Checking how long a user has been in risk areas.
• Finding the closest point to an infected individual a person has ever been to.

Based on this information, individuals can be classified by different risk levels. People
who have ever been in any grid in the “Extremely High” level are marked “Extremely High
infection risk”; those who have stayed in “High”-level grids, or the gross staying time in
“Medium”-level grids exceeds 2 h are denoted “High infection risk”; other related people
are seen as “potentially infected”. If someone has never been to the enclosed space after an
infected individual went in, he is deemed to be at low risk. All these threshold values are
not arbitrarily determined, and they refer to the pandemic prevention and control policies
conducted by governments around the world (e.g., red–yellow–green code strategy for
marking different crowds) [59].

4. Results and Discussion
4.1. Test for Indoor Positioning

We used a real-world test field to carry out tests (a room for storing things), which is a
typical enclosed space, and the valid size was 200 m2. There were 21 evenly distributed
iBeacon nodes. In order to test the performance of positioning, 30 points were selected, and
we carried out positioning 100 times at each point, and errors of the 100 measurements at
every point were averaged, which are presented in Figure 8; the x-axis is the sequence of
Point ID (from 1 to 30) and the y-axis is the average error (meter) of each point. If the value
of k is too large (k = 5), it will increase the amount of computation, and a too small k leads
to lower accuracy (k = 2, 3). The average error is 1.65 m (k = 4). An error refers to the
geometric distance between predicted coordinates and real coordinates.

We also performed 100 separate positioning measurements on the point (5, 5), and the
results are presented in Figure 9. The average error is 1.68 m, and about 80.0% of predicted
coordinates are within 2 m of the actual coordinates, which fulfilled the requirement for
keeping track of people. This does not mean that the positioning accuracy cannot continue
to improve, while the deployment of more iBeacon nodes requires more funding.
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Figure 9. Perform location queries at a fixed point.

Finally, a person walked in the test field and the track was nearly a line segment.
Positioning was carried out while walking, and the predicted track from the positioning
system and real track are shown in Figure 10. In the test, we obtained locations from the
server computer and performed 200 measurements. The average error is 1.78 m, which is
a bit better than testing without moving. The movement of people may affect accuracy a
little, but it is still suitable for tracking a person.

Future Internet 2022, 14, x FOR PEER REVIEW 15 of 19 
 

 

 
Figure 8. At each point, the tested errors were averaged. The y-axis is the average error. 

 
Figure 9. Perform location queries at a fixed point. 

Finally, a person walked in the test field and the track was nearly a line segment. 
Positioning was carried out while walking, and the predicted track from the positioning 
system and real track are shown in Figure 10. In the test, we obtained locations from the 
server computer and performed 200 measurements. The average error is 1.78 m, which is 
a bit better than testing without moving. The movement of people may affect accuracy a 
little, but it is still suitable for tracking a person. 

 
Figure 10. Predicted locations obtained during walking. Figure 10. Predicted locations obtained during walking.



Future Internet 2022, 14, 40 16 of 19

4.2. Performance of the Path-Planning Algorithm

On a computer with AMD Ryzen 7 5800X, the time consumption of matching and
loading the path from the cache containing 1000 key-value pairs is about 11 ms. It is obvious
that the cache strategy will not be a performance bottleneck.

However, the layout of an enclosed space may be changed occasionally, e.g., some
internal roads may be temporarily closed in a factory workshop. Minor changes may
make the cache invalid. In this case, the computing power of the server will greatly affect
the efficiency.

We randomly generated sparse graphs of different sizes and used the sequential
Dijkstra algorithm (the multi-core feature of CPU is not used) and the Dijkstra algorithm
implemented by CUDA to compute them. In the test (Table 5), we generated the shortest
paths for every two vertices in the graph. Finding the shortest path between two given
vertices is of course much faster than the shortest path among all vertices.

Table 5. Speedup effects of different scales of a graph.

Graph Scale Speedup Ratio Is Parallel Algorithm Faster

(10, 40) 0.674 No
(50, 200) 1.158 Yes

(200, 1000) 1.645 Yes
(1000, 5000) 2.421 Yes

(5000, 25,000) 2.499 Yes

This test was executed on an ordinary personal computer (AMD Ryzen 7 5800X and
Nvidia RTX 3060). From the test, we know that when the scale of the graph is relatively
small, the sequential algorithm has advantages, because it takes a certain time to copy data
from memory to video memory, and it also takes a certain initialization time to invoke
the GPU. Conversely, when the scale of the graph is large, the parallel algorithm using
GPU has significant advantages. The traditional Dijkstra algorithm running on a single-
instruction, single-data (SISD) execution model is not appropriate to complete the task in
time compared to the parallel algorithm.

4.3. Privacy and Compliance

Tracking is fundamental to the system. Individuals are worried about violations of
their privacy by pandemic prevention and control policies. This inevitably makes many
policies impossible to implement in practice. In the system, we try to avoid obtaining data
with identity information.

IBeacon advertisements from iBeacon nodes only include Universally Unique Identifier
(UUID), major and minor values. This is unidirectional broadcasting, and there is no mutual
communication between an iBeacon node and a mobile phone. Hence, iBeacon devices
do not collect any private information from users’ devices, acting like a lighthouse. As
shown in Figure 2, a mobile phone can get RSSI values from nearby iBeacon nodes, and
the corresponding iBeacon node to a received RSSI value is known. The mobile phone
forwards the RSSI values to server, and the server then returns a predicted coordinate. The
server needs to clarify which device each positioning request comes from, which is a sine
qua non for risk assessment. A possible solution is to ask a user to register and log in when
using the system, and the system hides identity information. The registered account can be
an identifier for each person. The server will store the track and time information of each
user; once a user is identified as a COVID-19-positive individual by medical institutions
and the information is input on the system by the authorities, the server will send alerts
to related people. In the whole process, only medical institutions and the authorities will
access private information, and the system only keeps an account, meaning the manager
of the enclosed space is not able to access identity data of people. The system is more
applicable to some places with strict management, such as airport terminals for entry and
exit administration, children’s play areas, and factory workshops.
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5. Conclusions

Enclosed spaces are risky during the pandemic period. In order to balance normal
life and pandemic prevention and control, this paper proposes an IoT-based COVID-19
prevention and control system. The means of building an indoor positioning system is
introduced. An iBeacon network is established, and we use a fingerprint-based method
for real-time positioning. Based on the indoor positioning system, the booking algorithm,
navigation algorithm, and risk assessment model can have an effect. In tests, the result
demonstrates the feasibility of the positioning system. Moreover, the risk assessment model
is made for an enclosed space; it could be integrated into a big-data pandemic prevention
and control system promoted by the government, which helps to form an overall and
systematic mechanism for COVID-19 prevention and control.

Nevertheless, there are still some limitations. The booking algorithm does not guar-
antee that somebody who arrives earlier is given an earlier permit, which may make indi-
viduals exasperated. We use HRRN as a compromise. There could be more compensation
measures. In addition, the overall numeric simulation is not applicable because of such a
complex system, and the overall real-world test is also infeasible. Ideally, we should deploy
the whole system to many enclosed spaces and compare people’s infections in places which
do not have this system. Then, the general effects of the system are clear. This experiment
is only applicable when there are a number of potential COVID-19-positive individuals.

6. Future Work

Although the overall test is not applicable because of some policies and the current
pandemic situation, we will try to promote our design in places which can provide oppor-
tunities to test the overall effect of the system. Then, our work may make contributions to
the prevention and control of COVID-19.
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