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Abstract: The real world is full of noisy labels that lead neural networks to perform poorly because
deep neural networks (DNNs) are prone to overfitting label noise. Noise label training is a challenging
problem relating to weakly supervised learning. The most advanced existing methods mainly adopt
a small loss sample selection strategy, such as selecting the small loss part of the sample for network
model training. However, the previous literature stopped here, neglecting the performance of the
small loss sample selection strategy while training the DNNs, as well as the performance of different
stages, and the performance of the collaborative learning of the two networks from disagreement
to an agreement, and making a second classification based on this. We train the network using
a comparative learning method. Specifically, a small loss sample selection strategy with dynamic
weight is designed. This strategy increases the proportion of agreement based on network predictions,
gradually reduces the weight of the complex sample, and increases the weight of the pure sample at
the same time. A large number of experiments verify the superiority of our method.

Keywords: small loss selection; noise label; dynamic weight; disagreement strategy; agreement
maximization principle

1. Introduction

Deep neural networks have accomplished outstanding achievements in various artifi-
cial intelligence tasks, which is mainly due to the massive high-quality datasets with labels
at this stage. Large amounts of data, on the other hand, need a lot of money and time to
annotate with high-quality annotations. However, accurately labeling large amounts of
data is a very time-consuming and labor-intensive task. To resolve this problem, data label-
ing companies have begun to seek alternative and inexpensive methods, such as searching
commercial search engines [1], gathering web label information [2], employing machine-
generated labels [3], or having a single annotator mark each sample [4]. Although cheap
and efficient, these alternative methods are always accompanied by samples with noisy
labels. Even in industry, noise labels are generated due to errors in prop models or subtle
differences in the cutting process [5]. Existing studies have shown that deep networks are
liable to overfitting label noise during the training process, and their generalizability is low,
resulting in a substantial drop in DNN performance [6]. With the advent of 5G, the amount
of data is increasing rapidly, and it is more necessary to study noise label learning [7].

Because the existence of noisy tags severely restricts the implementation and develop-
ment of neural network models in the industry. Initially, the method of data preprocessing
is used to deal with noisy labels, but it is inefficient. On the one hand, research attempts to
improve the quality of the data at the modeling stage, such as by boosting ensembles [8]. On
the other hand, a large number of weakly supervised learning algorithms for learning with
noise have been developed. The existing noise label learning methods mainly use sample
selection methods and loss correction methods. The loss correction method estimates the
noise transfer matrix. Then, the loss function is corrected with the noise transfer matrix.
However, it is challenging to correctly estimate the noise transfer matrix. Some methods use
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DNN predictions to correct the label and adjust the loss accordingly [9,10]. These methods
perform poorly under high noise ratios. The reason is that DNN predictions dominate
the training process leading to overfitting. The sample selection rule is to screen clean
samples or reweight the samples to reduce the contribution of noise samples to the loss.
Designing a reliable algorithm and criteria to select clean samples is a challenging problem.
Research shows that before fitting label noise, the DNN tends to fit simple samples first [11].
Therefore, samples with small loss are considered clean samples and are used by many
methods [12,13]. Among them, co-teaching [14] and co-teaching+ [15] train two networks.
Each network selects the samples with a small loss in mini-batch to train peer-to-peer
networks. It is worth mentioning that decoupling [16] and co-teaching+ [15] adopt the
“disagreement” strategy, and the network itself decides when to update. JoCOR [17] set up
a joint loss between the two networks of co-teaching to encourage the model to reach an
“agreement”. Chen [18] started to combat label noise by compressing regularized neural
networks, which they called Nested Dropout. This method does not innovate the structure
of the dual network but performs compression and regularization training in the dataset in
advance to provide a more reliable basic network for the subsequent network. This method
can be combined with methods such as co-teaching.

The essence of the co-teaching type of algorithm design is to seek “agreement” in
“disagreement”. Inspired by this, this article is different from the previous “Disagreement”
strategies of decoupling [16] and co-teaching+ [15]. It turns its attention to the “Agreement”
part and combines small loss samples with the “Agreement” and “Disagreement” strategies.
The intention is to mine clean samples with higher purity and discard high noise rate
noise. However, focusing too much on the “Agreement” part also causes the model to
overfit, which reduces the accuracy of the model. Therefore, we perform dynamic weight
distribution on the agreement sample and the “disagreement” sample. Specifically, this
article inputs an image into two neural networks with the same structure and different
initializations, generates prediction probability labels correspondingly, and divides the
samples into the “Agreement group” and the “Disagreement group” according to whether
the sample predicts disagreement or not. At the same time, a joint loss is set between
the networks, which includes the traditional cross-entropy loss and the comparison loss
between the two networks. Based on these two loss functions, small loss samples are taken
as clean samples to enter the DNN training. According to two strategies, the samples are
processed for differences. The main contributions of this paper are as follows:

• This article selects reliable samples through a small loss sample strategy by using
relative loss and multi-class loss, subdivides it, and proposes a distinction between
pure samples and complex samples based on the prediction consistency in the multi-
view of the sample.

• In this paper, a dynamic weight is set between the pure sample and the complex
sample to reduce the weight of the noise sample. While deepening the neural network,
the complex sample weight is gradually reduced. The dynamic weight is determined
based on the results of the previous round of iterative training.

• By providing comprehensive experimental results, we show that our method outper-
forms the most advanced methods on noisy datasets. In addition, extensive ablation
studies are conducted to verify the effectiveness of our method.

The remainder of the paper is structured as follows: Section 2 provides an overview of
agreement and disagreement. Section 3 describes the framework of JoSDW. The experimen-
tal results of our method will be demonstrated in Section 4. Finally, we conclude this paper
in Section 5.

2. Related Work
2.1. Co-Teaching

Co-training is designed for “multi-view” data. In each cycle, two different classifiers
are trained from the labeled data, and then the two classifiers are used to classify the
unlabeled data, and then the unlabeled data with the highest confidence is classified. Add
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to the labeled data and continue to loop until there is no data in the unlabeled data or the
maximum number of loops is reached.

Co-teaching refers to the idea of training two classifiers. Co-teaching [14] is motivated
by co-training for learning using noisy labels. The idea is to train two identical deep
networks at the same time, but these two networks have different initialization parameters,
and both networks adopt a small loss sample selection strategy, that is, samples with small
losses are regarded as clean samples. In each mini-batch, each network selects instances of
its small loss as valuable information. These valuable instances are impacted by its peer-
to-peer network for the following training. The two networks can filter different types of
errors introduced by noisy labels because they have different learning capabilities. Finally,
each network backpropagates the data selected by another and updates itself. Table 1 shows
the reference baseline and its description, and Table 2 shows the comparison of baseline.

Table 1. Reference baseline and its description.

Baselines Description

F-correction F-correction corrects the label predictions by the label transition matrix.

Decoupling Decoupling only uses instances with different predictions from the two
classifiers to update the parameters.

Co-teaching Co-teaching trains two networks simultaneously and let them cross-update.

Co-teaching+ Co-teaching+ trains two networks simultaneously and lets them cross-update
when the two networks predict disagreement.

JoCOR JoCOR trains two networks at the same time and sets a contrast loss between
the two networks to facilitate the two grids to reach an “Agreement”.

Table 2. Comparison of baseline.

Decoupling Co-Teaching Co-Teaching+ JoCOR JoSDW

Small loss X
√ √ √ √

Cross update X
√ √

X X

Disagreement
√

X
√

X
√

Agreement X X X
√ √

Dynamic weight X X X X
√

Samples with small loss are more likely to be clean [10,12,13,19], we can train them
on these instances to obtain a classifier that is resistant to noise labels. However, after
conducting experiments that combined the “Agreement” strategy with small loss samples,
the cleanliness of the small loss samples proves that they can be further improved.

2.2. Disagreement and Agreement

The agreement strategy is inspired by semi-supervised learning, and JoCOR proposes
the agreement maximization principle, which encourages two different classifiers to make
closer predictions through an explicit regularization method. The samples that are con-
sidered to be consistent in the predictions of the two networks are more credible, and
the consistency of the network predictions should be promoted as much as possible. The
method is to add js divergence between the two network prediction results to judge the
distance between the two network prediction results.

Disagreement was proposed by Decoupling, and its key idea is to decouple “when to
update” from “how to update”. In previous studies, the network was updated all the time.
For the “Disagreement” strategy, “when to update” depends on the Disagreement between
the two networks rather than all the time. Co-teaching+ combines the “Disagreement”
strategy with the cross-update on Co-teaching and proposes that the prediction divergence
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of the two networks can better help network training and improve the robustness of the
network. Therefore, Co-teaching only exchanges and updates the parts with inconsistent
predictions in the small loss samples. In this study, we combine “Agreement” and “Dis-
agreement”, the “Agreement” part is called the pure sample, and the “Disagreement” part
is called the complex sample, and dynamic weights are set for the complex sample.

We strongly agree with maximizing the agreement, which combined with small loss
samples results in pure samples that are cleaner than small loss samples. For the complex
sample in the early stage of network model training, it can help the network to train better.
This solves the problem of “when to update”. However, with the training of the network
model, the complex samples may no longer be a good guide for model updating.

2.3. Contrastive Learning

In a range of tasks, contrastive learning, a recently suggested unsupervised learning
paradigm [20–24], has achieved state-of-the-art achievement. The key difference between
these approaches is the data augmentation approach and the contrastive loss they use. In
summary, most contrastive learning approaches start by constructing positive and negative
pairs at the instance level via a sequence of data augmentations. Following that, the
contrastive loss can be used to optimize positive pair similarity while minimizing negative
pair similarity. Such as NT-Xent [20], Triplet [25] and NCE [26].

The key idea of contrastive learning is to bring similar samples closer and dissimilar
samples farther away. Given data x, the goal of contrastive learning is to learn an encoder f
such that:

score
(

f (x), f
(

x+
))
� score

(
f (x), f

(
x−
))

(1)

where x is called pinpoint data, x+ is a positive sample similar to x, x− is a negative sample
that is not similar to x, and score() is a measurement function to measure positive and
negative samples’ similarity. The score() function often takes Euclidean distance, cosine
similarity, etc.

3. The Proposed Method

As mentioned before, the essence of co-teaching is to seek the “Agreement” of the two
networks in the “Disagreement” of the two networks. Therefore, this article claims that as
the training of the co-teaching network deepens, clean labels tend to concentrate on the
label noise rate of the “Agreement” part, which gradually decreases. In the experiment
in this article, two neural networks with the same network framework but with distinct
initializations were used as classifiers, and the two classifiers defined training samples for
prediction. According to the small loss sample strategy and the results of the classifier, the
samples were divided into three types of samples: pure samples, complex samples, and
dirty samples. We processed these samples differently, which can be seen as follows:

For multi-class classification with M classes. There are N samples in the dataset
D = {xi, yi}N

i=1, where xi. represents the i-th instance and its given label as yiε{1, . . . , M}.
We formulate the proposed JoSDW approach with two deep neural networks denoted by
f (x,Θ1) and f (x,Θ2), while p1 = [p1

1, p2
1,. . . , pM

1 ] and p2 = [p1
2, p2

2, . . . , pM
2 ] denote the pre-

diction probabilities of instance xi, while p1 and p2 represent the outputs of the “softmax”
layer in Θ1 and Θ2.

As shown in Figure 1, in our method JoSDW, the dataset D = {xi, yi}N
i=1, is fed

into two different networks ( f (x,Θ1) and f (x,Θ2)). The loss L(xi) is calculated based on
p1= [p1

1, p2
1,. . . , pM

1 ] and p2= [p1
2, p2

2, . . . , pM
2 ]. In each mini-batch, L(xi) are sorted from

small to large. The large part called dirty sample are considered more likely to be noisy
label instances, so dropout it. While the small part is divided into pure samples and
complex samples by the consistency of the predicted labels.
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Figure 1. The framework of JoSDW. For JoSDW, each network can be used to predict labels on its
own. We determine whether the sample is a small loss sample based on the respective cross-entropy
loss of the two networks and the joint loss between the two networks. Then, the two networks are
classified into pure samples and complex samples by the consistency of the predicted labels of the
two networks.

3.1. Network

For each network, the predicted pseudo labels are generated separately, but during the
training process, they are trained through the pseudo conjoined paradigm, which means
that their parameters are different, but they are updated through joint loss.

3.2. Loss Function

Our small loss sample selection is as follows:

L(xi ) = (1− γ) ∗ Lcon(xi ) + γ ∗ L sup(xi , yi) (2)

In the loss function, the first part Lcon is the comparison loss between the predictions
of the two networks to achieve common regularization, and the second part Lsup represents
the traditional supervised learning loss of the two networks .

• Classification loss

For multi-classification tasks, we use cross-entropy loss as the supervision part to
minimize the distance between the prediction and the label as follows:

L sup(xi , yi) = LCE(xi, yi)= −
1
N

N

∑
i=1

C

∑
c=1

yc
i log

(
pC

i

)
(3)

• Contrastive loss
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According to the agreement maximization principle [27,28], different networks under
the label of most examples will agree, and they struggle to agree on incorrect labels. This
can be calculated as follows:

Lcon(xi ) = LKL = − 1
N

N

∑
i=1

ρi(DKL(pi||p
′
i ) + DKL(p′i ||pi)) (4)

3.3. Sample Selection

• Small loss sample selection

Traditional sample selection uses a small loss sample selection strategy. Since the DNN
tends to fit simple samples first [18], small loss samples are more likely to be clean samples.
This standard method usually selects a predefined proportion of small loss samples in
each small batch. Forget rate is an important parameter in the small loss sample strategy.
According to [14,15,17], the forget rate takes the value of the noise rate assumed that is
known, and there is an initialization process for the forget rate:

ϕ(e) = min
{ e

k
σ,σ

}
(5)

Forget rate ϕ(e) gradually increased to noise rate σ in the first k (=10) epochs e.
However, when training the DNN, the noise ratio in different small batches inevitably

fluctuates. As shown in the figure above, and due to the deepening of the DNN training,
the agreement part in the small sample selection quickly rises and then stabilizes, while
the disagreement part in the small sample selection has a clean rate even lower than our
80% clean rate. Combined with the prediction accuracy map, this part of the noise samples
began to affect the accuracy of the DNN model and reduce the prediction accuracy.

• Pure sample

The small loss samples are subdivided twice. Because “co-teaching” uses the com-
parative training of the two networks to promote the model from “Disagreement” to
“Agreement” and because the DNN tends to fit simple samples first [18], we have reason
to believe that a sample label that quickly reaches an “Agreement” is more likely to be
credible. In the initial training stage of the “Agreement,” although the label purity rate did
not widen the gap from the disagreement part, with the deepening of the DNN training,
the label purity rate opened a large gap.

• Complex sample

When choosing to use only pure samples for high purity samples, there are limitations.
The limitations are as follows: Although the small loss sample strategy combined with
the “Agreement” for secondary classification can help us quickly screen out high purity
samples, this is under the premise of greatly reducing the total number of input samples,
which causes the network model to overfit. Second, if only high clean rate samples are
considered, the network model converges too slowly. Therefore, we also need to introduce
the Disagreement part named the Complex sample.

3.4. Dynamic Weight

As the purity rate of the pure sample gradually increases during the experiment, the
purity rate of the complex sample gradually decreases. Therefore, we apply dynamic
weights to the samples between the pure sample and complex sample. As the network
model fits deeper, the influence of the complex sample on the network parameters is
gradually reduced as follows.

Lossselected = Losspure + λ ∗ Losscomplex (6)
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λ =

√
NComplex

Ndisagreement
(7)

where λ represents a dynamic weight parameter, Ndisagreement represents the number of
disagreements samples in the previous round of training, and NComplex represents the
number of complex samples in the previous round of training.

4. Experiments

In this section, a series of experimental results are presented.
We test the effectiveness of our proposed algorithm on three benchmark datasets,

including MNIST [29], CIFAR-10, and CIFAR-100 [30]. The main information of these
datasets is shown in Table 3. In past research, these datasets were commonly used to assess
learning with noisy labels. [9,31,32]. We compare JoSDW with the following state-of-the-art
algorithms, implement all methods with default parameters through PyTorch, and perform
all experiments on NVIDIA 2080ti. The experimental data comes from the following three
datasets: Mnist, CIFAR-10, CIFAR-100.

Table 3. Image resolution of common data sets for label noise.

Datasets # of Class # of Train # of Test Size

Mnist 10 60,000 10,000 28 × 28
CIFAR-10 10 50,000 10,000 32 × 32

CIFAR-100 100 50,000 10,000 32 × 32

In order to explore the performance in different noise cases, we use the following four
noise ratios: Symmetry-20%, Symmetry-50%, Symmetry-80%, Asymmetry-40%. Figure 2 is
an example of noise ratios.
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The symmetric noise, which is also called random or uniform noise, is a common
setup of noisy label experiments. M represents the number of classes, and α represents the
noise ratio. The probability of a true label is Ptrue = 1 − α. The probability of a noisy label
is Pnoisy = α. The probability of each noisy label is Pi

noise =
α

M−1 .
The asymmetric noise is closer to a real-world label noise because of flipping. For

example, on Mnist, the asymmetric noise maps 2→4, 3→1, 6→3.
We utilize a two-layer MLP for MNIST and a seven-layer CNN network architecture

for CIFAR-10 and CIFAR-100 in terms of the network structure. The network architecture
of MLP and CNN is shown in Table 4. Regarding the optimizer, we use an Adam optimizer
with momentum = 0.9. The initial learning rate is 0.001. The batch size is set to 128. We run
200 epochs totally, with the learning rate gradually decaying to 0 from 80 to 200 epochs.



Future Internet 2022, 14, 50 8 of 16

Table 4. Network architecture.

MLP CNN

Gray Image 28 × 28 RGB Image 32 × 32

28 × 28→256, ReLU

3 × 3, 64 BN, ReLU
3 × 3, 64 BN, ReLU

2 × 2 Max-pool

3 × 3, 128 BN, ReLU
3 × 3, 128 BN, ReLU

2 × 2 Max-pool

3 × 3, 196 BN, ReLU
3 × 3, 196 BN, ReLU

2 × 2 Max-pool

256→10 256→100

4.1. Results on MNIST

On the left side of Figures 3–6, the comparison of precision accuracy on MNIST is
shown. In these four pictures, we can see the memory effect of the network; the standard
precision accuracy is first achieved at a high level and gradually decreases. Therefore, a
solid, reliable training approach should be able to stop or slow down the decrease process.
At this point, JoSDW regularly outperforms all other baselines in each of the four cases.
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Table 5 compares the precision accuracy of various algorithms. In the conventional
Symmetry-20% case and Symmetry-50% case, all the new methods are clearly superior
to the standard method, which proves their robustness. However, when the noise la-
bel reaches the symmetry-80% case, the performance of decoupling and co-teaching+
based on disagreement declines substantially, while JoSDW is considerably better than the
other methods.

Table 5. Average Precision accuracy (%) on MNIST over the last 10 epochs.

Noise
Settings Standard F-Correction Decoupling Co-Teaching Co-

Teaching+ JoCOR JoSDW

Symmetry-
20% 79.56 95.38 93.16 95.1 97.81 98.06 98.24

Symmetry-
50% 52.66 92.74 69.79 89.82 95.8 96.64 97.23

Symmetry-
80% 23.43 72.96 28.51 79.73 58.92 84.89 90.31

Asymmetry-
40% 79 89.77 81.84 90.28 93.28 95.24 95.38

We plot label precision vs. epochs on the right side of Figures 3–6. These experi-
ments demonstrate the characteristics of JoSDW. Although the peak precision accuracy
of JoSDW training is not as high as other algorithms, the existence of dynamic weights
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makes JoSDW test the accuracy that comes from behind, and there is no substantial drop in
precision accuracy.

The right-hand sides of Figures 3–6 demonstrate the performance of label precision
vs. epochs. From the experimental results, it can be seen that decoupling and co-teaching+
cannot effectively screen out reliable sample labels, but JoSDW, JoCOR, and co-teaching
can still maintain excellent performance. The small loss sample selection strategy after
secondary subdivision and dynamic weighting is higher than the traditional small loss
sample selection strategy in the middle and late stages of training, and it performs well
in the symmetry-80% and asymmetry-40% cases. This shows that JoSDW can better find
clean examples.

4.2. Results on CIFAR-10

Table 6 shows the precision accuracy of CIFAR-10. JoSDW performs best again in all
four cases. For the Symmetry-20% case, co-teaching+ performs better than co-teaching
and decoupling. For the other three cases, co-teaching+ cannot even achieve the same
performance as co-teaching.

Table 6. Average precision accuracy (%) on CIFAR-10 over the last 10 epochs.

Noise Settings Standard F-Correction Decoupling Co-Teaching Co-Teaching+ JoCOR JoSDW

Symmetry-20% 69.18 68.74 69.32 78.23 78.71 85.73 86.28
Symmetry-50% 42.71 42.19 40.22 71.3 57.05 79.41 79.75
Symmetry-80% 16.24 15.88 15.31 25.58 24.19 27.78 32.31

Asymmetry-40% 69.43 70.6 68.72 73.78 68.84 76.36 77.04

Figures 7–10 show the precision accuracy and label precision vs. epochs. JoSDW
is superior to all other comparison methods in terms of precision accuracy and label
accuracy. In terms of label accuracy, decoupling and co-teaching+ relying on disagreement
does not find a clean instance. When the noisy label reaches Symmetry-80%, JoSDW is
considerably better than other methods in terms of precision accuracy and label accuracy,
but in Asymmetry-40%, although in terms of label accuracy JoSDW is substantially better
than other methods, there is no obvious advantage in precision accuracy. Additionally,
although some methods outperform JoSDW in the initial stage, in all subsequent epochs,
JoSDW consistently outperforms other approaches.
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4.3. Results on CIFAR-100

Table 7 displays the precision accuracy. The precision accuracy and label precision vs.
epochs are shown in Figures 11–14. In the MNIST and CIFAR-10 datasets, there are just
10 classes.
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Table 7. Average precision accuracy (%) on CIFAR-100 over the last 10 epochs.

Noise Settings Standard F-Correction Decoupling Co-Teaching Co-Teaching+ JoCOR JoSDW

Symmetry-20% 35.14 37.95 33.1 43.73 49.27 53.01 53.28
Symmetry-50% 16.97 24.98 15.25 34.96 40.04 43.49 45.25
Symmetry-80% 4.41 2.1 3.89 15.15 13.44 15.49 14.01

Asymmetry-40% 27.29 25.94 26.11 28.35 33.62 32.7 34.63
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However, JoSDW still achieves high precision accuracy on these datasets. In the
simplest case of symmetric-20% and symmetric-50%, the effect of JoSDW is considerably
better than other methods. In the most difficult case of symmetry-80%, JoSDW can still
obtain higher precision accuracy, and JoCOR and co-teaching are combined.

4.4. Ablation Study

Ablation studies were carried out to determine the impacts of secondary subdivision
and dynamic weighting, we conduct experiments on the MNIST dataset with Symmetry-
50% noise and the CIFAR-10 dataset with Symmetry-20% noise. To eliminate the influence
of secondary subdivision and dynamic weighting, we train all samples obtained by the
small loss sample strategy. To verify the effect of dynamic weighting, we use fixed weight-
ing coefficients for the pure sample and the complex sample. According to the previous
analysis, these two methods should play their respective roles in the training process.

Sample selection: The state-of-the-art performance of JoSDW is largely due to precise
and dependable sample selection. We use graphs and tables to show the accuracy of
sample selection. The graph shows the accuracy of the clean sample selection to study and
verify the advantage of the sample selection method. It can be seen from the figure that
JoSDW is efficient in accurately and reliably selecting clean samples. In every case, JoSDW
outperforms the most advanced sample selection algorithms in terms of picking clean
sample data. In addition, in demanding scenarios (i.e., Asymmetry-40%), although all other
methods have an impact on finding clean samples, the accuracy of JoSDW’s clean sample
selection steadily improves as training progresses. These findings support the validity of
our clean sample selection method. The last period in this table shows the best periods
and last period’s selection accuracy, respectively. The results confirm the effectiveness of
JoSDW in selecting pure samples and complex samples.

Tables 8 and 9 show the impact of various phases in our strategy. In training, the
JoSDW-S denotes the case where pure samples and complex samples are used. In training,
JoSDW-SD represents the utilization of clean samples and complex samples with dynamic
weights. Finally, the JoSDW denotes the suggested approach in its ultimate form. The
experimental process is shown in Figure 15.

Table 8. Average precision accuracy (%) on CIFAR-10 Symmetry-20% over the last 10 epochs.

Index Methods Label Precision

1 JoSDW-S 81.12
2 JoSDW-SD 84.96
3 JoSDW 86.28
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Table 9. Average precision accuracy (%) on Mnist Symmetry-50% over the last 10 epochs.

Index Methods Label Precision

1 JoSDW-S 95.03
2 JoSDW-SD 96.66
3 JoSDW 97.23
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5. Conclusions

In this section, we will discuss the problem of sample classification.
As shown in Figure 16, the pure samples always maintain a very high purity rate,

while the performance of complex samples is complex, with a rapid decline from the
average purity rate of the data. Dirty samples always have low purity. This result justifies
our idea of distinguishing the two samples.
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The complex sample can guide model training at the beginning and solves the prob-
lem of “when to update”. In the middle and late stages of the experiment, a part of the 
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ple. The remaining complex samples have an increasing proportion of noisy labels. The 
complex samples gradually lose the ability to guide model updates. 

This paper studies the problem of noisy label learning in deep learning, which is an 
important issue in the cheap and fast implementation of deep learning. This paper pro-
poses a robust JoSDW to improve the performance of deep neural networks with noisy 
labels. The key idea of JoSDW is to train two neural networks with the same structure at 
the same time and select high clean sample labels through a small-loss sample selection 
strategy. Then, the samples obtained in the first screening continue to be classified by the 
prediction results of the two neural networks. Those with the same prediction result are 
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duct experiments on three datasets (MNIST, CIFAR-10, CIFAR-100) to prove that JoSDW 
can train the depth model robustly under the noisy label. 

In the future, our work can be divided into three points: first, we will explore label 
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The complex sample can guide model training at the beginning and solves the problem
of “when to update”. In the middle and late stages of the experiment, a part of the complex
sample with the ability to guide the training of the model became the pure sample. The
remaining complex samples have an increasing proportion of noisy labels. The complex
samples gradually lose the ability to guide model updates.

This paper studies the problem of noisy label learning in deep learning, which is an
important issue in the cheap and fast implementation of deep learning. This paper proposes
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a robust JoSDW to improve the performance of deep neural networks with noisy labels. The
key idea of JoSDW is to train two neural networks with the same structure at the same time
and select high clean sample labels through a small-loss sample selection strategy. Then,
the samples obtained in the first screening continue to be classified by the prediction results
of the two neural networks. Those with the same prediction result are pure samples, and
those with different prediction results are called complex samples. Simultaneously update
according to the respective cross-entropy loss and a joint loss. We conduct experiments
on three datasets (MNIST, CIFAR-10, CIFAR-100) to prove that JoSDW can train the depth
model robustly under the noisy label.

In the future, our work can be divided into three points: first, we will explore label
correction methods to recover discarded low-confidence sample labels to improve the uti-
lization of samples. Second, we will try an ensemble of noisy label learning methods, which
will be combined with methods such as boosting ensembles [8] and Nested Dropout [18];
Third, the current methods of noisy learning are mainly applied to artificially set noisy
datasets, and with the rise of unsupervised learning, we will focus on the combination of
pseudo-labels generated by clustering and noisy learning.
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