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Abstract: Over the past few years, increasing attention has been given to the health sector and the
integration of new technologies into it. Cloud computing and storage clouds have become essentially
state of the art solutions for other major areas and have started to rapidly make their presence
powerful in the health sector as well. More and more companies are working toward a future that
will allow healthcare professionals to engage more with such infrastructures, enabling them a vast
number of possibilities. While this is a very important step, less attention has been given to the
citizens. For this reason, in this paper, a citizen-centered storage cloud solution is proposed that will
allow citizens to hold their health data in their own hands while also enabling the exchange of these
data with healthcare professionals during emergency situations. Not only that, in order to reduce the
health data transmission delay, a novel context-aware prefetch engine enriched with deep learning
capabilities is proposed. The proposed prefetch scheme, along with the proposed storage cloud, is
put under a two-fold evaluation in several deployment and usage scenarios in order to examine
its performance with respect to the data transmission times, while also evaluating its outcomes
compared to other state of the art solutions. The results show that the proposed solution shows
significant improvement of the download speed when compared with the storage cloud, especially
when large data are exchanged. In addition, the results of the proposed scheme evaluation depict that
the proposed scheme improves the overall predictions, considering the coefficient of determination
(R2 > 0.94) and the mean of errors (RMSE < 1), while also reducing the training data by 12%.

Keywords: data prefetching; data replication; cloud computing; electronic health records; citizen-
centered health

1. Introduction

It is undeniable that cloud computing has a prominent role in the way markets and
businesses operate. From the banking and finance industry [1] to manufacturing [2], among
others, its adoption is helping leading companies improve their performance across a broad
range of services. Typically, a new term is also introduced—Industry 4.0 [3]—in order to
describe the Fourth Industrial Revolution and to frame the impact of cloud computing and
other emerging technologies, such as the Internet of Things (IoT).

This, however, could not leave the health sector unaffected. Over the last few years
and the evolution of the healthcare sector along with already established technologies
such as cloud and edge computing and the Internet of Things (IoT), a significant turn
toward the citizens’ health data ownership was identified [4,5]. For this reason, more
and more technology companies have been turning toward that direction [6,7] in order to
allow their users to own and be responsible for their own Personal Health Records (PHR),
and even countries [8] have already developed patient-oriented systems that provide new
capabilities to the citizens, namely allowing them to combine health data from various
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sources and healthcare institutions in order to provide them complete pictures of their
health. However, while the abovementioned initiatives certainly are steps in the right
direction, there is still a significant lack of cloud solutions that are citizen- [9] and not
healthcare professional-centered [10,11].

Not only that, even the works that put the citizen in the front are yet to be engaged
in the health sector in a way that the health data obtained and kept by the citizen can
be utilized by healthcare professionals and vice versa. While most of the performed
research only tried to either assist solely the healthcare professionals or help citizens and
individuals to be engaged with their health data [6,7], our research focuses on merging
these two currently separated areas and providing to citizens a better and more secure way
of managing their own health data, while also enabling and promoting communication
with the professionals.

In addition, to the best of our knowledge, a lack of services that will assist and acceler-
ate overall communication is identified. Although there exist numerous data prefetching
and replication methodologies proposed in the state of the art, there exist none that are
entirely health data-related.

For this reason, this paper proposes a storage cloud solution allowing the citizens to
safely store their health data in an encrypted manner using only their mobile devices. In
addition, this research work allows the citizens to share this health data with authorized
healthcare professionals (HCPs) via their healthcare system during emergency situations.
Not only that, in order to significantly reduce the data transmission delay between the
storage cloud and the HCPs’ system, we propose a novel prefetch engine scheme integrated
within the proposed storage cloud. This prefetch engine scheme interacts with the storage
cloud when requests are performed by physicians and uses this sequence of requests
in order to predict the upcoming request. Once predicted, the predicted health record
is replicated to the deployed prefetch component, while the storage cloud is notified to
request the file from it.

The remainder of this paper is constructed as follows. Section 2 presents in detail
the state-of-the-art analysis that was conducted prior to the design of both the proposed
prefetching scheme as well as the design of the health storage cloud. Section 3 describes the
proposed prefetching scheme, the offered storage cloud solution, and how these services
are integrated, while Section 4 presents the experiments that were conducted in order to
evaluate the prefetching scheme and the overall storage cloud solution and discusses the
results. Finally, Section 5 concludes the paper and proposes the next steps based on the
current research.

2. Related Works

This section presents in detail the work that has been achieved in the areas of data
prefetching and caching as well as data replication for the optimization of performance. In
addition, a dedicated section is devoted to analyzing the state of the art when it comes to
health data storage and management on the cloud. Based on this analysis, the proposed
prefetching scheme is designed.

2.1. Data Prefetching, Caching, and Data Replication

Data prefetching or caching are techniques that are highly used mostly in databases [12,13]
in order to boost the execution performance by fetching data in the memory before it is needed.
These methodologies are widely used in database systems or the prefetching of small-sized data
such as websites [14,15] or Internet of Things (IoT) data [16].

More precisely, in [14], an implementation of caching and prefetching algorithms in a
clustered network is proposed that will improve the retrieval of web objects. In a similar
manner, Hussien et al. in [15] proposed a prefetching scheme in mobile cloud computing
infrastructures enriched with machine learning capabilities. A set of machine learning
algorithms are used, such as C4.5 (and its implementation in WEKA, the algorithm J48),
naïve Bayes, and random trees that generate decision trees which cluster the users’ objects
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and predict which one will be requested. Prefetching and caching methodologies are
also used in data derived from IoT devices, as also presented in [16]. In more detail, the
authors proposed a graph prefetching framework named Grap which analyzes a building’s
topologies and prefetches location-related IoT data for the user without knowing the user’s
destination during navigation.

While prefetching works great with files that are smaller in size, when it comes to large
files that cannot be manipulated or stored even shortly in the cache, other technologies
such as data replication [17] are used instead. Several works exist that tried to utilize
this paradigm and adopt it in the cloud and web services domains. To begin with, the
authors in [18] proposed a data replication strategy in order to identify the correlation of
the data files stored in the cloud using historical data, predicting which data were going to
be requested and replicating it in order to reduce transmission delays. In more detail, the
proposed data replication strategy in [18] identifies groups of popular files within the cloud
infrastructure, namely files with strong correlations among them, and replicates them in
the requested site, thus improving both the access time and the bandwidth usage overall.

In a similar manner, the authors in [19] proposed another correlation-aware replication
strategy based on a rule-based management system identifying the data to be replicated.
They identified high-valued files (i.e., files that were more likely to be requested), and based
on this, they identified which files should be replicated in a prefetch pool. In addition, if the
storage of the prefetch pool is not enough, a decision is made based on the abovementioned
values in order to remove files already existing in the prefetch pool to free space for the
new replicas.

2.2. Cloud Solutions for Health Data Storage

This section presents the work that has been achieved in the areas of health-related
storage clouds and health data management systems in the cloud. Over the years, several
storage cloud solutions were proposed in order to solve various issues related to secure
health data storage and health data management in public, private, or hybrid clouds. To
begin with, the authors in [20] proposed an approach that manages patients’ personal
health data in the cloud, while in emergency situations, healthcare professionals with valid
identifications can access this data. In addition, major service providers such as Google [6]
and Microsoft [7] provided Google Health and Microsoft Cloud for Healthcare, respectively,
to their users. These platforms can be used to manage PHR.

When it comes to Electronic Health Records (EHR), meaning health data that are
managed by health professionals, there is an even wider area of conducted research. More
specifically, a significant amount of research in this area already started over a decade
ago [21–23], yet several problems need to be solved. Starting with [24], the authors proposed
a distributed storage model for EHR using Apache HBase [25], a column-oriented database
built on top of a Hadoop Distributed File System [26]. In addition, there exists the research
in [27], where an EHR storage cloud system was proposed with the main goal of tackling
issues related to privacy and security when EHR sharing among different entities occurs
with the use of a blockchain.

Additionally, another research work by Song et al. [28] proposed a cloud-based PHR
system architecture that allows sharing of interoperable health data with clinicians. The
proposed system can be used to upload files of any type (files, medical images, video files,
etc.) in such a way that it can provide easy access to storage for both citizens and clinicians.

2.3. Advancements beyond the Related Work

Based on the above, it can be understood that a lot of effort has been made in the
scientific community in order to provide healthcare professionals, healthcare institutions,
and citizens abilities related to secure health data storage and sharing, although signifi-
cantly less attention has been given to communication between the professionals and the
individuals. For this reason, this paper proposes a novel data prefetching scheme that can
be adopted by health data storage cloud solutions, which will facilitate the accelerated
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exchange of health data (both EHR and PHR) among citizens and healthcare professionals.
It is our intention to exploit this prefetching scheme in emergency cases, since it is in such
events where such a methodology is utilized and needed the most.

In more detail, in this work, both a prefetching scheme to enable faster transmission
times for EHR exchange adopted by a storage cloud solution as well as a cloud storage
solution, which can be used by citizens in order to securely store their health data and by
healthcare professionals that can access this information when needed, are examined.

3. Materials and Methods

This paper proposes a novel prefetching scheme for distributed file systems in cloud
computing environments and storage clouds in order to eventuate better I/O performance
and reduce the retrieval and overall transmission times of the requested files.

In this section, we first introduce the proposed prefetching scheme, along with the
related prediction algorithms. Consequently, the architecture of the storage cloud solution
that the prefetching scheme is integrated with is presented. (A graphical depiction of the
high-level architecture of the proposed storage cloud is illustrated in Figure 1.)
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engine mechanism.

3.1. The Context-Aware Prefetch Scheme

The proposed prefetch scheme aims at providing recommendations regarding the files
that should be cached, taking into account the context behind each individual request. In
this case, the term “context” refers to the information included in the requests of the users
that can be used in such a way to facilitate the prefetch scheme in decision making and
make customized predictions for each user. In other words, the proposed prefetch scheme
is able to extract information from the incoming requests that will allow it to provide better
predictions. The workflow can be split into two periods: (1) the training phase, which
is performed offline (i.e., the offline phase), and (2) the recommendation and pre-fetching
phase triggered every time a request is received, which is performed online (i.e., the online
phase). A visual representation of the overall workflow of the prefetch scheme is depicted
in Figure 2.
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3.1.1. The Offline Phase

The offline phase begins with the training of a prediction model using a data set
related to requests performed at an earlier time. In more detail, the incoming requests
are considered elements of a sequence, where the first element of the sequence is the first
request coming from a specific user and the last element is the latest received request
coming from the same user. In parallel with the process of deep learning model training,
which will be further analyzed in the following paragraphs, we continuously monitored
the performed requests that were performed by a user. By monitoring this process, we
finally came up with a sequence of requested files along with the timestamp of each request.
Thus, we predicted the upcoming request based on the previous data.

The proposed storage cloud architecture in order to maintain data privacy does not
allow the cloud provider to have access to the actual data, other than some metadata
related to the files including the name, size, the bucket they are stored in, and other
auditing information such as the changes to a file, the user who uploaded or downloaded
a file, and the latest version of the file. For this reason, the prefetch recommendation is
performed solely on the requests of the user, and this additional metadata and auditing
information can contextualize the prediction. We rely on a sequential modeling predictive
ability in order to capture the temporal relationships between the sequence of the requests
performed by a user in order to predict which file will be requested afterward and, as a
result, be able to achieve better performance with regard to transmission times.

The preferred model involves long short-term memory (LSTM) [29], as opposed to
other statistical models such as ARMA [30], ARIMA [31], or other more robust approaches
such as a recurrent neural network (RNN) [32], since the LSTM model has been proven
to outperform them. In more detail, there were two reasons behind the use of the LSTM
model. First of all, in our experiments, LSTM outperformed classical statistical methods
like ARIMA, while this architecture is known to be able to better capture more long-term
relationships compared with basic RNN models based on their internal architectures [33].
In addition, the use of LSTM manages to solve the problem of vanishing gradient descent
as opposed to an RNN architecture [34].

As far as its architecture is concerned, this model is a seven-layer model consisting of
six LSTM layers and a final dense layer, as depicted in Figure 3. In order to avoid overfitting,
dropout layers were introduced after each LSTM layer with a rate of 0.75 for each one
except the last layer, which had a rate of 0.5. The selection of those rates was performed
after experimentations with the testing data sets.
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Once the model is trained, the identification of the influential instances of the model
step is instantiated. These are the instances (i.e., the requests performed by the user) that
have a strong effect on the trained model, and while commonly used for machine learning
interpretability purposes, the use of this methodology within this scheme is to utilize it in
order to provide context-aware predictions and improve the model [29], an idea that is also
used in the area of visual analytics on electronic medical records when using an RNN [35].

The core idea behind the influential instances is that an instance is considered influen-
tial if once it is deducted from the training set, and the model is re-trained, a significant
change is established in the model, and the model’s parameters (i.e., model weights) are
different while the predictions of the model also change. The greater the identified change
to the model and its parameters, the more influential the instance. Hence, in order to
examine whether an instance is influential or not, the model needs to be trained with and
without this specific instance, and the results should be compared. For instance, in the
current scenario, the LSTM model needs to be trained with and without an instance in
order to examine whether this instance can be considered influential or not.

As mentioned above, the influential instances are usually used in order to explain the
outcomes of machine learning or deep learning models, which are difficult to interpret.
The current solution, though, differentiates from the current way the influential instances
are used, since it utilizes the influential instances in a way that will empower the LSTM
model through the provision of additional information with respect to the data. In more
detail, it will provide the model a list of instances that may be more significant than others,
which the model may use in order to improve itself. The way these influential instances are
identified is shown below.

The effectiveness of an instance i on the model’s parameters can be measured using
DFBETA, which is defined as follows [36]:

DFBETAi = β− β(−i) (1)

where β is the weight vector of the initial model that is trained with all instances and
β(−i) is the weight vector when the model is trained without the ith instance. However,
the calculation of DFBETA alone cannot provide contextual information regarding the
influence of a specific instance on the model and its predictions. Additional metrics need to
be used. For this reason, the root mean square error (RMSE) is also calculated as shown
below:

RMSEi =

√
1
n ∑n

j=1

(
yj − ŷj

)2 (2)

where i is the instance that is removed in order to calculate its influence, n is the number of
instances, yj is the correct target value, and ŷj is the prediction of the model.
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With the use of DFBETA and the calculation of the RMSE for each instance, the
influence of the instance on the model can be evaluated. With this information, the instances
are sorted based on significance, and the most influential ones are then kept for the next step.

As depicted in Figure 4, once DFBETA and the RMSE are calculated, they are then
provided as input to the next step, which regards the creation of clusters of important
instances with respect to the ones that were previously identified. This is performed with
the use of the k-means [37] algorithm. In more detail, these instances are provided to
the k-means algorithm as initialization points for the centroids, and based on them, the
training of the algorithm is instantiated. One important note is that by default, the k-means
algorithm utilizes the Euclidean distance for cluster creation, but since the current problem
relates to time series data, the Euclidean distance is not useful. For this reason, the dynamic
time warping matching [38] distance metric is utilized. This metric measures the similarity
between sequences that may vary in steps and, in essence, can calculate an optimal match
between them.
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Consequently, the remaining instances that were not initially categorized as influen-
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is smaller than a given number, it is considered part of this; otherwise, it is considered an 
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Algorithm 1 Prefetch scheme workflow 
Input: HTTP requests data set from HCPs in the form of time series (𝐷) 
Auxiliary Variables: 𝐺𝐼𝑉𝐸𝑁_𝑅𝑀𝑆𝐸, 𝐺𝐼𝑉𝐸𝑁_𝐷𝐼𝑆𝑇𝐴𝑁𝐶𝐸 
Output: Predicted health record to be prefetched (𝑦) 
 
Begin HealthFetch 

1 LSTM(𝐷) 
2 for each 𝒊 in 𝑫𝒊: 𝒊 ∉  𝑫: 
3 LSTM(𝐷) 
4 𝐷𝐹𝐵𝐸𝑇𝐴 =  𝛽 െ 𝛽(ି)  

5 𝑅𝑀𝑆𝐸 =  ටଵ ∑ (𝑦 െ 𝑦ො)ଶୀଵ  

6 end for 
7 for 𝒊 in 𝑫: 
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Consequently, the remaining instances that were not initially categorized as influential
are forwarded to the k-means algorithm, and if the distance from one of the centroids is
smaller than a given number, it is considered part of this; otherwise, it is considered an
outlier, as also depicted in Algorithm 1.

The above step is repeated for all remaining instances in the initial data set of sequences.
Once this is over, the instances that belong to either of the clusters are used as input for the
LSTM model for re-training.

The offline phase is repeated daily, while all incoming requests are stored in a dedicated
database in order to re-apply the above shown scheme with the new data. This database
includes historical data of the requests that are made by dedicated healthcare professionals
to the cloud. In detail, what is stored is a timestamp of the request, the requested file, and
the session in order to group all requests made during the same emergency.

3.1.2. The Online Phase

The online phase regards the step that is triggered once a sequence of requests is sent
to the storage cloud by a single user. In more detail, based on this sequence, the LSTM
model predicts the upcoming request and requests the storage cloud to cache this data
for transmission.

Once the request is received and the requested data match the prefetched data, the
actual exchange of them is instantiated directly from the prefetch component. On the other
hand, if the request made by the user does not match the prefetched data, the prefetched
data are dropped in order to save space, and the data are requested from the Storage
Component instead. In both cases, the sequences of the requests are stored in a dedicated
database that keeps all historical data with respect to the sequences of requests, as seen in
Figure 2.
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Algorithm 1 Prefetch scheme workflow

Input: HTTP requests data set from HCPs in the form of time series (D)
Auxiliary Variables: GIVEN_RMSE, GIVEN_DISTANCE
Output: Predicted health record to be prefetched (y)
Begin HealthFetch

1. LSTM(D)
2. for each i in Di : i /∈ D:
3. LSTM(Di)

4. DFBETAi = β− β(−i)

5. RMSEi =

√
1
n ∑n

j=1

(
yj − ŷj

)2

6. end for
7. for i in D:
8. if (DFBETAi>AVG(distance, D) AND RMSEi>GIVEN _RMSE):
9. i ∈ In f luential Instances
10. end if
11. end for
12. k-Means(In f luential Instances, DTW)
13. for each j in Dj : j /∈ InfluentialInstances:
14. for each i in InfluentialInstances:
15. if distance(j, i)<GIVEN _DISTANCE:
16. j ∈ In f luential Instances
17. end if
18. end for
19. end for
20. y =LSTM(In f luential Instances)

End HealthFetch

3.2. The Health Storage Cloud

The proposed prefetching scheme was applied to a distributed storage cloud solution
used for the backup of health data by citizens while allowing access to healthcare profes-
sionals during emergency situations [39,40]. The storage cloud, as also seen in Figure 1,
was composed of the following components:

• The Account Management Component, which was used for the management of the
citizens’ accounts and account policies, along with the management of the healthcare
institutions’ temporary account creation during emergency situations;

• The Storage Component, which was used for the storage of the citizens’ health data;
• The HCP Authorization Component, which was used for the authorization of healthcare

institutions during emergency situations;
• The Auditing Manager Component, which was used for keeping logs of all actions per-

formed by any user of the storage cloud (i.e., both citizens and healthcare professionals
from authorized institutions);

• The Communication Gateway Component, which handled all incoming requests from the
client side (i.e., both citizens and healthcare professionals);

• The Prefetch Engine Component, which regarded the implementation of the proposed
prefetch scheme that predicted the upcoming requests from the users and prefetched
the corresponding health data.

3.2.1. The Account Management Component

This component is responsible for managing the accounts of the users of the storage
cloud for both citizens and healthcare professionals. Starting with the citizens, once they
request to use the proposed storage cloud service, an account is created that is linked
to a bucket on the Storage Component. A bucket is essentially a directory, visible only
through this user’s account, which the user utilizes to store their encrypted health data.
This bucket is also visible for temporary accounts of authorized healthcare professionals
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during emergency situations. An important note is that both read and write permissions
are given only to the citizen’s account, while all other accounts (i.e., temporary accounts of
healthcare professionals) have only read permissions. These permissions are given to the
citizen’s account using a dedicated policy, such as the one presented in Figure 5.
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On the other hand, there may exist temporary accounts created during a health-related
emergency. Those accounts can be utilized by healthcare professionals from authorized
institutions (more information on how the healthcare professionals are authorized is pre-
sented in Section 3.2.3). In addition to this account, an emergency bucket is also created
that is linked to both the temporary account of the healthcare institution and the citizen’s
main account. This bucket is used by the healthcare professionals to upload (encrypted)
health data related to the emergency or the discharge report once the emergency is over
and the citizen is discharged. In this bucket, both the temporary account of the healthcare
institution and the citizen’s account have read and write permissions.

3.2.2. The Storage Component

This component is responsible for storing the health data of a citizen. Its purpose is
to ensure that the health data are not only stored safely but also available instantaneously,
especially during an emergency situation where every moment is crucial, and thus any
potential delays should be subsided. The Storage Component is based on an object storage
solution: MinIO Object Storage [41]. The rationale behind the use of an object store instead
of a conventional NoSQL-based solution such as MongoDB/GridFS [42–44] or an SQL-
based system is manifold. The health data stored in the storage cloud should be encrypted
on the client side (i.e., the citizen) as well as the storage cloud side so that the cloud provider
does not have access to it and to ensure that even in cases where an unauthorized entity
manages to access the storage cloud, they will be unable to access the health data per se.
Hence, the data stored in the cloud are, in essence, encrypted bundles. Given the fact that
the health data stored in object storage are stored as objects, this solution suited our needs.
In addition, the proposed storage cloud service can also be deployed by individuals as a
self-hosted service. Another important feature that the object storage solution we utilized
has is the fact that it can also be deployed easily in commodity hardware. Finally, high
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availability assurance, along with the ease of scalability of MinIO, played a very important
role in using it.

As far as the architecture of this component is concerned, as already mentioned above,
specific policies are applied to the various accounts that are created, which are managed by
the Account Management Component (see Section 3.2.1).

3.2.3. The HCP Authorization Component

The HCP Authorization Component is responsible for probing whether a healthcare
institution is trusted to access the citizen’s health data during an emergency. The healthcare
professionals curing the citizen perform a request to the storage cloud in order to access
the citizen’s health data (i.e., a temporary account is to be created). This request should
include a set of authorization attributes derived from a trusted third-party certification
authority. Consequently, the HCP Authorization Component contacts this trusted author-
ity and forwards those attributes to it. The certification authority then evaluates those
attributes and may either approve or decline the request. If the request is accepted, then
the HCP Authorization Component allows the creation of the temporary account, and the
account is created. If the request is declined, then a response is sent to the Communication
Gateway Component (see Section 3.2.5) in order to reply to the requester that their request
was rejected.

3.2.4. The Auditing Component

This component keeps logs of all actions performed with respect to the encrypted
health data (uploads, downloads, modifications, and uploads of newer versions), the
requests to access the citizen’s health data (both approved and rejected), and the emergency
accounts that were created along with the data that were downloaded or uploaded. In more
detail, the information that the auditing manager component keeps includes the following:

• List of uploads of encrypted health data performed by the citizen, including a timestamp;
• List of downloads of encrypted health data performed by the citizen, including a times-

tamp;
• List of approved requests by healthcare institutions;
• List of healthcare professionals and physicians that were granted access to the storage

cloud through the temporary account of the healthcare institution he or she is working for;
• List of rejected requests and who they were from;
• List of downloads of encrypted health data performed by physicians from a trusted

healthcare institution, including a timestamp;
• List of uploads of encrypted health data performed by physicians from a trusted

healthcare institution, including a timestamp.

The above-mentioned data are kept in a MongoDB [45] database separate from the
Storage Component and can always be made available to the citizen. A sample of the logs
that the auditing manager creates and stores in the database is shown in Figure 6.
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3.2.5. The Communication Gateway Component

The Communication Gateway component is responsible for managing any incom-
ing requests to the storage cloud. These requests may come from both the citizens and
physicians during an emergency. It is a Flask service [46] that responds to HTTP requests,
(A sample HTTP request is shown in Figure 7.) and its main functionalities are split into
two main categories: (1) the functionalities that can be performed by a citizen, such as a
request to create an account, a request to upload an encrypted health record, or a request
to download the auditing information collected by the Auditing Component, and (2) the
functionalities performed by healthcare professionals on behalf of a healthcare institution.
These functionalities may include the initial request to access a citizen’s health data, a
download request of a specific health record, or a request to upload a discharge report once
the emergency is over and the citizen is discharged from the institution.
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The endpoints that implement these functionalities are also categorized based on
the entity that performs the request. All requests coming from citizens using the storage
cloud are placed under the /citizen/ path, while all requests coming from the personnel of
healthcare institutions are placed under the /hcp/ path.

3.2.6. The Prefetch Engine Component

The Prefetch Engine Component regards the implementation of the component of the
prefetch scheme as presented above. This engine is responsible for providing recommenda-
tions regarding the data an HCP may request from the storage cloud before the actual request
in order to cache it and have it ready for transmission once it is eventually requested.

The request coming from the HCPs during an emergency situation are in the form
of an HTTP request (as shown in Figure 7). These requests are stacked in the form of a
sequence for each HCP, and once this sequence length exceeds a given number, the prefetch
engine is triggered. Then, based on this sequence of requests, the prefetch engine, whose
training phase is performed offline, predicts the next health data resource, as also shown
in Figure 8, which will be requested by the HCP, and caches it. In the case where the
resource to be cached is very large, the resource is replicated on the prefetch engine in
order to be forwarded eventually to the Gateway Component. This architectural choice
is taken because the Prefetch Engine Component should be deployed by the Gateway
Component, and hence the transmission delay between the Prefetch Engine Component
and the Gateway Component is significantly lower when compared with the transmission
delay between the Storage Component and the Gateway Component.
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In both cases, the Gateway Component is notified to request the resource from the
prefetch engine instead of the Storage Component. Once the request is finally performed
by the user, the data, instead of being transferred from the Storage Component that it was
initially stored in, are forwarded from the prefetching component straight to the HCP’s
application. In addition, in the case where the resource is not requested by the HCP, then it
is dropped from the Prefetch Engine Component to save resources.

4. Results

This section describes in detail the experiments that were conducted in order to test the
proposed storage cloud and the prefetch engine. The motivation behind the experiments
was twofold; first to showcase that with the use of the prefetch engine, the transmission
of the data from the storage cloud to the end user was performed significantly faster, and
secondly to examine whether the proposed prefetching scheme provided better results
when compared with a state-of-the-art solution, such as the use of an LSTM model. In
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order to evaluate the proposed prefetch engine, various deployment scenarios were used
in order to reflect several use cases that may occur.

4.1. Performance Evaluation

As described above, one of the evaluation tests that the prefetch scheme and the
storage cloud was put under had to do with the performance of the proposed prefetch
engine and whether it improved the overall delay of the storage cloud.

Starting with the testing regarding the health data transmission, the experiments were
conducted in three different deployment configurations. The first configuration had the
storage cloud solution deployed in two virtual machines (VMs) in the same infrastructure
in order to reflect a typical service deployed in a cloud infrastructure with the following
hardware: 2xCPU Intel Xeon CPU E5-2620 v2 @ 2.10 GHz, 8 GB of DDR3 memory, and
60 GB of Hard Disk Drive (HDD). The second experiment was executed with the cloud
solution being deployed in one VM with the aforementioned resources in order to reflect
deployment in constrained environments such as an edge node, while in the third solution,
the storage was deployed in two VMs but in different data centers, again with the similar
resources, in order to examine the performance of the prefetch engine in a distributed
environment. Regarding the networking abilities of the experimental set-up, for all nodes,
the network speed was the same. In particular, the download speed (tested) was 150 Mbps,
while the upload speed was 150 Mbps as well. The reason we performed those experiments
on different infrastructures was to benchmark the storage cloud in various conditions and
draw safe conclusions with respect to the usage of the prefetch engine.

The performed tests evaluated the transmission delay of encrypted health records of
various sizes. To be more precise, the download time as shown in the following figures
represents the total average time it took for an encrypted health record to be downloaded,
starting from the moment the request was performed on the client side (i.e., the HCP
side) and ending when the download was complete. In that time, we did not take under
consideration the time it took to decrypt the file, since this had to do with the computing
power of the client side. In addition, the transmission time was irrelevant to the type of file
being exchanged (i.e., either encrypted or decrypted).

In our experiments, we categorized the data to be transmitted by size (5 MB, 50 MB,
500 MB, and 1 GB), and we identified that the majority of the health data stored in the
proposed storage cloud could be classified under the presented categories. There exist sev-
eral types of health data that are significantly small in size (such as a patient resource [47])
and should not exceed the ceiling of 5 MB, while the majority of the exchanged health
care data (such as a bundle [48] or a composition [49]) may be around 50 and 500 MB,
respectively, depending on the content they include. In addition, the storage cloud also
allows the storage of even larger health data types such as DICOM [50] medical studies
that may include several projection images and can reach or even surpass 1 GB in size.

The following figures depict the results on the abovementioned configurations.
More specifically, in Figure 9, the average delay (in ms) of health records of various

sizes is presented when the proposed storage cloud solution was deployed in multi-cloud
environments. The use of a prefetching mechanism significantly reduced the transmission
time of a health record.
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Figure 9. Average download times (in ms) of health record resources with various sizes (5 MB, 50 MB,
500 MB, and 1 GB) when the storage cloud and the prefetch engine were deployed in infrastructures
with different physical locations.

Similarly, Figure 10 presents the results in the same tests but with the difference that
the storage cloud was deployed in the same cloud infrastructure but in different virtual
machines. Again, there was a significant reduction in the transmission time of health data
when the data were prefetched.
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Figure 10. Average download times (in ms) of health record resources with various sizes (5 MB,
50 MB, 500 MB, and 1 GB) when the storage cloud and the prefetch engine were deployed in the same
infrastructure but in different nodes (i.e., VMs).

The same results were observed from the results shown in Figure 11, where the
transmission of health data in ms is again presented. There, the storage cloud was deployed
in one VM. Once more, the results show a significant reduction in the delay time when the
data were prefetched when compared with the transmission time of the non-prefetched
data. In all figures, the average delay for over 1000 sequential requests/file made to the
storage cloud is presented.
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Figure 11. Average download times (in ms) of health record resources with various sizes (5 MB,
50 MB, 500 MB, and 1 GB) when the storage cloud and the prefetch engine were deployed in the same
node (i.e., VM).

The abovementioned experiments, as mentioned, concerned sequential requests. For
this reason, another set of experiments was also conducted in order to evaluate the perfor-
mance of the prefetch-enabled storage cloud when parallel requests were made. What is
important to note is that the following experiments were conducted in the third deployment
configuration (i.e., when the cloud was deployed in different data centers) since, to the
best of our knowledge, this is the most common situation when deploying services in
a cloud infrastructure. Thus, additional scenarios were deployed, which are presented
below. Let us start with the results depicted in Figure 12, where the transmission times for
downloading several encrypted health records are shown when performing simultaneous
requests. What can be observed is that the delay was significantly increased when the
number of requests was bigger, but there was an important reduction in the transmission
time when the data were prefetched.
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Figure 12. Average download times (in ms) of different encrypted health records while performing
simultaneous requests to the deployed storage cloud and deployed in different data centers.

The final experiment with respect to the performance of the prefetch engine had to do
with its behavior when performing individual requests asking for different files each time,
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and the results are shown in Figure 13 below. Similarly, there was a considerable reduction
in the overall transmission time when the prefetching scheme was enabled, leading to the
conclusion that the scheme optimized the performance of the storage cloud even in cases
where multiple requests were performed.
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4.2. Model Optimization Using Prefetch Scheme Evaluation

For the evaluation of the proposed prefetch scheme, we utilized a data set consisting of
800 observations that represent a set of requests performed for the cloud service in sequence
form. In order to evaluate whether the proposed scheme actually performed better, we
tested the performance of the LSTM network with and without the usage of the scheme. In
both cases, the data set was split into the same train and test sets, where the train set was
comprised of 650 observations and the test set was comprised of 150 observations.

In Figures 14 and 15, the RMSE of the train and test sets with and without the use
of the prefetch scheme are presented accordingly. We identified that the prefetch scheme,
even though it took more epochs to converge, over the total 25 epochs managed better
results against the LSTM without the use of the scheme, with even a significant reduction
in the training data set. In both cases, we used early stopping as a form of regularization in
order to avoid overfitting, and hence why the training phase stopped at 25 epochs. More
details with respect to the performance of the LSTM network with and without the prefetch
scheme are presented in Table 1.
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Table 1. RMSE and R2 of the LSTM network with and without the usage of the proposed prefetch scheme.

Prefetch Scheme Used # of Observations in Train Set RMSE R2

N 650 0.06 0.954
Y 535 0.048 0.943

4.3. Discussion of Results and Limitations

The above tests tested the proposed prefetch scheme in two main concepts: its perfor-
mance when utilized and whether the proposed architecture presented any advancements
when compared with other more traditional ways, such as a plain LSTM network. Starting
with the performance evaluation, several tests were executed, and the results show that
when the prefetch scheme was utilized, a high decrease in the average transmission delay
was observed, making the overall health data exchange process faster and more agile.

To begin with, as depicted in Figures 9–11, in all deployment configurations, it was
identified that the prefetch scheme facilitated the reduction in the transmission times.
However, in the last configuration where the proposed storage cloud solution was deployed
in different locations, the difference when measuring the download time when a file was
prefetched, compared with the download time when the file was not prefetched, was greater
than those of the first two configurations. In addition, as also depicted in Figures 12 and 13,
when the number of simultaneous requests increased, the transmission time increased
significantly, especially when the requested files were not previously prefetched, while in
the case where the data were prefetched, the overall data exchange delay was considerably
reduced. This can occurred for three reasons. The first reason is related to the prefetching
of the data, since when the data were not prefetched prior to the request performed by
the user, the overall download time included the time the Storage Component took to
collect them from the disk and then transmit them. On the other hand, in the case where
the data were already prefetched, this delay was eliminated, since the file was already
cached in the Prefetch Engine Component. Moreover, in the current infrastructure, the
drives that the proposed service used were HDDs, and thus the retrieval of the files was
significantly slower compared with when the data were already cached. In addition, in all
configurations, the Prefetch Engine Component was deployed on the same node as the
Gateway Component, making communication even faster.

The second evaluation had to do with the proposed scheme and whether it produced
better results when comparing it to an LSTM model without utilizing the prefetch scheme.
First, as already established in the literature [30–33], the use of an LSTM model already
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surpassed the use of other traditional methods, such as the statistical methods of ARMA
and ARIMA as well as the use of an RNN model. Yet, with the execution of the evaluation
tests shown in Section 4.2, it was our intention to evaluate the proposed prefetch scheme
with the current state of the art. In addition, the comparison between the LSTM models
with and without the use of the prefetch scheme should highlight the prefetching scheme’s
importance. Here, some challenges were raised and needed to be solved, with most of them
related to the data set. The collected data set was produced after weeks of gathering data
from requests. Although the data set size was not big, we managed to utilize it in order to
test the proposed scheme, and again, the results show that there was a significant increase
in the RMSE and the R2 metrics even after reduction of the data set was performed. Based
on this, we are confident that the proposed scheme would produce even better results if
a larger data set could be used, since it was observed that the reduction in the data set
size reached around 12%, yet the metrics (RMSE and R2) also showed an increase in the
network’s performance.

Regarding the limitations and requirements of the proposed storage cloud architecture
and the proposed prefetch scheme, the prefetch scheme requires the user to perform at least
five requests in order to predict the upcoming file. Unless these requests are performed,
no prediction is made. This choice was made because after evaluating the prefetching
scheme, it was discovered that the predictions were not accurate, and thus the process of
prefetching a file and caching it would be not useful. Another limitation of the current
architecture regards its inability to share the prefetched files with users other than the
one for whom it was prefetched. As already described in Section 3.2.2, the files stored
in the proposed storage cloud are also encrypted on the client side in order to ensure
that the cloud provider cannot have access to the user’s health data. Hence, the data
were exclusively related to one patient. Thus, in a case where two healthcare professionals
perform a request for the same type of health data but for a different patient, even if the data
are prefetched for one healthcare professional, the other healthcare professional will not be
able to utilize the prefetched files, since they regard a different patient. Another limitation
of the proposed solution concerns what happens to data once they are prefetched. As
presented in Section 3.2.6, if the data are requested by the user, they are transmitted to them
and then dropped, while in the case where the prefetched data are not requested by the
user, they are also removed from the Prefetch Engine Component in order to save resources.

Considering the overall issues that occurred throughout this research, we targeted a
list of obstacles related with the fact that the proposed storage solution and the integrated
prefetching scheme were not yet tested by actual users and healthcare professionals. In fact,
the data used for the evaluation were generated based on actual traffic. Moreover, another
issue is related to the infrastructure used for the evaluation being self-hosted. It is within
our intentions to also assess the proposed solution in cloud infrastructures as well in order
to draw results from a production environment.

5. Conclusions

In this manuscript, a prefetching scheme for encrypted health data was proposed in
order to boost the transmission time of health storage clouds by fetching data as needed
and, in general, significantly reduce the delay of the storage cloud. More particularly,
the proposed prefetch scheme follows a five-step approach, categorized in an offline and
an online phase. During the offline phase, a deep learning network aiming to predict
the file that should be prefetched is initially trained using a set of historical data. After-
ward, a novel framework based on the influential instances concept is utilized in order
to contextualize the results of the deep learning network, while in the online phase, the
prefetch scheme performs a prediction of the file that may be requested in an upcoming
request and prefetches it. The aforementioned prefetching scheme was evaluated through
several experiments with respect to its performance, concluding that there was a substantial
decrease in the transmission time when utilized. In addition, tests in order to evaluate
the influence of the proposed scheme on the deep learning algorithm were also executed,
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confirming that the overall performance of the deep learning network was elevated when
combined with the scheme.

Finally, it is within our future plans to further optimize the proposed prefetching
scheme in order to reduce the offline phase’s learning time, starting with altering the
step where the influential instances are identified by discovering them through influence
functions [51] or another similar concept. In addition, we aim at completing the integration
of the overall proposed storage cloud solution, including the prefetch scheme, within the
InteropEHRate project [52], which aims at enabling and supporting citizens within the
European Union (EU) and making up new ways to make their health data available when
needed. Through the InteropEHRate project, it is within our plans to also evaluate the
proposed solution in a real-world scenario, where citizens using their smartphone can back
up their health data to a storage cloud such as the one presented in this research while
healthcare professionals from trusted healthcare institutions can gain access to this data
during emergency situations [53].

In more detail, there is already a scenario under development where the proposed
prefetch engine integrated within the storage cloud will be utilized by citizens from various
European Union countries (i.e., Italy, Romania, and Belgium) as well as major healthcare
institutions such as the Fondazione Toscana Gabriele Monasterio (FTGM) [54] located
in Pisa, Italy, the Centre Hospitalier Universitaire de Liège (CHU de Liège) [55] located
in Liege, Belgium, as well as the Emergency Hospital Bagdasar-Arseni (SCUBA) [56],
a clinical hospital located in Bucharest, Romania. The proposed storage cloud will be
deployed and utilized by patients of the abovementioned healthcare institutions along with
the healthcare professionals that cure them. Currently, the scenario includes 10 patients
from each institution that will utilize the functionalities of the proposed storage cloud
and healthcare professionals who, based on a simulated medical emergency, will utilize
the Prefetch Engine Component. In addition, a number of encrypted medical resources
will be exchanged from and to the proposed storage cloud, including data such as a
citizen’s allergies and intolerances, chronic conditions and current medications, as well
as information about their medical history such as reports of past cardio hospitalizations
(discharge reports in PDF format and other structured data). During this scenario, it will be
further analyzed how the proposed solution works in a real-world use case, since currently,
our work was mainly evaluated in a simulated environment, as has already been described
in Section 4.

As a next step, we aim at communicating and disseminating our results in order to
enhance their adoption and for them to be integrated by other countries that may still
explicitly prohibit health data exchange with third-party entities. Additionally, the fact
that the proposed storage cloud is compliant to the General Data Protection Regulation
(GDPR) [57] requirements, providing its users the ability to keep the integrity of their data,
the “right of access by the data subject (GDPR, Art. 15), the “right to data portability”
(GDPR, Art. 20), and the “right to erasure (right to be forgotten)” (GDPR, Art. 17), should
contribute to its adoption. Above all, our future plans include further evaluating the
proposed architecture with additional datasets and experimental scenarios deployed in the
infrastructure of the DIASTEMA project [58], exploiting high-end hardware specifications
(e.g., solid-state drives (SSDs) as compared with HDD or DDR4 memories instead of
DDR3 with higher capacities and more efficient CPUs, among others) in order for the raw
prefetching gain to be more efficiently measured and analyzed, thus not taking under
consideration only the download time.
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