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Abstract: In QoE fairness optimization of multiple video streams, a distributed video stream fair-
ness scheduling strategy based on federated deep reinforcement learning is designed to address
the problem of low bandwidth utilization due to unfair bandwidth allocation and the problematic
convergence of distributed algorithms in cooperative control of multiple video streams. The proposed
strategy predicts a reasonable bandwidth allocation weight for the current video stream according
to its player state and the global characteristics provided by the server. Then the congestion control
protocol allocates the proportion of available bandwidth, matching its bandwidth allocation weight
to each video stream in the bottleneck link. The strategy trains a local predictive model on each client
and periodically performs federated aggregation to generate the optimal global scheme. In addition,
the proposed strategy constructs global parameters containing information about the overall state of
the video system to improve the performance of the distributed scheduling algorithm. The exper-
imental results show that the introduction of global parameters can improve the algorithm’s QoE
fairness and overall QoE efficiency by 10% and 8%, respectively. The QoE fairness and overall QoE
efficiency are improved by 8% and 7%, respectively, compared with the latest scheme.

Keywords: QoE fairness; video quality; federated learning; deep reinforcement learning; congestion control

1. Introduction

In recent years, video traffic in the network has shown a rapid growth trend, mainly
from HTTP streaming media and video-on-demand services, which aim to provide users
with the highest quality of experience (QoE). Therefore, many previous studies have focused
on designing a more powerful adaptive bitrate algorithm (ABR) to improve the QoE of
a single video user.

With the growth of video traffic and network connection equipment, the possibility of
multiple video streams competing for bandwidth in the same bottleneck link in the network
is becoming higher and higher [1]. Therefore, QoE fairness among multiple video users has
become a crucial issue.

At present, the fairness scheduling scheme for commercial video services across multi-
ple users still focuses on allocating the same bandwidth for each user as much as possible.
That is, each video stream independently makes adaptive bitrate decisions through its own
ABR algorithm and then divides the bandwidth for each video stream in the bottleneck link
as equally as possible by the congestion control protocol. Unfortunately, although these
schemes can allocate the same bandwidth to each user, QoE fairness among video users
cannot be ensured due to the viewing conditions of different users and the differences
in on-demand video content.

To study the impact of differences in video content on perceptual quality, we randomly
sampled videos from two different genres (science fiction and animation) and measured
their average perceptual video quality at several different bitrates. The results are shown
in Figure 1. Under the same bandwidth conditions, users of video 2 obtain higher viewing
quality than users of video 1.
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Figure 1. The perceived quality of different videos at each bitrate.

The researches attempted to improve QoE fairness among multiple video streams by
actively allocating bandwidth to each video stream in recent years. Although this method
has achieved good results, it still faces the following problems:

(1) Because of the complexity and time variability of the network, it is difficult to de-
termine when congestion occurs among streams. Bandwidth allocation may lead to
a decline in link utilization;

(2) Because of the instability of multiple video streams, the behavior of each video stream
affects the playback state of other video streams, which may lead to the algorithm
being unable to learn the optimal strategy or even losing the guarantee of convergence.

A recent trend is to solve related problems in the field of video streaming through
deep reinforcement learning (DRL). The video system itself can provide a large number of
optional parameters, and the deep reinforcement learning algorithm can use a variety of
parameters as input signals through a large amount of training to find the law between
the data so that the algorithm has good performance. Therefore, it has specific applica-
bility to deal with the instability of the multiple video stream environment in the field of
video streaming.

However, the DRL algorithm strongly depends on the training environment and train-
ing data. Machine learning algorithms, which train a large number of representative data,
are often a more effective method. It is difficult for the existing machine learning methods
to obtain enough representative training data in the related fields of video streaming. This is
because the network tracking data used to simulate the Internet environment are collected
from a single node in the network. However, the Internet itself is highly complex and
diverse. What any single node observes is only a tiny part of the complex behavior of
the network. Therefore, it is impossible to simulate the complex and diverse Internet [2].
For this reason, although the algorithm trained in the simulation environment has a good
performance in the simulator, it is often unsatisfactory when deployed to the real network.

In response to this problem, Yan et al. [3] trained the algorithm by using a large amount
of telemetry data of real video clients collected from video websites, so the algorithm
also has good performance when extended to the real network. However, this scheme
requires that all client data be periodically centralized on the server for centralized training
without considering the additional communication burden caused by the transmission
of a large amount of training data, which may have a negative impact on the quality of
video transmission.

In this paper, we aim to design a fair bandwidth allocation based on congestion control,
which can maximize the QoE fairness among video users while maintaining the overall



Future Internet 2022, 14, 152 3 of 14

QoE efficiency and network bandwidth utilization of the video system. In general, the con-
tributions of this paper are as follows:

(1) An active bandwidth allocation framework based on congestion control is developed,
which can ensure the utilization of network links while allocating bandwidth;

(2) Combined with the characteristics of the video on demand system, a parameter
containing a global state is constructed as the input of the neural network, which
effectively improves the performance of the distributed DRL algorithm in multiple
video stream scenes;

(3) The combination of deep reinforcement learning and federated learning [4] is used to
optimize the QoE fairness of multiple video streams. A video system is constructed
in the real network to complete the deployment and evaluation of the algorithm.

2. Related Work

This section summarizes the QoE fairness of adaptive video streams and multiple
video streams, and introduces the latest research progress in video stream fairness.

In the traditional dynamic adaptive streaming over HTTP, the video is divided into
multiple blocks (generally 2–8 s in length). Each video block is independently encoded
at different bitrate levels. Therefore, the client can switch the video to another bitrate at
the boundary of any video block. ABR algorithm can determine the bitrate of the video
block to be acquired without determining the available bandwidth in the future to maximize
the quality of the video block, reduce the switching frequency of the bitrate, and reduce
the occurrence of the playing caton phenomenon as much as possible. The importance of
these factors is measured by the QoE index of a single user.

In optimizing single video streams, each stream is only optimized within its own
available bandwidth, regardless of how the bandwidth share among video streams is allo-
cated. However, the QoE fairness of multiple video streams should consider the following
two optimization spaces: (1) The impact of different video contents on the quality of user
experience. Different videos need different bandwidths to achieve the same viewing quality.
Ideally, players with low video quality should get more bandwidth than players with high
video quality. (2) Different states of different video players. For example, players with low
buffer levels should obtain more bandwidth than players with high buffer levels to reduce
the risk of system re-buffering while maximizing the overall QoE efficiency.

Although better ABR algorithms can improve the fairness of video streaming to some
extent, such as RESA [5] and Bola [6], these schemes only attempt to provide the same
bandwidth for each video user, rather than the equitable allocation of QoE among users.
To solve this problem, it is necessary to allocate a more reasonable bandwidth for each video
stream in the bottleneck link. Existing solutions can be roughly divided into the following
two categories.

Centralized Bandwidth Allocation: This type of scheme typically has a video server or
bottleneck router that computes a bandwidth allocation that optimizes QoE fairness for each
video stream based on the state of each video stream and enforces that bandwidth allocation
during video transmission. For example, Yin et al. [7] allocate bandwidth to each video
stream to improve QoE fairness by deploying a controller in bottleneck routing. However,
this scheme requires deploying a network controller on each router in the network, with the
controller being able to access the QoE information of all video streams traversing this
link; this is difficult for large-scale deployments. In addition, Altamimi et al. [8] used
the network packet loss rate to evaluate the status of each video stream. Then, the video
server limited the highest bitrate that the video stream could request according to status and
used this to achieve all the allocation of available bandwidth for video streaming. However,
this bandwidth allocation scheme may decrease link utilization because the server cannot
accurately locate the congestion.

Decentralized bandwidth allocation: Nathan et al. [9] constructed a utility function using
the historical QoE of video users and the estimated value of future QoEs, and dynamically
configured the parameters of the congestion protocol for each video stream through the utility
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function. The distributed method allocates bandwidth for each video stream in the bottle-
neck link, improving QoE fairness and ensuring complete link utilization. However, this
scheme needs to calculate the QoE of each video block in all possible states in advance dur-
ing downloading, thus incurring huge computational overhead. In response to the above
problems, Jiang et al. [10] used the historical QoE of video streams to estimate the future QoE,
which reduced the computational overhead of utility functions and the difficulty of algorithm
deployment. However, this scheme relies more on the accuracy of bandwidth estimation,
and the performance is degraded in a highly dynamic network environment.

In another important work in the field of multi-stream optimization is the definition
of video perceptual quality, Jiang et al. [10] used a linear combination of screen size and
resolution as the definition of perceptual video quality. In addition, VMAF and PSNR use
video content-specific features to calculate perceptual quality scores and thus are often
used in the field of video streaming optimization. The QoE definition in this paper can
support any video quality metric.

3. System Overview

Based on the above points, we design a fair bandwidth allocation based on the conges-
tion control (FBAC) algorithm for QoE fairness.

3.1. Problem Description

In this paper, we consider that n concurrent video sessions in the network share
the same bottleneck link. Each video session consists of a global sender (video server) and
a separate receiver (video player). The receiver has an independent ABR algorithm for
determining its bitrate.

The player i ∈ N(N = {1, . . . , n}) starts at a random point in time ti and requests
a random video in the video dataset, where each video is independently encoded at
the same set of bitrate levels R. When downloading video, the player i selects the bitrate
level ri(ki) ∈ R for the ki-th video block through its own ABR algorithm.

3.1.1. Definition of QoE

In this paper, QoE is modeled as a linear combination of three factors: perceptual
quality, smoothness, and rebuffering time of a video block:

Qi = qi(ri[ki])− α|qi(ri[ki])− qi(ri[ki − 1])| − βrei(ki) (1)

where qi(ri[ki]) is used to represent the perceived quality that can be obtained by viewing
the ki-th block. It supports any index that can predict the perceived quality of users
according to the video content. In order to distinguish the difference in viewing quality
caused by different video contents, FBAC uses VMAF [11] to estimate the perceived quality
of video blocks; qi(ri[ki])− qi(ri[ki− 1]) represents the change of perceived quality between
adjacent blocks, that is, the smoothness of video; α represents the penalty coefficient of
smoothness. The larger α is, the less the users can accept the changes of video quality; rei(ki)
represents the re-buffering time experienced while viewing the ki-th block; β represents
the penalty coefficient of the re-buffered event.

3.1.2. QoE Fairness

In previous work, Jain’s fairness coefficient was widely used to describe the fairness
state of QoE. Therefore, we use Jain’s fairness coefficient and historical discount QoE to
calculate the QoE fairness of multiple video streams over a period of time:

J(QoEγ,h
1 , QoEγ,h

2 , . . . , QoEγ,h
n ) =

(
n
∑

i=1
QoEγ,h

i )2

n ·
n
∑

i=1
(QoEγ,h

i )2
(2)
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QoEγ,h
i =

k

∑
l=k−h

γlQi (3)

where QoEγ,h
i represents the QoE historical discount score of the i-th video stream; γ is

the discount coefficient of QoE; h represents the number of historical blocks to be calculated.
When h = 1, it means that only the short-term QoE fairness of the current video block is
calculated. When h = ∞, it means that the overall QoE fairness of all blocks is calculated.

3.2. Bandwidth Allocation Framework Based on Congestion Control

When multiple video streams are in the same bottleneck link, the available capacity of
the bottleneck link cannot be changed by any other methods. The QoE fairness between
videos can only be improved by adjusting the proportion of video streams in the throughput
of the bottleneck link. In this paper, we attempt to predict the reasonable weight of
bandwidth allocation Wi

k for each video stream through the deep reinforcement learning
algorithm and then use the congestion control protocol to allocate the bandwidth matching
the weight for each video stream in the bottleneck link.

Figure 2 depicts the basic flow of a distributed active bandwidth allocation framework
based on congestion control. Firstly, the ABR algorithm of the client i makes bitrate
decisions based on the local observation value S2

i of the player. Meanwhile, the QoE
of each video block is calculated according to Equation (1) and sent to the video server.
The server can generate the parameter S1

i containing global characteristics according to
the QoE information of all clients currently connected to it. Then, the DRL algorithm
on the client predicts the weight of bandwidth allocation Wi

k of the current video stream
according to S1

i and S2
i . The server needs to continuously monitor the QoE information

of each client to generate global parameters, and reconfigure the relevant parameters of
congestion control for the video stream i to allocate bandwidth according to the weight Wi

k
predicted by the client.

   Video Server

   Connection i

Fairness

   Video Client i

ABR

WEIGHT

Video PlayerBitrate ri

Bitrate ri

Weight wi

WEIGHT

Player State S
2
i

Player StateS
2
i, System State S

1
i

ri ,wi ,QoEi

Video Chunk, System StateS
1
i

QoEi

System 

State S
1
i

β

Bottleneck Link

Figure 2. Active bandwidth allocation framework based on congestion control.

It is worth noting that FBAC attaches the parameters (QoE, weight, etc.) that need to
be passed between the client and the server to the header of the HTTP request in order to
reduce the communication overhead of the system:

(1) The client s sends a GET request for the k-th video block to the server, and the request
header is accompanied by the bandwidth allocation weight Wi

k of the k-th block and
the QoE score QoE(k−1)i of the k− 1-th block;

(2) The server receives and parses the information Wi
k, QoE(k−1)i attached to the header

in the request;
(3) The server updates the congestion control parameters of the video stream and gener-

ates global state parameters S1
ki according to QoE(k−1)i at the same time;

(4) The server returns the k-th video block to the client with the global status parameter
S1

ki in the response header;
(5) The client plays the video block k-th and calculates the QoEki that can be obtained

by playing the video block, and the weight prediction module predicts the band-
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width allocation weight Wi
k+1 during the download of the k + 1-th block according to

the parameters, including the parameter S1
ki ;

(6) The client issues a GET request for the k + 1-th block.

For the fairness algorithm to work, FBAC must also use the existing congestion control
algorithm to convert the weight value wi of each video stream into the available bandwidth
proportional. Here, we discuss how to use packet loss-based CUBIC [12] and delay-based
FAST [13], two types of congestion control, to allocate user bandwidth shares. In this paper,
the cube implemented in the QUIC protocol is used as the underlying congestion control
for algorithm deployability.

Cubic will reduce the size of the sending window after detecting packet loss, and the
magnitude of the reduction is related to the multiplicative subtraction factor β of Cubic.
Therefore, by adjusting the multiplicative subtraction factor βi corresponding to each
stream, the video in the bottleneck link can be obtained. This is the percentage of available
bandwidth for the stream allocation. When CUBIC is in a deterministic loss model with
packet loss rate p, the relationship between Cubic’s average sending window size AVG_C
and the multiplicative subtraction factor β can be expressed by the following function [14]:

AVG_C = 0.4(
3 + β

4(1− β)
)

1
4 (

RTT
p

)
3
4 (4)

where p is the packet loss rate, and RTT is the round-trip time.
For delay-based congestion control FAST, the video stream can set the congestion

window size to:
cwnd

′
= (cwnd

RTT
RTTmin

+ wi) (5)

Research has proved that this method can also achieve bandwidth allocation propor-
tional to the weight wi .

3.3. Multi-Agent Reinforcement Learning

In this study, each video client running in the network is regarded as an independent
agent. These agents regard other agents as a part of the environment. Each agent selects
actions and obtains rewards only based on its own observations. Although this method
is easy to deploy and decentralized, it also brings some problems. For a given agent
i ∈ {1, . . . , n}, there is no way to distinguish the randomness of the environment from
the behavior of other agents i ∈ {1, . . . , i− 1, i + 1, . . . , n}. In addition, because the reward
Ri is not all from the actions performed by the agent, it is difficult to assign the correct
reward to each action agent, resulting in an inability to learn the optimal strategy.

Ryan et al. [15] found that when Independent Proximal Policy Optimization (IPPO)
uses more comprehensive global features as the input of the neural network, it can often
obtain better performance than QMix [16]. Whether the input of the value network contains
the characteristics of the global state is the fundamental difference between Multi-Agent
Reinforcement Learning and completely independent Distributed Reinforcement Learning.
It is essential for the DRL algorithm in the multi-agent scenario to ensure that the input
parameters of the neural network contain enough global information [17].

To solve the convergence problem of an algorithm based on distributed bandwidth
allocation and improve the algorithm’s performance, in this paper, we attempt to make
the neural network input contain as many global features as possible and reduce the extra
communication cost from parameter transmission. Therefore, we constructed two global
parameters counted by the server, namely coefficient of variation of QoE C and QoE level
of client L, which are defined as follows:

C =
σQoEγ,h

µQoEγ,h
(6)
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L =
QoEγ,h

i

1
n

n
∑

i=0
QoEγ,h

i

(7)

where σQoEγ,h represents the standard deviation of the historical discount QoE for the past
h video blocks of all video clients served by the current server; µQoEγ,h represents the mean
value of the historical discount QoE of the past h video blocks of all video users. QoE
coefficient of variation is used to indicate the dispersion degree of QoE score distribution of
video stream users. The greater the value, the greater the dispersion degree. The generation
of the above two parameters only involves QoE user information transmission. As de-
scribed in Section 3.2, the transmission opportunity only occurs when the client sends a new
GET request to the server. Therefore, the agent can obtain the overall state information of
the current system with minimal communication and calculation cost.

3.4. Deep Reinforcement Learning Framework

In this paper, we use the Proximal Policy Optimization Algorithm (PPO) [18] to
train the DRL neural network, a policy-based actor-critic algorithm. Each DRL agent must
train a policy network πθ and a value network υφ simultaneously. The specific functions of
the algorithm are as follows:

Status: observed value Oi(QoEγ,h
i , gi, fi, bi, Ti, Ci, Li), QoEγ,h

i represents the QoE score
of historical discount of h video blocks played by agent i in the past; gi represents the set of
file sizes of six optional bitrates for the next video block; fi represents the set of video quality
scores of the six selectable bitrates for the next video block; bi represents the current buffer
level of agent i; Ti represents the current bandwidth estimation of agent i; Ci represents
the current QoE coefficient of variation of agent i; Li represents the current QoE level of
the client of agent i.

Action: The action taken by the agent in time step ti is the weight of bandwidth
allocation wi ∈ [0.4, 0.9] of the video user during the next video block download. The wi is
modeled as a set of continuous variables to explore the nearly optimal strategy in the appro-
priate action space. The value range of wi is limited to avoid excessive adjustment caused
by a too large or too small retreat factor.

Reward: The common goal of all agents is to maximize overall QoE efficiency and ensure
QoE fairness among users. Therefore, the reward Ri of each agent is defined as the linear
combination of its own historical discount QoE score and QoE fairness index (Equation (1)):

Ri = QoEγ,h
i + δJ(QoEγ,h

1 , QoEγ,h
2 , . . . , QoEγ,h

n ) (8)

The loss function of the cumulative discount reward of Policy Network πθ is:

5θ Ln(θ) = Eon
t ,an

t

[
5θ log

{
min

( πθ(an
t |on

t )

π
θ
′ (an

t |on
t )

A(on
t , an

t ), clip
( πθ(an

t |on
t )

π
θ
′ (an

t |on
t )

, 1− ξ, 1 + ξ
)

A(on
t , an

t )
)}]

(9)

where πθ is the old policy parameter before the update, A(on
t , an

t ) is the advantage function,
Eon

t ,an
t

represents the mathematical expectation of the loss function for all observation-action
cases, and clip is the clipping function: if the first term is less than the second term, output
1− ξ; if the first term is greater than the third term, output 1 + ξ. ξ is a hyperparameter,
which is set to 0.2 in this paper.

The update rule for the policy network πθ is given by:

θ
′ ← θ + ε5θ log

{
min

( πθ(an
t |on

t )

π
θ
′ (an

t |on
t )

A(on
t , an

t ), clip
( πθ(an

t |on
t )

π
θ
′ (an

t |on
t )

, 1− ξ, 1 + ξ
)

A(on
t , an

t )
)}

(10)

The update rule of the value network υφ is:

φ
′ ← φ + ε

′ 5φ Ln(φ) (11)
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Ln(φ) = Eon
t

[
5φ log

(
(Vφ(on

t )− Rn
t )

2
)]

(12)

where ε and ε
′

are the learning rates of the policy network and value network, respectively.
vφ is the value policy parameter, R is the discount reward. In this paper, the neural
networks trained by each agent are homogeneous, and the same hyper-parameters are
adopted in the training process. The values of ε and ε

′
are set to 0.005.

3.5. Training the Model Using Federated Learning

As a distributed learning framework, federated learning has the following advantages:
First, each agent is trained on the local data set without centrally uploading a large amount
of data to the server, which not only dramatically reduces the cost of communication,
but also reduces the risk of privacy leakage. Second, the federated learning algorithm can
deal with the problem of non-independent and identically distributed data and different
amounts of proxy data. Third, although federated learning cannot surpass the centralized
training model, it can still perform similarly. Based on the above reasons, we adopted
the federated learning framework to train the DRL model, and the specific process is shown
in Algorithm 1.

Algorithm 1 weight prediction model training algorithm based on federated learning

1: Initialize global policy network parameters θ and value network parameters φ
2: Initialize all agents i ∈ N
3: for step = 1, 2, . . . T do
4: for each agent i ∈ N do
5: Download the model parameters from the server so that θi = θ, φi = φ

6: Train the model with local data and update the model parameters θ
′
i , φ

′
i

7: Randomly select m available agents to get the set of agents Mstep.
8: for agent i ∈ Mstep do
9: Upload local model parameters θ

′
i , φ

′
i to the server

10: end for
11: end for
12: Service-Terminal:
13: Receive all model parameters
14: Perform model parameter aggregation, update global model parameters θstep, φstep
15: end for

4. Implementation

FBAC is implemented through a DASH video client and a video server running on
QUIC. Each video client runs a weight prediction algorithm independently, and the video
server can use the weight to adjust the user’s available bandwidth through the underlying
congestion control algorithm.

4.1. Video Client

In this paper, the developer version of the Google Chrome browser was used as
the video client. The Chrome browser can be configured to establish a QUIC connection
with the video server. Dash.js has been modified to track the parameter input of the DRL
algorithm during video playback and the parameter passing between client and server.
The video streaming service starts by running dash.js in each Chrome browser, and the
MPC [19] algorithm makes bitrate decisions.

4.2. Video Server

In order to facilitate the modification of the network congestion control protocol,
we adopted the Nginx server of QUIC protocol as the platform of network transmission,
and it was deployed on the Alibaba cloud server. The video server can analyze the weight
of bandwidth allocation attached to the GET request and update the multiplicative decrease
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factor of each stream by improving the relevant modules of Nginx and the underlying
congestion control code of quiche.

4.3. Neural Networks

To train the DRL agent, in this study, we stored the historical QoE score, the file
size of the next video block, and the video quality score each in an array with a size of 6.
These arrays pass through a 1D convolution layer composed of 32 filters. The results of
the convolution layer are aggregated with the other four observations through a connecting
layer and finally connected with the final softmax activation function through a hidden
layer composed of 64 neurons. In addition, the value network uses the same neural network
structure, but its final output is a linear neuron.

4.4. Datasets

Given the differences in the content of different videos, we selected videos from differ-
ent genres and integrated them into a set of video datasets. Genres covered science fiction,
animation, action, and other types. All videos are transcoded and sliced by H.264/MPEG-4
codec at {300 k, 750 k, 1200 k, 1850 k, 2850 k, 4000 k} bps bitrates, and the length of each
video block is 5 s. In addition, the VMAF scores of all video blocks are calculated and
stored on the server. The modified dash.js obtains the VMAF scores of the video block
synchronously when the video block is requested.

5. Evaluation

FBAC has two design goals: (1) to maximize QoE fairness among users and (2) to
improve the overall QoE efficiency of users. To accurately verify the performance of FBAC,
we deployed a video-on-demand system on the real network as an experimental platform
for algorithm evaluation.

5.1. Setup

In most cases in this paper, N video sessions were connected to the video server
located on the Internet through the same network bottleneck link. The receiver of each
video session is the DASH client running on Google Chrome, and the sender is the modified
Nginx-quiche video server in the Alibaba Cloud ecs.s6 instance.

The video dataset used in this paper contains 8 different types of 4-min 4K videos, each
of which was re-encoded at 6 different bitrate levels and split into 4-s video chunks. Each
video block was pre-computed with its corresponding VMAF scores. We used the VMAF
score for the calculation of QoE utility.

5.1.1. Evaluation Indicators

The quality of experience of all users is calculated as shown in Equation (1), where
the VMAF score is within the range [0, 100]. Furthermore, in this paper, we aim to
improve the QoE fairness among users and maximize the overall QoE efficiency. Therefore,
the following two indicators were used to measure the performance of the algorithm:

(1) QoE fairness: Jain’s Fairness index was used to measure the QoE fairness in multi-
video user scenarios;

(2) Overall QoE efficiency: the QoE mean of all users, namely:

1
n ∑

i∈N
QoEi (13)

5.1.2. Comparison Scheme

(1) MPC: We used MPC as the default ABR to train the algorithm for the fair bandwidth
allocation, so MPC was used as the benchmark algorithm for evaluation;
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(2) Bola: A fixed heuristic algorithm that uses Lyapunov optimization to select the bitrate
taking buffer occupancy only into account. Although it is not directly designed for
QoE fairness, it achieves relatively good results;

(3) Pensieve [20]: a relatively advanced adaptive algorithm based on deep reinforce-
ment learning.

5.2. Experimental Results
5.2.1. Fair Scheduling Strategy under Fixed Bandwidth

To illustrate the advantages of FBAC in improving QoE fairness and overall QoE
efficiency, we firstly evaluated the performance of the fair scheduling algorithm under
the condition of fixed bandwidth. The fixed bandwidth scenarios where the bandwidth
capacity of the bottleneck link is 1, 2, 4, and 6 (Mbit/s) were simulated by limiting the down-
link bandwidth of the server. Specifically, three video clients of the same type competed on
a shared bottleneck link and started playing their randomly selected videos from the video
dataset simultaneously. We conducted 20 experiments for each comparison scheme and
took the average as the final result.

Figure 3a,b shows the performance of FBAC and the three comparison schemes on
QoE fairness and QoE efficiency under different fixed bandwidths. It can be seen that,
compared with other algorithms, the improvement in QoE fairness and efficiency of the FBAC
algorithm is related to the capacity of the bottleneck link. In a higher-speed network link,
the improvement of the FBAC algorithm becomes smaller, and the trend is more evident
in the QoE fairness indicator. For example, when the bottleneck link capacity is 1 Mbit/s,
the FBAC algorithm improves the QoE fairness of MPC by 9%, while the improvement is
only 4% when the link capacity is 6 Mbit/s. This phenomenon occurs because increasing the
video bitrate gradually reduces the impact of video content on video quality. When the video
bitrate is 0.75 Mbps, the average difference in VMAF scores between videos was 10 points,
and when the video bitrate is 2 Mbps, the difference was reduced to 5 points. This also shows
that the QoE between users is fairer in a higher rate network link.
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Figure 3. Experimental results of fixed bandwidth. (a) QoE fairness; (b) QoE efficiency.

In addition, although the increase in available bandwidth also reduced the room for
improvement in QoE, when the available bandwidth was 6 Mbps, the overall QoE of FBAC
was still 6 points, 3 points, and 4 points higher than that of MPC, Pensieve, and Bola,
respectively. When the available bandwidth was 1 Mbit/s, it improved by 8–11 points.
To better understand the significance of this improvement, the average difference in VMAF
between 720 p and 1080 p video is 7.65 points.

To illustrate how FBAC achieves better QoE fairness, we collect the sending rates and
QoE scores of MPC and FBAC under a fixed bandwidth of 2 Mbit/s. As shown in Figure 4,
since the underlying congestion control still constrains the ABR algorithm, the bandwidth
is fairly allocated to each user, and the difference in video content will lead to unfair QoE
among video users with the same available bandwidth. FBAC can perceive the difference
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in QoE between users and dynamically adjust the bandwidth allocation between video
streams. This indirectly affects the decision of the ABR algorithm, thereby ultimately
improving the QoE fairness among the video streams, as shown in Figure 5.
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Figure 4. (a) Evolution of bandwidth in MPC (b) Evolution of QoE in MPC.

4 1 4 2 4 3 4 4 40 . 0

0 . 5

1 . 0

1 . 5

2 . 0

2 . 5

Ba
ndw

idt
h (

Mb
ps)

V i d e o  C h u n k  N u m b e r  

 V i d e o 1
 V i d e o 2
 V i d e o 3

(a)

4 1 4 2 4 3 4 4 4
0

2 0

4 0

6 0

8 0

1 0 0

Qu
alit

y o
f E

xpe
rie

nce

V i d e o  C h u n k  N u m b e r  

 V i d e o 1
 V i d e o 2
 V i d e o 3

(b)

Figure 5. (a) Evolution of bandwidth in FBAC (b) Evolution of QoE in FBAC.

5.2.2. Fair Scheduling Policy in Dynamic Scenarios

To test the performance of FBAC in dynamic networks, we selected the bandwidth
tracking data of real networks to simulate the dynamic changes of bottleneck links to maxi-
mize the diversity of network states during the experiment. Considering the randomness of
video stream requests in the real network, in this experiment, the three clients participating
in the experiment no longer request videos simultaneously but choose random times to
randomly order videos in the video dataset.

As shown in Table 1, compared with the other three algorithms, the FBAC algorithm
improves fairness by 13%, 11%, and 10%, respectively. The FBAC algorithm focuses
on the long-term QoE fairness of video streams, so it has an advantage in dealing with
dynamic network environments.

Table 1. Experimental results of under dynamic bandwidth.

Algorithm QoE Efficient QoE Fairness

MPC 43.3 0.76
Pensieve 45.1 0.79

Bola 43.9 0.78
FBAC 49.5 0.88
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In addition, the average QoE efficiency of FBAC is improved by 13%, 11%, and 9%,
respectively, compared with the other three algorithms. To explore how FBAC can improve
the overall QoE efficiency, we collected the video quality, re-buffering time, and video
smoothness of each scheme in the experimental process. The experimental results are
shown in Figure 6, and drew the following conclusions. FBAC can help clients with re-
buffering risk to quickly establish buffers, which effectively reduces the re-buffering time
of clients and enables video streams to establish a global buffer pool by using shared
bottleneck links. This brings another benefit: the clients in the same bottleneck link can
obtain higher overall video quality. This is because the perceived quality of the video is
a convex function. When bandwidth is allocated from a client playing high-quality video to
one playing low-quality video, the experience quality lost by the client playing high-quality
video is lower than that gained by the client playing low-quality video.

   M P C           P e n s i e v e       B o l a          F B A C
B i t r a t e R e b u f f e r s m o o t h n e s s Q o E0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

1 . 2

Figure 6. Various indicators of QoE in dynamic bandwidth scenarios.

Furthermore, to verify the impact of global parameters on the distributed algorithm,
we trained a version of UN-FBAC that does not use global parameters in the same environ-
ment and evaluated it in a dynamic scene. The experimental results are shown in Figure 7.
UN-FBAC is inferior to the full version of FBAC in terms of QoE efficiency and QoE fairness.
By introducing global parameters as the input parameters of the neural network, the QoE
fairness of the FBAC algorithm can be improved by 10%, and the overall QoE efficiency
can be improved by 8%.
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Figure 7. Main experimental results under dynamic bandwidth.

6. Conclusions

In this paper, we designed and implemented a fairness scheduling strategy for multi-
ple video streams based on federated deep reinforcement learning. Based on the previous
research, an active bandwidth allocation framework based on congestion control was
proposed, enabling the system to allocate bandwidth in a distributed way and ensure
the bandwidth utilization of the link. In addition, we also discussed the instability of
the environment in the multiple video stream collaboration scenarios. The algorithm’s
performance was improved by constructing global parameters that contain more informa-
tion. This experiment showed that the method proposed in this paper is superior to other
current solutions.

Author Contributions: Conceptualization, Y.L., W.L., D.W. and C.Z.; methodology, Y.L. and D.W.;
software, Y.L., W.L., D.W. and C.Z.; validation, Y.L., W.L. and D.W.; investigation, D.W.; resources,
Y.L. and W.L.; writing—original draft preparation, D.W.; writing—review and editing, Y.L., D.W. and
C.Z.; supervision, Y.L. and W.L.; project administration, Y.L., W.L., D.W. and C.Z. All authors have
read and agreed to the published version of the manuscript.

Funding: Funded by Science and Technology Project of Hebei Education Department ZD2022102.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The datasets generated from this study are available upon reasonable request.

Acknowledgments: The authors gratefully appreciate the anonymous Reviewers for their valu-
able comments.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Akhshabi, S.; Anantakrishnan, L.; Begen, A.C.; Dovrolis, C. What happens when HTTP adaptive streaming players compete for

bandwidth. In Proceedings of the 22nd International Workshop on Network and Operating System Support for Digital Audio
and Video, Toronto, ON, Canada, 7–8 June 2012; pp. 9–14.

2. Floyd, S.; Paxson, V. Why we don’t know how to simulate the Internet. In Proceedings of the 29th Conference on Winter
Simulation, Atlanta, GA, USA, 7–10 December 1997; pp. 1037–1044.



Future Internet 2022, 14, 152 14 of 14

3. Yan, F.Y.; Ayers, H.; Zhu, C. Learning in situ: A randomized experiment in video streaming. In Proceedings of the 17th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 20), Santa Clara, CA, USA, 25–27 February 2020; pp. 495–511.

4. Mcmahan, H.B.; Moore, E.; Ramage, D.; Hampson, S. Communication-efficient learning of deep networks from decentralized
data. In Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, Fort Lauderdale, FL, USA, 20–22
April 2017; pp. 1273–1282.

5. Wang, Y.; Wang, H.; Shang, J.; Hu, T. RESA: A Real-Time Evaluation System for ABR. In Proceedings of the 2019 IEEE International
Conference on Multimedia and Expo (ICME), Shanghai, China, 8–12 July 2019; pp. 1846–1851.

6. Spiteri, K.; Urgaonkar, R.; Sitaraman, R.K. BOLA: Near-optimal bitrate adaptation for online videos. In Proceedings of the IEEE
INFOCOM 2016—The 35th Annual IEEE International Conference on Computer Communications, San Francisco, CA, USA,
10–14 April 2016; pp. 1698–1711.
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