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Abstract: Nowadays, the Long-Term Evolution-Advanced system is widely used to provide 5G
communication due to its improved network capacity and less delay during communication. The
main issues in the 5G network are insufficient user resources and burst errors, because it creates
losses in data transmission. In order to overcome this, an effective Radio Resource Management
(RRM) is required to be developed in the 5G network. In this paper, the Long Short-Term Memory
(LSTM) network is proposed to develop the radio resource management in the 5G network. The
proposed LSTM-RRM is used for assigning an adequate power and bandwidth to the desired user
equipment of the network. Moreover, the Grid Search Optimization (GSO) is used for identifying the
optimal hyperparameter values for LSTM. In radio resource management, a request queue is used to
avoid the unwanted resource allocation in the network. Moreover, the losses during transmission
are minimized by using frequency interleaving and guard level insertion. The performance of the
LSTM-RRM method has been analyzed in terms of throughput, outage percentage, dual connectivity,
User Sum Rate (USR), Threshold Sum Rate (TSR), Outdoor Sum Rate (OSR), threshold guaranteed
rate, indoor guaranteed rate, and outdoor guaranteed rate. The indoor guaranteed rate of LSTM-RRM
for 1400 m of building distance improved up to 75.38% compared to the existing QOC-RRM.

Keywords: 5G network; burst error; grid search optimization; frequency interleaving; long short-term
memory network; Long-Term Evolution-Advanced system; radio resource management

1. Introduction

Modern mobile broadband services are based on the development of the Long-Term
Evolution (LTE) and enhanced cellular system. The merits provided by the LTE are low
cost per bit, high system capacity, high data rate, and high spectrum efficiency [1,2]. Het-
erogeneous wireless networks (LTE) are used to satisfy the needs of cellular networks [3,4].
The requirement of broadband mobile traffic is met using the small and macro cells of
the heterogeneous networks [5,6]. Device-to-device (D2D) communication is also termed
as LTE direct transmission [7]. These D2D communication systems have the capacity to
improve the usage of spectral resources and minimize energy consumption. D2D supports
peer-to-peer and location-based services and applications [8].
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In 3rd generation partnership project LTE, one node is equipped between User Equip-
ment (UE) and enhanced Node B (eNB). The radio network controller in the eNB has the
ability to perform traffic balancing, mobility and radio resource management (RRM) [9].
Moreover, the eNB and UE are used to tune the system parameters for achieving an ade-
quate performance, which is defined as self-optimization in LTE [10]. The lesser capability
in the cell edge is assumed as the constraint in LTE-Advanced (LTE-A) systems. The inter-
ference occurring from the users affects the capacity of the LTE, which causes aggressive
frequency. A LTE’s random access network is affected because of the complete isolation
between different parallel services and signaling overhead [11,12]. The developing char-
acteristics and trends of the 5G LTE-A are cloud radio access network, improved indoor
coverage, Human-to-Human and machine-to-machine communications, less delay, less
energy consumption, and massive multiple input and multiple output [13].

The development of 5th generation mobile communication networks (5G) satisfies
the expected requirements of modern communication, such as huge amounts of connected
devices with varying service requirements, high traffic volume, and improved quality of
user experience [14]. Therefore, intelligent learning approaches are being developed to
improve the performance of the 5G network. Deep learning (DL) is used as a model-free
and data-driven approach for minimizing the difficulty with available training inputs
and outputs. The issues related to the resource allocation is avoided based on the offline
training of simulated data and delivering the results using the well-trained networks during
online processes [15]. The interdependency of OSI stack layers is considered to be a key
issue in the RRM. An appropriate cross-layer optimization approach is required to obtain
an optimal performance for the stack layer. Moreover, access methods with numerous
interfaces requires the organization of numerous RRM elements in the same equipment [16].
Examples of the conventional RRM methods are specified as follows: hybrid approach [17],
Carrier aggregation-based RRM [18], and pathloss-threshold-based component carrier and
cluster configuration algorithm [19]. The main contributions of this paper are as follows:

• An optimal bandwidth and power is assigned to the UEs using the LSTM in the 5G
network, whereas the GSO is used to discover adequate hyperparameters.

• An allocation of resources to the unwanted UE is avoided by analyzing the request
queue of all the UEs. Additionally, the LSTM-based RRM also reduces the traffic in
the network.

• Additionally, a guard level insertion in the data is used to reduce the ISI in the network.
The ISI existing in the data creates a high amount of errors during data transmission.

The complete arrangement of the paper is given as follows: Section 2 corresponds to
a literature survey covering the existing papers on RRM. Section 3 describes the system
model and LSTM-based RRM processed in the 5G environment. The experimental and
comparative analysis of the LSTM-based RRM in the 5G environment is given in Section 4.
Section 5 provides the conclusions.

2. Literature Survey

Monteiro et al. [20] developed the Distributed RRM (DRRM) for 5G multi-RAT mul-
ticonnectivity networks. The wide range of 5G is supported by enabling the tight inter-
working among the LTE and 5G. The minimum UE throughput is increased by using the
optimization problem. This work only achieved less computation effort and less signaling
overhead. A higher transmission rate was not achieved when the BS was only considered
as the reference signal received power.

Prasad, and Rukmini [21] presented the LTE network over the QoS along with the
RRM. The QoS with optimal confederation-aware technology, namely QOC-RRM, was used
to allocate the optimum resources for the users in the LTE network. Next, the operators in
the LTE network were prioritized by using the recurrent deep neural network. Further, the
queuing criterion information was shared by the chaotic weed optimization algorithm to
accomplish the routing process that was used for performing data transmission. Then, the
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priority of the users for the available resources was scheduled based on the priority value.
However, this RRM was analyzed only on fourth generation systems.

Pramudito and Alsusa [22] developed the RRM to enhance the downlink performance
of soft-frequency reuse-based LTE. The spectral efficiency of the system is improved by
dynamically allocating the RRM in the manner of being distributed and centralized at the
network. After performing the allocation, the confederation concept is developed in the
network. The confederation style network is combined with a routing algorithm, and this
confederation concept is used to minimize the overhead.

Ali et al. [23] developed the predictive RRM (PRRM) scheme for next-generation
wireless networks (NGWNs). Additionally, the issues related to mobility management
and resource control are addressed while satisfying Quality of Service (QoS) requirements.
Therefore, the IEEE 802.21 Media Independent Handover (MIH) protocol is used to opti-
mize the operation among the heterogeneous networks. This MIH protocol delivers the
coordination among the two previous network characteristics. Moreover, the PRRM is
combined with the handover process, which comprises three phases: resource allocation
estimation, radio resource allocation decision, and allocation notification.

Sande et al. [24] presented the Deep Reinforcement Learning (DRL) to perform the
RRM in the Integrated Access and Backhaul (IAB) networks. The developed DRL-based
RRM is used to mitigate the congestion at the access side of the IAB network. The trans-
mission buffer is initialized to observe the IAB node’s congestion rate, which helps to
provide the enough resources to the users. Moreover, the dynamic power management and
Markov decision process are used to transform the constrained issue due to the problem of
power consumption. However, the overall complexity of this developed DRL-based RRM
is similar to the existing approach.

Pagin [25] developed the semicentralized resource allocation approach for IAB net-
works. The developed semicentralized resource allocation is flexible and it has less com-
plexity. Therefore, this flexible semicentralized resource allocation is used to adopt this
approach for various needs, cases, and traffic classes of 5G networks. Here, an effective
resource allocation is achieved by using generic optimization. However, the developed
semicentralized resource allocation is only dependent on the data transmitted and reported
in the 3GPP deployment.

Zhao et al. [26] implemented the Reinforcement Learning (RL) for optimizing the
dynamic power and performing channel allocation. Here, the Channel State Information
(CSI) is combined with the RL for adaptively minimizing the interferences. The interference
during the communication is increased according to the number of users.

Giannopoulos et al. [27] developed the power control approach using the Deep Q-
Network (DQN) to enhance the system-level Energy Efficiency (EE) of 5G networks [28].
Three different DQN-based approaches, namely centralized, multi-agent, and transfer learn-
ing, were developed for confirming the capability of QoS and power-efficient modification
in each transmission link. The centralized DQN obtained higher overhead while collecting
wide data from the environment.

Sang et al. [29] presented the Predictive Power Allocation (PPA) using Deep Neural
Network (DNN) for Vehicle-to-Everything (V2X) communication. The QoS of each route is
guaranteed, and the throughput of V2X is increased because of the PPA. The developed
DNN-PPA uses the CSI feature of earlier time slots, which does not require any CSI feedback.
However, the increment in the transmitted power causes interference.

Hao [30] developed the multi-user Intelligent reflecting surface (IRS)-aided Multiple-
Input Multiple-Output (MIMO) system. In IRS-assisted multi-user MIMO, the Base Station
(BS), used the chain architecture of sparse RF to minimize circuit power consumption. Here,
an Equal Power Allocation Scheme (EPAS) is used to assign the power for all streams
on each subcarrier. The weighted sum rate is improved using the joint optimization of
the hybrid beamforming in BS. However, inappropriate power allocation to the users of
multi-user MIMO affects the performance.
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Javornik et al. [31] presented a central-based dynamic RRM algorithm that employs the
radio interference maps from local and global Radio Environment Maps (REM), and traffic
demands in certain eNB. The radio resources are assigned based on QoS requirements by
considering the traffic demands and radio interference maps. Then, the signal strength
is calculated by using the REM. This central-based dynamic RRM algorithm is used to
mitigate intra- and inter-network interference.

Jacobsen et al. [32] introduced the multi-cell reception technique for improving the
capacity of Ultra-Reliable Low-Latency Communications (URLLC) in 5G scenarios, where
the multi-cell reception is a joint reception. The integration of multiple Base Stations (BS)
is a method from the LTE which is utilized for improving the reliability. Additionally,
two multi-cell reception-aware RRM schemes are introduced for allocating the optimal
resources to the network, and this developed RRM is depends on the closed-loop power
control/modulation and the selection of coding scheme. The substantial gains obtained by
the multi-cell reception is less when compared to the single-cell reception.

The disadvantages of existing pieces of research are higher interferences and inappro-
priate power allocation to the users of the network. In the proposed LSTM-RRM method,
the burst errors and ISI are mitigated using frequency interleaving and guard level insertion
while broadcasting the data. Subsequently, the LSTM-based RRM is used to allocate an
adequate power and bandwidth to the users of the 5G network. Here, the hyperparameter
tuning of LSTM is done using grid search optimization.

3. LSTM-RRM Method

The LSTM-based RRM is carried out for allocating the bandwidth and power for the
desired UEs. The utilization of LSTM in the 5G environment reduces the complexity during
decision making, while hyperparameter tuning is done using GSO. In addition, frequency
interleaving is developed in the 5G environment to mitigate the burst errors through the
network. Then, guard level insertion is enabled before transmitting the data to minimize
the ISI. The block diagram of the LSTM-RRM method is shown in Figure 1.
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Figure 1. Block diagram of LSTM-RRM method.

3.1. System Model

In a standard LTE, the radio access is mainly dependent on the Single-Carrier Fre-
quency Division Multiple Access (SC-FDMA) and Orthogonal Frequency Division Multiple
Access (OFDMA) in uplink and downlink, respectively. The OFDMA and SC-FDMA
uses the exact same radio frame structure, which helps to utilize the channel subdivision.
Generally, the channels are separated as radio resources which contain domain time and
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frequency. The channel bandwidth is varied from 1 to 20 MHz in the frequency domain.
Then, the total available bandwidth contains 1.4, 3, 5, 10, 15, and 20 MHz, which are sepa-
rated into sub-channels of 12 sub-carriers of 15 kHz, totaling 180 kHz. The radio resource’s
minimum allocation unit is referred to as a Resource Block (RB). Here, the single RB has
1 ms in the time domain and 180 KHz in the frequency domain. The radio resources in the
time domain are separated as Transmission Time Intervals (TTI), also referred to as sub-
frames, with 1 ms duration. One frame is created by 10 TTI. Each TTI contains two 0.5 ms
slots, and each slot has 7 symbols. In this LSTM-RRM method, the LTE-A considered in
the 5G environment is referred to as 5G LTE-A. Here, the system model contains a single
cell with one eNB and a set of mobile UEs. The eNB is located in the center with UE, as
shown In Figure 2. This 5G LTE-A has two different user traffics: Machine-to-Machine
(M-M) and Human-to-Human (H-H) communications. The eNB has a number of resource
blocks specified by RBS that are transmitted among the M-M and H-H users.
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3.2. Frequency Interleaving and Guard Interval Insertion for Minimizing the Losses through the
5G Environment

When there is continuous data transmission in a single UE with high losses, it creates
a burst error through the network. This burst error creates a higher amount of losses
during the data transmission. In order to overcome the effects of a burst error, frequency
interleaving is developed in the 5G environment. After performing a frequency interleaving,
the Inverse Fast Fourier Transform is processed at the transmitter side. Here, the data
are transmitted as time domain, not as frequency domain, because the reconstruction of
input signal at the receiver side is difficult when the data is transmitted through frequency
domain. The input signal transmitted through the time domain is easily reconstructed, even
if it is affected by the fading. Subsequently, the signals are converted into parallel to serial.
Moreover, the continuous transmission of one by one data causes symbol collision, which
produces Inter-Symbol Interference (ISI). This ISI is avoided via guard interval insertion in
the parallel-to-serial converted data. After performing this insertion, the data is transmitted
using the LTE-A.

In this 5G environment, the Non-Orthogonal Multiple Access (NOMA) is used for
obtaining the frequency division multiplexing. The subcarrier provided by the NOMA is
used by multiple UEs. Therefore, the NOMA shares the spectrum for two UE with different
power in one frequency slot. In addition, the RRM is performed when the network is
required to transmit the data for two different UEs in one time slot. The RRM is carried out
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based on three different factors: bandwidth, power, and data rate. The 4G network only
considers the bandwidth and data rate constraints, it fails to consider the power constraint.
However, in this LSTM-RRM method, the power constrains also considered along with
bandwidth and data rate constraints to design an effective 5G network. Here, the LSTM is
used to perform the efficient RRM over the 5G environment.

3.3. Process of RRM

In LSTM-based RRM, the priority for allocating the resource to the desired UE is
identified by analyzing the request queue. Therefore, a UE with high priority is considered
as high priority through the network. Before performing the RRM, a set of queues is used
to determine which UE the BS receives more request queues from. In this way, the first
priority is given to the UE which transmits more queues. The matrixes used in the LSTM are
previous values of bandwidth, power, and data rate. Moreover, the hyperparameter tuning
of LSTM is performed by using GSO. In RRM, two different resources are allocated based
on data rate factors, such as bandwidth and power. The LSTM-based RRM delivers high
resources to the UE which has higher requirements in the data transmission. This helps to
reduce the amount of request queues transmitted through the network, and it reduces the
traffic in the 5G environment. Figure 3 shows the block diagram for the LSTM-based RRM.
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This RRM scheme receives the input from two modules (namely context acquisition
and profile management) and delivers the output using the LSTM. Here, the RRM is inter-
faced with the 5G network. The input modules and LSTM used for resource management
are described as follows:

• Context Acquisition:

Initially, the context acquisition is used to gather the information of the network
components and the UE. Each element of the 5G network uses the monitoring procedure
to discover the information. Here, the monitoring procedure provides the information
for each component, a certain time period, request queues, and QoS levels. This context
information is used to address the problems of the UE that exist in the 5G network.

• Profile management:

The capacities of the segment terminals and elements are provided by the profile
management. Moreover, this profile management component also provides the information
about the preferences (queues), behavior, constraints, and requirements of the UE. Specifi-
cally, this component describes the configurations of the operating parameters, which will
be verified for the network elements and terminals. This information is required to perform
an appropriate resource management for the UE using LSTM.
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• LSTM-based RRM:

The main objective of the LSTM is to exploit all the network resources for obtaining
the high amount of bit rates with maximum possible QoS level. Here, the LSTM is used to
discover the optimal resource management for serving the UEs with higher QoS level. The
detailed description about an effective RRM using LSTM is given in the following section.
A clear description about the LSTM-based RRM is given in the Section 3.4.

• Learning:

The learning component of the LSTM has the information about the context acquisition
and profile management, where the learning rate of the LSTM obtained from GSO is 0.9.
This information helps the LSTM-based RRM scheme to identify and solve the issues.

3.4. LSTM-Based Radio Resource Management

In this 5G network, LSTM is used to accomplish the optimal RRM to improve the
bit rate of the communication process. Generally, the LSTM is a special type of Recurrent
Neural Network (RNN) that has the capacity for learning long-term dependencies and
remembering information for longer periods of time. The LSTM network is arranged in a
chain structure, and this LSTM network contains memory blocks, namely cells. In LSTM,
two states are moved to the successive cell: cell state and hidden state. Here, the cell state is
considered as a key chain of the data flow that allows the data to be transmitted unchanged
during the decision-making process. Nevertheless, some linear transformations may occur
in the LSTM network. Consequently, the data can be removed from or added to the cell
state through the sigmoid gates. The gates of the LSTM are identical to the series or layer of
matrix operations that has various individual weights. The long-term dependency problem
is avoided by LSTM, due to the utilization of the gates to control the memorization process.
The architecture of LSTM is shown in Figure 4.

Future Internet 2022, 14, x FOR PEER REVIEW 4 of 15 
 

 

 

 

Figure 4. Architecture of LSTM cell. 

  

Figure 4. Architecture of LSTM cell.

Initially, the information which is not essential is removed from the cell during the
LSTM network construction. The result of the last LSTM unit (ht−1) at time t − 1 and
current input (Xt) at time t are given as input for the sigmoid function. Then, this sigmoid
function is used to identify and remove the unwanted data. Moreover, this sigmoid function
identifies the part of value which must be removed from the old output. This gate is named
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the forget gate ( ft), where the vector value between 0 and 1 is ft and the respective number
of cell states is Ct−1.

ft = σ
(

W f [ht−1, Xt] + b f

)
(1)

where the sigmoid function is represented by σ and the weight matrices and bias of forget
gate are represented by W f and b f , respectively. Moreover, the input Xt considered for this
RRM is the data rate value of UEs.

The next step is to choose and save the information of the Xt at cell state as well as its
updated cell state. This step has two different parts: sigmoid layer and tanh layer. At first,
adding or removing the new information is decided using the sigmoid layer, and the value’s
importance level (−1 to 1) is decided by providing the weight to the values using the tanh
layer. The new cell state is updated by multiplying the aforementioned values. The input
gate output and updated cell state are represented in Equations (2) and (3), respectively.
Next, the new memory is included in the old memory Ct−1, which results in Ct, as shown
in Equation (4).

it = σ(Wi[ht−1, Xt ] + bi) (2)

Nt = tanh(Wn[ht−1, Xt ] + bn) (3)

Ct = Ct−1 ft + Ntit (4)

where the cell states at time t and t− 1 are Ct and Ct−1, respectively, and the weight matrices
and bias of the cell state are represented as W and b, respectively.

Finally, the output value (ht) is mainly dependent on the output cell state (Ot). Here,
the sigmoid layer chooses which cell is required to deliver the output. Subsequently, the
value generated in the cell state (Ct) using the tanh layer is multiplied with the result of
the sigmoid gate (Ot), which results in a value between −1 and 1. The sigmoid gate and
cell output are represented in Equations (5) and (6), respectively.

Ot = σ(Wo[ht−1, Xt ] + bo) (5)

ht = Ottanh(Ct) (6)

where the weight matrices and bias of the output gate are denoted as Wo and bo, respectively.

GSO-Based Hyperparameter Tuning for LSTM

In this phase, the GSO [33] is used for optimizing the hyperparameters of the LSTM.
The set of hyperparameters processed under hyperparameter tuning are the amount of
neurons, learning rate, regression rate (reg_rate), size of batch, and epochs, as given in
Table 1. This GSO is used to obtain optimal results when the hyperparameters are not
significant. The values given in Table 1 are the range of values in the search space, and the
hyperparameter tuning is done according to the power and bandwidth. Here, GSO with
10-fold cross-validation is performed to select the optimal value within the given range
of hyperparameters.

Table 1. Parameters of LSTM.

Parameters Range of Values

epochs 1–200
Neurons 10–200
reg_rate 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5

learning rate 0.1–0.9
batch_size 73, 146, 219, 500, 1000

Therefore, this LSTM network is trained using the bandwidth, power, and data rate
of the UE in the 5G network. The number of data used to train the LSTM is 3628800,
which are taken from the simulation when the 5G network is operated without LSTM.
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Accordingly, the UEs with higher QoS level are maintained by allocating an adequate
power and bandwidth using the LSTM. Consequently, the bit rate of the 5G network is
increased during the communication process.

4. Result and Discussion

The results and discussion of the LSTM-RRM method are clearly described in this
section. The implementation and simulation of the LSTM-RRM method was carried out
in Network Simulator-3, which runs on a Windows 8 operating system with Intel core i3
processor and 4GB RAM. In this LSTM-RRM method, losses in the 5G environment are
minimized by using frequency interleaving and guard interval insertion. Subsequently, the
LSTM-based RRM is accomplished to allocate adequate resources for the desired UEs. The
height of the BS considered for this LSTM-RRM method is 10 m, and the system bandwidth
is 100 MHz. The specifications considered for the LSTM-RRM method are shown in Table 2.

Table 2. Specification parameters.

Parameter Value

Height of BS 10 m
Transmission power of BS 35 dBm

Type of transmission antenna Narrow beam
System bandwidth 100 MHz
Carrier frequency 28 GHz

4.1. Performance Comparison between LSTM-RRM and DRRM

Here, the performance of the LSTM-RRM method is analyzed in terms of through-
put, outage, Jain’s index, and dual connectivity. These performances are compared with
DRRM [20] to show the effectiveness of the LSTM-RRM method. The DRRM [20] was also
implemented and simulated in NS-3 to evaluate the LSTM-RRM method.

Figure 5 and Table 3 show the comparison of UE throughput between DRRM [20] and
LSTM-RRM. Here, the comparison is made by varying the number of UEs from 5 to 30.
From the analysis, it is concluded that the LSTM-RRM achieves higher UE throughput than
the DRRM [20]. For example, the UE throughput of the LSTM-RRM varies from 15 Mbps to
63 Mbps, whilst DRRM’s [20] UE throughput varies from 10 Mbps to 61 Mbps. Specifically,
the UE throughput of LSTM-RRM for 30 UE is improved up to 50% when compared to the
DRRM [20]. The LSTM-RRM achieves higher UE throughput because it mitigates the burst
errors by using frequency interleaving, and ISI is minimized by using guard level insertion.

Table 3. Analysis of UE throughput for LSTM-RRM and DRRM.

Number of UEs
UE Throughput (Mbps)

DRRM [20] LSTM-RRM

5 61 63
10 39 44
15 30 35
20 22 28
25 18 24
30 10 15

The comparison of 50 percentile UE throughput between DRRM [20] and LSTM-RRM
is shown in Figure 6 and Table 4. Here, the 50th percentile UE throughput is analyzed by
varying the UE from 5 to 30. From the analysis, it is can be seen that the 50 percentile UE
throughput of LSTM-RRM is higher than the DRRM [20]. For the instance, the 50 percentile
UE throughput of LSTM-RRM is in the range from 65 Mbps to 125 Mbps, whereas the
DRRM [20] is in the range from 40 Mbps to 95 Mbps. an effective resource allocation over
the 5G network is used to increase the throughput of the LSTM-RRM. The 50 percentile
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UE throughput of LSTM-RRM for 30 UE is improved up to 62.5% when compared to the
DRRM [20].
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Table 4. Analysis of 50% UE throughput for LSTM-RRM and DRRM.

Number of UEs
50% UE Throughput (Mbps)

DRRM [20] LSTM-RRM

5 95 125
10 80 100
15 70 95
20 60 88
25 50 74
30 40 65

The throughput comparison of 90% UE is shown in Figure 7 and Table 5. Here, the
variation of the throughput is analyzed for different numbers of user equipment: 5, 10,
15, 20, 25, and 30. From Figure 7 and Table 5, it can be seen that the LSTM-RRM method
obtains higher throughput than the DRRM [20]. For example, the 90% UE throughput of
the LSTM-RRM varies from 140 Mbps to 235 Mbps, whilst DRRM [20]’s UE throughput
varies from 80 Mbps to 215 Mbps. Specifically, the 90% UE throughput of LSTM-RRM
for 30 UE is improved up to 75% when compared to the DRRM [20]. The LSTM-RRM
method obtains higher throughput due to the optimal power and bandwidth allocation to
the desired UE. Moreover, the losses through the 5G environment are minimized by using
frequency interleaving and guard interval insertion. Therefore, the amount of packets
received by the BS is increased during the communication.
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Table 5. Analysis of 90% UE throughput for LSTM-RRM and DRRM.

Number of UEs
90% UE Throughput (Mbps)

DRRM [20] LSTM-RRM

5 215 235
10 180 220
15 150 210
20 110 180
25 90 160
30 80 140
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The comparison of outage percentage between the LSTM-RRM method and DRRM [20]
is shown in Figure 8 and Table 6, determined by varying the UE from the 5 to 30. This
outage analysis shows that the LSTM-RRM method achieves higher outage than the existing
DRRM [20]. For example, the outage percentage of LSTM-RRM varies from 87% to 98%,
whereas the outage percentage of DRRM [20] varies from 83% to 96%. The outage of the
DRRM [20] is less than the LSTM-RRM method due to its complexity. However, the optimal
resource allocation of the LSTM-RRM method leads to an increase in outage through the
5G system.
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Table 6. Analysis of outage percentage for LSTM-RRM and DRRM.

Number of UEs
Outage Percentage (%)

DRRM [20] LSTM-RRM

5 83 87
10 85 91
15 90 94
20 97 98
25 97 98
30 96 98

Figure 9 and Table 7 show the dual connectivity comparison between the LSTM-RRM
method and DRRM [20]. Dual Connectivity (DC) specifies the capacity of connecting the
different BSs in the same radio access technology. Specifically, Figure 9 and Table 7 illustrate
the percentage of connected UE in dual connectivity with respect to the amount of UEs
in the system. The LSTM-RRM method has higher dual connectivity than the DRRM [20]
because of its effective RRM between the UEs. The dual connectivity of LSTM-RRM for
30 UE is improved up to 12% when compared to the DRRM [20]. The optimal power and
bandwidth allocation using LSTM is used to improve the connectivity in the 5G system.
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Table 7. Analysis of dual connectivity for LSTM-RRM and DRRM.

Number of UE
Dual Connectivity (%)

DRRM [20] LSTM-RRM

5 70 76
10 60 65
15 63 69
20 58 63
25 58 62
30 50 56

4.2. Performance Comparison between LSTM-RRM and QOC-RRM

Here, the performance of the LSTM-RRM is analyzed with the QOC-RRM [21] in
terms of different QOS parameters such as sum rate, threshold guaranteed rate, indoor
guaranteed rate, and outdoor guaranteed rate. The aforementioned performances are
analyzed by varying the number of users and distance in the 5G environment. This
performance comparison for QOS parameters is described as follows:

The analysis of USR for the LSTM-RRM for 3 Base Stations (BSs) and 20 BSs is shown
in Figure 10 and Table 8. Here, the USR is analyzed by varying the users from 10 to 30.
From the analysis, it is identified that the LSTM-RRM with the 3 BSs achieves higher USR
than the LSTM-RRM with 20 BSs. For example, the LSTM-RRM with 3 BSs achieves USR in
the range from 32 Mbps to 91 Mbps, whereas the LSTM-RRM with 20 BSs achieves USR
in the range from 22 Mbps to 85 Mbps. The LSTM-RRM with 3 BSs provides significant
improvement in USR due to less traffic. The comparison of USR between the LSTM-RRM
with EPAS [30] is given in Table 9. Here, the EPAS [30] is taken for comparison because this
EPAS [30] also used to allocate the power to the multiple users while broadcasting the data.
From the comparison, it can be seen that the proposed LSTM-RRM achieves higher USR
than the EPAS [30] due to its optimal power allocation according to the bandwidth, power,
and data rate.
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Table 8. Analysis of USR for LSTM-RRM.

Number of Users
USR (Mbps)

3 BS 20 BS

10 91 85
15 80 74
20 65 65
25 53 43
30 32 22

Table 9. Comparison of USR for LSTM-RRM.

Number of Users
USR (Mbps)

EPAS [30] LSTM-RRM

15 8.3 × 10−6 77
20 8.75 × 10−6 65
25 9.5 × 10−6 48
30 10 × 10−6 27

Figure 11 and Table 10 show the TSR comparison between LSTM-RRM with 3 BS and
with 20 BS. Here, the comparison is made by varying the number of users from 10 to 30.
From the analysis, it can be seen that the LSTM-RRM with 3 BS achieves higher TSR than
the LSTM-RRM with 20 BS. For example, the TSR of the LSTM-RRM with 3 BS varies from
31 Mbps to 89 Mbps, whilst the TSR of the LSTM-RRM with 20 BS varies from 23 Mbps to
83 Mbps. Similar to the USR analysis, the LSTM-RRM with 3 BS achieves higher TSR due
to less traffic.
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Table 10. Analysis of TSR for LSTM-RRM.

Number of Users
TSR (Mbps)

3 BS 20 BS

10 89 83
15 77 73
20 64 63
25 51 41
30 31 23

The comparison of OSR between the LSTM-RRM and QOC-RRM [21] is shown in
Figure 12 and Table 11. Here, the OSR is analyzed by varying the building distance from
400 to 1400. From the analysis, it can be seen that the LSTM-RRM achieves higher OSR
than the QOC-RRM [21]. For example, the LSTM-RRM achieves OSR in the range from
25 Mbps to 35 Mbps, whereas the QOC-RRM [21] achieves OSR in the range from 15 Mbps
to 25 Mbps. Specifically, the OSR of LSTM-RRM for building distance of 1400 m is improved
up to 66.67% when compared to the QOC-RRM [21]. The OSR of LSTM-RRM is increased
in the 5G network because of an LSTM-based resource allocation to the required users.
Moreover, the interferences and errors are also avoided in the LSTM-RRM by using guard
level insertion and frequency interleaving in the 5G network.

Table 11. Analysis of OSR for LSTM-RRM and QOC-RRM.

Building Distance (m)
OSR (Mbps)

QOC-RRM [21] LSTM-RRM

400 25 35
600 23 33
800 21 31

1000 19 29
1200 17 27
1400 15 25
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Figure 13 and Table 12 show the guaranteed capacity comparison between LSTM-RRM
with 4 BS and with 15 BS. Here, the comparison is made by varying the threshold from
10 to 30. From the analysis, it can be seen that the LSTM-RRM with 4 BS achieves higher
guaranteed capacity than the LSTM-RRM with 15 BS. For example, the guaranteed capacity
of the LSTM-RRM with 4 BS varies from 550 kbps to 835 kbps, whereas the guaranteed
capacity of the LSTM-RRM with 15 BS varies from 280 kbps to 600 kbps.
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Table 12. Analysis of guaranteed capacity for LSTM-RRM.

Threshold
Guaranteed Capacity (kbps)

4 BS 15 BS

10 550 280
15 590 330
20 650 360
25 730 440
30 835 600

The comparison of indoor guaranteed rate between LSTM-RRM and QOC-RRM [21]
is shown in Figure 14 and Table 13. Here, the indoor guaranteed rate is analyzed by
varying the building distance from 400 m to 1400 m. From the analysis, it can be seen that
the LSTM-RRM achieves a higher indoor guaranteed rate than the QOC-RRM [21]. For
example, the LSTM-RRM achieves an indoor guaranteed rate in the range from 178 Mbps
to 228 Mbps, whereas the QOC-RRM [21] achieves an indoor guaranteed rate in the range
from 85 Mbps to 130 Mbps. The indoor guaranteed bitrate of LSTM-RRM for a building
distance of 1400 m is improved up to 75.38% when compared to the QOC-RRM [21]. The
indoor guaranteed rate of LSTM-RRM is increased by reducing the interferences occurring
during the communication.
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Table 13. Analysis of indoor guaranteed rate for LSTM-RRM and QOC-RRM.

Building Distance (m)
Indoor Guaranteed Bitrate (Mbps)

QOC-RRM [21] LSTM-RRM

400 85 178
600 90 185
800 95 193

1000 99 200
1200 120 210
1400 130 228
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Figure 15 and Table 14 show the outdoor guaranteed rate comparison between QOC-
RRM [21] and LSTM-RRM. Here, the comparison is made by varying the building distance
from 400 m to 1400 m. From the analysis, it can be seen that the LSTM-RRM achieves
a higher outdoor guaranteed rate than the QOC-RRM [21]. For example, the outdoor
guaranteed rate of the LSTM-RRM varies from 178 Mbps to 228 Mbps, whereas the outdoor
guaranteed rate of the QOC-RRM [21] varies from 168 Mbps to 174 Mbps. Specifically, the
outdoor guaranteed bitrate of LSTM-RRM for a building distance of 1400 m is improved
up to 31.03% when compared to the QOC-RRM [21].
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Table 14. Analysis of outdoor guaranteed rate for LSTM-RRM and QOC-RRM.

Building Distance (m)
Outdoor Guaranteed Bitrate (Mbps)

QOC-RRM [21] LSTM-RRM

400 168 178
600 170 185
800 172 194

1000 168 207
1200 166 210
1400 174 228

From the analysis, it can be concluded that the LSTM-based RRM provides better
performance than the DRRM [20], QOC-RRM [21], and EPAS [30], individually. The QOS
parameters of the LSTM-based RRM are high due to its optimal bandwidth and power
allocation to the user equipment of the 5G network. Moreover, the LSTM provides optimal
results during the RRM because of the hyperparameters identified from GSO. Here, a
queue-based RRM is used to minimize the traffic during data transmission. Moreover,
the ISI caused in the network is reduced via guard level insertion in the data. Hence, the
sum rate and guaranteed rate are increased while transmitting the data packets under
burst errors.
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5. Conclusions

In this paper, an LSTM-based RRM is proposed to allocate the optimum power and
bandwidth to the desired UE based on the data rate. Here, the hyperparameters of the
LSTM are identified using GSO, which further improves the performance of RRM. The
request queue is considered in the 5G system to accomplish the priority-based resource
allocation for the desired UEs. The priority-based RRM minimizes the traffic and avoids the
unwanted resource allocation through the 5G environment. Moreover, the burst error and
ISI in the 5G environment are minimized by using frequency interleaving and guard interval
insertion. The LSTM-RRM method performs the power allocation in both the macro and
micro cells of 5G environment. The performance of the LSTM-RRM method is improved
in terms of throughput, outage percentages, and dual connectivity when compared to the
DRRM, QOC-RRM, or EPAS. The indoor guaranteed rate of LSTM-RRM for a building
distance of 1400 m is improved up to 75.38% when compared to the QOC-RRM.
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