
Citation: Pappalardo, M.; Virdis, A.;

Mingozzi, E. Energy-Optimized

Content Refreshing of Age-of-

Information-Aware Edge Caches in

IoT Systems. Future Internet 2022, 14,

197. https://doi.org/10.3390/

fi14070197

Academic Editors: Paolo Bellavista,

Giuseppe Di Modica and

Fernando Cucchietti

Received: 3 June 2022

Accepted: 24 June 2022

Published: 28 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

future internet

Article

Energy-Optimized Content Refreshing of
Age-of-Information-Aware Edge Caches in IoT Systems
Martina Pappalardo 1,2,* , Antonio Virdis 2 and Enzo Mingozzi 2

1 Department of Information Engineering, University of Firenze, 50139 Firenze, Italy
2 Department of Information Engineering, University of Pisa, 56122 Pisa, Italy; antonio.virdis@unipi.it (A.V.);

enzo.mingozzi@unipi.it (E.M.)
* Correspondence: martina.pappalardo@unifi.it

Abstract: The Internet of Things (IoT) brings internet connectivity to everyday devices. These devices
generate a large volume of information that needs to be transmitted to the nodes running the IoT
applications, where they are processed and used to make some output decisions. On the one hand,
the quality of these decisions is typically affected by the freshness of the received information, thus
requesting frequent updates from the IoT devices. On the other hand, the severe energy, memory,
processing, and communication constraints of IoT devices and networks pose limitations in the
frequency of sensing and reporting. So, it is crucial to minimize the energy consumed by the device
for sensing the environment and for transmitting the update messages, while taking into account the
requirements for information freshness. Edge-caching can be effective in reducing the sensing and
the transmission frequency; however, it requires a proper refreshing scheme to avoid staleness of
information, as IoT applications need timeliness of status updates. Recently, the Age of Information
(AoI) metric has been introduced: it is the time elapsed since the generation of the last received
update, hence it can describe the timeliness of the IoT application’s knowledge of the process sampled
by the IoT device. In this work, we propose a model-driven and AoI-aware optimization scheme
for information caching at the network edge. To configure the cache parameters, we formulate
an optimization problem that minimizes the energy consumption, considering both the sampling
frequency and the average frequency of the requests sent to the device for refreshing the cache, while
satisfying an AoI requirement expressed by the IoT application. We apply our caching scheme in
an emulated IoT network, and we show that it minimizes the energy cost while satisfying the AoI
requirement. We also compare the case in which the proposed caching scheme is implemented at
the network edge against the case in which there is not a cache at the network edge. We show that
the optimized cache can significantly lower the energy cost of devices that have a high transmission
cost because it can reduce the number of transmissions. Moreover, the cache makes the system less
sensitive to higher application-request rates, as the number of messages forwarded to the devices
depends on the cache parameters.

Keywords: IoT; Age-of-Information; edge-caching; cache refreshing

1. Introduction

The Internet of Things (IoT) brings internet connectivity to everyday objects and
devices, such as wearables, sensors, actuators, etc. These IoT devices generate a large
amount of data that is then transmitted to IoT applications, where they are analyzed to
make some output decisions. These output decisions are directly related to the freshness of
the received data. Indeed, delivering fresh status information of the underlying process
is critical for many IoT applications for effective monitoring and control, and the number
of these IoT scenarios in which devices send time-stamped status updates to applications
is continuously growing. For example, sensor data are analyzed to detect anomalies;
environmental sensor data can help to predict and control fires or other calamities; or, as

Future Internet 2022, 14, 197. https://doi.org/10.3390/fi14070197 https://www.mdpi.com/journal/futureinternet

https://doi.org/10.3390/fi14070197
https://doi.org/10.3390/fi14070197
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://orcid.org/0000-0001-5763-7529
https://orcid.org/0000-0002-0629-1078
https://orcid.org/0000-0001-8876-4176
https://doi.org/10.3390/fi14070197
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/article/10.3390/fi14070197?type=check_update&version=1

Future Internet 2022, 14, 197 2 of 24

another example, vehicles share their positions, velocities, accelerations, etc. to assist drivers
in an intelligent transportation system. This phenomenon is even more evident in the
Industrial IoT (IIoT) context. IIoT applications require continuous updates about the real-
time states of a huge volume of devices, e.g., a smart manufacturing application requires
receiving fresh telemetry data from the sensors of the assembly line, possibly to determine if
an actuation request is needed. Ideally, we would want a device to generate status updates
as fast as possible and transmit them to the application; however, the deployment of such
systems raises several challenges as the timeliness of this huge amount of status updates is
limited by the severe energy, memory, processing, and communication constraints of IIoT
devices and networks. In particular, energy is a scarce and crucial resource, as devices may
not have a fixed power supply, but they may rely on batteries, or they may harvest energy.
So, the generation and the transmission of the device status updates need to be managed
effectively to save energy on the device and prolong its lifetime: this is fundamental in
massive deployments where human intervention is limited. The energy consumption of
the device depends mainly on two factors: the sensing energy consumption, i.e., the energy
used to obtain the newest status information, and the transmission energy consumption,
i.e., the energy used to transmit the status information [1]. Modern IoT devices can perform
complex operations other than the typical simple monitoring tasks. For example, they can
use on-device artificial intelligence to pre-process the sensed information, so generating a
status update can be very expensive in terms of energy. Moreover, a packet generated by
one of these complex tasks, e.g., an artificial intelligence task, can convey more information
than a packet generated by a simple monitoring task, so the energy cost for transmitting it
can be higher [2]. Finally, even for simple monitoring tasks, the sensing energy cost may
vary greatly: for passive sensors, such as temperature sensors, sensing power consumption
is negligible in comparison to other devices, while for active sensors, such as gas sensors,
sensing power consumption can be significant [3]. The transmission energy cost may also
vary depending on the underlying transmission technology: some transmission protocols
are more energy-efficient due to LPWAN technologies [4].

Within this context, the objective of IoT-system management is to minimize the energy
consumed by the device for sampling the physical process of interest and for transmitting
the data, while ensuring the requested level of information freshness is provided. One pos-
sible solution is using an information caching system: indeed, caching the data generated
by the device can be very effective in reducing the sensing frequency and the transmission
frequency. However, caching can lead to the staleness of information, so the cache needs a
refreshing scheme, as IoT applications need timeliness of status updates.

Sending update messages as soon as they are available may not guarantee the timeli-
ness of status updates: the IoT application may receive delayed updates as the messages
may congest the network; on the other hand, also reducing the number of transmitted
messages may not guarantee the timeliness of status updates—the IoT application may
receive outdated messages because of a lack of updates. So, several measures have been
analyzed in order to measure the freshness of the cached data [5] and consequently to
design a refreshing scheme for the cache. One of the most used is the Age of Information
(AoI) metric since it is a suitable metric for describing the freshness at the receiver with
respect to the sender. Introduced in [6], the AoI is defined as the elapsed time for an item
between the current time and the time the item was generated at the source, i.e., the IoT
device [7,8]. Typically, applications establish a threshold on the value of the AoI; hence,
it may be necessary to optimize the system so that the AoI remains below this threshold
with a certain probability [9]. This means that at least a fraction of the application requests
should receive a data item whose AoI is not larger than the threshold.

In a preliminary version of this work [10], we proposed an AoI-aware model-driven
cache-management scheme implemented in an edge-based proxy. The proxy can efficiently
use a network, computing, and storage resources at the edge, and it can leverage the prox-
imity with the IoT devices to optimize their communication with the IoT applications [11].
Since IoT data typically have a lifetime during which they are useful, we considered a

Future Internet 2022, 14, 197 3 of 24

cache-refreshing scheme that associates a lifetime, called refresh window, and expressed in
terms of AoI, to each cached item. So, the IoT application requests are sent to the proxy
that responds using the cached item if its AoI is smaller than its refresh window; otherwise,
it fetches the latest sample from the IoT device, delivers it to the application, and refreshes
the cache. This results in a simple polling scheme that can be deployed even on a resource-
constrained proxy. We proposed a model for this cache-management scheme that allowed
us to derive the closed forms of the average time between two requests that cause a refresh
of the cache, i.e., the average time between two polls, the average AoI of the data at the
application, and the probability distribution function of AoI.

In this work, we leverage our model described in [10] to configure the sampling
period of the device and the refresh window of the cache. Our main contributions can be
summarized as follows:

• We define a model-driven optimization problem to set the sampling frequency of the
IoT device, and the value of the refresh window of the cache so that the device power
consumption is minimized, while the AoI requirement expressed by the IoT application
is satisfied. The device power consumption depends on the energy consumed to
transmit the messages and the energy consumed to sense the environment.

• We solve the optimization problem, and we provide an extensive numerical evaluation
of our cache-management scheme, showing the trade-off between minimizing the
energy consumed to transmit the messages and the energy consumed to sense the
environment.

• We evaluate the performance of our cache-management scheme in a realistic environ-
ment based on an emulated IoT network using the OMA LightweightM2M ([12,13])
protocol for IoT device management. In the experiments, we consider a sample sce-
nario composed of an LWM2M Server, i.e., the IoT application, an LWM2M Client,
i.e., the IoT device, and an LWM2M Proxy located in between them. The LWM2M
Proxy implements the proposed cache management scheme to improve system per-
formance [11], and the refresh window of the cache is selected using the proposed
optimized method. We show that the proposed method chooses a refresh window
that minimizes the energy cost while satisfying the AoI requirement.

The remainder of the paper is structured as follows: Section 2 discusses the related
work, whereas Section 3 describes the proposed model. Section 4 describes the proposed
method to configure the cache parameter, Section 5 illustrates performance evaluation.
Conclusions are drawn in the last section.

2. Related Work

Energy-efficient IoT solutions and IoT-network life span are the key challenges for
enhanced smart cities, smart grids, smart transport systems, etc. [14]. So, energy manage-
ment is a critical issue in designing IoT networks, since many IoT devices can rely only
on limited battery power and it is often unfeasible to replace or recharge their batteries.
Therefore, efficient energy management strategies should be implemented in IoT devices
to prolong their lifetime; for example, in [15] Naeem et al. propose an energy-efficient
routing protocol to enhance network lifespan, or in [16] Dev et al. optimize energy utiliza-
tion through an optimal cluster head selection. In general, IoT devices consume energy,
especially in sensing the environment and processing the acquired data, and transmitting
their updates. However, the energy management strategies must guarantee the freshness
of data, which is typically quantified using the AoI metrics. For example, in [17] Abbas
et al. devise a discrete-time Markov chain model to predict the values of AoI and the
probability of packet drops in status update systems, investigating the effects of the arrival
rates of the packets, the number of nodes, and the queue length of each node. In [18] Akar
et al. propose a discrete-time queueing model to derive the distributions of AoI and Peak
AoI in multisource IoT-based status update systems under the assumption of Bernoulli
information packet arrivals and a general discrete phase-type service time distribution
across all the sources. So, several works studied the problem of designing an optimum

Future Internet 2022, 14, 197 4 of 24

sampling and updating policy for the device. For example, in [2], Zhou et al. designed
an optimal status sampling and updating policy for an IoT device to minimize the AoI
of the data at the destination, under an average energy cost constraint at the device. As
another example, in [19] Kaul et al. face the problem of keeping the status updates of the
sources as timely as possible to all their monitors; they consider the first-come-first-served
queue policy and show the existence of an optimal rate at which a source should generate
its updates. In [20], Abd-Elmagid et al. investigated an optimal sampling policy that
minimizes a long-term weighted sum-AoI. In [21], Chiarotti et al. proposed the Age of
Information at Query (QAoI) measure to characterize the AoI available to the receiver when
it needs it; they considered a sensor that needs to schedule transmissions over a link with
limited availability and they maximize the freshness of the data at query time, considering
that the sensor needs to limit the number of transmissions to prolong its lifetime.

Since IoT devices use near-range technologies, they cannot communicate directly with
applications usually deployed in the cloud: for this reason, IoT networks are typically
accessed through gateways/proxies acting as intermediaries between IoT devices and
IoT applications. So, these intermediary nodes can be leveraged to also provide better
performance in terms of energy consumption. For this purpose, caching the data generated
by the devices can be very effective because it can lower the power consumption, reducing
the frequency of environmental sensing and the frequency of data transmissions. So, for
example, in [22] Niyato et al. introduced the use of a cache for an IoT sensing service
with energy harvesting. Indeed, since the IoT sensor has a limited and random energy
supply, caching can help to reduce the number of requests sent to the sensor and, therefore,
can lower its energy consumption. The cache is deployed at a gateway and its refreshing
scheme is a timer threshold mechanism: a cached item has a timer and, if the timer is larger
than the threshold, the cache assumes that the item is expired, activates the sensor, and
obtains a fresh sensing result. In [23], Xu et al. quantify the data freshness using the AoI
metrics and formulate an update optimization problem for the cache to minimize a cost
that considers the users’ AoI and the sensor’s energy consumption. Instead, other works
design cache refreshing schemes to balance AoI and latency. For example, in [24], Zhang
et al. proposed two cache-refreshing schemes: in the first one, the cached items are updated
in a round-robin manner; in the second one, the cached items are updated upon requests
with a certain probability. However, both the proposed schemes may lead to unnecessary
cache refreshing because they do not take into account the current state of the cached data.
In [25], Zhang et al. proposed a cache-assisted lazy update and delivery (CALUD) scheme
to balance content freshness and service latency in vehicular networks. In [26], Zhang
et al. proposed a cache-refreshing scheme where the cached items are refreshed upon user
requests if their AoI exceeds a given threshold called refreshing window; then, the value of
the refreshing window is set solving an optimization problem that minimizes the average
delay under the average AoI constraint of all sources. However, a requirement about the
average AoI does not give any guarantee about how AoI values are distributed, so it is not
possible to express a requirement in terms of the percentile of the distribution. Moreover, it
is not possible to take into account the energy consumption due to the sampling operations,
as they consider a device that generates updates on demand, i.e., the AoI at the device is
always zero. It is thus not possible to apply this solution for devices having a periodic
sampling behaviour. In this work, we propose a model-driven cache-management scheme
to configure the parameters of a cache deployed on an edge-based IoT proxy. More in
detail, we define and solve an optimization problem that aims at minimizing the energy
consumption on the device and consider the freshness of the data, expressed in terms of AoI,
as a constraint. The cache system could also be managed using data-driven schemes [27];
however, we aim to propose a simple cache-management scheme so that it can easily scale
in case of massive IoT deployments.

Future Internet 2022, 14, 197 5 of 24

3. System Overview and Model

A typical IoT system consists of the following three main components [28] (see
Figure 1a):

1. IoT Devices: they collect data or perform actuation, e.g., they are either sensors or
actuators, and they have communication capabilities to submit the data to the broader
IoT system through an access network.

2. IoT Applications: they typically run in the cloud and play three main roles: (i) data
acquisition, storage, and access, to support the generation of a huge amount of data
from devices, which is then stored to be processed and analyzed; (ii) data analytics on
the collected data, which are examined to detect valuable information to support, for
example, decision making; (iii) actuation support. In addition, they support several
administrative functions, such as device management, user-account management, etc.

3. IoT Gateways/Proxies: they collect, process, and transfer data from devices to appli-
cations and deliver the actuation requests from applications to devices. They may
also act as intermediaries between the devices and the applications, e.g., they may
support data storage, service discovery, etc.

Future Internet 2022, 14, x FOR PEER REVIEW 5 of 24

behaviour. In this work, we propose a model-driven cache-management scheme to
configure the parameters of a cache deployed on an edge-based IoT proxy. More in detail,
we define and solve an optimization problem that aims at minimizing the energy
consumption on the device and consider the freshness of the data, expressed in terms of
AoI, as a constraint. The cache system could also be managed using data-driven schemes
[27]; however, we aim to propose a simple cache-management scheme so that it can easily
scale in case of massive IoT deployments.

3. System Overview and Model
A typical IoT system consists of the following three main components [28] (see Figure

1a):
1. IoT Devices: they collect data or perform actuation, e.g., they are either sensors or

actuators, and they have communication capabilities to submit the data to the
broader IoT system through an access network.

2. IoT Applications: they typically run in the cloud and play three main roles: (i) data
acquisition, storage, and access, to support the generation of a huge amount of data
from devices, which is then stored to be processed and analyzed; (ii) data analytics
on the collected data, which are examined to detect valuable information to support,
for example, decision making; (iii) actuation support. In addition, they support
several administrative functions, such as device management, user-account
management, etc.

3. IoT Gateways/Proxies: they collect, process, and transfer data from devices to
applications and deliver the actuation requests from applications to devices. They
may also act as intermediaries between the devices and the applications, e.g., they
may support data storage, service discovery, etc.

Figure 1. IoT system overview and model: (a) a typical IoT system, (b) the considered scenario, (c)
the interplay over time between the arrival process of IoT-application requests, the sampling
process, and the cache operations.

3.1. System-Model Overview
Without loss of generality, in the following, we consider a scenario composed of a

single IoT device, a Proxy, and a single IoT application running on a server deployed in
the cloud, as sketched in Figure 1b. The proposed system model can be applied for each
application and for each device managed by the proxy.

Figure 1. IoT system overview and model: (a) a typical IoT system, (b) the considered scenario, (c) the
interplay over time between the arrival process of IoT-application requests, the sampling process,
and the cache operations.

3.1. System-Model Overview

Without loss of generality, in the following, we consider a scenario composed of a
single IoT device, a Proxy, and a single IoT application running on a server deployed in
the cloud, as sketched in Figure 1b. The proposed system model can be applied for each
application and for each device managed by the proxy.

3.1.1. IoT Device

In many scenarios, devices collect information at a specific sampling rate, and, among
the sampling behaviors, periodic sampling is the most prevailing behavior used by real-
world applications [29]. Indeed, the simplicity of periodic sampling is well-fitted with
constrained devices, which have limited computational resources; for this reason, it is
widely used for IoT devices [4]. So, we assume that the IoT device performs measurements
periodically with a sampling period s, which can be configured. We assume that the
sampling period cannot be smaller than a given value called smin, which is due to physical

Future Internet 2022, 14, 197 6 of 24

limitations on the device hardware. We denote tk as the time when the k-th sample is
collected. The fact that the device collects information at a given sampling rate implies
that any external query on the device itself will produce data having an AoI in the range
between 0 and s.

3.1.2. IoT Application

A server typically deployed in the cloud runs the IoT application that needs to retrieve
the state of the IoT device as a part of, for example, a monitoring or control process. The
server generates requests for state updates of the IoT device and forwards them to the
proxy. We assume that the generation of requests is a process with a mean rate λ. As we
mentioned in the Introduction, applications can require that the AoI of the received data
remains below a threshold with a certain probability. Hence, the application-freshness
requirements are formulated as follows: the IoT application requires that at least a fraction α of
the requests receive a data item whose AoI is not larger than a target value denoted by AoIα (see
Figure 1b). As an example, an IoT application requires that at least 90% of the requests, i.e.,
α = 0.9, receive a data item whose AoI is not larger than a given target value, i.e., AoIα.

3.1.3. IoT Proxy

We propose to deploy the IoT proxy at the network edge, in between the IoT devices
and the IoT application. Hence, it can efficiently use a network, computing, and storage
resources at the edge to overcome the limits imposed by IoT devices and networks [11].
More in detail, we propose that the proxy implements a cache: it tries to respond to server
requests using the cached items, thus reducing the energy consumption on the device.
However, caching may lead to the staleness of information, while the IoT application
demands timeliness of status updates, so the cache needs a refreshing scheme. Typically, a
cache associates a validity lifetime to each stored item and when the lifetime expires, the
item is not fresh anymore and should be discarded. Several measures have been introduced
to quantify the freshness of a cached item [5] and, among them, AoI is one of the most
used [7]. We choose then to evaluate the freshness of a sample using the AoI metrics: in
our cache refreshing scheme, a cached item is considered fresh if its AoI is smaller than a
refresh window, called W. The proxy responds to the server request using its cached item
if it is valid; otherwise, it updates the cache fetching the latest sample from the IoT device
and then delivers it to the server. Since this caching mechanism has constant complexity, as
it involves only a comparison between the AoI of the cached item and its refresh window, it
can easily scale if the proxy has to manage multiple devices. Figure 1c shows an example of
the relationship over time between the arrival process of requests from the IoT application,
the periodic sampling on the IoT device, and the cache operation on the proxy. Moreover,
we assume that before starting to exchange messages, there is a setup phase during which
the IoT application specifies its freshness requirements to the proxy in terms of a target
percentile AoIα for a given threshold α.

The cache system implemented by the proxy Is then composed of a cache with pa-
rameter W and an optimizer that sets the most suitable value of W (see Figure 1b). W
is the solution to an optimization problem that minimizes the cost in terms of energy
consumption at the IoT device while satisfying the AoI requirements of the IoT application.
The energy cost depends on the energy consumed to transmit the update messages and
the energy consumed to sense the environment. The optimizer takes as inputs the AoI
requirements, i.e., AoIα and α, and the (estimated) average request rate λ.

We assume that the network between the proxy and the server that runs the IoT
application, and the access link between the proxy and the IoT device are both ideal, i.e.,
there is no transmission error. Moreover, being deployed at the edge [11], the proxy can
take advantage of the proximity to IoT devices; hence, it experiences small and predictable
network delays as compared to AoI requirements. For this reason, it should not be deployed
farther from the device. However, the proxy should not be deployed closer, e.g., in a device
of the access network itself. Indeed, in the case of a dynamic IoT scenario, e.g., a scenario

Future Internet 2022, 14, 197 7 of 24

involving topology changes, a proxy deployed in a device of the access network might
fall in a sub-optimal placement with respect to the device-application path. Instead, node
mobility is transparent to an edge-based proxy, as it is typically supported by the routing
protocol or the handover function of the access network itself. We also assume that the link
between the proxy and the server is almost deterministic, so the application can simply
take the link delay into account when expressing the freshness requirement. Therefore,
they are both assumed to be null in the following derivations.

3.2. Model of the Cache-Management Scheme

Here, for the sake of completeness, we briefly report the model of the cache manage-
ment scheme we proposed in [10], which is the basis for the optimization method proposed
in this work.

We model the cache-management scheme as a 2w-states Discrete-Time Markov Chain
(DTMC) {Xk}kεN, where transitions occur at time instants tk. We assume that the generation
of server requests follows a Poisson distribution with an aggregate rate λ. We also assume
that the cache parameter W is a multiple of the device sampling period, i.e., W = ws with
w ≥ 1. The discrete-time Markov chain is a simple yet effective model that allows us to
derive in closed forms the following system KPIs: the average AoI of the items and their
distribution at the steady-state, and the number of transmissions per unit of time needed to
update the cache. This model makes only a few assumptions on the underlying system, i.e.,
we only assume that the edge-based proxy experiences small delays as compared to AoI
requirements, and that the link between the proxy and the server is almost deterministic.
Finally, the probability distribution function of the AoI can be used for the model-driven
optimization of the cache.

States: We denote Xk as the state of the DTMC at time tk. Xk is defined by two
components: (i) the first specifies if in the previous interval (tk−1, tk) at least one request
has arrived; (ii) the second specifies the number of remaining intervals during which the
cached item is still considered fresh. Hence, the states of the DTMC are the following (see
Figure 2):

1. Xk = (0, w): no request arrived during the interval (tk−1, tk) and there is not a fresh
item in the cache. So, if a request arrives in the interval (tk, tk+1), the proxy fetches
the latest update from the device, which will be cached and will expire in w intervals.

2. Xk = (0, w− j), 1 < j ≤ w: no request arrived in the interval (tk−1, tk), and the cached
item will expire in w− j intervals.

3. Xk = (1+, w− j), 1 ≤ j ≤ w: at least one request arrived during the interval (tk−1, tk),
and the cached item will expire in w− j intervals.

Future Internet 2022, 14, x FOR PEER REVIEW 8 of 24

Figure 2. Discrete Time Markov Chain.

Transition probabilities: The model needs only to keep track if any request has
arrived or not during the current interval, so the transition probabilities are the probability
of having no requests in a period of length 𝑠, called 𝑝, and the probability of having at
least one request in a period of length 𝑠, called 𝑝ଵశ , as shown in Figure 2. Since the
generation of server requests follows a Poisson distribution, it is 𝑝 = 𝑒ିఒ௦ and 𝑝ଵశ = 1 −𝑒ିఒ௦.

The DTMC is irreducible and positive recurrent, so it is possible to compute the
steady-state probabilities, denoted as 𝜋 [10]. Based on this system model we can derive
in closed forms the network cost, the average AoI of the items, and the probability
distribution function of the AoI at the steady-state.

3.2.1. Network Cost
We define the network cost as the average time between two requests that trigger a

cache refresh, and we denote it as 𝐸ሼ𝑇ሽ. 𝐸ሼ𝑇ሽ is equal to the average time between two
subsequent visits to the state (1ା, 𝑤 − 1), i.e., the inverse of its steady-state probability: 𝐸ሼ𝑇ሽ = 𝑊 + 𝑠eఒ௦ − 1 = 𝑤𝑠 + 𝑠eఒ௦ − 1 (1)

3.2.2. Average AoI
We denote the average AoI as 𝐴𝑜𝐼തതതതത. The AoI is only measured in intervals where at

least one request has arrived, and it depends on the state of the DTMC and on the instant
of the arrival within the interval. The state of the DTMC is given by the steady-state
probabilities; the average time instant of arrival is 𝑠 2⁄ , because Poisson arrivals are
uniformly distributed in a time interval. For any 𝑗, 1 ≤ 𝑗 ≤ 𝑤, the average AoI seen by
requests arriving in the interval (𝑡ିଵ, 𝑡) is: 𝐴𝑜𝐼തതതതത = 𝐸ሼ𝐴𝑜𝐼|𝑋 = (1ା, 𝑤 – 𝑗)ሽ = 𝑠2 + (𝑗 – 1)𝑠 (2)

Unconditioning over all states for which at least one request arrived in the previous
interval, it is, at the steady-state:

𝐴𝑜𝐼തതതതത = 𝐸ሼ𝐴𝑜𝐼|𝑋 = (1ା, 𝑤 – 𝑗)ሽ𝜋ଵశ,௪ି௪ୀଵ 𝜋ଵశ,௪ି௪ୀଵ = 𝑠2 + 12 (𝑊 − 𝑠)𝑊൫𝑒ఒ௦ − 1൯𝑊(𝑒ఒ௦ − 1) + 𝑠 (3)

Figure 2. Discrete Time Markov Chain.

Future Internet 2022, 14, 197 8 of 24

Transition probabilities: The model needs only to keep track if any request has
arrived or not during the current interval, so the transition probabilities are the probability
of having no requests in a period of length s, called p0, and the probability of having at least
one request in a period of length s, called p1+ , as shown in Figure 2. Since the generation of
server requests follows a Poisson distribution, it is p0 = e−λs and p1+ = 1− e−λs.

The DTMC is irreducible and positive recurrent, so it is possible to compute the steady-
state probabilities, denoted as π [10]. Based on this system model we can derive in closed
forms the network cost, the average AoI of the items, and the probability distribution
function of the AoI at the steady-state.

3.2.1. Network Cost

We define the network cost as the average time between two requests that trigger a
cache refresh, and we denote it as E{T}. E{T} is equal to the average time between two
subsequent visits to the state (1+, w− 1), i.e., the inverse of its steady-state probability:

E{T} = W +
s

eλs − 1
= ws +

s
eλs − 1

(1)

3.2.2. Average AoI

We denote the average AoI as AoI. The AoI is only measured in intervals where at least
one request has arrived, and it depends on the state of the DTMC and on the instant of the
arrival within the interval. The state of the DTMC is given by the steady-state probabilities;
the average time instant of arrival is s/2, because Poisson arrivals are uniformly distributed
in a time interval. For any j, 1 ≤ j ≤ w, the average AoI seen by requests arriving in the
interval (tk−1, tk) is:

AoIk = E
{

AoI|Xk =
(
1+, w – j

)}
=

s
2
+ (j – 1)s (2)

Unconditioning over all states for which at least one request arrived in the previous
interval, it is, at the steady-state:

AoI =
∑w

j=1 E{AoI|Xk = (1+, w – j)}π1+ ,w−j

∑w
j=1 π1+ ,w−j

=
s
2
+

1
2
(W − s)W

(
eλs − 1

)
W
(
eλs − 1

)
+ s

(3)

3.2.3. Probability Distribution of AoI

Denote PAoI(δW) as the probability distribution function of AoI at the steady-state. It
is defined as follows:

PAoI(δW) = P
{

AoI ≤ δW|Xk =
(
1+, w− j

)
, 1 ≤ j w

}
for any δ, 0 ≤ δ ≤ 1. (4)

So:

PAoI(δW) =
∑w

j=1 P{AoI ≤ δW|Xk = (1+, w – j)}π1+ ,w−j

∑w
j=1 π1+ ,w−j

(5)

If in state Xk = (1+, w – j) at time instant tk, 1 ≤ j ≤ w, the cached sample has been
collected at a time instant tk−j = tk − js, therefore, it is, for any j, 1 ≤ j ≤ w:

P
{

AoI ≤ δW|Xk =
(
1+, w – j

)}
=

1

δw− bδwc
0

j ≤ bδwc
bδwc < j ≤ bδwc+ 1

j > bδwc+ 1
(6)

Finally:

PAoI(δws) =

δw

w(1−e−λs)+e−λs 0 ≤ δ < 1
w

δw−e−λs(δw−1)
w(1−e−λs)+e−λs

1
w ≤ δ ≤ 1

(7)

Future Internet 2022, 14, 197 9 of 24

3.3. Model of the Power Consumption

Devices consume energy when performing three main tasks [30]: (i) data sampling, e.g.,
sensing from the environment, for example, the temperature, the humidity, the pressure, the
fluid flow, etc.; (ii) data processing, performed after sampling and involving operations like
storage, denoising, etc.; (iii) data communication, which includes all necessary networking
tasks like packet transmissions and receptions, protocol overheads due to control traffic, etc.

We model the energy consumption as depending on two components: (i) sampling
energy consumption, due to the sensing operation and the processing of the sampled
data; (ii) communication energy consumption, due to the transmission of the updates. The
computational energy cost can be considered negligible, as it becomes significant only in
some specific cases involving complex mathematical operations or very long sleep times.
Denote cT as the energy consumption for transmitting an update message and denote
cS as the energy consumption for generating a new sample. The energy consumption of
the device depends on the frequency of these two operations, i.e., on the transmission
frequency and on the sampling frequency.

In our system model, the transmissions frequency, that we denote as fT , is the poll
frequency, i.e., it is the inverse of the average time between two requests that trigger a cache
refresh: fT(w, s) = 1/E{T}. The sampling frequency, that we denote as fS, is instead the
inverse of the sampling period: fS(w, s) = 1/s. So, the energy consumption per time unit c
on the device is

c = cT fT + cS fS (8)

Given the wide diversity of the IoT devices, cT and cS can range from very small
values to very large values, relative to each other. Without losing generality, we normalize
c with respect to the sum of cT and cS, i.e., with respect to the sum of the energy cost of one
transmission operation and the energy cost of one sampling operation:

c
cT + cs

=
cT

cT + cs
fT +

cS
cT + cs

fS (9)

Denote c/(cT + cS) as cβ, and cT/(cT + cS) as β, it is:

cβ = β fT +
(
1− β

)
fS (10)

with β ∈ [0, 1].
This means that cβ takes into account the relationship between the energy consumption

of a transmission operation and a sampling operation, but it does not depend on their
absolute values. Indeed, the parameter β indicates the energy cost of a transmission
operation with respect to the sum of the energy costs of a transmission operation and a
sampling operation. The value of β depends on the type of device, e.g., for a device where
the energy cost of a sampling operation is negligible with respect to the energy cost of
a transmission operation β tends to one; on the contrary, for a device where the energy
cost of a transmission operation is negligible with respect to the energy cost of a sampling
operation β tends to zero. In [3] Razzaque et al. compute the operational energy costs
in wireless sensor networks focusing on energy consumption during a single sampling
period. They consider several commercial sensors, and they present a comparison of their
sensing and communication energy costs. Comparisons are normalized with respect to
communication energy. In Table 1 we report the results for six exemplary sensors for
which we compute the corresponding value of β starting from the given values of cS/cT .
Clearly, for sensors where the cost of a sensing operation is much higher than the cost
of a transmission, the value of β is close to zero; instead, for sensors where the cost of
transmission is much higher than the cost of a sampling operation, the value of β is close
to one.

Future Internet 2022, 14, 197 10 of 24

Table 1. Exemplary values of β computed from commercial-sensors parameters [3].

Sensor cS/cT
¯
β

MMA7269Q (Accelerometer) 0.0000268 0.97
GE/Telaire 6004 (CO2 sensor) 1249.25 0.0008
SHT1X (H) (Humidity sensor) 0.4 0.71

SHT1X (T) (Temperature sensor) 1.5 0.4
CP 18 (Proximity sensor) 0.267 0.8
LUC-M10 (Level sensor) 9.22 0.098

4. Model-Driven Cache-Management Optimization
4.1. Energy-Optimized Cache Refresh

We propose a model-driven method to choose the two parameters w and s that
minimize cβ, under the constraint given by the AoI requirement. More in detail, w and s
are the solutions to the following optimization problem:

minw,s cβ

s.t.
s ≥ smin (11)

PAoI(AoIα) ≤ α (12)

The constraint (11) is the hardware constraint of the device, while the constraint (12) is
the AoI requirement of the application. The latter can be expressed in a solvable form using
our proposed model. Indeed, since the model allows us to compute the closed form of the
probability distribution function, we can derive a condition on w such that the probability
distribution function goes through the point (AoIα, y), with y ≥ α. So, we need to find δ, s,
and w such that AoIα = δW and PAoI(δW) ≥ α. We obtain:

• If 1 ≤ δw ≤ w (i.e., s ≤ AoIα ≤W) :

w ≤ AoIα

αs
+

e−λs(1− α)(
1− e−λs

)
α

(13)

• If 0 ≤ δw < 1 (i.e., 0 ≤ AoIα < s):

w ≤
AoIα

αs − e−λs

1− e−λs (14)

Therefore, g(s) ≤ w ≤ h(s), with:

h(s) =

 h1(s) = AoIα
αs + e−λs(1−α)

(1−e−λs)α
s ≤ AoIα

h2(s) =
AoIα

αs −e−λs

1−e−λs s > AoIα

(15)

and
g(s) =

AoIα

s
. (16)

An example of the feasible region where values of w and s satisfying the AoI require-
ment must fall is shown in Figure 3. Note that, although the region is highlighted as a
two-dimensional area, the admissible solutions are only those on the segments for which w
takes an integer value.

Future Internet 2022, 14, 197 11 of 24

Future Internet 2022, 14, x FOR PEER REVIEW 11 of 24

𝑤 ≤ 𝐴𝑜𝐼ఈ𝛼𝑠 + 𝑒ିఒ௦(1 − 𝛼)(1 − 𝑒ିఒ௦)𝛼 (13)

• If 0 ≤ 𝛿𝑤 < 1 (i.e., 0 ≤ 𝐴𝑜𝐼ఈ < 𝑠):

𝑤 ≤ 𝐴𝑜𝐼ఈ𝛼𝑠 − eିఒ௦1 − eିఒ௦ (14)

Therefore, 𝑔(𝑠) ≤ 𝑤 ≤ ℎ(𝑠), with:

ℎ(𝑠) = ⎩⎪⎨
⎪⎧ ℎଵ(𝑠) = 𝐴𝑜𝐼ఈ𝛼𝑠 + 𝑒ିఒ௦(1 − 𝛼)(1 − 𝑒ିఒ௦)𝛼 𝑠 ≤ 𝐴𝑜𝐼ఈ

ℎଶ(𝑠) = 𝐴𝑜𝐼ఈ𝛼𝑠 − 𝑒ିఒ௦1 − 𝑒ିఒ௦ 𝑠 > 𝐴𝑜𝐼ఈ (15)

and 𝑔(𝑠) = 𝐴𝑜𝐼ఈ𝑠 . (16)

An example of the feasible region where values of 𝑤 and 𝑠 satisfying the AoI
requirement must fall is shown in Figure 3. Note that, although the region is highlighted
as a two-dimensional area, the admissible solutions are only those on the segments for
which 𝑤 takes an integer value.

Figure 3. Constraints for 𝐴𝑜𝐼ఈ = 420 s, 𝛼 = 0.9, 𝜆 = 1 ോ 1800 sିଵ and 𝑠 = 60 s (log scale on the
y-axis).

Finally, the optimization problem can be reformulated as follows: 𝑚𝑖𝑛௪,௦ cఉഥ (17)

s.t. 𝑠 ≥ 𝑠 𝑔(𝑠) ≤ 𝑤 ≤ ℎ(𝑠) 𝑤 ∈ ℤା, 𝑠 ∈ ℝା.

In Figure 4 we show the values of 𝑐ఉഥ inside the feasible region for different types of
sensors, expressed by different values of �̅�. For clarity, in the figure we reported the
values of 𝑐ఉഥ for all the pairs of values of 𝑤 and 𝑠 inside the feasible region; however,
the only admissible pairs are those having 𝑤 ∈ ℤା . We can notice that for �̅� = 0 (the
energy consumption for transmitting is zero, i.e., 𝑐் = 0) the minimum value of 𝑐ఉഥ is on

Figure 3. Constraints for AoIα = 420 s, α = 0.9, λ = 1/1800 s−1 and smin = 60 s (log scale on the
y-axis).

Finally, the optimization problem can be reformulated as follows:

minw,s cβ (17)

s.t.
s ≥ smin

g(s) ≤ w ≤ h(s)

w ∈ Z+, s ∈ R+.

In Figure 4 we show the values of cβ inside the feasible region for different types

of sensors, expressed by different values of β. For clarity, in the figure we reported the
values of cβ for all the pairs of values of w and s inside the feasible region; however, the

only admissible pairs are those having w ∈ Z+. We can notice that for β = 0 (the energy
consumption for transmitting is zero, i.e., cT = 0) the minimum value of cβ is on the lower

right corner of the feasible region; as β increases, the minimum value starts shifting on the
left, up to the top left corner of the feasible region when β = 1 (the energy consumption
for sampling is zero, i.e., cS = 0). In the following, we study the objective function for the
extreme cases of a device for which the energy consumption for transmitting is zero and a
device for which the energy consumption for sampling is zero, having respectively, β = 0,
β = 1, and then for the general case of 0 < β < 1, representing hybrid sensors.

4.1.1. Devices with Transmission Energy Consumption Equal to Zero: β = 0

When β = 0, i.e., cβ = fS, it is possible to compute the optimum values of w and s in
closed form (see Appendix A), obtaining w∗ = 1 and s∗ = AoIα/α, as can be also seen in
Figure 4. Since cβ = fS, it follows that cβ does not depend on the rate of requests λ, but
depends only on the AoI requirement, i.e., AoIα and α.

When the value of AoIα increases, the optimum value of cβ decreases, and when
AoIα → ∞ , the objective function tends to 0:

lim
AoIα→+∞

fS(s, w) = 0

Indeed, if AoIα → ∞ , there is no need for refreshing the data.
When the value of α decreases the optimum value of cβ decreases as well, whereas

when α→ 0 , the objective function tends to 0:

lim
α→0

fS(s, w) = 0

Future Internet 2022, 14, 197 12 of 24

Indeed, α→ 0 means that the fraction of requests that need to receive a data item
whose AoI is not larger than the target value tends to zero. However, typical real use cases
will require higher values of α, e.g., 0.8, 0.9, or 0.95.

Future Internet 2022, 14, x FOR PEER REVIEW 12 of 24

the lower right corner of the feasible region; as �̅� increases, the minimum value starts
shifting on the left, up to the top left corner of the feasible region when �̅� = 1 (the energy
consumption for sampling is zero, i.e., 𝑐ௌ = 0). In the following, we study the objective
function for the extreme cases of a device for which the energy consumption for
transmitting is zero and a device for which the energy consumption for sampling is zero,
having respectively, �̅� = 0 , �̅� = 1 , and then for the general case of 0 < �̅� < 1 ,
representing hybrid sensors.

(a) (b)

(c) (d)

Figure 4. Values of 𝑐ఉഥ for 𝐴𝑜𝐼ఈ = 420 s, 𝛼 = 0.9, 𝜆 = 1 ോ 1800 sିଵ, and 𝑠 = 60 s, varying �̅�: (a) �̅� = 0, (b) �̅� = 0.994, (c) �̅� = 0.997, (d) �̅� = 1 (log scale on the y-axis).

4.1.1. Devices with Transmission Energy Consumption Equal to Zero: �̅� = 0
When �̅� = 0, i.e., 𝑐ఉഥ = 𝑓ୗ, it is possible to compute the optimum values of 𝑤 and 𝑠

in closed form (see Appendix A), obtaining 𝑤∗ = 1 and 𝑠∗ = 𝐴𝑜𝐼ఈ 𝛼⁄ , as can be also seen
in Figure 4. Since 𝑐ఉഥ = 𝑓ୗ, it follows that 𝑐ఉഥ does not depend on the rate of requests 𝜆,
but depends only on the AoI requirement, i.e., 𝐴𝑜𝐼ఈ and 𝛼.

When the value of 𝐴𝑜𝐼ఈ increases, the optimum value of 𝑐ఉഥ decreases, and when 𝐴𝑜𝐼ఈ → ∞, the objective function tends to 0: limூഀ→ାஶ𝑓ୗ(�̅�, 𝑤ഥ) = 0

Indeed, if 𝐴𝑜𝐼ఈ → ∞, there is no need for refreshing the data.
When the value of 𝛼 decreases the optimum value of 𝑐ఉഥ decreases as well, whereas

when 𝛼 → 0, the objective function tends to 0: lim→𝑓ୗ(�̅�, 𝑤ഥ) = 0

Indeed, 𝛼 → 0 means that the fraction of requests that need to receive a data item
whose AoI is not larger than the target value tends to zero. However, typical real use cases
will require higher values of 𝛼, e.g., 0.8, 0.9, or 0.95.

Figure 4. Values of cβ for AoIα = 420 s, α = 0.9, λ = 1/1800 s−1 , and smin = 60 s, varying β:

(a) β = 0, (b) β = 0.994, (c) β = 0.997, (d) β = 1 (log scale on the y-axis).

4.1.2. Devices with Sampling Energy Consumption Equal to Zero: β = 1

When β = 1, i.e., cβ = fT, if we remove the integer constraint on w, it is possible
to compute the optimum values of w and s in closed form (see Appendix B), obtaining

s∗ = smin and w∗ = f (smin) = AoIα
αsmin

+ e−λsmin (1−α)

(1−e−λsmin)α
if s ≤ AoIα, or w∗ = f (smin) =

AoIα
αsmin

−e−λsmin

1−e−λsmin
if s > AoIα. The same result can be also seen graphically in Figure 4.

In this case, cβ depends both on the requests rate λ and on the AoI requirement, i.e.,
AoIα and α.

When the value of λ decreases, the optimum value of cβ decreases (see Figure 5), and
when λ→ 0 it is:

lim
λ→0

fT(s, w) = 0

Indeed, in this case, each request triggers a refresh with a high probability, but since
the request rate is extremely low, only a few messages are exchanged in the network.

Instead, when λ→ ∞ , it is (see Figure 5):

lim
λ→+∞

fT(s, w) =
α

AoIα

In this case, the cache is refreshed almost periodically with period W.
Clearly, also in this case, when the value of AoIα increases, the optimum value of cβ

decreases, and when AoIα → ∞ , the objective function tends to 0:

lim
AoIα→+∞

fT(s, w) = 0

Future Internet 2022, 14, 197 13 of 24

And when the value of α decreases also the optimum value of cβ decreases, and when
α→ 0 , the objective function tends to 0:

lim
α→0

fT(s, w) = 0

These conclusions remain essentially the same when considering the integer constraint
on w: in this case, we cannot compute the optimum values of w and s in closed form, but
we can only find a numerical solution using some optimization techniques and, as we can
observe from Figure 6, the optimal value of s can be slightly greater than smin to satisfy the
integer constraint on w.

Future Internet 2022, 14, x FOR PEER REVIEW 13 of 24

4.1.2. Devices with Sampling Energy Consumption Equal to Zero: �̅� = 1
When �̅� = 1, i.e., 𝑐ఉഥ = 𝑓, if we remove the integer constraint on 𝑤, it is possible to

compute the optimum values of 𝑤 and 𝑠 in closed form (see Appendix B), obtaining 𝑠∗ = 𝑠 and 𝑤∗ = 𝑓(𝑠) = ூഀఈ௦ + షഊೞ(ଵିఈ)ቀଵିషഊೞቁఈ if 𝑠 ≤ 𝐴𝑜𝐼ఈ , or 𝑤∗ = 𝑓(𝑠) =ಲഀഀೞିషഊೞଵିషഊೞ if 𝑠 > 𝐴𝑜𝐼ఈ. The same result can be also seen graphically in Figure 4.
In this case, 𝑐ఉഥ depends both on the requests rate 𝜆 and on the AoI requirement,

i.e., 𝐴𝑜𝐼ఈ and 𝛼.
When the value of 𝜆 decreases, the optimum value of 𝑐ఉഥ decreases (see Figure 5),

and when 𝜆 → 0 it is: lim ఒ→𝑓 (�̅�, 𝑤ഥ) = 0

Figure 5. Values of 𝑐ఉഥ for �̅� = 1, varying 𝜆 and 𝐴𝑜𝐼ఈ.

Indeed, in this case, each request triggers a refresh with a high probability, but since
the request rate is extremely low, only a few messages are exchanged in the network.

Instead, when 𝜆 → ∞, it is (see Figure 5): limఒ→ାஶ𝑓(�̅�, 𝑤ഥ) = 𝛼𝐴𝑜𝐼ఈ

In this case, the cache is refreshed almost periodically with period 𝑊.
Clearly, also in this case, when the value of 𝐴𝑜𝐼ఈ increases, the optimum value of 𝑐ఉഥ

decreases, and when 𝐴𝑜𝐼ఈ → ∞, the objective function tends to 0: limூഀ→ାஶ𝑓(�̅�, 𝑤ഥ) = 0

And when the value of 𝛼 decreases also the optimum value of 𝑐ఉഥ decreases, and
when 𝛼 → 0, the objective function tends to 0: lim→ 𝑓 (�̅�, 𝑤ഥ) = 0

These conclusions remain essentially the same when considering the integer
constraint on 𝑤: in this case, we cannot compute the optimum values of 𝑤 and 𝑠 in
closed form, but we can only find a numerical solution using some optimization
techniques and, as we can observe from Figure 6, the optimal value of 𝑠 can be slightly
greater than 𝑠 to satisfy the integer constraint on 𝑤.

Figure 5. Values of cβ for β = 1, varying λ and AoIα.

Future Internet 2022, 14, x FOR PEER REVIEW 14 of 24

(a) (b)

(c)

Figure 6. Optimum values of 𝑤 and 𝑠 for (a) 𝜆 = 1 ോ 90 sିଵ, (b) 𝜆 = 1 ോ 180 sିଵ, and (c) 𝜆 = 1 ോ360 sିଵ 𝛼 = 0.9, 𝐴𝑜𝐼ఈ = 420 s, varying �̅�.

4.1.3. Hybrid Sensors: 0 < �̅� < 1
In this case, both the energy consumption of transmissions and the energy

consumption of sensing are different from zero, and therefore there is a trade-off between
minimizing the average poll frequency and minimizing the sampling frequency on the
device, as the first leads to minimizing 𝑠. Indeed the optimization problem chooses 𝑠 →𝑠, whereas the second leads to maximize 𝑠.

It is possible to compute the optimum values of 𝑤 and 𝑠 solving (17) using
optimization techniques for non-linear integer programming, e.g., branch and bound.
Table 2 and Figure 6 show the optimum values of 𝑤 and 𝑠 computed using the
APMonitor solver ([31,32]) using 𝛼 = 0.9, 𝐴𝑜𝐼ఈ = 420 s, and considering three exemplary
cases where 𝜆 = 1 ോ 90 sିଵ, 𝜆 = 1 ോ 180 sିଵ and 𝜆 = 1 ോ 360 sିଵ. We can notice that the
optimum values are on the top edge of the feasible region, as in the cases shown in Figure
4. Moreover, we can also notice that several values of �̅� can result in the same
configuration of the parameters 𝑤 and 𝑠 : Table 2 shows that in all the considered
scenarios, there are different values of �̅�, i.e., different types of devices, that have the same
optimum values of 𝑤 and 𝑠. This follows from the model constraint that 𝑤 can only
take integer values. However, the resulting values of 𝑐ఉഥ are different as they depend on
the value of �̅�, i.e., the energy consumption still depends on the type of device.

Figure 6. Optimum values of w and s for (a) λ = 1/90 s−1 , (b) λ = 1/180 s−1 , and
(c) λ = 1/360 s−1 α = 0.9, AoIα = 420 s, varying β.

Future Internet 2022, 14, 197 14 of 24

4.1.3. Hybrid Sensors: 0 < β < 1

In this case, both the energy consumption of transmissions and the energy consump-
tion of sensing are different from zero, and therefore there is a trade-off between minimizing
the average poll frequency and minimizing the sampling frequency on the device, as the
first leads to minimizing s. Indeed the optimization problem chooses s→ smin , whereas
the second leads to maximize s.

It is possible to compute the optimum values of w and s solving (17) using optimization
techniques for non-linear integer programming, e.g., branch and bound. Table 2 and Figure 6
show the optimum values of w and s computed using the APMonitor solver ([31,32]) us-
ing α = 0.9, AoIα = 420 s, and considering three exemplary cases where λ = 1/90 s−1 ,
λ = 1/180 s−1 and λ = 1/360 s−1 . We can notice that the optimum values are on the
top edge of the feasible region, as in the cases shown in Figure 4. Moreover, we can also
notice that several values of β can result in the same configuration of the parameters w
and s: Table 2 shows that in all the considered scenarios, there are different values of β, i.e.,
different types of devices, that have the same optimum values of w and s. This follows from
the model constraint that w can only take integer values. However, the resulting values of
cβ are different as they depend on the value of β, i.e., the energy consumption still depends
on the type of device.

Table 2. Optimum values of w and s for λ = 1/90 s−1 , λ = 1/180 s−1 , and λ = 1/360 s−1 α = 0.9,
AoIα = 420 s, varying β.

λ
¯
β 0 0.9 0.91 0.966 0.97 0.98 0.99 1

1/90 s−1 w 1 1 1 2 3 4 6 7
s 466.67 466.67 466.67 234.37 156.79 117.88 78.82 67.63

1/180 s−1 w 1 1 2 3 3 4 5 8
s 466.67 466.67 238.14 159.7 159.7 120.18 96.36 60.44

1/360 s−1 w 1 2 2 2 3 3 4 8
s 466.67 247.25 247.25 247.25 166.05 166.05 125.03 62.91

Figure 7 shows cβ for different types of devices and for the same AoI requirement and

five possible network loads: λ = 1/10 s−1 , λ = 1/180 s−1 , λ = 1/500 s−1 , λ = 1/1000 s−1

and λ = 1/1800 s−1 . Clearly, as the request rate decreases also the transmission energy
cost decreases. As mentioned above, in all the considered scenarios for values of β going
from 0 up to 0.9-0.91-0.97, the optimum values of w and s are the same, hence their values
of cβ differ only for β, showing a linear behavior. Instead, when β→ 1 the optimum values
of w and s change and, at lower rates we also have that fT → 0 , so cβ → 0 , causing the
steep change in the slope of the curve.

Future Internet 2022, 14, x FOR PEER REVIEW 15 of 24

Table 2. Optimum values of 𝑤 and 𝑠 for 𝜆 = 1 ോ 90 sିଵ, 𝜆 = 1 ോ 180 sିଵ, and 𝜆 = 1 ോ 360 sିଵ 𝛼 =0.9, 𝐴𝑜𝐼ఈ = 420 s, varying �̅�. 𝝀 𝜷ഥ 0 0.9 0.91 0.966 0.97 0.98 0.99 1 1 ോ 90 sିଵ
𝑤 1 1 1 2 3 4 6 7 𝑠 466.67 466.67 466.67 234.37 156.79 117.88 78.82 67.63 1 ോ 180 sିଵ
𝑤 1 1 2 3 3 4 5 8 𝑠 466.67 466.67 238.14 159.7 159.7 120.18 96.36 60.44 1 ോ 360 sିଵ
𝑤 1 2 2 2 3 3 4 8 𝑠 466.67 247.25 247.25 247.25 166.05 166.05 125.03 62.91

Figure 7 shows 𝑐ఉഥ for different types of devices and for the same AoI requirement
and five possible network loads: 𝜆 = 1 ോ 10 sିଵ, 𝜆 = 1 ോ 180 sିଵ, 𝜆 = 1 ോ 500 sିଵ, 𝜆 = 1 ോ1000 sିଵ and 𝜆 = 1 ോ 1800 sିଵ . Clearly, as the request rate decreases also the
transmission energy cost decreases. As mentioned above, in all the considered scenarios
for values of �̅� going from 0 up to 0.9-0.91-0.97, the optimum values of 𝑤 and 𝑠 are the
same, hence their values of 𝑐ఉഥ differ only for �̅�, showing a linear behavior. Instead, when �̅� → 1 the optimum values of 𝑤 and 𝑠 change and, at lower rates we also have that 𝑓 →0, so 𝑐ఉഥ → 0, causing the steep change in the slope of the curve.

Figure 7. 𝑐ఉഥ for 𝛼 = 0.9 , 𝐴𝑜𝐼ఈ = 420 s , 𝜆 = 1 ോ 10 sିଵ , 𝜆 = 1 ോ 180 sିଵ , 𝜆 = 1 ോ 500 sିଵ , 𝜆 = 1 ോ1000 sିଵ, and 𝜆 = 1 ോ 1800 sିଵ.

4.2. Sensitivity Analysis
The cache optimizer needs to receive as inputs the AoI requirements of the

application, i.e., 𝛼 and 𝐴𝑜𝐼ఈ, and the request rate 𝜆. The proxy receives the values of 𝛼
and 𝐴𝑜𝐼ఈ from the server during the initial configuration phase; instead, it needs to
estimate the value of the request rate 𝜆. So, the estimated value of 𝜆 may be affected by
an estimation error, or the actual value of 𝜆 may not be constant but have some small
fluctuations that are not seen by the proxy.

To assess the sensitivity of the proposed model to variations of the parameter 𝜆, we
evaluate our model in a sample scenario in which we assume that the AoI requirements
are 𝛼 = 0.9 and 𝐴𝑜𝐼ఈ = 420 s, for different values of �̅� and 𝜆. Typically, estimating the
rate of a Poisson process requires estimating the mean interarrival time; so, in the
following, we show the sensitivity of our model when the estimated mean interarrival
time, denoted as 𝑇ത, is different from the actual mean interarrival time, denoted as 𝑇. Since
we want to evaluate the impact of an estimation error of 𝑇, we are considering devices
where the predominant energy cost is the transmission energy cost, i.e., �̅� → 1: indeed, in
these cases 𝑐ఉഥ also depends on the request rate and hence is more affected by estimation
errors on 𝑇.

Figure 7. cβ for α = 0.9, AoIα = 420 s, λ = 1/10 s−1 , λ = 1/180 s−1 , λ = 1/500 s−1 ,

λ = 1/1000 s−1 , and λ = 1/1800 s−1 .

Future Internet 2022, 14, 197 15 of 24

4.2. Sensitivity Analysis

The cache optimizer needs to receive as inputs the AoI requirements of the application,
i.e., α and AoIα, and the request rate λ. The proxy receives the values of α and AoIα from
the server during the initial configuration phase; instead, it needs to estimate the value of
the request rate λ. So, the estimated value of λ may be affected by an estimation error, or
the actual value of λ may not be constant but have some small fluctuations that are not
seen by the proxy.

To assess the sensitivity of the proposed model to variations of the parameter λ, we
evaluate our model in a sample scenario in which we assume that the AoI requirements
are α = 0.9 and AoIα = 420 s, for different values of β and λ. Typically, estimating the rate
of a Poisson process requires estimating the mean interarrival time; so, in the following,
we show the sensitivity of our model when the estimated mean interarrival time, denoted
as T, is different from the actual mean interarrival time, denoted as T. Since we want
to evaluate the impact of an estimation error of T, we are considering devices where the
predominant energy cost is the transmission energy cost, i.e., β→ 1 : indeed, in these cases
cβ also depends on the request rate and hence is more affected by estimation errors on T.

Call w∗ and s∗ the optimum values obtained considering the mean interarrival time T
and call w and s the optimum values obtained considering the estimated interarrival time
T. Figure 8 shows the percentage variation of cβ, calculated as follows:

cβ(T, w, s) – cβ(T, w∗, s∗)

cβ(T, w∗, s∗)
∗ 100 (18)

as a function of the percentage variation of T, i.e., 100
(
T − T

)
/T. Moreover, call πα the

α-th percentile of PAoI . Figure 9 shows the percentage variation of πα, calculated as follows:

πα(T, w, s) – πα(T, w∗, s∗)
πα(T, w∗, s∗)

∗ 100 (19)

as a function of the percentage variation of T.

Future Internet 2022, 14, x FOR PEER REVIEW 16 of 24

Call 𝑤∗ and 𝑠∗ the optimum values obtained considering the mean interarrival time 𝑇 and call 𝑤ഥ and �̅� the optimum values obtained considering the estimated interarrival
time 𝑇ത. Figure 8 shows the percentage variation of 𝑐ఉഥ , calculated as follows: 𝑐ఉഥ (𝑇, 𝑤ഥ, �̅�) – 𝑐ఉഥ (𝑇, 𝑤∗, 𝑠∗)𝑐ఉഥ (𝑇, 𝑤∗, 𝑠∗) ∗ 100 (18)

as a function of the percentage variation of 𝑇, i.e., 100൫𝑇 − 𝑇൯ 𝑇⁄ . Moreover, call 𝜋ఈ the 𝛼 -th percentile of 𝑃ூ . Figure 9 shows the percentage variation of 𝜋ఈ , calculated as
follows: 𝜋ఈ(𝑇, 𝑤ഥ, �̅�) – 𝜋ఈ(𝑇, 𝑤∗, 𝑠∗)𝜋ఈ(𝑇, 𝑤∗, 𝑠∗) ∗ 100 (19)

as a function of the percentage variation of 𝑇.

Figure 8. Percentage variation of the normalized energy cost for 𝜆 = 1 ോ 1800 sିଵ , �̅� = 0.95
(circles), �̅� = 0.995 (diamonds), �̅� = 1 (crosses).

Figure 9. Percentage variation of 𝐴𝑜𝐼ఈ for 𝜆 = 1 ോ 1800 sିଵ , �̅� = 0.95 (circles), �̅� = 0.995
(diamonds), �̅� = 1 (crosses).

From Figure 8 we can notice that when 𝑇 is underestimated, the resulting energy
consumption cost is larger than the minimum value, though the variation is small. On the
other hand, when 𝑇 is overestimated, the energy consumption is smaller, but the AoI
requirement is not satisfied (see Figure 9). However, for small variations of 𝑇 , the
percentage variation of 𝜋ఈ is small.

Figure 8. Percentage variation of the normalized energy cost for λ = 1/1800 s−1 , β = 0.95 (circles),
β = 0.995 (diamonds), β = 1 (crosses).

Future Internet 2022, 14, 197 16 of 24

Future Internet 2022, 14, x FOR PEER REVIEW 16 of 24

Call 𝑤∗ and 𝑠∗ the optimum values obtained considering the mean interarrival time 𝑇 and call 𝑤ഥ and �̅� the optimum values obtained considering the estimated interarrival
time 𝑇ത. Figure 8 shows the percentage variation of 𝑐ఉഥ , calculated as follows: 𝑐ఉഥ (𝑇, 𝑤ഥ, �̅�) – 𝑐ఉഥ (𝑇, 𝑤∗, 𝑠∗)𝑐ఉഥ (𝑇, 𝑤∗, 𝑠∗) ∗ 100 (18)

as a function of the percentage variation of 𝑇, i.e., 100൫𝑇 − 𝑇൯ 𝑇⁄ . Moreover, call 𝜋ఈ the 𝛼 -th percentile of 𝑃ூ . Figure 9 shows the percentage variation of 𝜋ఈ , calculated as
follows: 𝜋ఈ(𝑇, 𝑤ഥ, �̅�) – 𝜋ఈ(𝑇, 𝑤∗, 𝑠∗)𝜋ఈ(𝑇, 𝑤∗, 𝑠∗) ∗ 100 (19)

as a function of the percentage variation of 𝑇.

Figure 8. Percentage variation of the normalized energy cost for 𝜆 = 1 ോ 1800 sିଵ , �̅� = 0.95
(circles), �̅� = 0.995 (diamonds), �̅� = 1 (crosses).

Figure 9. Percentage variation of 𝐴𝑜𝐼ఈ for 𝜆 = 1 ോ 1800 sିଵ , �̅� = 0.95 (circles), �̅� = 0.995
(diamonds), �̅� = 1 (crosses).

From Figure 8 we can notice that when 𝑇 is underestimated, the resulting energy
consumption cost is larger than the minimum value, though the variation is small. On the
other hand, when 𝑇 is overestimated, the energy consumption is smaller, but the AoI
requirement is not satisfied (see Figure 9). However, for small variations of 𝑇 , the
percentage variation of 𝜋ఈ is small.

Figure 9. Percentage variation of AoIα for λ = 1/1800 s−1 , β = 0.95 (circles), β = 0.995 (diamonds),
β = 1 (crosses).

From Figure 8 we can notice that when T is underestimated, the resulting energy
consumption cost is larger than the minimum value, though the variation is small. On
the other hand, when T is overestimated, the energy consumption is smaller, but the
AoI requirement is not satisfied (see Figure 9). However, for small variations of T, the
percentage variation of πα is small.

Finally, Figure 10 shows the percentage variation of cβ for different values of λ = 1/T.
We can notice that lower rates are more affected by estimation errors, because as λ tends
to zero, also the transmission energy cost tends to zero, and hence larger errors on T have
a larger impact on cβ. However, the graphs show that the model is robust, indeed if we
assume that T varies up to 30%, in the worst case the error is slightly more than 10%.

Future Internet 2022, 14, x FOR PEER REVIEW 17 of 24

Finally, Figure 10 shows the percentage variation of 𝑐ఉഥ for different values of 𝜆 =1 𝑇⁄ . We can notice that lower rates are more affected by estimation errors, because as 𝜆
tends to zero, also the transmission energy cost tends to zero, and hence larger errors on 𝑇 have a larger impact on 𝑐ఉഥ . However, the graphs show that the model is robust, indeed
if we assume that 𝑇 varies up to 30%, in the worst case the error is slightly more than
10%.

Figure 10. Percentage variation of the cost: 𝜆 = 1 ോ 1800 sିଵ (circles), 𝜆 = 1 ോ 3600 sିଵ
(diamonds), 𝜆 = 1 ോ 7200 sିଵ (crosses), �̅� = 0.995.

5. Performance Evaluation
Exemplary Use Case: LWM2M

IoT devices generate complex and heterogeneous M2M systems that need to be
configured, monitored, and maintained, so there is a need for a standard platform for
management. For example, the Open Mobile Alliance (OMA) specified the
LightweightM2M (LWM2M) protocol for device management and service enablement.
LWM2M defines an application layer protocol between an LWM2M Server, i.e., the IoT
application, and the LWM2M Client, i.e., the IoT device. It is designed for constrained
devices and networks and provides a set of REST-based resource models where each
information made available by the device is a Resource. Resources are then organized into
Objects. This object model is easily extensible, and the Object registry is open to the
industry. So, LWM2M is becoming broadly used in industry: in this context, the IIoT
network manager aims at reducing the energy consumption in the device to prolong its
lifetime and reduce the operating costs of the network while satisfying the AoI
requirements of the applications. Hence, a possible solution is using a caching system at
the edge.

To assess the performance of our solution in this use case, we emulate an IoT system
where we use the LWM2M protocol to manage the IoT devices and we consider a scenario
consisting of an IoT network, an LWM2M Server that runs the IoT application and a cache-
enabled LWM2M Proxy that implements our proposed cache-management scheme.

The IoT network is emulated using the COOJA network emulator [33] and uses the
6LoWPAN protocol [34] on top of the IEEE 802.15.4 MAC [35] operating in the 2.4 GHz
band, and the RPL routing protocol [36]. The wireless devices of the IoT network run the
Contiki-NG operating system [37] and are connected to the Internet through the
6LoWPAN Border Router. One of the devices runs the LWM2M Client, that in this case is
the device application, exposing an LWM2M Object representing the sensor, and is
located three hops away from the 6LoWPAN Border Router. The LWM2M Proxy is
located outside the IoT network and manages the requests for the device application sent
by the IoT application using the proposed cache-management scheme. The LWM2M
Server and the LWM2M Proxy are implemented using the Eclipse Leshan library [38].

Figure 10. Percentage variation of the cost: λ = 1/1800 s−1 (circles), λ = 1/3600 s−1 (diamonds),
λ = 1/7200 s−1 (crosses), β = 0.995.

5. Performance Evaluation
Exemplary Use Case: LWM2M

IoT devices generate complex and heterogeneous M2M systems that need to be con-
figured, monitored, and maintained, so there is a need for a standard platform for man-
agement. For example, the Open Mobile Alliance (OMA) specified the LightweightM2M
(LWM2M) protocol for device management and service enablement. LWM2M defines an
application layer protocol between an LWM2M Server, i.e., the IoT application, and the
LWM2M Client, i.e., the IoT device. It is designed for constrained devices and networks
and provides a set of REST-based resource models where each information made available

Future Internet 2022, 14, 197 17 of 24

by the device is a Resource. Resources are then organized into Objects. This object model is
easily extensible, and the Object registry is open to the industry. So, LWM2M is becoming
broadly used in industry: in this context, the IIoT network manager aims at reducing the
energy consumption in the device to prolong its lifetime and reduce the operating costs of
the network while satisfying the AoI requirements of the applications. Hence, a possible
solution is using a caching system at the edge.

To assess the performance of our solution in this use case, we emulate an IoT system
where we use the LWM2M protocol to manage the IoT devices and we consider a scenario
consisting of an IoT network, an LWM2M Server that runs the IoT application and a
cache-enabled LWM2M Proxy that implements our proposed cache-management scheme.

The IoT network is emulated using the COOJA network emulator [33] and uses the
6LoWPAN protocol [34] on top of the IEEE 802.15.4 MAC [35] operating in the 2.4 GHz
band, and the RPL routing protocol [36]. The wireless devices of the IoT network run the
Contiki-NG operating system [37] and are connected to the Internet through the 6LoWPAN
Border Router. One of the devices runs the LWM2M Client, that in this case is the device
application, exposing an LWM2M Object representing the sensor, and is located three hops
away from the 6LoWPAN Border Router. The LWM2M Proxy is located outside the IoT
network and manages the requests for the device application sent by the IoT application
using the proposed cache-management scheme. The LWM2M Server and the LWM2M
Proxy are implemented using the Eclipse Leshan library [38]. Each experiment lasted
400,000 s, the frame size of a response message is 82 bytes and the resulting average service
delay, i.e., the time between when a request is issued by the application and the time its
response is received, is 326.5 ms (95% CI [322.6, 330.4]), and it is negligible compared to the
chosen value of AoIα, i.e., 420 s.

In our first experiment, α is 0.9 and the generation of application-requests follows a
Poisson distribution with a cumulative rate λ = 1/180 s−1 (as in the examples shown in
Section 4.1.3). Figure 11 shows the empirical CDFs and the CDFs obtained through the
model for the following values of β: β = 0.5, β = 0.97, β = 1. Table 3 shows the values of
w and s chosen by the optimizer. We can see that the empirical and the theoretical results
are very close to each other, so the empirical CDFs obtained with the values of w and s
chosen by the model always satisfy the AoI requirements. Moreover, Table 3 also shows the
values of AoI in all the considered cases: we can notice the trade-off between minimizing
the average poll frequency and minimizing the sampling frequency, indeed when β = 1,
it is s→ smin , that results in a lower value of AoI, but this comes at the cost of a higher
sampling power consumption.

Future Internet 2022, 14, x FOR PEER REVIEW 18 of 24

Each experiment lasted 400,000 s, the frame size of a response message is 82 bytes and the
resulting average service delay, i.e., the time between when a request is issued by the
application and the time its response is received, is 326.5 ms (95% CI [322.6, 330.4]), and it
is negligible compared to the chosen value of 𝐴𝑜𝐼ఈ, i.e., 420 s.

In our first experiment, 𝛼 is 0.9 and the generation of application-requests follows
a Poisson distribution with a cumulative rate 𝜆 = 1 ോ 180 sିଵ(as in the examples shown
in Section 4.1.3). Figure 11 shows the empirical CDFs and the CDFs obtained through the
model for the following values of �̅�: �̅� = 0.5, �̅� = 0.97, �̅� = 1. Table 3 shows the values
of 𝑤 and 𝑠 chosen by the optimizer. We can see that the empirical and the theoretical
results are very close to each other, so the empirical CDFs obtained with the values of 𝑤
and 𝑠 chosen by the model always satisfy the AoI requirements. Moreover, Table 3 also
shows the values of 𝐴𝑜𝐼തതതതത in all the considered cases: we can notice the trade-off between
minimizing the average poll frequency and minimizing the sampling frequency, indeed
when �̅� = 1, it is 𝑠 → 𝑠, that results in a lower value of 𝐴𝑜𝐼തതതതത, but this comes at the cost
of a higher sampling power consumption.

Table 3. 𝑤, 𝑠, and 𝐴𝑜𝐼തതതതത for 𝜆 = 1 ോ 180 𝑠ିଵ, 𝛼 = 0.9, 𝐴𝑜𝐼ఈ = 420 𝑠, varying �̅�. 𝜷ഥ 0.5 0.97 1 𝑤 1 3 8 𝑠 466.67 159.7 60.44 𝐴𝑜𝐼തതതതത
231.53

95% CI [221.93, 241.16]
212.31

95% CI [203.51, 221.11]
189.98

95% CI [182.08, 197.88]

Figure 11. Theoretical AoI CDF and empirical AoI CDF for 𝜆 = 1 ോ 180 sିଵ, 𝛼 = 0.9, 𝐴𝑜𝐼ఈ = 420 s.

In our second experiment, we consider the same configuration as the previous
experiment, but now multiple IoT applications send periodic requests for the state of the
IoT device. We consider two cases: (i) in the first scenario, ten applications have request
periods of the same order of magnitude, e.g., the applications have similar characteristics,
and so all the request periods are randomly extracted from a uniform distribution between
1000 and 3000 s; (ii) in the second scenario, five applications have periods uniformly
distributed between 50 and 100 s, while the remaining five have periods uniformly
distributed between 5000 and 10,000 s, e.g., we consider two different classes of
applications. In the first scenario, we consider �̅� = 0.95, in the second scenario we assume �̅� = 1. The optimizer computes the optimum values using 𝜆 as the sum of the inverses of
the periods and chooses (i) 𝑤 = 2 and 𝑠 = 238.1 s for the first scenario and (ii) 𝑤 = 7
and 𝑠 = 66.68 s for the second scenario. Figure 12 shows the empirical CDFs and the

Figure 11. Theoretical AoI CDF and empirical AoI CDF for λ = 1/180 s−1 , α = 0.9, AoIα = 420 s.

Future Internet 2022, 14, 197 18 of 24

Table 3. w , s, and AoI for λ = 1/180 s−1 , α = 0.9, AoIα = 420 s, varying β.

¯
β 0.5 0.97 1

w 1 3 8

s 466.67 159.7 60.44

AoI
231.53

95% CI [221.93, 241.16]
212.31

95% CI [203.51, 221.11]
189.98

95% CI [182.08, 197.88]

In our second experiment, we consider the same configuration as the previous exper-
iment, but now multiple IoT applications send periodic requests for the state of the IoT
device. We consider two cases: (i) in the first scenario, ten applications have request periods
of the same order of magnitude, e.g., the applications have similar characteristics, and so
all the request periods are randomly extracted from a uniform distribution between 1000
and 3000 s; (ii) in the second scenario, five applications have periods uniformly distributed
between 50 and 100 s, while the remaining five have periods uniformly distributed between
5000 and 10,000 s, e.g., we consider two different classes of applications. In the first scenario,
we consider β = 0.95, in the second scenario we assume β = 1. The optimizer computes
the optimum values using λ as the sum of the inverses of the periods and chooses (i) w = 2
and s = 238.1 s for the first scenario and (ii) w = 7 and s = 66.68 s for the second scenario.
Figure 12 shows the empirical CDFs and the CDFs obtained through the model for the two
scenarios: we can notice that the empirical CDFs and the theoretical CDFs are very close to
each other, so the optimum values of w and s obtained through the model can be applied
also in this case.

Future Internet 2022, 14, x FOR PEER REVIEW 19 of 24

CDFs obtained through the model for the two scenarios: we can notice that the empirical
CDFs and the theoretical CDFs are very close to each other, so the optimum values of 𝑤
and 𝑠 obtained through the model can be applied also in this case.

(a) (b)

Figure 12. AoI CDF with 10 periodic servers: (a) first scenario, (b) second scenario.

To assess the performance of the cache implemented by the proxy, we compare the
case in which the proxy implements the cache against the case in which the proxy does
not implement the cache. In the latter case, we consider 𝑠 = 𝐴𝑜𝐼ఈ 𝛼⁄ , i.e., the maximum
value of 𝑠 that satisfies the AoI constraint. In Figure 13 we report the value of 𝑐ఉഥ
obtained for different types of devices both without the cache and with the cache. We can
notice that the optimized cache can significantly reduce the energy cost of devices for
which the cost of the transmissions is the prevalent cost because it can significantly reduce
the number of transmissions, especially for high values of 𝜆. We can also notice that using
the cache makes the system less sensitive to higher rates, as the number of exchanged
messages depends on the refresh window.

Figure 13. 𝑐ఉഥ for 𝛼 = 0.9, 𝐴𝑜𝐼ఈ = 420 s, 𝜆 = 1 ോ 360 sିଵ, 𝜆 = 1 ോ 180 sିଵ, and 𝜆 = 1 ോ 90 sିଵ.

Then, we define the service delay as the time between a request sent by the
application and the time its response is received. Figure 14 shows the cumulative
distribution function of the service delay for 𝜆 = 1 180⁄ sିଵ both for the case in which the
proxy does not implement the cache and for the case wherein the proxy implements the
cache. For the latter, we consider three values of �̅�, namely �̅� = 0.5, �̅� = 0.97 and �̅� =1 . All the scenarios satisfy the same AoI requirements: 𝐴𝑜𝐼ఈ = 420 s and 𝛼 = 0.9 .
Clearly, we can notice that the cache-enabled proxy always provides quicker responses

Figure 12. AoI CDF with 10 periodic servers: (a) first scenario, (b) second scenario.

To assess the performance of the cache implemented by the proxy, we compare the
case in which the proxy implements the cache against the case in which the proxy does not
implement the cache. In the latter case, we consider s = AoIα/α, i.e., the maximum value
of s that satisfies the AoI constraint. In Figure 13 we report the value of cβ obtained for
different types of devices both without the cache and with the cache. We can notice that
the optimized cache can significantly reduce the energy cost of devices for which the cost
of the transmissions is the prevalent cost because it can significantly reduce the number
of transmissions, especially for high values of λ. We can also notice that using the cache
makes the system less sensitive to higher rates, as the number of exchanged messages
depends on the refresh window.

Future Internet 2022, 14, 197 19 of 24

Future Internet 2022, 14, x FOR PEER REVIEW 19 of 24

CDFs obtained through the model for the two scenarios: we can notice that the empirical
CDFs and the theoretical CDFs are very close to each other, so the optimum values of 𝑤
and 𝑠 obtained through the model can be applied also in this case.

(a) (b)

Figure 12. AoI CDF with 10 periodic servers: (a) first scenario, (b) second scenario.

To assess the performance of the cache implemented by the proxy, we compare the
case in which the proxy implements the cache against the case in which the proxy does
not implement the cache. In the latter case, we consider 𝑠 = 𝐴𝑜𝐼ఈ 𝛼⁄ , i.e., the maximum
value of 𝑠 that satisfies the AoI constraint. In Figure 13 we report the value of 𝑐ఉഥ
obtained for different types of devices both without the cache and with the cache. We can
notice that the optimized cache can significantly reduce the energy cost of devices for
which the cost of the transmissions is the prevalent cost because it can significantly reduce
the number of transmissions, especially for high values of 𝜆. We can also notice that using
the cache makes the system less sensitive to higher rates, as the number of exchanged
messages depends on the refresh window.

Figure 13. 𝑐ఉഥ for 𝛼 = 0.9, 𝐴𝑜𝐼ఈ = 420 s, 𝜆 = 1 ോ 360 sିଵ, 𝜆 = 1 ോ 180 sିଵ, and 𝜆 = 1 ോ 90 sିଵ.

Then, we define the service delay as the time between a request sent by the
application and the time its response is received. Figure 14 shows the cumulative
distribution function of the service delay for 𝜆 = 1 180⁄ sିଵ both for the case in which the
proxy does not implement the cache and for the case wherein the proxy implements the
cache. For the latter, we consider three values of �̅�, namely �̅� = 0.5, �̅� = 0.97 and �̅� =1 . All the scenarios satisfy the same AoI requirements: 𝐴𝑜𝐼ఈ = 420 s and 𝛼 = 0.9 .
Clearly, we can notice that the cache-enabled proxy always provides quicker responses

Figure 13. cβ for α = 0.9, AoIα = 420 s, λ = 1/360 s−1 , λ = 1/180 s−1 , and λ = 1/90 s−1 .

Then, we define the service delay as the time between a request sent by the application
and the time its response is received. Figure 14 shows the cumulative distribution function
of the service delay for λ = 1/180s−1 both for the case in which the proxy does not
implement the cache and for the case wherein the proxy implements the cache. For the
latter, we consider three values of β, namely β = 0.5, β = 0.97 and β = 1. All the scenarios
satisfy the same AoI requirements: AoIα = 420 s and α = 0.9. Clearly, we can notice that
the cache-enabled proxy always provides quicker responses with respect to the case in
which the cache is not implemented, as some responses are taken from the cache, as shown
by the CDFs. Indeed, the CDFs obtained with the cache show a bi-modal behavior: some
responses are taken from the cache and hence have smaller service delays, while some
responses are forwarded to the device and hence have larger service delays. Moreover, we
can also notice that the case β = 1 is the configuration that minimizes the service delay.
Indeed, β = 1 is the case in which the predominant energy cost is the transmission cost, so
it minimizes the number of exchanged messages with the device and hence it is also the
configuration that minimizes the service delay.

Future Internet 2022, 14, x FOR PEER REVIEW 20 of 24

with respect to the case in which the cache is not implemented, as some responses are
taken from the cache, as shown by the CDFs. Indeed, the CDFs obtained with the cache
show a bi-modal behavior: some responses are taken from the cache and hence have
smaller service delays, while some responses are forwarded to the device and hence have
larger service delays. Moreover, we can also notice that the case �̅� = 1 is the
configuration that minimizes the service delay. Indeed, �̅� = 1 is the case in which the
predominant energy cost is the transmission cost, so it minimizes the number of
exchanged messages with the device and hence it is also the configuration that minimizes
the service delay.

Figure 14. Service delay for 𝜆 = 1 ോ 180 sିଵ.

6. Conclusions
In this work, we considered an IoT network composed of devices that sample the

environment periodically and of applications that need to be aware of the state of these
devices as timely as possible to, for example, support decision making or detect
anomalies. However, the timeliness of the state updates is limited by the constraints of the
IoT devices and networks, especially by the device energy constraints. Indeed, energy is
a scarce resource, as typically devices do not have a fixed power supply, but they rely on
batteries or harvest energy. The energy consumption of the device mainly depends on the
sensing energy consumption and on the transmission energy consumption; so, the
objective of IoT-system management is to minimize them while guaranteeing information
freshness. Indeed, minimizing the energy consumption of devices can reduce the
operating costs of the network, as it prolongs a device’s lifetime. A possible method is
using a caching system because it can help in reducing sensing frequency and
transmission frequency. Typically, IoT networks are accessed through gateways/proxies
that act as intermediaries between devices and applications. Usually, these
gateways/proxies are also used to provide a better system performance, e.g., they
implement a cache to lower the energy consumption on the device. Hence, several cache
refreshing schemes have been proposed in the literature that minimizes freshness and
energy consumption or balance freshness and service latency. We instead minimize the
energy consumption on the device and consider the freshness of the data, measured by
AoI, as a constraint in terms of percentile of the distribution, because typically
applications establish a threshold on the value of the AoI. So, we considered a cache-
enabled proxy deployed at the edge in between devices and applications: it receives the
requests for status updates of a device from an application and responds using its cached
item or, if the cached item is expired, it fetches the last update from the device, refreshes
the cache, and delivers it to the application. The freshness of a cached item is quantified
using the AoI metrics, and a cached item is no longer considered fresh when its AoI
exceeds the value of the cache parameter denoted as refresh window, W. In a preliminary

Figure 14. Service delay for λ = 1/180 s−1 .

6. Conclusions

In this work, we considered an IoT network composed of devices that sample the
environment periodically and of applications that need to be aware of the state of these
devices as timely as possible to, for example, support decision making or detect anomalies.
However, the timeliness of the state updates is limited by the constraints of the IoT devices
and networks, especially by the device energy constraints. Indeed, energy is a scarce

Future Internet 2022, 14, 197 20 of 24

resource, as typically devices do not have a fixed power supply, but they rely on batteries
or harvest energy. The energy consumption of the device mainly depends on the sensing
energy consumption and on the transmission energy consumption; so, the objective of
IoT-system management is to minimize them while guaranteeing information freshness.
Indeed, minimizing the energy consumption of devices can reduce the operating costs of
the network, as it prolongs a device’s lifetime. A possible method is using a caching system
because it can help in reducing sensing frequency and transmission frequency. Typically,
IoT networks are accessed through gateways/proxies that act as intermediaries between
devices and applications. Usually, these gateways/proxies are also used to provide a better
system performance, e.g., they implement a cache to lower the energy consumption on the
device. Hence, several cache refreshing schemes have been proposed in the literature that
minimizes freshness and energy consumption or balance freshness and service latency. We
instead minimize the energy consumption on the device and consider the freshness of the
data, measured by AoI, as a constraint in terms of percentile of the distribution, because
typically applications establish a threshold on the value of the AoI. So, we considered a
cache-enabled proxy deployed at the edge in between devices and applications: it receives
the requests for status updates of a device from an application and responds using its cached
item or, if the cached item is expired, it fetches the last update from the device, refreshes the
cache, and delivers it to the application. The freshness of a cached item is quantified using
the AoI metrics, and a cached item is no longer considered fresh when its AoI exceeds the
value of the cache parameter denoted as refresh window, W. In a preliminary version of
this work [10], we proposed a model for this cache management scheme. In this work,
we leverage that model to define and solve an optimization problem that configures the
cache parameter W to minimize the energy consumption on the device, which depends
on the average poll frequency and on the sampling frequency, while satisfying an AoI
constraint expressed by the application. We apply our proposed cache-enabled proxy in
two different emulated IoT scenarios that use the LWM2M protocol for device management:
in the first one, requests are generated according to a Poisson distribution, while in the
second one requests are periodic. Results show that our proposed solution minimizes
energy consumption while satisfying the AoI requirements.

Moreover, this per-device cache uses a simple yet effective management scheme that
does not pose any limitation on the number of applications issuing requests on the device
and that has constant complexity, i.e., it only involves a comparison between the AoI of the
cached item and its refresh window. So, our solution can be easily applied in deployments
involving multiple IoT devices just scaling vertically, i.e., adding more resources to the
proxy, or scaling horizontally, i.e., replicating the proxy.

In future work, we aim to consider also different cache refreshing policies, e.g., the
cache could be updated using observing streams from the device.

Author Contributions: Conceptualization: M.P., A.V. and E.M.; software: M.P.; writing—original
draft: M.P. and A.V.; writing—review and editing: M.P., A.V. and E.M. All authors have read and
agreed to the published version of the manuscript.

Funding: Work partially supported by the Italian Ministry of Education and Research (MIUR) in the
framework of the CrossLab project (Departments of Excellence).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Future Internet 2022, 14, 197 21 of 24

Appendix A

When β = 0, i.e., cβ = fS, the optimization problem maximizes s under the constraint
given by the AoI requirement:

maxw,s s (A1)

s.t.
g(s) ≤ w ≤ h(s)

s ≥ smin

w ∈ Z+, s ∈ R+

The model tends to maximize s, but, when s→ +∞ , it is w → 0 :

lim
s→+∞

AoIα
αs − e−λs

1− e−λs = 0

It must be w ≥ 1, so:
AoIα

αs − e−λs

1− e−λs ≥ 1

That results in:
s ≤ AoIα

α

The maximum value is obtained for w = 1 and s = AoIα
α .

Appendix B

When β = 1, i.e., cβ = fT, the optimization problem maximizes E{T} under the
constraint given by the AoI requirement:

maxw,s ws +
s

eλs − 1
(A2)

s.t.
g(s) ≤ w ≤ h(s)

s ≥ smin

w ∈ Z+, s ∈ R+

For a given s, the model chooses the maximum possible value of w to maximize the
objective function, so it is necessary to study the objective function when w = h(s).

We denote ϕ(w, s) as the objective function, i.e., ϕ(w, s) = ws + s
eλs−1 , and we define

F(s): F(s) , ϕ(f (s), s).
Therefore:

• If s ≤ AoIα ≤ sw:

It is:

w =
AoIα

αs
+

e−λs(1− α)(
1− e−λs

)
α

and

F(s) =

[
AoIα

αs
+

e−λs(1− α)(
1− e−λs

)
α

]
s +

s
eλs − 1

=
AoIα

α
+

1
α

se−λs(
1− e−λs

)
So,

F′(s) =
1
α

(
e−λs − sλe−λs)(1− e−λs)− (λe−λs)(se−λs)(

1− e−λs
)2 =

1
α

(
1− e−λs − sλ

)
e−λs(

1− e−λs
)2

Future Internet 2022, 14, 197 22 of 24

And F′(s) ≤ 0 results in:

e−λs
(

1− e−λs − sλ
)
≤ 0

That is: (
1− e−λs − sλ

)
≤ 0

We define x = λs and l(x) = 1− e−x − x.
It is:

l(0) = 1− 1 = 0

and
l′(x) = e−x − 1

So l′(x) ≤ 0 results in:
e−x ≤ 1 for x ≥ 0

Therefore, l(x) is always ≤ 0 for x ≥ 0, because l(x) is decreasing and it is l(0) = 0.
This means that F′(s) is always ≤ 0 for x ≥ 0 (λs ≥ 0), so F(s) is decreasing and the
maximum value is obtained for s = smin. Then, we have to consider the integer constraint
on w.

• If 0 ≤ AoIα < s:

It is:

w =
AoIα

αs − e−λs

1− e−λs

and

F(s) =

[
AoIα

αs − e−λs

1− e−λs

]
s +

s
eλs − 1

=
AoIα

α eλs − AoIα
α

eλs + e−λs − 2

So,

F′(s) = (AoIα
α λeλs)(eλs+e−λs−2)−(λeλs−λe−λs)(AoIα

α eλs− AoIα
α)

(eλs+e−λs−2)
2

=
− AoIα

α λeλs− AoIα
α λe−λs+2 AoIα

α λ

(eλs+e−λs−2)
2

And F′(s) ≤ 0 results in:

− AoIα

α
λeλs − AoIα

α
λe−λs + 2

AoIα

α
λ ≤ 0

That is:
− eλs − e−λs + 2 ≤ 0

We define x = λs and l(x) = −ex − e−x + 2.
It is:

l(0) = −1− 1 + 2 = 0

and
l(x) = −ex + e−x

So l′(x) ≤ 0 results in:
e−x ≤ ex for x ≥ 0

So, l(x) is always ≤ 0 for x ≥ 0, because l(x) is decreasing and it is l(0) = 0. This
means that F′(s) is always ≤ 0 for x ≥ 0 (λs ≥ 0), so F(s) is decreasing and the maximum
value is obtained for s = smin. Then we have to consider the integer constraint on w.

Future Internet 2022, 14, 197 23 of 24

References
1. Huang, H.; Qiao, D.; Gursoy, M.C. Age-Energy Tradeoff Optimization for Packet Delivery in Fading Channels. IEEE Trans. Wirel.

Commun. 2021, 21, 179–190. [CrossRef]
2. Zhou, B.; Saad, W. Optimal Sampling and Updating for Minimizing Age of Information in the Internet of Things. In Proceedings

of the 2018 IEEE Global Communications Conference (GLOBECOM), Abu Dhabi, United Arab Emirates, 9–13 December 2018;
pp. 1–6.

3. Razzaque, M.A.; Dobson, S. Energy-efficient sensing in wireless sensor networks using compressed sensing. Sensors 2014, 14,
2822–2859. [CrossRef] [PubMed]

4. Kim-Hung, L.; Le-Trung, Q. User-Driven Adaptive Sampling for Massive Internet of Things. IEEE Access 2020, 8, 135798–135810.
[CrossRef]

5. Zhong, J.; Yates, R.D.; Soljanin, E. Two Freshness Metrics for Local Cache Refresh. In Proceedings of the 2018 IEEE International
Symposium on Information Theory (ISIT), Vail, CO, USA, 17–22 June 2018; pp. 1924–1928.

6. Kaul, S.; Gruteser, M.; Rai, V.; Kenney, J. Minimizing Age of Information in Vehicular Networks. In Proceedings of the 2011 8th
Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks, Salt Lake City,
UT, USA, 27–30 June 2011; pp. 350–358.

7. Yates, R.D.; Sun, Y.; Brown, D.R.; Kaul, S.K.; Modiano, E.; Ulukus, S. Age of information: An introduction and survey. IEEE J. Sel.
Areas Commun. 2021, 39, 1183–1210. [CrossRef]

8. Kosta, A.; Pappas, N.; Angelakis, V. Age of information: A new concept, metric, and tool. Found. Trends Netw. 2017, 12, 162–259.
[CrossRef]

9. Costa, M.; Codreanu, M.; Ephremides, A. On the age of information in status update systems with packet management. IEEE
Trans. Inf. Theory 2016, 62, 1897–1910. [CrossRef]

10. Pappalardo, M.; Mingozzi, E.; Virdis, A. A Model-Driven Approach to Aol-Based Cache Management in IoT. In Proceedings of
the 2021 IEEE 26th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks
(CAMAD), Porto, Portugal, 25–27 October 2021; pp. 1–6.

11. Pappalardo, M.; Virdis, A.; Mingozzi, E. An Edge-Based LWM2M Proxy for Device Management to Efficiently Support QoS-Aware
IoT Services. IoT 2022, 3, 169–190. [CrossRef]

12. Open Mobile Alliance. Lightweight Machine to Machine Technical Specification: Core; Open Mobile Alliance: San Diego, CA, USA,
2020.

13. Open Mobile Alliance. Lightweight Machine to Machine Technical Specification: Transport Bindings; Open Mobile Alliance: San Diego,
CA, USA, 2020.

14. Chen, Z.; Sivaparthipan, C.B.; Muthu, B. IoT based smart and intelligent smart city energy optimization. Sustain. Energy Technol.
Assess. 2022, 49, 101724. [CrossRef]

15. Naeem, A.; Javed, A.R.; Rizwan, M.; Abbas, S.; Lin, J.C.-W.; Gadekallu, T.R. DARE-SEP: A Hybrid Approach of Distance Aware
Residual Energy-Efficient SEP for WSN. IEEE Trans. Green Commun. Netw. 2021, 5, 611–621. [CrossRef]

16. Dev, K.; Maddikunta, P.K.R.; Gadekallu, T.R.; Bhattacharya, S.; Hegde, P.; Singh, S. Energy optimization for green communication
in IoT using harris hawks optimization. IEEE Trans. Green Commun. Netw. 2022, 6, 685–694. [CrossRef]

17. Abbas, Q.; Hassan, S.A.; Pervaiz, H.; Ni, Q. A Markovian Model for the Analysis of Age of Information in IoT Networks. IEEE
Wirel. Commun. Lett. 2021, 10, 1596–1600. [CrossRef]

18. Akar, N.; Dogan, O. Discrete-Time Queueing Model of Age of Information with Multiple Information Sources. IEEE Internet
Things J. 2021, 8, 14531–14542. [CrossRef]

19. Kaul, S.; Yates, R.; Gruteser, M. Real-Time Status: How Often Should One Update? In Proceedings of the 2012 Proceedings IEEE
INFOCOM, Orlando, FL, USA, 25–30 March 2012; pp. 2731–2735.

20. Abd-Elmagid, M.A.; Pappas, N.; Dhillon, H.S. On the role of age of information in the Internet of Things. IEEE Commun. Mag.
2019, 57, 72–77. [CrossRef]

21. Chiariotti, F.; Holm, J.; Kalør, A.E.; Soret, B.; Jensen, S.K.; Pedersen, T.B.; Popovski, P. Query Age of Information: Freshness in
Pull-Based Communication. IEEE Trans. Commun. 2022, 70, 1606–1622. [CrossRef]

22. Niyato, D.; Kim, D.I.; Wang, P.; Song, L. A Novel Caching Mechanism for Internet of Things (IoT) Sensing Service with Energy
Harvesting. In Proceedings of the 2016 IEEE International Conference on Communications (ICC), Kuala Lumpur, Malaysia, 23–27
May 2016; pp. 1–6.

23. Xu, C.; Wang, X.; Yang, H.H.; Sun, H.; Quek, T.Q. AoI and Energy Consumption Oriented Dynamic Status Updating in Caching
Enabled IoT Networks. In Proceedings of the IEEE INFOCOM 2020—IEEE Conference on Computer Communications Workshops
(INFOCOM WKSHPS), Toronto, ON, Canada, 6–9 July 2020; pp. 710–715.

24. Zhang, S.; Li, J.; Luo, H.; Gao, J.; Zhao, L.; Shen, X.S. Low-Latency and Fresh Content Provision in Information-Centric Vehicular
Networks. IEEE Trans. Mobile Comput. 2020, 21, 1723–1738. [CrossRef]

25. Zhang, S.; Li, J.; Luo, H.; Gao, J.; Zhao, L.; Shen, X.S. Towards fresh and low-latency content delivery in vehicular networks:
An edge caching aspect. In Proceedings of the 2018 10th International Conference on Wireless Communications and Signal
Processing (WCSP), Hangzhou, China, 18–20 October 2018; pp. 1–6.

26. Zhang, S.; Wang, L.; Luo, H.; Ma, X.; Zhou, S. AoI-delay tradeoff in mobile edge caching with freshness-aware content refreshing.
IEEE Trans. Wirel. Commun. 2021, 20, 5329–5342. [CrossRef]

http://doi.org/10.1109/TWC.2021.3094550
http://doi.org/10.3390/s140202822
http://www.ncbi.nlm.nih.gov/pubmed/24526302
http://doi.org/10.1109/ACCESS.2020.3011496
http://doi.org/10.1109/JSAC.2021.3065072
http://doi.org/10.1561/1300000060
http://doi.org/10.1109/TIT.2016.2533395
http://doi.org/10.3390/iot3010011
http://doi.org/10.1016/j.seta.2021.101724
http://doi.org/10.1109/TGCN.2021.3067885
http://doi.org/10.1109/TGCN.2022.3143991
http://doi.org/10.1109/LWC.2021.3075160
http://doi.org/10.1109/JIOT.2021.3053768
http://doi.org/10.1109/MCOM.001.1900041
http://doi.org/10.1109/TCOMM.2022.3141786
http://doi.org/10.1109/TMC.2020.3025201
http://doi.org/10.1109/TWC.2021.3067002

Future Internet 2022, 14, 197 24 of 24

27. Mezair, T.; Djenouri, Y.; Belhadi, A.; Srivastava, G.; Lin, J.C.-W. Towards an Advanced Deep Learning for the Internet of Behaviors:
Application to Connected Vehicle. Available online: https://dl.acm.org/doi/abs/10.1145/3526192 (accessed on 23 June 2022).

28. Taivalsaari, A.; Mikkonen, T. A roadmap to the programmable world: Software challenges in the IoT era. IEEE Softw. 2017, 34,
72–80. [CrossRef]

29. Li, C.; Li, S.; Hou, Y.T. A general model for minimizing age of information at network edge. In Proceedings of the IEEE INFOCOM
2019—IEEE Conference on Computer Communications, Paris, France, 29 April–2 May 2019; pp. 118–126.

30. Fragkiadakis, A.; Charalampidis, P.; Tragos, E. Adaptive compressive sensing for energy efficient smart objects in IoT applications.
In Proceedings of the 2014 4th International Conference on Wireless Communications, Vehicular Technology, Information Theory
and Aerospace & Electronic Systems (VITAE), Aalborg, Denmark, 11–14 May 2014; pp. 1–5.

31. Hedengren, J.D.; Asgharzadeh Shishavan, R.; Powell, K.M.; Edgar, T.F. Nonlinear Modeling, Estimation and Predictive Control in
APMonitor. Comput. Chem. Eng. 2014, 70, 133–148. [CrossRef]

32. Beal, L.D.R.; Hill, D.; Martin, R.A.; Hedengren, J.D. GEKKO Optimization Suite. Processes 2018, 8, 106. [CrossRef]
33. Available online: https://github.com/contiki-ng/cooja (accessed on 3 June 2022).
34. Available online: https://datatracker.ietf.org/wg/6lowpan/documents/ (accessed on 3 June 2022).
35. IEEE Std 802.15.4-2015; IEEE Standard for Low-RateWireless Networks. IEEE: Piscataway Township, NJ, USA, 2016.
36. Winter, T.; Thubert, P.; Brandt, A.; Hui, J.; Kelsey, R.; Levis, P.; Pister, K.; Struik, R.; Vasseur, J.P.; Alexander, R. RPL: IPv6 Routing

Protocol for Low-Power and Lossy Networks; RFC 6550; IETF: Fremont, CA, USA, 2012.
37. Available online: https://github.com/contiki-ng/contiki-ng (accessed on 3 June 2022).
38. Available online: https://github.com/eclipse/leshan (accessed on 3 June 2022).

https://dl.acm.org/doi/abs/10.1145/3526192
http://doi.org/10.1109/MS.2017.26
http://doi.org/10.1016/j.compchemeng.2014.04.013
http://doi.org/10.3390/pr6080106
https://github.com/contiki-ng/cooja
https://datatracker.ietf.org/wg/6lowpan/documents/
https://github.com/contiki-ng/contiki-ng
https://github.com/eclipse/leshan

	Introduction
	Related Work
	System Overview and Model
	System-Model Overview
	IoT Device
	IoT Application
	IoT Proxy

	Model of the Cache-Management Scheme
	Network Cost
	Average AoI
	Probability Distribution of AoI

	Model of the Power Consumption

	Model-Driven Cache-Management Optimization
	Energy-Optimized Cache Refresh
	Devices with Transmission Energy Consumption Equal to Zero: = 0
	Devices with Sampling Energy Consumption Equal to Zero: = 1
	Hybrid Sensors: 0 < < 1

	Sensitivity Analysis

	Performance Evaluation
	Conclusions
	Appendix A
	Appendix B
	References

