
Citation: Sfichi, A.; Zadobrischi, E.;

Sfichi, N.; Bădelit,ă, M.; Medrihan, M.

Utility of Sharing Economy Principles

in the Development of Applications

Dedicated to Construction Cost

Estimation. Future Internet 2023, 15, 2.

https://doi.org/10.3390/fi15010002

Academic Editor: Paolo Bellavista

Received: 25 November 2022

Revised: 16 December 2022

Accepted: 19 December 2022

Published: 21 December 2022

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

future internet

Article

Utility of Sharing Economy Principles in the Development of
Applications Dedicated to Construction Cost Estimation
Adrian Sfichi 1,*, Eduard Zadobrischi 2,3,* , Narcisa Sfichi 1, Marian Bădelit,ă 1 and Mihai Medrihan 1

1 Glocal Soft S.R.L, Strada Fântâna Albă Nr. 1, 720247 Suceava, Romania
2 Department of Computers, Electronics and Automation, Faculty of Electrical Engineering and Computer

Science, “Stefan cel Mare” University, No. 13 Str. Universitatii, 720229 Suceava, Romania
3 Department of Computer Science, Technical University of Cluj-Napoca, Gh. Baritiu St. 26-28,

400027 Cluj-Napoca, Romania
* Correspondence: mailto:adrian.sfichi@glocalsoft.net (A.S.); eduard.zadobrischi@usm.ro (E.Z.)

Abstract: This research aims to highlight the importance and notoriety that an application based on
heuristic algorithms can have in the field of e-commerce in the construction niche, guiding us on
participatory economy principles. The expansion of e-commerce has shaped a new directive and
increased the complexity of logistics, being a topical and critical issue. Users want the goods to be
delivered in a timely manner to the specified address and to benefit from the fastest services. These
aspects are challenging to achieve given that most operations fall within the remit of specialized staff
within an e-commerce company. In this context, a service-type software application dedicated to the
construction field was created to increase productivity, applying the principles of the sharing economy
and developing intelligent algorithms. Coestim is a cloud-based SaaS solution for construction
work estimations and a marketplace for construction-market-related products. Equipment rental,
specialists, tracking the traceability process, generating a quote, and increasing productivity are
essential components of the developed application.

Keywords: business model; e-commerce; quality service; optimization; price competition; SaaS;
online shopping experience; estimate construction costs; Coestim

1. Introduction

The development and popularity of e-commerce have led to uniform and rapid growth,
along with the emergence of hybrid solutions and services in the e-commerce markets in the
relationship between the merchant and the buyer, turning everything into a hybrid platform.

We can say that in the retail market, companies such as Alibaba, Amazon, eBay, JD.com,
and eMAG are companies that are trying to use hybrid modules in order to capture the
current market. Therefore, mobile applications, which we find in companies such as Apple,
Microsoft, Google, and more recently, Sony, manage to change the way of trading or the
ability to automate. Scientific circles consider it necessary to aspire to a software solution
that addresses all areas, but with implementations in the area of dedicated solutions, not
just direct interaction between users and markets [1].

The need for highly dynamic online businesses that have standalone modules imple-
mented is becoming a trend and users are migrating to these types of businesses for the
versatility of the services they offer. This trend comes from the desire to standardize quality
products with services to match, and companies wanting to maintain a monopoly on the
quality they rely on. In these approaches, there is a disadvantage to covering a wide range
of products and services in terms of production cost. A company can produce a limited
number of products or components; the same applies to the services offered. Therefore, in
this case, new models of the interconnection of e-commerce platforms can be implemented.
We can say that this approach causes the disadvantage of unification, which creates a defi-
ciency in analyzing the quality of other products or services offered by other users. For this

Future Internet 2023, 15, 2. https://doi.org/10.3390/fi15010002 https://www.mdpi.com/journal/futureinternet

https://doi.org/10.3390/fi15010002
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://orcid.org/0000-0001-6378-7670
https://doi.org/10.3390/fi15010002
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/article/10.3390/fi15010002?type=check_update&version=2

Future Internet 2023, 15, 2 2 of 26

problem, the departments dedicated to quality control implemented solutions for reviewing
or evaluating products and services. All these developments outline a new trend where
different types of users meet and interact differently, and their behaviors create new user
profiles. We can say that such a market outlines a new trend in terms of bilateral markets;
thus, the outsourcing of markets has been achieved [2].

According to studies, the continuous development in the fields of technology, IoT, or
artificial intelligence creates the right environment for the development of e-commerce
and its outsourcing [3]. The high volume of orders, convenience of buyers, simplicity,
and attractive prices practiced by the online environment, leading to a new revolution
in the field of e-commerce, cause these aspects. An important aspect is that, during the
period when the whole planet was terrified by the pandemic generated by Sars-Cov-2,
buyers migrated online. Reports and studies show that, in 2020, e-commerce had grown
by more than 50%, and at that time, most companies had demonstrated that there were
shortcomings in their platforms and they needed new approaches to support the wave
of new users [4]. The biggest problems generated by their platforms were related to the
real-time inventory update process, invoice generation, or AWB tracking process, along
with delivery issues. In addition to these internal issues, the platforms have shown their
limitations in terms of response times and ability to process customer requests. We can say
that the need to implement some intelligent algorithms to coagulate the entire structure on
which an online trading platform is based is imperative. Therefore, the implementation of
collaborative filtering algorithms or imports from different databases through a single API,
along with the synchronous popularity of all e-commerce platforms, interconnected with
the central platform, are highly necessary to achieve hybrid platforms that provide the user
experience of physical shopping in the online environment [5]. These facilities lead to the
adjustment of the prices and high quality of the services offered, recommendations, and
the correlation of all the characteristics in a divided, but at the same time uniform, form.
The pandemic period marked a new trend, one where more than 75% of builders noticed
that the demand for building materials had increased considerably and was not ready to
take a step online. The need for security and the limitations imposed by the authorities
forced the population to migrate to rural areas and reconsolidate their homes [6]. Creating
an environment conducive to the development of the construction field aims at aspects
related to the verticality of services in the market, but also highlighting the best products
for the client’s budget or need. Until now, these aspects were extremely difficult to achieve,
especially under the same roof within an e-commerce platform.

We can say that GlocalSoft approaches problems from the perspective of research and
product development to help academia inclusively. The implementation of ERP (enterprise
resource planning) or SaaS (software as a service) solutions and applications was aimed at
the construction field, with the role of increasing productivity. These aspects are based on
intensive studies and the application of the principles of the participatory economy, with
the help of intelligent algorithms dedicated to optimizing the evolution of costs, achieving
a positive impact in reducing risks, a characteristic affected by the activity planning process.
Therefore, the utility of the application is more than necessary, and it can be used by anyone,
from individuals to construction companies, manufacturers of construction materials, or
warehouses. They can optimize costs, estimate and generate a project execution time, and
most importantly, generate a work estimate. A large part of the facilities offered by Coestim
is based on the identification of teams and builders based on the stages generated within
the estimate and the way in which each component of the construction advances, following
the entire process from the rental of the machines to the finishing stages. Therefore, the
main purpose of the approach presented in the manuscript comes from the desire to use
the principles of the participatory sharing economy in the field of construction. These
elements are validated by intelligent algorithms capable of presenting work estimates and
budgets that facilitate a continuous flow of work and increased productivity in the field of
construction and materials [7,8].

Future Internet 2023, 15, 2 3 of 26

We can say that the relatively small number of specialists, specialized craftsmen, with
not only work standards, but also competitive, well-defined prices are extremely few.
Most have no professional training or are not part of a service company, which creates
a volatile market without ethical principles to drive its efficiency. Most tradesmen or teams
that provide quality service are not promoted or recommended. A negative aspect is the
lack of traceability, quality planning, and transparency regarding a work; in addition to
these, the lack of advanced knowledge through which construction budget calculations
are generated forms a new problem. We can say that the incorrect estimation of the final
costs or the omission of the fluctuation of the price of the materials or their unavailability
produce aspects that distort the smooth running of things, weakening the credibility in
relation to the client. Thus, having all this information, the development of a web solution
is imperative, because it improves the quality of the workforce, increases the standards
imposed, and generates new opportunities, and at the same time, the end customer benefits
from fair prices, quality, seriousness, and efficiency in relation to requested services. We can
say that the Coestim application forces the market to align with European standards, and
the workforce in the field benefits from quality services through which they can increase
their level of knowledge, promoting their own portfolio at the same time. The exchange of
information and the implementation of evaluation systems or feedback based on the impact
on customers can shape new features that will be the basis of other work budgets and also
maintain a viable process between suppliers and builders. These aspects are extremely
important and can play an important role in the stages of the project. All companies
in the field can list their products and services, staff, or knowledge to create an active
environment and sharing economy. We can say that new standards are created through
this application, and machine learning algorithms are subsequently applied, generating
construction estimates based on the internal nomenclature, all based on local resources.
According to previous presentations, Coestim is unique through the facilities it offers
in the field of construction materials and interior design. This application pursues its
goals progressively, and the main goal is related to the expansion and productivity of
the construction industry, generating new opportunities, increasing work standards, and
estimating and generating work quotes as accurately as possible to obtain the most realistic
design costs [9].

Regarding the structure of this manuscript, it is organized as follows: in Section 1,
elements have been introduced that focus on the motivation of the approach of this direction,
and also highlight solid literature in the field of the problem addressed, presenting solutions
and approaches achieved within the conducted study. Section 2 contains a comparative
study and analysis of other approaches, along with the methodological aspects used in the
article, algorithms, implementation methods, testing, and validation. In addition, extensive
description of the concepts behind the developments and the facilities they provide in the
field of e-commerce is provided. Section 3 is dedicated to the practical implementation,
the results obtained, the API implementation, and the impact that the developed solution
has on the field of construction estimates. In Section 4, comparative elements such as the
case study and the approach made with the results obtained about the proposal based on
the participatory economy and heuristic algorithms are presented. Section 5 concludes all
the information presented and concludes the importance of the Coestim application, along
with other future directions.

2. Literature Review and Cost Estimation Methods

We can say that, in the construction industry, there is a perspective whereby the
accuracy of cost estimation is fundamental in terms of the success of all groups involved
in a project according to [10]. Therefore, the competitive bidding and listing process,
where the costs are estimated, has become an extremely critical element, is the most
convenient, and determines the procurement method. The bidding process continues
within a platform, becoming a practice in the fields dedicated to construction, which are
extremely competitive at the moment. Thus, the implementation of competitive tenders

Future Internet 2023, 15, 2 4 of 26

based on a sharing economy dedicated to the construction field has not been realized so
far in the form of a platform dedicated to this sector. The existence of platforms such as
those for contracting suppliers annihilates some activities. Contractors bid for projects
and subsequently do not deal with the processing and estimation of building execution
costs and eventually leave the business area [11]. From a cost estimation perspective,
other technical procedures, analytical functions, cost prediction processes, and construction
estimates can be much better articulated. Using all the information entered in the design,
budget, areas, and quantity loading, estimated costs are generated, including a margin of
increase or fluctuation in price for the quotation of certain materials. There are studies of
cost estimation practices [12] that theoretically succeed in identifying a standard estimation
procedure based on UK data and contractors. Thus, the study was based on a standard
estimation procedure, defining the construction costs, as they are presented on an estimate,
the price differences, and the profit for the contractors. This study focused more on types
of entrepreneurs, such as extremely small local entrepreneurs, small local or regional
sales markets, medium-sized entrepreneurs with country-level offices and services, and
also large entrepreneurs with international outsourcing of products and services. This
classification was made after long studies through the technical procedures of grouping
the dimensions. To be able to present some conclusive offers, the cost estimates must take
into account certain recipes that are made with the help of the nomenclature dedicated
to the construction field. These nomenclatures have not been built to date so that they
can adapt to the rigorous requirements of the building materials market. For this reason,
cost estimates are the central and extremely vital element in project management. The
authors analyze the financial flow and budgets, accounting, and project traceability [13].
We consider that the study [14] is extremely important because the estimation of a project
can be an important means of financial control. Studies also highlight the aspect of the
faulty estimation process that can cause losses, which is caused by underestimation.

2.1. Cost Estimation Techniques

We can say that, in the field of cost estimation, many methods and techniques are
used, including artificial neural networks (ANNs). These hybrid models use secondary ar-
tificial intelligence or meta-heuristic methods, radial functional neural networks (RBFNN),
case-based reasoning (CBR), regression analysis (RA), particle swarm optimization (PSO),
decision trees, or expert systems. All these are practices dedicated to the operation and
implementation of cost estimation systems. Thus, artificial neural networks are part of
those numerous algorithms that model all computer learning processes. They manage to
create classifiers called machine learning. Specifically, machine learning is a process of
computer programming to optimize data processing performance and experiences [15].
McCulloch and Pitts studied the first mathematical models based on an artificial neural
network in 1943 [16]. Artificial neural networks are also called non-parametric processing
systems that are based on analogy, being inspired by the principles of functionality and
structure in the biological neural networks of the human brain. We can say that there is
also a problem with the use of neural networks, such as pattern recognition, clustering,
forecasting, and the predictability of certain categories [17]. When we talk about forecast-
ing, neural networks are based on training models with past databases, and depending
on their capabilities they can make generalizations and further predictions or estimates.
According to studies, ANN is data-driven and has lower performance in prediction and
estimation, fueling suspicions of over-specification. The application of heuristic methods
and rules prevents the model from continuing its training process with observed aspects
and in a mixed-use way with the MSE network. Thus, the use of hybrid ANN models with
secondary intelligent algorithms or meta-heuristic methods, such as genetic algorithms
and bee or ant colony algorithms, has been proposed in many articles to compensate for
the disadvantages of ANNs, facilitating the application in practical aspects [18].

Genetic algorithms (GAs) are part of those meta-heuristic methods, but they are also
based on some assimilated models from evolutionary computation, which was first in-

Future Internet 2023, 15, 2 5 of 26

vented in 1959 by John Holland [19]. The emergence of problems is found in dynamic
environments; they need a response from the environment, which addresses the failure or
success of the strategy applied by exploiting all the assimilated data. All this is achieved
through recombination strategies, and also the current methods of reproducing the models
that are the basis of the calculation [20]. When we talk about CBR, it is more of an ideal data
mining technique for retaining information and implementing it in cases of similarity filter-
ing and solving new problems. The RA technique is based on classifiers and is identified as
a method oriented to the raw data and less to the features behind the data, being structured
on linear and non-linear problems [21]. We can say that a large part of the analysis shows
that decision trees are the most used in solving classification problems. The construction
is continuously based on features that satisfy the branching rule, a process performed
iteratively for each branch. Therefore, decision tree and classification or regression mainly
deals with the prediction of a dependent variable based on another predictor variable.
This process is based on a response variable and includes a set of values, which in turn
contains a continuous or discrete set of variables [22]. These regression trees are a good
substitute for basic regression methods. In the field of construction cost estimation, the
decision tree is built mainly based on those attributes in the data set that are relevant for
the classification process, being the selection of some features [23]. Therefore, to solve some
of these problems, expert systems are much better developed by their wide applicability,
and also by the methods obtained over time by other experts, declaring them effective
in solving cases in similar fields [24]. The most intensively studied areas where relevant
studies have been made are closely related to the built environment, the design of highways
and public buildings, and the construction of water and sewage networks, railways, or
power plants. The cost estimation methods dedicated to these works were based on several
applied techniques. These estimation methods are classified into two main categories:
qualitative and quantitative methods. Coestim targets both categories by combining the
experience of users with the experience of suppliers, forming a mix between quality and
quantity based on which work estimates and the final price of materials will be generated.
A representative diagram for all cost estimation modeling techniques is shown in Figure 1.

Future Internet 2023, 15, x FOR PEER REVIEW 5 of 26

to compensate for the disadvantages of ANNs, facilitating the application in practical as-

pects [18].

Genetic algorithms (GAs) are part of those meta-heuristic methods, but they are also

based on some assimilated models from evolutionary computation, which was first in-

vented in 1959 by John Holland [19]. The emergence of problems is found in dynamic

environments; they need a response from the environment, which addresses the failure

or success of the strategy applied by exploiting all the assimilated data. All this is achieved

through recombination strategies, and also the current methods of reproducing the mod-

els that are the basis of the calculation [20]. When we talk about CBR, it is more of an ideal

data mining technique for retaining information and implementing it in cases of similarity

filtering and solving new problems. The RA technique is based on classifiers and is iden-

tified as a method oriented to the raw data and less to the features behind the data, being

structured on linear and non-linear problems [21]. We can say that a large part of the anal-

ysis shows that decision trees are the most used in solving classification problems. The

construction is continuously based on features that satisfy the branching rule, a process

performed iteratively for each branch. Therefore, decision tree and classification or regres-

sion mainly deals with the prediction of a dependent variable based on another predictor

variable. This process is based on a response variable and includes a set of values, which

in turn contains a continuous or discrete set of variables [22]. These regression trees are a

good substitute for basic regression methods. In the field of construction cost estimation,

the decision tree is built mainly based on those attributes in the data set that are relevant

for the classification process, being the selection of some features [23]. Therefore, to solve

some of these problems, expert systems are much better developed by their wide applica-

bility, and also by the methods obtained over time by other experts, declaring them effec-

tive in solving cases in similar fields [24]. The most intensively studied areas where rele-

vant studies have been made are closely related to the built environment, the design of

highways and public buildings, and the construction of water and sewage networks, rail-

ways, or power plants. The cost estimation methods dedicated to these works were based

on several applied techniques. These estimation methods are classified into two main cat-

egories: qualitative and quantitative methods. Coestim targets both categories by combin-

ing the experience of users with the experience of suppliers, forming a mix between qual-

ity and quantity based on which work estimates and the final price of materials will be

generated. A representative diagram for all cost estimation modeling techniques is shown

in Figure 1.

Figure 1. Representative diagram of modeling techniques dedicated to cost estimation.

2.1.1. Qualitative Approaches

We can say that qualitative approaches are based on the knowledge of the estimator

about the requested project, the field of activity, and the basis of the influencing factors,

these being divided into two classes: expert judgment and heuristic rules. When applying

Figure 1. Representative diagram of modeling techniques dedicated to cost estimation.

2.1.1. Qualitative Approaches

We can say that qualitative approaches are based on the knowledge of the estimator
about the requested project, the field of activity, and the basis of the influencing factors,

Future Internet 2023, 15, 2 6 of 26

these being divided into two classes: expert judgment and heuristic rules. When applying
expert judgment, everything depends on the good or poor results of previous knowledge-
based judgments. According to an article [25], the expert judgment technique relies on
the advice of experts and experienced peers to validate the estimation result. Therefore,
in the case of the Coestim solution, we consider the implementation of distinct packages
between suppliers, sellers, and manufacturers, and these packages will generate a response
comparable to the service estimates designed by specialists, which are basic models in the
estimate trial. This technique relies more on intuition, along with extrapolation techniques,
and problems are solved later with the help of experts who ensure the reliability of the whole
process. However, these heuristic rules in the cost estimation process are due to intuitive
judgments, and the estimation process is optimized based on data extracted from similar
projects that have identical characteristics in some places. We can say that quantitative
approaches are defined as methods that are based on the process of collecting and analyzing
historical data. Data analysis and the application of quantitative models, techniques, or
estimation tools lead to a design cost estimate. Thus, the approaches dedicated to cost
estimates and known to date are classified into three broad categories: statistical, analog,
and analytical.

2.1.2. Statistical Methods in Cost Estimation

In a broader analysis, statistical methods can also rely on alternative formulas or
approaches to establish causal relationships in the correlation between final costs and
their characteristics [26]. Parametric cost estimation models are characterized by the cost
evolution of parameters, which include volume and mass along with gross cost without
adding other details [27]. Mathematically, the cost of the project is an estimate of its causal
links with the presented parameters, and the result will be a function of the corresponding
variables. Such approaches can streamline the early stages of projects, where information
is very limited or unavailable, with subsequent adjustments starting from the minimum
necessary cost [28]. We can say that there are three types of parametric cost estimation
methods [29].

The scale method is applicable in the prevailing technologies, where different di-
mensions characterize the products. These evaluations of the technical parameters are
the basis of the precondition of the method. The evaluation is compared with that of
other completed projects, making this method a combination of analog and parametric
approaches, benefiting from cost assumptions based on parameters considered interactive
through a linear function [30]. The statistical method has wide applicability; in this case, the
activities are divided into different areas through which the final mathematical formulas
are subsequently constructed. The model is composed of data on technical specifications,
the relationship between data and final variables, constants, and cost estimation formu-
las. Thus, mathematical calculation refers to the relationship between the final cost and
a limited set of technical parameters. We can say that some of the parameters are physical
and dimensional values, and at the level of parametric methods, the most predominant
are analysis, regression, and optimization techniques. Even parametric cost estimation
methods have technical problems in that they benefit from all parameters in the early stages,
leading to uncertainty in the results. To obtain viable results, at least five or six similar
regression cases should be considered to arrive at the closest estimated cost. However, the
methods are considered extremely useful in cost estimation due to how the required tasks
are performed [31].

2.2. Study of the Construction of the BP (Back-Propagation) Neural Network Model

The widespread use of the BP neural network as an application model is based on
a neural network propagation network with multilayer feedforward. It is characterized
by the fact that it manages to propagate errors in the direction of return. The BP neural
network has three layers, and these include the input layer, the hidden layer, and an output
layer as shown in Figure 2. Perhaps the most important perspective in this field comes from

Future Internet 2023, 15, 2 7 of 26

the area of gray system theory, which is used in applied determinations and optimizations
of estimates within BP neural networks. We can say that it collects costs in the field of
construction engineering and then forms data sets and training samples in order to establish
the most reliable cost estimation models. Subsequently, the analysis is exemplified by gray
system prediction fences, comparing aspects related to accuracy and prediction testing [32].

Future Internet 2023, 15, x FOR PEER REVIEW 7 of 26

from the area of gray system theory, which is used in applied determinations and optimi-

zations of estimates within BP neural networks. We can say that it collects costs in the field

of construction engineering and then forms data sets and training samples in order to

establish the most reliable cost estimation models. Subsequently, the analysis is exempli-

fied by gray system prediction fences, comparing aspects related to accuracy and predic-

tion testing [32].

Figure 2. Illustration of the back-propagation neural network model in estimation process.

According to the illustration above, within the three-layer perceptron, the input vec-

tor is defined as follows:

𝑋𝑖 = (𝑋𝑖1, 𝑋𝑖2, … 𝑋𝑖1𝑛)𝑇 (1)

Thus, the variable of the hidden layer is noted as follows:

𝑌𝑖 = (𝑌𝑖1, 𝑌𝑖2, … 𝑌𝑖1𝑚)𝑇 (2)

Therefore, the variable of the output layer is noted as follows:

𝑂𝑖 = (𝑂𝑖1, 𝑂𝑖2, … 𝑂𝑖𝑙)
𝑇 (3)

We can say that, in a last process, the waiting vector of the output layer is noted as

follows:

𝐷𝑖 = (𝐷𝑖1, 𝐷𝑖2, … 𝐷𝑖𝑙)
𝑇 (4)

In order to take into account all aspects and characteristics in the cost estimation pro-

cess, the weight matrix must be defined. This responds to the aspects regarding the weight

between the training sample from the input layer to the hidden layer, this being repre-

sented by Vj.

 𝑉𝑗 = (𝑉𝑖1, 𝑉𝑖2, … 𝑉𝑗𝑚)𝑇 (5)

where Vj can represent the vector that identifies the weight of the column corresponding

to the neuron with the property j in the hidden layer, the matrix weight between the sam-

ple in the hidden layer and the output layer is represented by the characteristic W,

 𝑊𝑘 = (𝑊𝑘1, 𝑊𝑘2, … 𝑊𝑘𝑙)
𝑇 (6)

Thus, the column vector 𝑊𝑘 can represent the weight vector that accurately indi-

cates the neuron k in the output layer.

2.3. Analysis of Gray Theory in Cost Estimation

This theory dates back over 30 years from the first test, being structural and stable in

terms of mathematical principles. Used in the case of gray equations, gray algebra,

Figure 2. Illustration of the back-propagation neural network model in estimation process.

According to the illustration above, within the three-layer perceptron, the input vector
is defined as follows:

Xi = (Xi1, Xi2, . . . Xi1n)
T (1)

Thus, the variable of the hidden layer is noted as follows:

Yi = (Yi1, Yi2, . . . Yi1m)
T (2)

Therefore, the variable of the output layer is noted as follows:

Oi = (Oi1, Oi2, . . . Oil)
T (3)

We can say that, in a last process, the waiting vector of the output layer is noted
as follows:

Di = (Di1, Di2, . . . Dil)
T (4)

In order to take into account all aspects and characteristics in the cost estimation
process, the weight matrix must be defined. This responds to the aspects regarding the
weight between the training sample from the input layer to the hidden layer, this being
represented by Vj.

Vj = (Vi1, Vi2, . . . Vjm)
T (5)

where Vj can represent the vector that identifies the weight of the column corresponding to
the neuron with the property j in the hidden layer, the matrix weight between the sample
in the hidden layer and the output layer is represented by the characteristic W,

Wk = (Wk1, Wk2, . . . Wkl)
T (6)

Thus, the column vector Wk can represent the weight vector that accurately indicates
the neuron k in the output layer.

Future Internet 2023, 15, 2 8 of 26

2.3. Analysis of Gray Theory in Cost Estimation

This theory dates back over 30 years from the first test, being structural and stable in
terms of mathematical principles. Used in the case of gray equations, gray algebra, matrices,
vectors, and other axioms, it generates gray sequences within some systems and gives
life to some sub-systems. Therefore, it performs correlations and analyses in models with
small samples and poor information, only by processing legible data. This model can be
a significant predictor in the field of constructions, at the base being a first-order equation
that contains a variable. We can say that the main idea of prediction takes into account
the sequence of initial numbers, iterated several times in order to generate a sequence of
numbers, which has a linear character of the first order. Therefore, the generated equation
is differential and shows an aspect related to regularity.

x0 =
(

x0(1), x0(2), , x0(n)
)

(7)

The equation expresses the set of accumulated original data that can later generate
a new cumulative sequence and is also characterized as an AGO-type operator. The
process of selecting the characteristic factors is conducted depending on the analysis of the
estimated cost of the real one, and information comes from other projects. When analyzing
the composition of the costs of a project and the changes that will be made later, the type
of foundation, the kind of structure, the number of layers of the project, the interior and
exterior decoration, and the location of the project must be taken into account. Following
the process of quantifying these factors, the use of this system is used as a variable of the
cost control model within the neural network, and an output variable defines the final
unit cost. We can say that the quantitative processing of eigenvectors can affect the cost
of the project. The definition and representation of the eight factors used are thus made
U1 ≈ U8, being significant input vectors of the network model in the final representation of
the project as output vectors. The first result of the quantifications performed is presented
in Table 1.

Table 1. Exposure of the vector quantization index of the technical type characteristics.

ID Factors Influence Factors Quantitative Indicators

U1 Standard type Foundation type: complete, prefabricated, belt
U2 Structure type Frame structure: structure with concrete frames, walls, or bricks
U3 Number of layers of project Height levels: multistory, high, super high
U4 Exterior decoration Decorative exterior, ceramic tile, stone dust
U5 Window and door Laminated double glazed windows, wooden doors, steel hardware, secure door
U6 Interior decoration Rough elements, cement with mortar, paint and mixed mortar
U7 Floor Mortar, concrete or fine stone flooring, ceramic wall, and floor tiles
U8 Project location Interior, exterior, or exterior exposure design on urban or rural levels and areas

Cleve Moler and other collaborators have treated the problem of cost estimation since
the 1970s with developments in the MATLAB application [33]. They designed an interface-
type program with EISPACK and LINKPACK using the combination of matrices to analyze
values using advanced programming. These methods proved at that time extremely
convenient to use in terms of training data and the set of tools provided. The most important
aspect was that it could be used in different fields such as economics, mathematics, and
even engineering. Another important aspect was that the MATLAB tool reduced the
complexity of programming and improvement; only the use of a single template and the
introduction of real data and parameters managed to provide the data they needed at
that time.

Future Internet 2023, 15, 2 9 of 26

2.4. Coestim—Design Simulator for Creating Construction Projects

According to studies, the degree of complexity offered by the Coestim application is
extremely high, trying to combine all the features and parameters that a person who wants
to build or renovate a home needs. The research focused on defining the clear requirements
of a system dedicated to the design and simulation of construction estimates, respectively,
and the simulation of defined projects. We can say that we have arrived at a basic appli-
cation architecture that highlights the most important performance characteristics using
software tools. The proposal of the Coestim simulator is based on extremely complex
elements in terms of properties and characteristics, increased flexibility with external data,
and extremely short times in processing the request. Hierarchy and traceability within the
Coestim solution were and are necessary to define the extended viability of the solution. For
each hierarchical level, new services are defined and gradually published, outlining a list
of resources and one of the services, considering their concatenation at the request of the
user. All these features of the Coestim application are based on the intensive study of the
current market, and also on the lack of applications dedicated to construction estimates that
combine e-commerce with construction engineering and the sharing economy. The Coestim
application meets all the necessary conditions to become a practical solution in today’s
society through the modularity and accumulation of functions it offers. The architecture
regarding the hierarchical structure of a construction project can be seen in Figure 3.

Future Internet 2023, 15, x FOR PEER REVIEW 9 of 26

requirements of a system dedicated to the design and simulation of construction esti-

mates, respectively, and the simulation of defined projects. We can say that we have ar-

rived at a basic application architecture that highlights the most important performance

characteristics using software tools. The proposal of the Coestim simulator is based on

extremely complex elements in terms of properties and characteristics, increased flexibil-

ity with external data, and extremely short times in processing the request. Hierarchy and

traceability within the Coestim solution were and are necessary to define the extended

viability of the solution. For each hierarchical level, new services are defined and gradu-

ally published, outlining a list of resources and one of the services, considering their con-

catenation at the request of the user. All these features of the Coestim application are

based on the intensive study of the current market, and also on the lack of applications

dedicated to construction estimates that combine e-commerce with construction engineer-

ing and the sharing economy. The Coestim application meets all the necessary conditions

to become a practical solution in today’s society through the modularity and accumulation

of functions it offers. The architecture regarding the hierarchical structure of a construc-

tion project can be seen in Figure 3.

Figure 3. Conceptual diagram of the database dedicated to the Coestim planner, adapted from

[34].

We can say that the optimization of the architecture dedicated to an application starts

from the principles of simulating its performance characteristics, becoming a simulator

from a software tool. This simulator is essential in research because the advantages it pro-

duces support flexibility in designing and creating new architectural elements for the mar-

ket demand. Another important aspect is related to the costs of development and fixing

some errors. We can say that the Coestim project is based on intensive studies of more

than five years and is based on several models with the help of which hierarchical struc-

tures can be built at the level of cost simulation processes. Simulation algorithms were

also implemented to create estimated designs. This simulation algorithm is based on sev-

eral stages that evaluate the feasibility against the rigor imposed by the market. In the case

of SuperServices, they are identified for each parent separately, and each parent Super-

Service has the role of retrieving the lists from the children. Thus, a random number is

generated for each parent–child structure, they have a predefined number of estimates,

increasing at each iteration a value related to the services, and the initial data are multi-

plied by the iteration number. To add value to the project, super-service sequences are

Figure 3. Conceptual diagram of the database dedicated to the Coestim planner, adapted from [34].

We can say that the optimization of the architecture dedicated to an application starts
from the principles of simulating its performance characteristics, becoming a simulator
from a software tool. This simulator is essential in research because the advantages it
produces support flexibility in designing and creating new architectural elements for the
market demand. Another important aspect is related to the costs of development and
fixing some errors. We can say that the Coestim project is based on intensive studies of
more than five years and is based on several models with the help of which hierarchical
structures can be built at the level of cost simulation processes. Simulation algorithms
were also implemented to create estimated designs. This simulation algorithm is based
on several stages that evaluate the feasibility against the rigor imposed by the market. In
the case of SuperServices, they are identified for each parent separately, and each parent

Future Internet 2023, 15, 2 10 of 26

SuperService has the role of retrieving the lists from the children. Thus, a random number
is generated for each parent–child structure, they have a predefined number of estimates,
increasing at each iteration a value related to the services, and the initial data are multiplied
by the iteration number. To add value to the project, super-service sequences are recursively
traversed and estimates of the parent–child structure are created. Thus, generating a quote
takes into account the details that have the greatest impact on the final component, namely
price and quantity. We can say that each estimate needs all the necessary resources, these
being called from the Coestim nomenclature, the application of calculation algorithms, and
the creation of probabilities for project execution, which are presented in Algorithm 1, and
the architecture is made in the NET framework.

Algorithm 1: Pseudocode example dedicated to the implementation of SuperServices.

1 public async Task<IActionResult1> Simulate ()
2 {
3 var parentSuperServices—await _superServiceService.GetAllWhereAsync(new
SuperServiceQueryResource { OnlyParentSuperServices = true}));
4 if (parentSuperServices.Any())
5 {
6 foreach (var _superServiceService in parrentSuperServices)
7 {
8 var superServices—new List<superServices();
9 try
10 {
11 superSerices—await GetSuperServiceChildren(superServices.ID, superServices);
12 superServices.Add(superServices);
13 Random random = new();
14 var noOfIterations = random.Next(1,5);
15 for (int i=1; i<= noOfIterations; i++)
16 {
17 var project = await _superServiceService.CreateAsync(new Project { Name = $ ”Proiect”
{superService.Name}_{i}”}};
18 if (i>1) {
19 superServices.ForEach(x=>x) {
20 x.NoOfEstimates++;
21 x.ServiceQuantity *=1; }); }
22 await PrepareEstimates(_mapper.Map<superServiceDto>(superService)),
_mapper.Map<List<superServiceDto>>(superService), project.ID); } }
23 catch (Exeption) { { {
24 for (int i = 0; i < estimateList.Count; i++) {
25 var cratedEstimateInclude—await _estimateService.GetEstimate(estimateList [1]);
26 await CalculateTotalEstimateDuration(createEstimateInclude);
27 await EstimateRealisticDatesWithEalierStartDateAsync(createdEstimateInclude,
DateTime.Now) } } }
28 }

3. Prototyping and Implementation of the Proposed Algorithm—Coestim

Following the analysis of the technical specifications, changes were made to the
database of entities in the planning and execution phases. These changes involved both the
addition of new entities and the adaptation of existing ones to the new requirements.

At the base of the changes is a concept of the hierarchical structuring of a process in
sub-assemblies, which, together, determine the sequence of steps necessary to follow in
the realization of a project. Two new entities have been created in the planning phase that
simplify the logic previously defined in the Process and ProcessDetail entities. By defining
these two new entities, SuperService and SuperServiceDetail, the way of organizing the
processes that were previously defined for each service is simplified, which implies the
following benefits:

Future Internet 2023, 15, 2 11 of 26

− The SuperService entity can be viewed as a process to which a service can be added,
which allows for the defining of specific services not only at an abstract level but also at the
level of the process itself;
− The possibility to create a SuperService entity without attaching a service, an abstract
level resulting from its sub-assemblies;
− The possibility of defining necessary items and resources in sub-assemblies at the inter-
mediate or final finished product level;
− The possibility of copying a section and reusing it.

In addition, changes were made in the execution phase of a project that required
the addition of two new entities, ProjectExecution and ProjectExecutionItem, which, for
an estimate created within a project, attach the approximate data for its execution:

− Scheduled start date;
− The nearest possible start dates;
− The furthest end date.

An estimate programmed for execution also has attached the list of items needed for
the estimated quantity, as seen in the following EstimateBase.cs:

EstimateBase.cs—Estimated changes structure

I EstimateBase

Future Internet 2023, 15, x FOR PEER REVIEW 11 of 26

− The SuperService entity can be viewed as a process to which a service can be added,

which allows for the defining of specific services not only at an abstract level but also

at the level of the process itself;

− The possibility to create a SuperService entity without attaching a service, an abstract

level resulting from its sub-assemblies;

− The possibility of defining necessary items and resources in sub-assemblies at the

intermediate or final finished product level;

− The possibility of copying a section and reusing it.

In addition, changes were made in the execution phase of a project that required the

addition of two new entities, ProjectExecution and ProjectExecutionItem, which, for an

estimate created within a project, attach the approximate data for its execution:

− Scheduled start date;

− The nearest possible start dates;

− The furthest end date.

An estimate programmed for execution also has attached the list of items needed for

the estimated quantity, as seen in the following EstimateBase.cs:

EstimateBase.cs—Estimated changes structure
▶EstimateBase

➲ SuperServiceId:int

➲ SuperService: SuperService

➲ ParentEstimateId: int?

➲ ParentEstimate: Estimate

➲ Quantity: int?

➲ EarliestStartDate: DateTime

➲ LastestEndDate: DateTime

➲ EstimateItems: List<EstimateItem>

For the logic defined in the previously described models, another change that was

required is the use of the SuperService entity for calculating the estimates. Then, the im-

plementation of the changes made to the database following the analysis of the system

requirements was followed (see Algorithms 2 and 3).

Algorithm 2: Database modification process in relation to the described models. Expan-

sion of the database depends on the need to use the SuperService entity in order to cal-

culate the estimates.

// 1. START TRANSACTION;

ALTER TABLE “SupplierItem” ADD “Url” text NULL;

INSERT INTO “__EFMigrationsHistory” (“MigrationId”, “ProductVersion”)

VALUES (‘20220307155744_SupplierItemUrl’, ‘5.0.9′);

COMMIT;

//2. START TRANSACTION;

ALTER TABLE “SupplierFeedOutModule” DROP COLUMN

“CustomItemBaseMapping”;

INSERT INTO “__EFMigrationsHistory” (“MigrationId”, “ProductVersion”)

VALUES (‘20220308140322_FeedOutFix’, ‘5.0.9′);

COMMIT;

Algorithm 3: Solving problems at the database level and incomplete iterations through

Entity Framework mappings.

START TRANSACTION;

ALTER TABLE “EstimateSuperServiceResource” ADD “EstimateId” integer NOT NULL

DEFAULT 0;

SuperServiceId:int

Future Internet 2023, 15, x FOR PEER REVIEW 11 of 26

− The SuperService entity can be viewed as a process to which a service can be added,

which allows for the defining of specific services not only at an abstract level but also

at the level of the process itself;

− The possibility to create a SuperService entity without attaching a service, an abstract

level resulting from its sub-assemblies;

− The possibility of defining necessary items and resources in sub-assemblies at the

intermediate or final finished product level;

− The possibility of copying a section and reusing it.

In addition, changes were made in the execution phase of a project that required the

addition of two new entities, ProjectExecution and ProjectExecutionItem, which, for an

estimate created within a project, attach the approximate data for its execution:

− Scheduled start date;

− The nearest possible start dates;

− The furthest end date.

An estimate programmed for execution also has attached the list of items needed for

the estimated quantity, as seen in the following EstimateBase.cs:

EstimateBase.cs—Estimated changes structure
▶EstimateBase

➲ SuperServiceId:int

➲ SuperService: SuperService

➲ ParentEstimateId: int?

➲ ParentEstimate: Estimate

➲ Quantity: int?

➲ EarliestStartDate: DateTime

➲ LastestEndDate: DateTime

➲ EstimateItems: List<EstimateItem>

For the logic defined in the previously described models, another change that was

required is the use of the SuperService entity for calculating the estimates. Then, the im-

plementation of the changes made to the database following the analysis of the system

requirements was followed (see Algorithms 2 and 3).

Algorithm 2: Database modification process in relation to the described models. Expan-

sion of the database depends on the need to use the SuperService entity in order to cal-

culate the estimates.

// 1. START TRANSACTION;

ALTER TABLE “SupplierItem” ADD “Url” text NULL;

INSERT INTO “__EFMigrationsHistory” (“MigrationId”, “ProductVersion”)

VALUES (‘20220307155744_SupplierItemUrl’, ‘5.0.9′);

COMMIT;

//2. START TRANSACTION;

ALTER TABLE “SupplierFeedOutModule” DROP COLUMN

“CustomItemBaseMapping”;

INSERT INTO “__EFMigrationsHistory” (“MigrationId”, “ProductVersion”)

VALUES (‘20220308140322_FeedOutFix’, ‘5.0.9′);

COMMIT;

Algorithm 3: Solving problems at the database level and incomplete iterations through

Entity Framework mappings.

START TRANSACTION;

ALTER TABLE “EstimateSuperServiceResource” ADD “EstimateId” integer NOT NULL

DEFAULT 0;

SuperService: SuperService

Future Internet 2023, 15, x FOR PEER REVIEW 11 of 26

− The SuperService entity can be viewed as a process to which a service can be added,

which allows for the defining of specific services not only at an abstract level but also

at the level of the process itself;

− The possibility to create a SuperService entity without attaching a service, an abstract

level resulting from its sub-assemblies;

− The possibility of defining necessary items and resources in sub-assemblies at the

intermediate or final finished product level;

− The possibility of copying a section and reusing it.

In addition, changes were made in the execution phase of a project that required the

addition of two new entities, ProjectExecution and ProjectExecutionItem, which, for an

estimate created within a project, attach the approximate data for its execution:

− Scheduled start date;

− The nearest possible start dates;

− The furthest end date.

An estimate programmed for execution also has attached the list of items needed for

the estimated quantity, as seen in the following EstimateBase.cs:

EstimateBase.cs—Estimated changes structure
▶EstimateBase

➲ SuperServiceId:int

➲ SuperService: SuperService

➲ ParentEstimateId: int?

➲ ParentEstimate: Estimate

➲ Quantity: int?

➲ EarliestStartDate: DateTime

➲ LastestEndDate: DateTime

➲ EstimateItems: List<EstimateItem>

For the logic defined in the previously described models, another change that was

required is the use of the SuperService entity for calculating the estimates. Then, the im-

plementation of the changes made to the database following the analysis of the system

requirements was followed (see Algorithms 2 and 3).

Algorithm 2: Database modification process in relation to the described models. Expan-

sion of the database depends on the need to use the SuperService entity in order to cal-

culate the estimates.

// 1. START TRANSACTION;

ALTER TABLE “SupplierItem” ADD “Url” text NULL;

INSERT INTO “__EFMigrationsHistory” (“MigrationId”, “ProductVersion”)

VALUES (‘20220307155744_SupplierItemUrl’, ‘5.0.9′);

COMMIT;

//2. START TRANSACTION;

ALTER TABLE “SupplierFeedOutModule” DROP COLUMN

“CustomItemBaseMapping”;

INSERT INTO “__EFMigrationsHistory” (“MigrationId”, “ProductVersion”)

VALUES (‘20220308140322_FeedOutFix’, ‘5.0.9′);

COMMIT;

Algorithm 3: Solving problems at the database level and incomplete iterations through

Entity Framework mappings.

START TRANSACTION;

ALTER TABLE “EstimateSuperServiceResource” ADD “EstimateId” integer NOT NULL

DEFAULT 0;

ParentEstimateId: int?

Future Internet 2023, 15, x FOR PEER REVIEW 11 of 26

− The SuperService entity can be viewed as a process to which a service can be added,

which allows for the defining of specific services not only at an abstract level but also

at the level of the process itself;

− The possibility to create a SuperService entity without attaching a service, an abstract

level resulting from its sub-assemblies;

− The possibility of defining necessary items and resources in sub-assemblies at the

intermediate or final finished product level;

− The possibility of copying a section and reusing it.

In addition, changes were made in the execution phase of a project that required the

addition of two new entities, ProjectExecution and ProjectExecutionItem, which, for an

estimate created within a project, attach the approximate data for its execution:

− Scheduled start date;

− The nearest possible start dates;

− The furthest end date.

An estimate programmed for execution also has attached the list of items needed for

the estimated quantity, as seen in the following EstimateBase.cs:

EstimateBase.cs—Estimated changes structure
▶EstimateBase

➲ SuperServiceId:int

➲ SuperService: SuperService

➲ ParentEstimateId: int?

➲ ParentEstimate: Estimate

➲ Quantity: int?

➲ EarliestStartDate: DateTime

➲ LastestEndDate: DateTime

➲ EstimateItems: List<EstimateItem>

For the logic defined in the previously described models, another change that was

required is the use of the SuperService entity for calculating the estimates. Then, the im-

plementation of the changes made to the database following the analysis of the system

requirements was followed (see Algorithms 2 and 3).

Algorithm 2: Database modification process in relation to the described models. Expan-

sion of the database depends on the need to use the SuperService entity in order to cal-

culate the estimates.

// 1. START TRANSACTION;

ALTER TABLE “SupplierItem” ADD “Url” text NULL;

INSERT INTO “__EFMigrationsHistory” (“MigrationId”, “ProductVersion”)

VALUES (‘20220307155744_SupplierItemUrl’, ‘5.0.9′);

COMMIT;

//2. START TRANSACTION;

ALTER TABLE “SupplierFeedOutModule” DROP COLUMN

“CustomItemBaseMapping”;

INSERT INTO “__EFMigrationsHistory” (“MigrationId”, “ProductVersion”)

VALUES (‘20220308140322_FeedOutFix’, ‘5.0.9′);

COMMIT;

Algorithm 3: Solving problems at the database level and incomplete iterations through

Entity Framework mappings.

START TRANSACTION;

ALTER TABLE “EstimateSuperServiceResource” ADD “EstimateId” integer NOT NULL

DEFAULT 0;

ParentEstimate: Estimate

Future Internet 2023, 15, x FOR PEER REVIEW 11 of 26

− The SuperService entity can be viewed as a process to which a service can be added,

which allows for the defining of specific services not only at an abstract level but also

at the level of the process itself;

− The possibility to create a SuperService entity without attaching a service, an abstract

level resulting from its sub-assemblies;

− The possibility of defining necessary items and resources in sub-assemblies at the

intermediate or final finished product level;

− The possibility of copying a section and reusing it.

In addition, changes were made in the execution phase of a project that required the

addition of two new entities, ProjectExecution and ProjectExecutionItem, which, for an

estimate created within a project, attach the approximate data for its execution:

− Scheduled start date;

− The nearest possible start dates;

− The furthest end date.

An estimate programmed for execution also has attached the list of items needed for

the estimated quantity, as seen in the following EstimateBase.cs:

EstimateBase.cs—Estimated changes structure
▶EstimateBase

➲ SuperServiceId:int

➲ SuperService: SuperService

➲ ParentEstimateId: int?

➲ ParentEstimate: Estimate

➲ Quantity: int?

➲ EarliestStartDate: DateTime

➲ LastestEndDate: DateTime

➲ EstimateItems: List<EstimateItem>

For the logic defined in the previously described models, another change that was

required is the use of the SuperService entity for calculating the estimates. Then, the im-

plementation of the changes made to the database following the analysis of the system

requirements was followed (see Algorithms 2 and 3).

Algorithm 2: Database modification process in relation to the described models. Expan-

sion of the database depends on the need to use the SuperService entity in order to cal-

culate the estimates.

// 1. START TRANSACTION;

ALTER TABLE “SupplierItem” ADD “Url” text NULL;

INSERT INTO “__EFMigrationsHistory” (“MigrationId”, “ProductVersion”)

VALUES (‘20220307155744_SupplierItemUrl’, ‘5.0.9′);

COMMIT;

//2. START TRANSACTION;

ALTER TABLE “SupplierFeedOutModule” DROP COLUMN

“CustomItemBaseMapping”;

INSERT INTO “__EFMigrationsHistory” (“MigrationId”, “ProductVersion”)

VALUES (‘20220308140322_FeedOutFix’, ‘5.0.9′);

COMMIT;

Algorithm 3: Solving problems at the database level and incomplete iterations through

Entity Framework mappings.

START TRANSACTION;

ALTER TABLE “EstimateSuperServiceResource” ADD “EstimateId” integer NOT NULL

DEFAULT 0;

Quantity: int?

Future Internet 2023, 15, x FOR PEER REVIEW 11 of 26

− The SuperService entity can be viewed as a process to which a service can be added,

which allows for the defining of specific services not only at an abstract level but also

at the level of the process itself;

− The possibility to create a SuperService entity without attaching a service, an abstract

level resulting from its sub-assemblies;

− The possibility of defining necessary items and resources in sub-assemblies at the

intermediate or final finished product level;

− The possibility of copying a section and reusing it.

In addition, changes were made in the execution phase of a project that required the

addition of two new entities, ProjectExecution and ProjectExecutionItem, which, for an

estimate created within a project, attach the approximate data for its execution:

− Scheduled start date;

− The nearest possible start dates;

− The furthest end date.

An estimate programmed for execution also has attached the list of items needed for

the estimated quantity, as seen in the following EstimateBase.cs:

EstimateBase.cs—Estimated changes structure
▶EstimateBase

➲ SuperServiceId:int

➲ SuperService: SuperService

➲ ParentEstimateId: int?

➲ ParentEstimate: Estimate

➲ Quantity: int?

➲ EarliestStartDate: DateTime

➲ LastestEndDate: DateTime

➲ EstimateItems: List<EstimateItem>

For the logic defined in the previously described models, another change that was

required is the use of the SuperService entity for calculating the estimates. Then, the im-

plementation of the changes made to the database following the analysis of the system

requirements was followed (see Algorithms 2 and 3).

Algorithm 2: Database modification process in relation to the described models. Expan-

sion of the database depends on the need to use the SuperService entity in order to cal-

culate the estimates.

// 1. START TRANSACTION;

ALTER TABLE “SupplierItem” ADD “Url” text NULL;

INSERT INTO “__EFMigrationsHistory” (“MigrationId”, “ProductVersion”)

VALUES (‘20220307155744_SupplierItemUrl’, ‘5.0.9′);

COMMIT;

//2. START TRANSACTION;

ALTER TABLE “SupplierFeedOutModule” DROP COLUMN

“CustomItemBaseMapping”;

INSERT INTO “__EFMigrationsHistory” (“MigrationId”, “ProductVersion”)

VALUES (‘20220308140322_FeedOutFix’, ‘5.0.9′);

COMMIT;

Algorithm 3: Solving problems at the database level and incomplete iterations through

Entity Framework mappings.

START TRANSACTION;

ALTER TABLE “EstimateSuperServiceResource” ADD “EstimateId” integer NOT NULL

DEFAULT 0;

EarliestStartDate: DateTime

Future Internet 2023, 15, x FOR PEER REVIEW 11 of 26

− The SuperService entity can be viewed as a process to which a service can be added,

which allows for the defining of specific services not only at an abstract level but also

at the level of the process itself;

− The possibility to create a SuperService entity without attaching a service, an abstract

level resulting from its sub-assemblies;

− The possibility of defining necessary items and resources in sub-assemblies at the

intermediate or final finished product level;

− The possibility of copying a section and reusing it.

In addition, changes were made in the execution phase of a project that required the

addition of two new entities, ProjectExecution and ProjectExecutionItem, which, for an

estimate created within a project, attach the approximate data for its execution:

− Scheduled start date;

− The nearest possible start dates;

− The furthest end date.

An estimate programmed for execution also has attached the list of items needed for

the estimated quantity, as seen in the following EstimateBase.cs:

EstimateBase.cs—Estimated changes structure
▶EstimateBase

➲ SuperServiceId:int

➲ SuperService: SuperService

➲ ParentEstimateId: int?

➲ ParentEstimate: Estimate

➲ Quantity: int?

➲ EarliestStartDate: DateTime

➲ LastestEndDate: DateTime

➲ EstimateItems: List<EstimateItem>

For the logic defined in the previously described models, another change that was

required is the use of the SuperService entity for calculating the estimates. Then, the im-

plementation of the changes made to the database following the analysis of the system

requirements was followed (see Algorithms 2 and 3).

Algorithm 2: Database modification process in relation to the described models. Expan-

sion of the database depends on the need to use the SuperService entity in order to cal-

culate the estimates.

// 1. START TRANSACTION;

ALTER TABLE “SupplierItem” ADD “Url” text NULL;

INSERT INTO “__EFMigrationsHistory” (“MigrationId”, “ProductVersion”)

VALUES (‘20220307155744_SupplierItemUrl’, ‘5.0.9′);

COMMIT;

//2. START TRANSACTION;

ALTER TABLE “SupplierFeedOutModule” DROP COLUMN

“CustomItemBaseMapping”;

INSERT INTO “__EFMigrationsHistory” (“MigrationId”, “ProductVersion”)

VALUES (‘20220308140322_FeedOutFix’, ‘5.0.9′);

COMMIT;

Algorithm 3: Solving problems at the database level and incomplete iterations through

Entity Framework mappings.

START TRANSACTION;

ALTER TABLE “EstimateSuperServiceResource” ADD “EstimateId” integer NOT NULL

DEFAULT 0;

LastestEndDate: DateTime

Future Internet 2023, 15, x FOR PEER REVIEW 11 of 26

− The SuperService entity can be viewed as a process to which a service can be added,

which allows for the defining of specific services not only at an abstract level but also

at the level of the process itself;

− The possibility to create a SuperService entity without attaching a service, an abstract

level resulting from its sub-assemblies;

− The possibility of defining necessary items and resources in sub-assemblies at the

intermediate or final finished product level;

− The possibility of copying a section and reusing it.

In addition, changes were made in the execution phase of a project that required the

addition of two new entities, ProjectExecution and ProjectExecutionItem, which, for an

estimate created within a project, attach the approximate data for its execution:

− Scheduled start date;

− The nearest possible start dates;

− The furthest end date.

An estimate programmed for execution also has attached the list of items needed for

the estimated quantity, as seen in the following EstimateBase.cs:

EstimateBase.cs—Estimated changes structure
▶EstimateBase

➲ SuperServiceId:int

➲ SuperService: SuperService

➲ ParentEstimateId: int?

➲ ParentEstimate: Estimate

➲ Quantity: int?

➲ EarliestStartDate: DateTime

➲ LastestEndDate: DateTime

➲ EstimateItems: List<EstimateItem>

For the logic defined in the previously described models, another change that was

required is the use of the SuperService entity for calculating the estimates. Then, the im-

plementation of the changes made to the database following the analysis of the system

requirements was followed (see Algorithms 2 and 3).

Algorithm 2: Database modification process in relation to the described models. Expan-

sion of the database depends on the need to use the SuperService entity in order to cal-

culate the estimates.

// 1. START TRANSACTION;

ALTER TABLE “SupplierItem” ADD “Url” text NULL;

INSERT INTO “__EFMigrationsHistory” (“MigrationId”, “ProductVersion”)

VALUES (‘20220307155744_SupplierItemUrl’, ‘5.0.9′);

COMMIT;

//2. START TRANSACTION;

ALTER TABLE “SupplierFeedOutModule” DROP COLUMN

“CustomItemBaseMapping”;

INSERT INTO “__EFMigrationsHistory” (“MigrationId”, “ProductVersion”)

VALUES (‘20220308140322_FeedOutFix’, ‘5.0.9′);

COMMIT;

Algorithm 3: Solving problems at the database level and incomplete iterations through

Entity Framework mappings.

START TRANSACTION;

ALTER TABLE “EstimateSuperServiceResource” ADD “EstimateId” integer NOT NULL

DEFAULT 0;

EstimateItems: List<EstimateItem>

For the logic defined in the previously described models, another change that was
required is the use of the SuperService entity for calculating the estimates. Then, the
implementation of the changes made to the database following the analysis of the system
requirements was followed (see Algorithms 2 and 3).

Algorithm 2: Database modification process in relation to the described models. Expansion of the
database depends on the need to use the SuperService entity in order to calculate the estimates.
// 1. START TRANSACTION;
ALTER TABLE “SupplierItem”ADD “Url”text NULL;
INSERT INTO
“__EFMigrationsHistory” (“MigrationId”, “ProductVersion”)
VALUES (‘20220307155744_SupplierItemUrl’, ‘5.0.9′);
COMMIT;
//2. START TRANSACTION;
ALTER TABLE
“SupplierFeedOutModule”DROP COLUMN
“CustomItemBaseMapping”;
INSERT INTO
“__EFMigrationsHistory” (“MigrationId”, “ProductVersion”)
VALUES (‘20220308140322_FeedOutFix’, ‘5.0.9′);
COMMIT;

Future Internet 2023, 15, 2 12 of 26

Algorithm 3: Solving problems at the database level and incomplete iterations through Entity
Framework mappings.
START TRANSACTION;
ALTER TABLE
“EstimateSuperServiceResource”ADD “EstimateId”integer NOT NULL
DEFAULT 0;
ALTER TABLE
“EstimateServiceResource”ADD “EstimateId”integer NOT NULL
DEFAULT 0;
CREATE INDEX
“IX_EstimateSuperServiceResource_EstimateId”ON
“EstimateSuperServiceResource” (“EstimateId”);
CREATE INDEX
“IX_EstimateServiceResource_EstimateId”ON “EstimateServiceResource”
(“EstimateId”);ALTER TABLE
“EstimateServiceResource”ADD CONSTRAINT
“FK_EstimateServiceResource_Estimate_EstimateId”
FOREIGN
KEY (“EstimateId”)REFERENCES “Estimate” (“Id”)ON DELETE
CASCADE;
ALTER TABLE
“EstimateSuperServiceResource”ADD CONSTRAINT
“FK_EstimateSuperServiceResource_Estimate_EstimateId”
FOREIGN
KEY (“EstimateId”)REFERENCES “Estimate” (“Id”)ON DELETE
CASCADE;
INSERT INTO
“__EFMigrationsHistory” (“MigrationId”, “ProductVersion”)
VALUES (‘20220324115416_Estimate’, ‘5.0.9’);
COMMIT;

3.1. Designing Project Creation and Optimization RESTful API

Based on the analysis of the technical specifications related to the implementation
of GraphQL, in this stage, the necessary steps for its implementation were followed. To
facilitate the implementation of GraphQL in the application, the Entity Framework was
used to interface with the database.

GraphQL proposes three notions for implementation:

− Query: defining the data retrieval methods where we will be able to page, filter, or sort
the data;
−Mutation: defining the methods of creating, modifying, or deleting data;
− Subscription: defining events from which the user can retrieve data in real-time from
the server.

Considering that in the previous stages of development API methods were created
to allow CRUD (create, read, modify, and delete) operations on the entities defined in
the application, the way to test them both is through GraphiQL, specifically GraphQL
integrated into the application as well as through Postman, which is a simple and intuitive
API testing tool. Tests of the same method using the paging, filtering, and ordering
parameters were conducted in both test environments. The testing of the methods with
GraphiQL using paging, ordering, and filtering parameters was conducted in different
test environments. The process required for the development of CRUD operations can be
observed in the GraphQL structure:

Future Internet 2023, 15, 2 13 of 26

Query—Body and GraphQL Variables Pretty Body—Items

1 {
2 itemBrands(skip: 0, take:5,
3 where: {name: {contains: “1”}},
4 order:{id:DESC}) {
5 items{
6 id,
7 name
8 },
9 pageInfo{
10 hasNextPage,
11 hasPreviousPage
12 }
13 totalCount
14 }
15 }

1 {
2 “data”: {
3 “itemBrands””: {
4 “items”: [{
5 “id”: 17, “name”: “Kober15” },
6 {
7 “id”: 16, “name”: “Kober14” },
8 {
9 “id”: 15, “name”: “Kober13” },
10 {
11 “id”: 14, “name”: “Kober12” },
12 }],
13 “pageInfo”: { “hasNextPage”: true,
14 “hasPreviousPage”: false },
15 “totalCount”: 7 }] }

In addition, the technical specifications that describe the changes to be made to
the planning and execution phases were taken into account, so that the new models
needed in the API were defined, the required changes were made to the already existing
models, and the methods were created by API connection. For the planning phase, the new
SuperService and SuperServiceDetail models were defined and the relationship diagram of
these two classes and the others needed for service planning was created and presented
in SuperServiceService.cs. Having the image of the relations between the classes, the
necessary methods for them were defined:

− Entity fetch method with paging parameters;
− Entity retrieval method by a unique identifier;
− Entity creation method;
− Entity modification method;
− Entity deletion method.

In addition to the CRUD methods, specific methods have also been added:

− Create SuperService hierarchy (parent–child tree);
− Copy the tree sequence to another tree.

SuperServiceService.cs—examples of SuperService specific methods

ISuperServiceService

Future Internet 2023, 15, x FOR PEER REVIEW 11 of 26

− The SuperService entity can be viewed as a process to which a service can be added,

which allows for the defining of specific services not only at an abstract level but also

at the level of the process itself;

− The possibility to create a SuperService entity without attaching a service, an abstract

level resulting from its sub-assemblies;

− The possibility of defining necessary items and resources in sub-assemblies at the

intermediate or final finished product level;

− The possibility of copying a section and reusing it.

In addition, changes were made in the execution phase of a project that required the

addition of two new entities, ProjectExecution and ProjectExecutionItem, which, for an

estimate created within a project, attach the approximate data for its execution:

− Scheduled start date;

− The nearest possible start dates;

− The furthest end date.

An estimate programmed for execution also has attached the list of items needed for

the estimated quantity, as seen in the following EstimateBase.cs:

EstimateBase.cs—Estimated changes structure
▶EstimateBase

➲ SuperServiceId:int

➲ SuperService: SuperService

➲ ParentEstimateId: int?

➲ ParentEstimate: Estimate

➲ Quantity: int?

➲ EarliestStartDate: DateTime

➲ LastestEndDate: DateTime

➲ EstimateItems: List<EstimateItem>

For the logic defined in the previously described models, another change that was

required is the use of the SuperService entity for calculating the estimates. Then, the im-

plementation of the changes made to the database following the analysis of the system

requirements was followed (see Algorithms 2 and 3).

Algorithm 2: Database modification process in relation to the described models. Expan-

sion of the database depends on the need to use the SuperService entity in order to cal-

culate the estimates.

// 1. START TRANSACTION;

ALTER TABLE “SupplierItem” ADD “Url” text NULL;

INSERT INTO “__EFMigrationsHistory” (“MigrationId”, “ProductVersion”)

VALUES (‘20220307155744_SupplierItemUrl’, ‘5.0.9′);

COMMIT;

//2. START TRANSACTION;

ALTER TABLE “SupplierFeedOutModule” DROP COLUMN

“CustomItemBaseMapping”;

INSERT INTO “__EFMigrationsHistory” (“MigrationId”, “ProductVersion”)

VALUES (‘20220308140322_FeedOutFix’, ‘5.0.9′);

COMMIT;

Algorithm 3: Solving problems at the database level and incomplete iterations through

Entity Framework mappings.

START TRANSACTION;

ALTER TABLE “EstimateSuperServiceResource” ADD “EstimateId” integer NOT NULL

DEFAULT 0;

_superServiceService: IRepository<SuperService>

Future Internet 2023, 15, x FOR PEER REVIEW 11 of 26

− The SuperService entity can be viewed as a process to which a service can be added,

which allows for the defining of specific services not only at an abstract level but also

at the level of the process itself;

− The possibility to create a SuperService entity without attaching a service, an abstract

level resulting from its sub-assemblies;

− The possibility of defining necessary items and resources in sub-assemblies at the

intermediate or final finished product level;

− The possibility of copying a section and reusing it.

In addition, changes were made in the execution phase of a project that required the

addition of two new entities, ProjectExecution and ProjectExecutionItem, which, for an

estimate created within a project, attach the approximate data for its execution:

− Scheduled start date;

− The nearest possible start dates;

− The furthest end date.

An estimate programmed for execution also has attached the list of items needed for

the estimated quantity, as seen in the following EstimateBase.cs:

EstimateBase.cs—Estimated changes structure
▶EstimateBase

➲ SuperServiceId:int

➲ SuperService: SuperService

➲ ParentEstimateId: int?

➲ ParentEstimate: Estimate

➲ Quantity: int?

➲ EarliestStartDate: DateTime

➲ LastestEndDate: DateTime

➲ EstimateItems: List<EstimateItem>

For the logic defined in the previously described models, another change that was

required is the use of the SuperService entity for calculating the estimates. Then, the im-

plementation of the changes made to the database following the analysis of the system

requirements was followed (see Algorithms 2 and 3).

Algorithm 2: Database modification process in relation to the described models. Expan-

sion of the database depends on the need to use the SuperService entity in order to cal-

culate the estimates.

// 1. START TRANSACTION;

ALTER TABLE “SupplierItem” ADD “Url” text NULL;

INSERT INTO “__EFMigrationsHistory” (“MigrationId”, “ProductVersion”)

VALUES (‘20220307155744_SupplierItemUrl’, ‘5.0.9′);

COMMIT;

//2. START TRANSACTION;

ALTER TABLE “SupplierFeedOutModule” DROP COLUMN

“CustomItemBaseMapping”;

INSERT INTO “__EFMigrationsHistory” (“MigrationId”, “ProductVersion”)

VALUES (‘20220308140322_FeedOutFix’, ‘5.0.9′);

COMMIT;

Algorithm 3: Solving problems at the database level and incomplete iterations through

Entity Framework mappings.

START TRANSACTION;

ALTER TABLE “EstimateSuperServiceResource” ADD “EstimateId” integer NOT NULL

DEFAULT 0;

SuperServiceService(IRepository <SuperService>)

Future Internet 2023, 15, x FOR PEER REVIEW 11 of 26

− The SuperService entity can be viewed as a process to which a service can be added,

which allows for the defining of specific services not only at an abstract level but also

at the level of the process itself;

− The possibility to create a SuperService entity without attaching a service, an abstract

level resulting from its sub-assemblies;

− The possibility of defining necessary items and resources in sub-assemblies at the

intermediate or final finished product level;

− The possibility of copying a section and reusing it.

In addition, changes were made in the execution phase of a project that required the

addition of two new entities, ProjectExecution and ProjectExecutionItem, which, for an

estimate created within a project, attach the approximate data for its execution:

− Scheduled start date;

− The nearest possible start dates;

− The furthest end date.

An estimate programmed for execution also has attached the list of items needed for

the estimated quantity, as seen in the following EstimateBase.cs:

EstimateBase.cs—Estimated changes structure
▶EstimateBase

➲ SuperServiceId:int

➲ SuperService: SuperService

➲ ParentEstimateId: int?

➲ ParentEstimate: Estimate

➲ Quantity: int?

➲ EarliestStartDate: DateTime

➲ LastestEndDate: DateTime

➲ EstimateItems: List<EstimateItem>

For the logic defined in the previously described models, another change that was

required is the use of the SuperService entity for calculating the estimates. Then, the im-

plementation of the changes made to the database following the analysis of the system

requirements was followed (see Algorithms 2 and 3).

Algorithm 2: Database modification process in relation to the described models. Expan-

sion of the database depends on the need to use the SuperService entity in order to cal-

culate the estimates.

// 1. START TRANSACTION;

ALTER TABLE “SupplierItem” ADD “Url” text NULL;

INSERT INTO “__EFMigrationsHistory” (“MigrationId”, “ProductVersion”)

VALUES (‘20220307155744_SupplierItemUrl’, ‘5.0.9′);

COMMIT;

//2. START TRANSACTION;

ALTER TABLE “SupplierFeedOutModule” DROP COLUMN

“CustomItemBaseMapping”;

INSERT INTO “__EFMigrationsHistory” (“MigrationId”, “ProductVersion”)

VALUES (‘20220308140322_FeedOutFix’, ‘5.0.9′);

COMMIT;

Algorithm 3: Solving problems at the database level and incomplete iterations through

Entity Framework mappings.

START TRANSACTION;

ALTER TABLE “EstimateSuperServiceResource” ADD “EstimateId” integer NOT NULL

DEFAULT 0;

GetAllWhereAsync(SuperServiceQueryResource): Task<|List<SuperService>>

Future Internet 2023, 15, x FOR PEER REVIEW 11 of 26

− The SuperService entity can be viewed as a process to which a service can be added,

which allows for the defining of specific services not only at an abstract level but also

at the level of the process itself;

− The possibility to create a SuperService entity without attaching a service, an abstract

level resulting from its sub-assemblies;

− The possibility of defining necessary items and resources in sub-assemblies at the

intermediate or final finished product level;

− The possibility of copying a section and reusing it.

In addition, changes were made in the execution phase of a project that required the

addition of two new entities, ProjectExecution and ProjectExecutionItem, which, for an

estimate created within a project, attach the approximate data for its execution:

− Scheduled start date;

− The nearest possible start dates;

− The furthest end date.

An estimate programmed for execution also has attached the list of items needed for

the estimated quantity, as seen in the following EstimateBase.cs:

EstimateBase.cs—Estimated changes structure
▶EstimateBase

➲ SuperServiceId:int

➲ SuperService: SuperService

➲ ParentEstimateId: int?

➲ ParentEstimate: Estimate

➲ Quantity: int?

➲ EarliestStartDate: DateTime

➲ LastestEndDate: DateTime

➲ EstimateItems: List<EstimateItem>

For the logic defined in the previously described models, another change that was

required is the use of the SuperService entity for calculating the estimates. Then, the im-

plementation of the changes made to the database following the analysis of the system

requirements was followed (see Algorithms 2 and 3).

Algorithm 2: Database modification process in relation to the described models. Expan-

sion of the database depends on the need to use the SuperService entity in order to cal-

culate the estimates.

// 1. START TRANSACTION;

ALTER TABLE “SupplierItem” ADD “Url” text NULL;

INSERT INTO “__EFMigrationsHistory” (“MigrationId”, “ProductVersion”)

VALUES (‘20220307155744_SupplierItemUrl’, ‘5.0.9′);

COMMIT;

//2. START TRANSACTION;

ALTER TABLE “SupplierFeedOutModule” DROP COLUMN

“CustomItemBaseMapping”;

INSERT INTO “__EFMigrationsHistory” (“MigrationId”, “ProductVersion”)

VALUES (‘20220308140322_FeedOutFix’, ‘5.0.9′);

COMMIT;

Algorithm 3: Solving problems at the database level and incomplete iterations through

Entity Framework mappings.

START TRANSACTION;

ALTER TABLE “EstimateSuperServiceResource” ADD “EstimateId” integer NOT NULL

DEFAULT 0;

HasSuperServiceChildren(int): Task<bool>

For the execution phase, changes were made to the existing models:

− Estimates to be made based on a SuperService entity;
− Possibility to create hierarchical structure on estimates;
− Estimates will also take into account the required resources, not just items. Resources
will be pooled from the attached service along with those from the SuperService, if any;
− Estimates have a cumulative list of calculated items, from the attached service and from
the SuperService, if any.

After the changes to the existing classes, two new classes were added, which was
necessary for the execution of estimates within projects: ProjectExecution and ProjectExecu-
tionItem. A module has been developed to download records from the database into files
with a user-defined structure and predefined format (see the SupplierFeed structure below).

Future Internet 2023, 15, 2 14 of 26

SupplierFeed—design of quotation execution classes and registration in the database defined by
the user

ISupplierFeedOutModule

Future Internet 2023, 15, x FOR PEER REVIEW 11 of 26

− The SuperService entity can be viewed as a process to which a service can be added,

which allows for the defining of specific services not only at an abstract level but also

at the level of the process itself;

− The possibility to create a SuperService entity without attaching a service, an abstract

level resulting from its sub-assemblies;

− The possibility of defining necessary items and resources in sub-assemblies at the

intermediate or final finished product level;

− The possibility of copying a section and reusing it.

In addition, changes were made in the execution phase of a project that required the

addition of two new entities, ProjectExecution and ProjectExecutionItem, which, for an

estimate created within a project, attach the approximate data for its execution:

− Scheduled start date;

− The nearest possible start dates;

− The furthest end date.

An estimate programmed for execution also has attached the list of items needed for

the estimated quantity, as seen in the following EstimateBase.cs:

EstimateBase.cs—Estimated changes structure
▶EstimateBase

➲ SuperServiceId:int

➲ SuperService: SuperService

➲ ParentEstimateId: int?

➲ ParentEstimate: Estimate

➲ Quantity: int?

➲ EarliestStartDate: DateTime

➲ LastestEndDate: DateTime

➲ EstimateItems: List<EstimateItem>

For the logic defined in the previously described models, another change that was

required is the use of the SuperService entity for calculating the estimates. Then, the im-

plementation of the changes made to the database following the analysis of the system

requirements was followed (see Algorithms 2 and 3).

Algorithm 2: Database modification process in relation to the described models. Expan-

sion of the database depends on the need to use the SuperService entity in order to cal-

culate the estimates.

// 1. START TRANSACTION;

ALTER TABLE “SupplierItem” ADD “Url” text NULL;

INSERT INTO “__EFMigrationsHistory” (“MigrationId”, “ProductVersion”)

VALUES (‘20220307155744_SupplierItemUrl’, ‘5.0.9′);

COMMIT;

//2. START TRANSACTION;

ALTER TABLE “SupplierFeedOutModule” DROP COLUMN

“CustomItemBaseMapping”;

INSERT INTO “__EFMigrationsHistory” (“MigrationId”, “ProductVersion”)

VALUES (‘20220308140322_FeedOutFix’, ‘5.0.9′);

COMMIT;

Algorithm 3: Solving problems at the database level and incomplete iterations through

Entity Framework mappings.

START TRANSACTION;

ALTER TABLE “EstimateSuperServiceResource” ADD “EstimateId” integer NOT NULL

DEFAULT 0;

Name: string

Future Internet 2023, 15, x FOR PEER REVIEW 11 of 26

− The SuperService entity can be viewed as a process to which a service can be added,

which allows for the defining of specific services not only at an abstract level but also

at the level of the process itself;

− The possibility to create a SuperService entity without attaching a service, an abstract

level resulting from its sub-assemblies;

− The possibility of defining necessary items and resources in sub-assemblies at the

intermediate or final finished product level;

− The possibility of copying a section and reusing it.

In addition, changes were made in the execution phase of a project that required the

addition of two new entities, ProjectExecution and ProjectExecutionItem, which, for an

estimate created within a project, attach the approximate data for its execution:

− Scheduled start date;

− The nearest possible start dates;

− The furthest end date.

An estimate programmed for execution also has attached the list of items needed for

the estimated quantity, as seen in the following EstimateBase.cs:

EstimateBase.cs—Estimated changes structure
▶EstimateBase

➲ SuperServiceId:int

➲ SuperService: SuperService

➲ ParentEstimateId: int?

➲ ParentEstimate: Estimate

➲ Quantity: int?

➲ EarliestStartDate: DateTime

➲ LastestEndDate: DateTime

➲ EstimateItems: List<EstimateItem>

For the logic defined in the previously described models, another change that was

required is the use of the SuperService entity for calculating the estimates. Then, the im-

plementation of the changes made to the database following the analysis of the system

requirements was followed (see Algorithms 2 and 3).

Algorithm 2: Database modification process in relation to the described models. Expan-

sion of the database depends on the need to use the SuperService entity in order to cal-

culate the estimates.

// 1. START TRANSACTION;

ALTER TABLE “SupplierItem” ADD “Url” text NULL;

INSERT INTO “__EFMigrationsHistory” (“MigrationId”, “ProductVersion”)

VALUES (‘20220307155744_SupplierItemUrl’, ‘5.0.9′);

COMMIT;

//2. START TRANSACTION;

ALTER TABLE “SupplierFeedOutModule” DROP COLUMN

“CustomItemBaseMapping”;

INSERT INTO “__EFMigrationsHistory” (“MigrationId”, “ProductVersion”)

VALUES (‘20220308140322_FeedOutFix’, ‘5.0.9′);

COMMIT;

Algorithm 3: Solving problems at the database level and incomplete iterations through

Entity Framework mappings.

START TRANSACTION;

ALTER TABLE “EstimateSuperServiceResource” ADD “EstimateId” integer NOT NULL

DEFAULT 0;

SupplierId: int

Future Internet 2023, 15, x FOR PEER REVIEW 11 of 26

− The SuperService entity can be viewed as a process to which a service can be added,

which allows for the defining of specific services not only at an abstract level but also

at the level of the process itself;

− The possibility to create a SuperService entity without attaching a service, an abstract

level resulting from its sub-assemblies;

− The possibility of defining necessary items and resources in sub-assemblies at the

intermediate or final finished product level;

− The possibility of copying a section and reusing it.

In addition, changes were made in the execution phase of a project that required the

addition of two new entities, ProjectExecution and ProjectExecutionItem, which, for an

estimate created within a project, attach the approximate data for its execution:

− Scheduled start date;

− The nearest possible start dates;

− The furthest end date.

An estimate programmed for execution also has attached the list of items needed for

the estimated quantity, as seen in the following EstimateBase.cs:

EstimateBase.cs—Estimated changes structure
▶EstimateBase

➲ SuperServiceId:int

➲ SuperService: SuperService

➲ ParentEstimateId: int?

➲ ParentEstimate: Estimate

➲ Quantity: int?

➲ EarliestStartDate: DateTime

➲ LastestEndDate: DateTime

➲ EstimateItems: List<EstimateItem>

For the logic defined in the previously described models, another change that was

required is the use of the SuperService entity for calculating the estimates. Then, the im-

plementation of the changes made to the database following the analysis of the system

requirements was followed (see Algorithms 2 and 3).

Algorithm 2: Database modification process in relation to the described models. Expan-

sion of the database depends on the need to use the SuperService entity in order to cal-

culate the estimates.

// 1. START TRANSACTION;

ALTER TABLE “SupplierItem” ADD “Url” text NULL;

INSERT INTO “__EFMigrationsHistory” (“MigrationId”, “ProductVersion”)

VALUES (‘20220307155744_SupplierItemUrl’, ‘5.0.9′);

COMMIT;

//2. START TRANSACTION;

ALTER TABLE “SupplierFeedOutModule” DROP COLUMN

“CustomItemBaseMapping”;

INSERT INTO “__EFMigrationsHistory” (“MigrationId”, “ProductVersion”)

VALUES (‘20220308140322_FeedOutFix’, ‘5.0.9′);

COMMIT;

Algorithm 3: Solving problems at the database level and incomplete iterations through

Entity Framework mappings.

START TRANSACTION;

ALTER TABLE “EstimateSuperServiceResource” ADD “EstimateId” integer NOT NULL

DEFAULT 0;

ItemBaseMapping: string

Future Internet 2023, 15, x FOR PEER REVIEW 11 of 26

− The SuperService entity can be viewed as a process to which a service can be added,

which allows for the defining of specific services not only at an abstract level but also

at the level of the process itself;

− The possibility to create a SuperService entity without attaching a service, an abstract

level resulting from its sub-assemblies;

− The possibility of defining necessary items and resources in sub-assemblies at the

intermediate or final finished product level;

− The possibility of copying a section and reusing it.

In addition, changes were made in the execution phase of a project that required the

addition of two new entities, ProjectExecution and ProjectExecutionItem, which, for an

estimate created within a project, attach the approximate data for its execution:

− Scheduled start date;

− The nearest possible start dates;

− The furthest end date.

An estimate programmed for execution also has attached the list of items needed for

the estimated quantity, as seen in the following EstimateBase.cs:

EstimateBase.cs—Estimated changes structure
▶EstimateBase

➲ SuperServiceId:int

➲ SuperService: SuperService

➲ ParentEstimateId: int?

➲ ParentEstimate: Estimate

➲ Quantity: int?

➲ EarliestStartDate: DateTime

➲ LastestEndDate: DateTime

➲ EstimateItems: List<EstimateItem>

For the logic defined in the previously described models, another change that was

required is the use of the SuperService entity for calculating the estimates. Then, the im-

plementation of the changes made to the database following the analysis of the system

requirements was followed (see Algorithms 2 and 3).

Algorithm 2: Database modification process in relation to the described models. Expan-

sion of the database depends on the need to use the SuperService entity in order to cal-

culate the estimates.

// 1. START TRANSACTION;

ALTER TABLE “SupplierItem” ADD “Url” text NULL;

INSERT INTO “__EFMigrationsHistory” (“MigrationId”, “ProductVersion”)

VALUES (‘20220307155744_SupplierItemUrl’, ‘5.0.9′);

COMMIT;

//2. START TRANSACTION;

ALTER TABLE “SupplierFeedOutModule” DROP COLUMN

“CustomItemBaseMapping”;

INSERT INTO “__EFMigrationsHistory” (“MigrationId”, “ProductVersion”)

VALUES (‘20220308140322_FeedOutFix’, ‘5.0.9′);

COMMIT;

Algorithm 3: Solving problems at the database level and incomplete iterations through

Entity Framework mappings.

START TRANSACTION;

ALTER TABLE “EstimateSuperServiceResource” ADD “EstimateId” integer NOT NULL

DEFAULT 0;

CustomItemBaseMapping: string

Future Internet 2023, 15, x FOR PEER REVIEW 11 of 26

− The SuperService entity can be viewed as a process to which a service can be added,

which allows for the defining of specific services not only at an abstract level but also

at the level of the process itself;

− The possibility to create a SuperService entity without attaching a service, an abstract

level resulting from its sub-assemblies;

− The possibility of defining necessary items and resources in sub-assemblies at the

intermediate or final finished product level;

− The possibility of copying a section and reusing it.

In addition, changes were made in the execution phase of a project that required the

addition of two new entities, ProjectExecution and ProjectExecutionItem, which, for an

estimate created within a project, attach the approximate data for its execution:

− Scheduled start date;

− The nearest possible start dates;

− The furthest end date.

An estimate programmed for execution also has attached the list of items needed for

the estimated quantity, as seen in the following EstimateBase.cs:

EstimateBase.cs—Estimated changes structure
▶EstimateBase

➲ SuperServiceId:int

➲ SuperService: SuperService

➲ ParentEstimateId: int?

➲ ParentEstimate: Estimate

➲ Quantity: int?

➲ EarliestStartDate: DateTime

➲ LastestEndDate: DateTime

➲ EstimateItems: List<EstimateItem>

For the logic defined in the previously described models, another change that was

required is the use of the SuperService entity for calculating the estimates. Then, the im-

plementation of the changes made to the database following the analysis of the system

requirements was followed (see Algorithms 2 and 3).

Algorithm 2: Database modification process in relation to the described models. Expan-

sion of the database depends on the need to use the SuperService entity in order to cal-

culate the estimates.

// 1. START TRANSACTION;

ALTER TABLE “SupplierItem” ADD “Url” text NULL;

INSERT INTO “__EFMigrationsHistory” (“MigrationId”, “ProductVersion”)

VALUES (‘20220307155744_SupplierItemUrl’, ‘5.0.9′);

COMMIT;

//2. START TRANSACTION;

ALTER TABLE “SupplierFeedOutModule” DROP COLUMN

“CustomItemBaseMapping”;

INSERT INTO “__EFMigrationsHistory” (“MigrationId”, “ProductVersion”)

VALUES (‘20220308140322_FeedOutFix’, ‘5.0.9′);

COMMIT;

Algorithm 3: Solving problems at the database level and incomplete iterations through

Entity Framework mappings.

START TRANSACTION;

ALTER TABLE “EstimateSuperServiceResource” ADD “EstimateId” integer NOT NULL

DEFAULT 0;

SettingValues: List <SupplierFeedOutSettingValue>

Future Internet 2023, 15, x FOR PEER REVIEW 11 of 26

− The SuperService entity can be viewed as a process to which a service can be added,

which allows for the defining of specific services not only at an abstract level but also

at the level of the process itself;

− The possibility to create a SuperService entity without attaching a service, an abstract

level resulting from its sub-assemblies;

− The possibility of defining necessary items and resources in sub-assemblies at the

intermediate or final finished product level;

− The possibility of copying a section and reusing it.

In addition, changes were made in the execution phase of a project that required the

addition of two new entities, ProjectExecution and ProjectExecutionItem, which, for an

estimate created within a project, attach the approximate data for its execution:

− Scheduled start date;

− The nearest possible start dates;

− The furthest end date.

An estimate programmed for execution also has attached the list of items needed for

the estimated quantity, as seen in the following EstimateBase.cs:

EstimateBase.cs—Estimated changes structure
▶EstimateBase

➲ SuperServiceId:int

➲ SuperService: SuperService

➲ ParentEstimateId: int?

➲ ParentEstimate: Estimate

➲ Quantity: int?

➲ EarliestStartDate: DateTime

➲ LastestEndDate: DateTime

➲ EstimateItems: List<EstimateItem>

For the logic defined in the previously described models, another change that was

required is the use of the SuperService entity for calculating the estimates. Then, the im-

plementation of the changes made to the database following the analysis of the system

requirements was followed (see Algorithms 2 and 3).

Algorithm 2: Database modification process in relation to the described models. Expan-

sion of the database depends on the need to use the SuperService entity in order to cal-

culate the estimates.

// 1. START TRANSACTION;

ALTER TABLE “SupplierItem” ADD “Url” text NULL;

INSERT INTO “__EFMigrationsHistory” (“MigrationId”, “ProductVersion”)

VALUES (‘20220307155744_SupplierItemUrl’, ‘5.0.9′);

COMMIT;

//2. START TRANSACTION;

ALTER TABLE “SupplierFeedOutModule” DROP COLUMN

“CustomItemBaseMapping”;

INSERT INTO “__EFMigrationsHistory” (“MigrationId”, “ProductVersion”)

VALUES (‘20220308140322_FeedOutFix’, ‘5.0.9′);

COMMIT;

Algorithm 3: Solving problems at the database level and incomplete iterations through

Entity Framework mappings.

START TRANSACTION;

ALTER TABLE “EstimateSuperServiceResource” ADD “EstimateId” integer NOT NULL

DEFAULT 0;

ExpirationDate: DateTime?
ISupplierFeedOutSettingValue

Future Internet 2023, 15, x FOR PEER REVIEW 11 of 26

− The SuperService entity can be viewed as a process to which a service can be added,

which allows for the defining of specific services not only at an abstract level but also

at the level of the process itself;

− The possibility to create a SuperService entity without attaching a service, an abstract

level resulting from its sub-assemblies;

− The possibility of defining necessary items and resources in sub-assemblies at the

intermediate or final finished product level;

− The possibility of copying a section and reusing it.

In addition, changes were made in the execution phase of a project that required the

addition of two new entities, ProjectExecution and ProjectExecutionItem, which, for an

estimate created within a project, attach the approximate data for its execution:

− Scheduled start date;

− The nearest possible start dates;

− The furthest end date.

An estimate programmed for execution also has attached the list of items needed for

the estimated quantity, as seen in the following EstimateBase.cs:

EstimateBase.cs—Estimated changes structure
▶EstimateBase

➲ SuperServiceId:int

➲ SuperService: SuperService

➲ ParentEstimateId: int?

➲ ParentEstimate: Estimate

➲ Quantity: int?

➲ EarliestStartDate: DateTime

➲ LastestEndDate: DateTime

➲ EstimateItems: List<EstimateItem>

For the logic defined in the previously described models, another change that was

required is the use of the SuperService entity for calculating the estimates. Then, the im-

plementation of the changes made to the database following the analysis of the system

requirements was followed (see Algorithms 2 and 3).

Algorithm 2: Database modification process in relation to the described models. Expan-

sion of the database depends on the need to use the SuperService entity in order to cal-

culate the estimates.

// 1. START TRANSACTION;

ALTER TABLE “SupplierItem” ADD “Url” text NULL;

INSERT INTO “__EFMigrationsHistory” (“MigrationId”, “ProductVersion”)

VALUES (‘20220307155744_SupplierItemUrl’, ‘5.0.9′);

COMMIT;

//2. START TRANSACTION;

ALTER TABLE “SupplierFeedOutModule” DROP COLUMN

“CustomItemBaseMapping”;

INSERT INTO “__EFMigrationsHistory” (“MigrationId”, “ProductVersion”)

VALUES (‘20220308140322_FeedOutFix’, ‘5.0.9′);

COMMIT;

Algorithm 3: Solving problems at the database level and incomplete iterations through

Entity Framework mappings.

START TRANSACTION;

ALTER TABLE “EstimateSuperServiceResource” ADD “EstimateId” integer NOT NULL

DEFAULT 0;

FeedOutSettingId: int

Future Internet 2023, 15, x FOR PEER REVIEW 11 of 26

− The SuperService entity can be viewed as a process to which a service can be added,

which allows for the defining of specific services not only at an abstract level but also

at the level of the process itself;

− The possibility to create a SuperService entity without attaching a service, an abstract

level resulting from its sub-assemblies;

− The possibility of defining necessary items and resources in sub-assemblies at the

intermediate or final finished product level;

− The possibility of copying a section and reusing it.

In addition, changes were made in the execution phase of a project that required the

addition of two new entities, ProjectExecution and ProjectExecutionItem, which, for an

estimate created within a project, attach the approximate data for its execution:

− Scheduled start date;

− The nearest possible start dates;

− The furthest end date.

An estimate programmed for execution also has attached the list of items needed for

the estimated quantity, as seen in the following EstimateBase.cs:

EstimateBase.cs—Estimated changes structure
▶EstimateBase

➲ SuperServiceId:int

➲ SuperService: SuperService

➲ ParentEstimateId: int?

➲ ParentEstimate: Estimate

➲ Quantity: int?

➲ EarliestStartDate: DateTime

➲ LastestEndDate: DateTime

➲ EstimateItems: List<EstimateItem>

For the logic defined in the previously described models, another change that was

required is the use of the SuperService entity for calculating the estimates. Then, the im-

plementation of the changes made to the database following the analysis of the system

requirements was followed (see Algorithms 2 and 3).

Algorithm 2: Database modification process in relation to the described models. Expan-

sion of the database depends on the need to use the SuperService entity in order to cal-

culate the estimates.

// 1. START TRANSACTION;

ALTER TABLE “SupplierItem” ADD “Url” text NULL;

INSERT INTO “__EFMigrationsHistory” (“MigrationId”, “ProductVersion”)

VALUES (‘20220307155744_SupplierItemUrl’, ‘5.0.9′);

COMMIT;

//2. START TRANSACTION;

ALTER TABLE “SupplierFeedOutModule” DROP COLUMN

“CustomItemBaseMapping”;

INSERT INTO “__EFMigrationsHistory” (“MigrationId”, “ProductVersion”)

VALUES (‘20220308140322_FeedOutFix’, ‘5.0.9′);

COMMIT;

Algorithm 3: Solving problems at the database level and incomplete iterations through

Entity Framework mappings.

START TRANSACTION;

ALTER TABLE “EstimateSuperServiceResource” ADD “EstimateId” integer NOT NULL

DEFAULT 0;

SupplierFeedOutModuleId: int

Future Internet 2023, 15, x FOR PEER REVIEW 11 of 26

− The SuperService entity can be viewed as a process to which a service can be added,

which allows for the defining of specific services not only at an abstract level but also

at the level of the process itself;

− The possibility to create a SuperService entity without attaching a service, an abstract

level resulting from its sub-assemblies;

− The possibility of defining necessary items and resources in sub-assemblies at the

intermediate or final finished product level;

− The possibility of copying a section and reusing it.

In addition, changes were made in the execution phase of a project that required the

addition of two new entities, ProjectExecution and ProjectExecutionItem, which, for an

estimate created within a project, attach the approximate data for its execution:

− Scheduled start date;

− The nearest possible start dates;

− The furthest end date.

An estimate programmed for execution also has attached the list of items needed for

the estimated quantity, as seen in the following EstimateBase.cs:

EstimateBase.cs—Estimated changes structure
▶EstimateBase

➲ SuperServiceId:int

➲ SuperService: SuperService

➲ ParentEstimateId: int?

➲ ParentEstimate: Estimate

➲ Quantity: int?

➲ EarliestStartDate: DateTime

➲ LastestEndDate: DateTime

➲ EstimateItems: List<EstimateItem>

For the logic defined in the previously described models, another change that was

required is the use of the SuperService entity for calculating the estimates. Then, the im-

plementation of the changes made to the database following the analysis of the system

requirements was followed (see Algorithms 2 and 3).

Algorithm 2: Database modification process in relation to the described models. Expan-

sion of the database depends on the need to use the SuperService entity in order to cal-

culate the estimates.

// 1. START TRANSACTION;

ALTER TABLE “SupplierItem” ADD “Url” text NULL;

INSERT INTO “__EFMigrationsHistory” (“MigrationId”, “ProductVersion”)

VALUES (‘20220307155744_SupplierItemUrl’, ‘5.0.9′);

COMMIT;

//2. START TRANSACTION;

ALTER TABLE “SupplierFeedOutModule” DROP COLUMN

“CustomItemBaseMapping”;

INSERT INTO “__EFMigrationsHistory” (“MigrationId”, “ProductVersion”)

VALUES (‘20220308140322_FeedOutFix’, ‘5.0.9′);

COMMIT;

Algorithm 3: Solving problems at the database level and incomplete iterations through

Entity Framework mappings.

START TRANSACTION;

ALTER TABLE “EstimateSuperServiceResource” ADD “EstimateId” integer NOT NULL

DEFAULT 0;

Value: String

Future Internet 2023, 15, x FOR PEER REVIEW 11 of 26

− The SuperService entity can be viewed as a process to which a service can be added,

which allows for the defining of specific services not only at an abstract level but also

at the level of the process itself;

− The possibility to create a SuperService entity without attaching a service, an abstract

level resulting from its sub-assemblies;

− The possibility of defining necessary items and resources in sub-assemblies at the

intermediate or final finished product level;

− The possibility of copying a section and reusing it.

In addition, changes were made in the execution phase of a project that required the

addition of two new entities, ProjectExecution and ProjectExecutionItem, which, for an

estimate created within a project, attach the approximate data for its execution:

− Scheduled start date;

− The nearest possible start dates;

− The furthest end date.

An estimate programmed for execution also has attached the list of items needed for

the estimated quantity, as seen in the following EstimateBase.cs:

EstimateBase.cs—Estimated changes structure
▶EstimateBase

➲ SuperServiceId:int

➲ SuperService: SuperService

➲ ParentEstimateId: int?

➲ ParentEstimate: Estimate

➲ Quantity: int?

➲ EarliestStartDate: DateTime

➲ LastestEndDate: DateTime

➲ EstimateItems: List<EstimateItem>

For the logic defined in the previously described models, another change that was

required is the use of the SuperService entity for calculating the estimates. Then, the im-

plementation of the changes made to the database following the analysis of the system

requirements was followed (see Algorithms 2 and 3).

Algorithm 2: Database modification process in relation to the described models. Expan-

sion of the database depends on the need to use the SuperService entity in order to cal-

culate the estimates.

// 1. START TRANSACTION;

ALTER TABLE “SupplierItem” ADD “Url” text NULL;

INSERT INTO “__EFMigrationsHistory” (“MigrationId”, “ProductVersion”)

VALUES (‘20220307155744_SupplierItemUrl’, ‘5.0.9′);

COMMIT;

//2. START TRANSACTION;

ALTER TABLE “SupplierFeedOutModule” DROP COLUMN

“CustomItemBaseMapping”;

INSERT INTO “__EFMigrationsHistory” (“MigrationId”, “ProductVersion”)

VALUES (‘20220308140322_FeedOutFix’, ‘5.0.9′);

COMMIT;

Algorithm 3: Solving problems at the database level and incomplete iterations through

Entity Framework mappings.

START TRANSACTION;

ALTER TABLE “EstimateSuperServiceResource” ADD “EstimateId” integer NOT NULL

DEFAULT 0;

Setting:FeedOutSetting

In the context of future definitions and settings regarding the method, and also the
format of the exported data, method of communication, and security elements, five types of
extensions were created for the data extracted from the platform: .json, .xml, .csv, .xls, and
.xlsx. They can be accessed via a previously preset protocol, direct download, ftp, https, or
API, with the possibility to set a user with a password, without authentication or a token.
For each previously presented setting, the way to customize the user interface is highlighted,
and the order number based on which the setting will be displayed in the interface. Given
the fact that the data download module works with files with the same extensions as when
uploading and the same communication protocols, a number of common methods have
been created between the modules, as presented in SupplierHelper.cs.

SupplierHelper.cs—customer support model, the general structure, and the common methods of
con-catenating databases.

ISupplierHelper
I _configuration: Configuration

Future Internet 2023, 15, x FOR PEER REVIEW 11 of 26

− The SuperService entity can be viewed as a process to which a service can be added,

which allows for the defining of specific services not only at an abstract level but also

at the level of the process itself;

− The possibility to create a SuperService entity without attaching a service, an abstract

level resulting from its sub-assemblies;

− The possibility of defining necessary items and resources in sub-assemblies at the

intermediate or final finished product level;

− The possibility of copying a section and reusing it.

In addition, changes were made in the execution phase of a project that required the

addition of two new entities, ProjectExecution and ProjectExecutionItem, which, for an

estimate created within a project, attach the approximate data for its execution:

− Scheduled start date;

− The nearest possible start dates;

− The furthest end date.

An estimate programmed for execution also has attached the list of items needed for

the estimated quantity, as seen in the following EstimateBase.cs:

EstimateBase.cs—Estimated changes structure
▶EstimateBase

➲ SuperServiceId:int

➲ SuperService: SuperService

➲ ParentEstimateId: int?

➲ ParentEstimate: Estimate

➲ Quantity: int?

➲ EarliestStartDate: DateTime

➲ LastestEndDate: DateTime

➲ EstimateItems: List<EstimateItem>

For the logic defined in the previously described models, another change that was

required is the use of the SuperService entity for calculating the estimates. Then, the im-

plementation of the changes made to the database following the analysis of the system

requirements was followed (see Algorithms 2 and 3).

Algorithm 2: Database modification process in relation to the described models. Expan-

sion of the database depends on the need to use the SuperService entity in order to cal-

culate the estimates.

// 1. START TRANSACTION;

ALTER TABLE “SupplierItem” ADD “Url” text NULL;

INSERT INTO “__EFMigrationsHistory” (“MigrationId”, “ProductVersion”)

VALUES (‘20220307155744_SupplierItemUrl’, ‘5.0.9′);

COMMIT;

//2. START TRANSACTION;

ALTER TABLE “SupplierFeedOutModule” DROP COLUMN

“CustomItemBaseMapping”;

INSERT INTO “__EFMigrationsHistory” (“MigrationId”, “ProductVersion”)

VALUES (‘20220308140322_FeedOutFix’, ‘5.0.9′);

COMMIT;

Algorithm 3: Solving problems at the database level and incomplete iterations through

Entity Framework mappings.

START TRANSACTION;

ALTER TABLE “EstimateSuperServiceResource” ADD “EstimateId” integer NOT NULL

DEFAULT 0;

SupplierHelper(Configuration)

Future Internet 2023, 15, x FOR PEER REVIEW 11 of 26

− The SuperService entity can be viewed as a process to which a service can be added,

which allows for the defining of specific services not only at an abstract level but also

at the level of the process itself;

− The possibility to create a SuperService entity without attaching a service, an abstract

level resulting from its sub-assemblies;

− The possibility of defining necessary items and resources in sub-assemblies at the

intermediate or final finished product level;

− The possibility of copying a section and reusing it.

In addition, changes were made in the execution phase of a project that required the

addition of two new entities, ProjectExecution and ProjectExecutionItem, which, for an

estimate created within a project, attach the approximate data for its execution:

− Scheduled start date;

− The nearest possible start dates;

− The furthest end date.

An estimate programmed for execution also has attached the list of items needed for

the estimated quantity, as seen in the following EstimateBase.cs:

EstimateBase.cs—Estimated changes structure
▶EstimateBase

➲ SuperServiceId:int

➲ SuperService: SuperService

➲ ParentEstimateId: int?

➲ ParentEstimate: Estimate

➲ Quantity: int?

➲ EarliestStartDate: DateTime

➲ LastestEndDate: DateTime

➲ EstimateItems: List<EstimateItem>

For the logic defined in the previously described models, another change that was

required is the use of the SuperService entity for calculating the estimates. Then, the im-

plementation of the changes made to the database following the analysis of the system

requirements was followed (see Algorithms 2 and 3).

Algorithm 2: Database modification process in relation to the described models. Expan-

sion of the database depends on the need to use the SuperService entity in order to cal-

culate the estimates.

// 1. START TRANSACTION;

ALTER TABLE “SupplierItem” ADD “Url” text NULL;

INSERT INTO “__EFMigrationsHistory” (“MigrationId”, “ProductVersion”)

VALUES (‘20220307155744_SupplierItemUrl’, ‘5.0.9′);

COMMIT;

//2. START TRANSACTION;

ALTER TABLE “SupplierFeedOutModule” DROP COLUMN

“CustomItemBaseMapping”;

INSERT INTO “__EFMigrationsHistory” (“MigrationId”, “ProductVersion”)

VALUES (‘20220308140322_FeedOutFix’, ‘5.0.9′);

COMMIT;

Algorithm 3: Solving problems at the database level and incomplete iterations through

Entity Framework mappings.

START TRANSACTION;

ALTER TABLE “EstimateSuperServiceResource” ADD “EstimateId” integer NOT NULL

DEFAULT 0;

GetFromHttpOrApi<T>(): Task <T>

Future Internet 2023, 15, x FOR PEER REVIEW 11 of 26

− The SuperService entity can be viewed as a process to which a service can be added,

which allows for the defining of specific services not only at an abstract level but also

at the level of the process itself;

− The possibility to create a SuperService entity without attaching a service, an abstract

level resulting from its sub-assemblies;

− The possibility of defining necessary items and resources in sub-assemblies at the

intermediate or final finished product level;

− The possibility of copying a section and reusing it.

In addition, changes were made in the execution phase of a project that required the

addition of two new entities, ProjectExecution and ProjectExecutionItem, which, for an

estimate created within a project, attach the approximate data for its execution:

− Scheduled start date;

− The nearest possible start dates;

− The furthest end date.

An estimate programmed for execution also has attached the list of items needed for

the estimated quantity, as seen in the following EstimateBase.cs:

EstimateBase.cs—Estimated changes structure
▶EstimateBase

➲ SuperServiceId:int

➲ SuperService: SuperService

➲ ParentEstimateId: int?

➲ ParentEstimate: Estimate

➲ Quantity: int?

➲ EarliestStartDate: DateTime

➲ LastestEndDate: DateTime

➲ EstimateItems: List<EstimateItem>

For the logic defined in the previously described models, another change that was

required is the use of the SuperService entity for calculating the estimates. Then, the im-

plementation of the changes made to the database following the analysis of the system

requirements was followed (see Algorithms 2 and 3).

Algorithm 2: Database modification process in relation to the described models. Expan-

sion of the database depends on the need to use the SuperService entity in order to cal-

culate the estimates.

// 1. START TRANSACTION;

ALTER TABLE “SupplierItem” ADD “Url” text NULL;

INSERT INTO “__EFMigrationsHistory” (“MigrationId”, “ProductVersion”)

VALUES (‘20220307155744_SupplierItemUrl’, ‘5.0.9′);

COMMIT;

//2. START TRANSACTION;

ALTER TABLE “SupplierFeedOutModule” DROP COLUMN

“CustomItemBaseMapping”;

INSERT INTO “__EFMigrationsHistory” (“MigrationId”, “ProductVersion”)

VALUES (‘20220308140322_FeedOutFix’, ‘5.0.9′);

COMMIT;

Algorithm 3: Solving problems at the database level and incomplete iterations through

Entity Framework mappings.

START TRANSACTION;

ALTER TABLE “EstimateSuperServiceResource” ADD “EstimateId” integer NOT NULL

DEFAULT 0;

GetFromFtp<T>(): Task<T>

Future Internet 2023, 15, x FOR PEER REVIEW 11 of 26

− The SuperService entity can be viewed as a process to which a service can be added,

which allows for the defining of specific services not only at an abstract level but also

at the level of the process itself;

− The possibility to create a SuperService entity without attaching a service, an abstract

level resulting from its sub-assemblies;

− The possibility of defining necessary items and resources in sub-assemblies at the

intermediate or final finished product level;

− The possibility of copying a section and reusing it.

In addition, changes were made in the execution phase of a project that required the

addition of two new entities, ProjectExecution and ProjectExecutionItem, which, for an

estimate created within a project, attach the approximate data for its execution:

− Scheduled start date;

− The nearest possible start dates;

− The furthest end date.

An estimate programmed for execution also has attached the list of items needed for

the estimated quantity, as seen in the following EstimateBase.cs:

EstimateBase.cs—Estimated changes structure
▶EstimateBase

➲ SuperServiceId:int

➲ SuperService: SuperService

➲ ParentEstimateId: int?

➲ ParentEstimate: Estimate

➲ Quantity: int?

➲ EarliestStartDate: DateTime

➲ LastestEndDate: DateTime

➲ EstimateItems: List<EstimateItem>

For the logic defined in the previously described models, another change that was

required is the use of the SuperService entity for calculating the estimates. Then, the im-

plementation of the changes made to the database following the analysis of the system

requirements was followed (see Algorithms 2 and 3).

Algorithm 2: Database modification process in relation to the described models. Expan-

sion of the database depends on the need to use the SuperService entity in order to cal-

culate the estimates.

// 1. START TRANSACTION;

ALTER TABLE “SupplierItem” ADD “Url” text NULL;

INSERT INTO “__EFMigrationsHistory” (“MigrationId”, “ProductVersion”)

VALUES (‘20220307155744_SupplierItemUrl’, ‘5.0.9′);

COMMIT;

//2. START TRANSACTION;

ALTER TABLE “SupplierFeedOutModule” DROP COLUMN

“CustomItemBaseMapping”;

INSERT INTO “__EFMigrationsHistory” (“MigrationId”, “ProductVersion”)

VALUES (‘20220308140322_FeedOutFix’, ‘5.0.9′);

COMMIT;

Algorithm 3: Solving problems at the database level and incomplete iterations through

Entity Framework mappings.

START TRANSACTION;

ALTER TABLE “EstimateSuperServiceResource” ADD “EstimateId” integer NOT NULL

DEFAULT 0;

GetXlsColumnsHeaderFromByteArray(byte[], out |Sheet)

Future Internet 2023, 15, x FOR PEER REVIEW 11 of 26

− The SuperService entity can be viewed as a process to which a service can be added,

which allows for the defining of specific services not only at an abstract level but also

at the level of the process itself;

− The possibility to create a SuperService entity without attaching a service, an abstract

level resulting from its sub-assemblies;

− The possibility of defining necessary items and resources in sub-assemblies at the

intermediate or final finished product level;

− The possibility of copying a section and reusing it.

In addition, changes were made in the execution phase of a project that required the

addition of two new entities, ProjectExecution and ProjectExecutionItem, which, for an

estimate created within a project, attach the approximate data for its execution:

− Scheduled start date;

− The nearest possible start dates;

− The furthest end date.

An estimate programmed for execution also has attached the list of items needed for

the estimated quantity, as seen in the following EstimateBase.cs:

EstimateBase.cs—Estimated changes structure
▶EstimateBase

➲ SuperServiceId:int

➲ SuperService: SuperService

➲ ParentEstimateId: int?

➲ ParentEstimate: Estimate

➲ Quantity: int?

➲ EarliestStartDate: DateTime

➲ LastestEndDate: DateTime

➲ EstimateItems: List<EstimateItem>

For the logic defined in the previously described models, another change that was

required is the use of the SuperService entity for calculating the estimates. Then, the im-

plementation of the changes made to the database following the analysis of the system

requirements was followed (see Algorithms 2 and 3).

Algorithm 2: Database modification process in relation to the described models. Expan-

sion of the database depends on the need to use the SuperService entity in order to cal-

culate the estimates.

// 1. START TRANSACTION;

ALTER TABLE “SupplierItem” ADD “Url” text NULL;

INSERT INTO “__EFMigrationsHistory” (“MigrationId”, “ProductVersion”)

VALUES (‘20220307155744_SupplierItemUrl’, ‘5.0.9′);

COMMIT;

//2. START TRANSACTION;

ALTER TABLE “SupplierFeedOutModule” DROP COLUMN

“CustomItemBaseMapping”;

INSERT INTO “__EFMigrationsHistory” (“MigrationId”, “ProductVersion”)

VALUES (‘20220308140322_FeedOutFix’, ‘5.0.9′);

COMMIT;

Algorithm 3: Solving problems at the database level and incomplete iterations through

Entity Framework mappings.

START TRANSACTION;

ALTER TABLE “EstimateSuperServiceResource” ADD “EstimateId” integer NOT NULL

DEFAULT 0;

GetTree([|FromFile]): Task<List<SchemaTree>>

Future Internet 2023, 15, x FOR PEER REVIEW 11 of 26

− The SuperService entity can be viewed as a process to which a service can be added,

which allows for the defining of specific services not only at an abstract level but also

at the level of the process itself;

− The possibility to create a SuperService entity without attaching a service, an abstract

level resulting from its sub-assemblies;

− The possibility of defining necessary items and resources in sub-assemblies at the

intermediate or final finished product level;

− The possibility of copying a section and reusing it.

In addition, changes were made in the execution phase of a project that required the

addition of two new entities, ProjectExecution and ProjectExecutionItem, which, for an

estimate created within a project, attach the approximate data for its execution:

− Scheduled start date;

− The nearest possible start dates;

− The furthest end date.

An estimate programmed for execution also has attached the list of items needed for

the estimated quantity, as seen in the following EstimateBase.cs:

EstimateBase.cs—Estimated changes structure
▶EstimateBase

➲ SuperServiceId:int

➲ SuperService: SuperService

➲ ParentEstimateId: int?

➲ ParentEstimate: Estimate

➲ Quantity: int?

➲ EarliestStartDate: DateTime

➲ LastestEndDate: DateTime

➲ EstimateItems: List<EstimateItem>

For the logic defined in the previously described models, another change that was

required is the use of the SuperService entity for calculating the estimates. Then, the im-

plementation of the changes made to the database following the analysis of the system

requirements was followed (see Algorithms 2 and 3).

Algorithm 2: Database modification process in relation to the described models. Expan-

sion of the database depends on the need to use the SuperService entity in order to cal-

culate the estimates.

// 1. START TRANSACTION;

ALTER TABLE “SupplierItem” ADD “Url” text NULL;

INSERT INTO “__EFMigrationsHistory” (“MigrationId”, “ProductVersion”)

VALUES (‘20220307155744_SupplierItemUrl’, ‘5.0.9′);

COMMIT;

//2. START TRANSACTION;

ALTER TABLE “SupplierFeedOutModule” DROP COLUMN

“CustomItemBaseMapping”;

INSERT INTO “__EFMigrationsHistory” (“MigrationId”, “ProductVersion”)

VALUES (‘20220308140322_FeedOutFix’, ‘5.0.9′);

COMMIT;

Algorithm 3: Solving problems at the database level and incomplete iterations through

Entity Framework mappings.

START TRANSACTION;

ALTER TABLE “EstimateSuperServiceResource” ADD “EstimateId” integer NOT NULL

DEFAULT 0;

PrepareXmlOrJsonTree(string, string): List<SchemaTree>

Future Internet 2023, 15, x FOR PEER REVIEW 11 of 26

− The SuperService entity can be viewed as a process to which a service can be added,

which allows for the defining of specific services not only at an abstract level but also

at the level of the process itself;

− The possibility to create a SuperService entity without attaching a service, an abstract

level resulting from its sub-assemblies;

− The possibility of defining necessary items and resources in sub-assemblies at the

intermediate or final finished product level;

− The possibility of copying a section and reusing it.

In addition, changes were made in the execution phase of a project that required the

addition of two new entities, ProjectExecution and ProjectExecutionItem, which, for an

estimate created within a project, attach the approximate data for its execution:

− Scheduled start date;

− The nearest possible start dates;

− The furthest end date.

An estimate programmed for execution also has attached the list of items needed for

the estimated quantity, as seen in the following EstimateBase.cs:

EstimateBase.cs—Estimated changes structure
▶EstimateBase

➲ SuperServiceId:int

➲ SuperService: SuperService

➲ ParentEstimateId: int?

➲ ParentEstimate: Estimate

➲ Quantity: int?

➲ EarliestStartDate: DateTime

➲ LastestEndDate: DateTime

➲ EstimateItems: List<EstimateItem>

For the logic defined in the previously described models, another change that was

required is the use of the SuperService entity for calculating the estimates. Then, the im-

plementation of the changes made to the database following the analysis of the system

requirements was followed (see Algorithms 2 and 3).

Algorithm 2: Database modification process in relation to the described models. Expan-

sion of the database depends on the need to use the SuperService entity in order to cal-

culate the estimates.

// 1. START TRANSACTION;

ALTER TABLE “SupplierItem” ADD “Url” text NULL;

INSERT INTO “__EFMigrationsHistory” (“MigrationId”, “ProductVersion”)

VALUES (‘20220307155744_SupplierItemUrl’, ‘5.0.9′);

COMMIT;

//2. START TRANSACTION;

ALTER TABLE “SupplierFeedOutModule” DROP COLUMN

“CustomItemBaseMapping”;

INSERT INTO “__EFMigrationsHistory” (“MigrationId”, “ProductVersion”)

VALUES (‘20220308140322_FeedOutFix’, ‘5.0.9′);

COMMIT;

Algorithm 3: Solving problems at the database level and incomplete iterations through

Entity Framework mappings.

START TRANSACTION;

ALTER TABLE “EstimateSuperServiceResource” ADD “EstimateId” integer NOT NULL

DEFAULT 0;

PrepareTreeFromHeaders(List<string>): List<SchemaTree

Future Internet 2023, 15, x FOR PEER REVIEW 11 of 26

− The SuperService entity can be viewed as a process to which a service can be added,

which allows for the defining of specific services not only at an abstract level but also

at the level of the process itself;

− The possibility to create a SuperService entity without attaching a service, an abstract

level resulting from its sub-assemblies;

− The possibility of defining necessary items and resources in sub-assemblies at the

intermediate or final finished product level;

− The possibility of copying a section and reusing it.

In addition, changes were made in the execution phase of a project that required the

addition of two new entities, ProjectExecution and ProjectExecutionItem, which, for an

estimate created within a project, attach the approximate data for its execution:

− Scheduled start date;

− The nearest possible start dates;

− The furthest end date.

An estimate programmed for execution also has attached the list of items needed for

the estimated quantity, as seen in the following EstimateBase.cs:

EstimateBase.cs—Estimated changes structure
▶EstimateBase

➲ SuperServiceId:int

➲ SuperService: SuperService

➲ ParentEstimateId: int?

➲ ParentEstimate: Estimate

➲ Quantity: int?

➲ EarliestStartDate: DateTime

➲ LastestEndDate: DateTime

➲ EstimateItems: List<EstimateItem>

For the logic defined in the previously described models, another change that was

required is the use of the SuperService entity for calculating the estimates. Then, the im-

plementation of the changes made to the database following the analysis of the system

requirements was followed (see Algorithms 2 and 3).

Algorithm 2: Database modification process in relation to the described models. Expan-

sion of the database depends on the need to use the SuperService entity in order to cal-

culate the estimates.

// 1. START TRANSACTION;

ALTER TABLE “SupplierItem” ADD “Url” text NULL;

INSERT INTO “__EFMigrationsHistory” (“MigrationId”, “ProductVersion”)

VALUES (‘20220307155744_SupplierItemUrl’, ‘5.0.9′);

COMMIT;

//2. START TRANSACTION;

ALTER TABLE “SupplierFeedOutModule” DROP COLUMN

“CustomItemBaseMapping”;

INSERT INTO “__EFMigrationsHistory” (“MigrationId”, “ProductVersion”)

VALUES (‘20220308140322_FeedOutFix’, ‘5.0.9′);

COMMIT;

Algorithm 3: Solving problems at the database level and incomplete iterations through

Entity Framework mappings.

START TRANSACTION;

ALTER TABLE “EstimateSuperServiceResource” ADD “EstimateId” integer NOT NULL

DEFAULT 0;

GetCommoMPart(List<string>): string

Future Internet 2023, 15, x FOR PEER REVIEW 11 of 26

− The SuperService entity can be viewed as a process to which a service can be added,

which allows for the defining of specific services not only at an abstract level but also

at the level of the process itself;

− The possibility to create a SuperService entity without attaching a service, an abstract

level resulting from its sub-assemblies;

− The possibility of defining necessary items and resources in sub-assemblies at the

intermediate or final finished product level;

− The possibility of copying a section and reusing it.

In addition, changes were made in the execution phase of a project that required the

addition of two new entities, ProjectExecution and ProjectExecutionItem, which, for an

estimate created within a project, attach the approximate data for its execution:

− Scheduled start date;

− The nearest possible start dates;

− The furthest end date.

An estimate programmed for execution also has attached the list of items needed for

the estimated quantity, as seen in the following EstimateBase.cs:

EstimateBase.cs—Estimated changes structure
▶EstimateBase

➲ SuperServiceId:int

➲ SuperService: SuperService

➲ ParentEstimateId: int?

➲ ParentEstimate: Estimate

➲ Quantity: int?

➲ EarliestStartDate: DateTime

➲ LastestEndDate: DateTime

➲ EstimateItems: List<EstimateItem>

For the logic defined in the previously described models, another change that was

required is the use of the SuperService entity for calculating the estimates. Then, the im-

plementation of the changes made to the database following the analysis of the system

requirements was followed (see Algorithms 2 and 3).

Algorithm 2: Database modification process in relation to the described models. Expan-

sion of the database depends on the need to use the SuperService entity in order to cal-

culate the estimates.

// 1. START TRANSACTION;

ALTER TABLE “SupplierItem” ADD “Url” text NULL;

INSERT INTO “__EFMigrationsHistory” (“MigrationId”, “ProductVersion”)

VALUES (‘20220307155744_SupplierItemUrl’, ‘5.0.9′);

COMMIT;

//2. START TRANSACTION;

ALTER TABLE “SupplierFeedOutModule” DROP COLUMN

“CustomItemBaseMapping”;

INSERT INTO “__EFMigrationsHistory” (“MigrationId”, “ProductVersion”)

VALUES (‘20220308140322_FeedOutFix’, ‘5.0.9′);

COMMIT;

Algorithm 3: Solving problems at the database level and incomplete iterations through

Entity Framework mappings.

START TRANSACTION;

ALTER TABLE “EstimateSuperServiceResource” ADD “EstimateId” integer NOT NULL

DEFAULT 0;

GetPropertyFromJson(JToken, string): JToken

Future Internet 2023, 15, x FOR PEER REVIEW 11 of 26

− The SuperService entity can be viewed as a process to which a service can be added,

which allows for the defining of specific services not only at an abstract level but also

at the level of the process itself;

− The possibility to create a SuperService entity without attaching a service, an abstract

level resulting from its sub-assemblies;

− The possibility of defining necessary items and resources in sub-assemblies at the

intermediate or final finished product level;

− The possibility of copying a section and reusing it.

In addition, changes were made in the execution phase of a project that required the

addition of two new entities, ProjectExecution and ProjectExecutionItem, which, for an

estimate created within a project, attach the approximate data for its execution:

− Scheduled start date;

− The nearest possible start dates;

− The furthest end date.

An estimate programmed for execution also has attached the list of items needed for

the estimated quantity, as seen in the following EstimateBase.cs:

EstimateBase.cs—Estimated changes structure
▶EstimateBase

➲ SuperServiceId:int

➲ SuperService: SuperService

➲ ParentEstimateId: int?

➲ ParentEstimate: Estimate

➲ Quantity: int?

➲ EarliestStartDate: DateTime

➲ LastestEndDate: DateTime

➲ EstimateItems: List<EstimateItem>

For the logic defined in the previously described models, another change that was

required is the use of the SuperService entity for calculating the estimates. Then, the im-

plementation of the changes made to the database following the analysis of the system

requirements was followed (see Algorithms 2 and 3).

Algorithm 2: Database modification process in relation to the described models. Expan-

sion of the database depends on the need to use the SuperService entity in order to cal-

culate the estimates.

// 1. START TRANSACTION;

ALTER TABLE “SupplierItem” ADD “Url” text NULL;

INSERT INTO “__EFMigrationsHistory” (“MigrationId”, “ProductVersion”)

VALUES (‘20220307155744_SupplierItemUrl’, ‘5.0.9′);

COMMIT;

//2. START TRANSACTION;

ALTER TABLE “SupplierFeedOutModule” DROP COLUMN

“CustomItemBaseMapping”;

INSERT INTO “__EFMigrationsHistory” (“MigrationId”, “ProductVersion”)

VALUES (‘20220308140322_FeedOutFix’, ‘5.0.9′);

COMMIT;

Algorithm 3: Solving problems at the database level and incomplete iterations through

Entity Framework mappings.

START TRANSACTION;

ALTER TABLE “EstimateSuperServiceResource” ADD “EstimateId” integer NOT NULL

DEFAULT 0;

GetSchemaTreeFromJson(string): List<SchemaTree>

Future Internet 2023, 15, x FOR PEER REVIEW 11 of 26

− The SuperService entity can be viewed as a process to which a service can be added,

which allows for the defining of specific services not only at an abstract level but also

at the level of the process itself;

− The possibility to create a SuperService entity without attaching a service, an abstract

level resulting from its sub-assemblies;

− The possibility of defining necessary items and resources in sub-assemblies at the

intermediate or final finished product level;

− The possibility of copying a section and reusing it.

In addition, changes were made in the execution phase of a project that required the

addition of two new entities, ProjectExecution and ProjectExecutionItem, which, for an

estimate created within a project, attach the approximate data for its execution:

− Scheduled start date;

− The nearest possible start dates;

− The furthest end date.

An estimate programmed for execution also has attached the list of items needed for

the estimated quantity, as seen in the following EstimateBase.cs:

EstimateBase.cs—Estimated changes structure
▶EstimateBase

➲ SuperServiceId:int

➲ SuperService: SuperService

➲ ParentEstimateId: int?

➲ ParentEstimate: Estimate

➲ Quantity: int?

➲ EarliestStartDate: DateTime

➲ LastestEndDate: DateTime

➲ EstimateItems: List<EstimateItem>

For the logic defined in the previously described models, another change that was

required is the use of the SuperService entity for calculating the estimates. Then, the im-

plementation of the changes made to the database following the analysis of the system

requirements was followed (see Algorithms 2 and 3).

Algorithm 2: Database modification process in relation to the described models. Expan-

sion of the database depends on the need to use the SuperService entity in order to cal-

culate the estimates.

// 1. START TRANSACTION;

ALTER TABLE “SupplierItem” ADD “Url” text NULL;

INSERT INTO “__EFMigrationsHistory” (“MigrationId”, “ProductVersion”)

VALUES (‘20220307155744_SupplierItemUrl’, ‘5.0.9′);

COMMIT;

//2. START TRANSACTION;

ALTER TABLE “SupplierFeedOutModule” DROP COLUMN

“CustomItemBaseMapping”;

INSERT INTO “__EFMigrationsHistory” (“MigrationId”, “ProductVersion”)

VALUES (‘20220308140322_FeedOutFix’, ‘5.0.9′);

COMMIT;

Algorithm 3: Solving problems at the database level and incomplete iterations through

Entity Framework mappings.

START TRANSACTION;

ALTER TABLE “EstimateSuperServiceResource” ADD “EstimateId” integer NOT NULL

DEFAULT 0;

ReadCsvAsStringAsync(IformFile): Task<string>

Future Internet 2023, 15, x FOR PEER REVIEW 11 of 26

− The SuperService entity can be viewed as a process to which a service can be added,

which allows for the defining of specific services not only at an abstract level but also

at the level of the process itself;

− The possibility to create a SuperService entity without attaching a service, an abstract

level resulting from its sub-assemblies;

− The possibility of defining necessary items and resources in sub-assemblies at the

intermediate or final finished product level;

− The possibility of copying a section and reusing it.

In addition, changes were made in the execution phase of a project that required the

addition of two new entities, ProjectExecution and ProjectExecutionItem, which, for an

estimate created within a project, attach the approximate data for its execution:

− Scheduled start date;

− The nearest possible start dates;

− The furthest end date.

An estimate programmed for execution also has attached the list of items needed for

the estimated quantity, as seen in the following EstimateBase.cs:

EstimateBase.cs—Estimated changes structure
▶EstimateBase

➲ SuperServiceId:int

➲ SuperService: SuperService

➲ ParentEstimateId: int?

➲ ParentEstimate: Estimate

➲ Quantity: int?

➲ EarliestStartDate: DateTime

➲ LastestEndDate: DateTime

➲ EstimateItems: List<EstimateItem>

For the logic defined in the previously described models, another change that was

required is the use of the SuperService entity for calculating the estimates. Then, the im-

plementation of the changes made to the database following the analysis of the system

requirements was followed (see Algorithms 2 and 3).

Algorithm 2: Database modification process in relation to the described models. Expan-

sion of the database depends on the need to use the SuperService entity in order to cal-

culate the estimates.

// 1. START TRANSACTION;

ALTER TABLE “SupplierItem” ADD “Url” text NULL;

INSERT INTO “__EFMigrationsHistory” (“MigrationId”, “ProductVersion”)

VALUES (‘20220307155744_SupplierItemUrl’, ‘5.0.9′);

COMMIT;

//2. START TRANSACTION;

ALTER TABLE “SupplierFeedOutModule” DROP COLUMN

“CustomItemBaseMapping”;

INSERT INTO “__EFMigrationsHistory” (“MigrationId”, “ProductVersion”)

VALUES (‘20220308140322_FeedOutFix’, ‘5.0.9′);

COMMIT;

Algorithm 3: Solving problems at the database level and incomplete iterations through

Entity Framework mappings.

START TRANSACTION;

ALTER TABLE “EstimateSuperServiceResource” ADD “EstimateId” integer NOT NULL

DEFAULT 0;

SplitToLines(string): IEnumerable<string>

Future Internet 2023, 15, x FOR PEER REVIEW 11 of 26

− The SuperService entity can be viewed as a process to which a service can be added,

which allows for the defining of specific services not only at an abstract level but also

at the level of the process itself;

− The possibility to create a SuperService entity without attaching a service, an abstract

level resulting from its sub-assemblies;

− The possibility of defining necessary items and resources in sub-assemblies at the

intermediate or final finished product level;

− The possibility of copying a section and reusing it.

In addition, changes were made in the execution phase of a project that required the

addition of two new entities, ProjectExecution and ProjectExecutionItem, which, for an

estimate created within a project, attach the approximate data for its execution:

− Scheduled start date;

− The nearest possible start dates;

− The furthest end date.

An estimate programmed for execution also has attached the list of items needed for

the estimated quantity, as seen in the following EstimateBase.cs:

EstimateBase.cs—Estimated changes structure
▶EstimateBase

➲ SuperServiceId:int

➲ SuperService: SuperService

➲ ParentEstimateId: int?

➲ ParentEstimate: Estimate

➲ Quantity: int?

➲ EarliestStartDate: DateTime

➲ LastestEndDate: DateTime

➲ EstimateItems: List<EstimateItem>

For the logic defined in the previously described models, another change that was

required is the use of the SuperService entity for calculating the estimates. Then, the im-

plementation of the changes made to the database following the analysis of the system

requirements was followed (see Algorithms 2 and 3).

Algorithm 2: Database modification process in relation to the described models. Expan-

sion of the database depends on the need to use the SuperService entity in order to cal-

culate the estimates.

// 1. START TRANSACTION;

ALTER TABLE “SupplierItem” ADD “Url” text NULL;

INSERT INTO “__EFMigrationsHistory” (“MigrationId”, “ProductVersion”)

VALUES (‘20220307155744_SupplierItemUrl’, ‘5.0.9′);

COMMIT;

//2. START TRANSACTION;

ALTER TABLE “SupplierFeedOutModule” DROP COLUMN

“CustomItemBaseMapping”;

INSERT INTO “__EFMigrationsHistory” (“MigrationId”, “ProductVersion”)

VALUES (‘20220308140322_FeedOutFix’, ‘5.0.9′);

COMMIT;

Algorithm 3: Solving problems at the database level and incomplete iterations through

Entity Framework mappings.

START TRANSACTION;

ALTER TABLE “EstimateSuperServiceResource” ADD “EstimateId” integer NOT NULL

DEFAULT 0;

CsvToJson(IEnumerable<string>): string

3.2. Designing Intelligent Algorithms for Cost Efficiency

We can say that, in accordance with the previous stages of application design, this
time the requirements that an algorithm must meet have been defined, in particular the
processes related to the development of quotations and the way in which they are generated
according to nomenclature and recipes. The objective of the Coestim application was
channeled around the improvement and development of intelligent algorithms capable of
finding the resources, services, and necessary human resources in real-time, concatenating
several databases, and analyzing different suppliers and service providers. All this takes
into account the risks to which such a procedure can be subjected. Based on the history and
reviews provided by other customers, the products and services of the suppliers are sorted
distinctly, and the algorithm is based on the principles of the sharing economy in the field

Future Internet 2023, 15, 2 15 of 26

of construction. The intensive studies of over 5 years and the accumulated experience in
this field facilitate the development of the application on a solid basis both theoretically
and practically. The analyses carried out and the problems identified in the work sites
highlighted that the problems are caused by a limited allocation of resources and the faulty
planning of construction materials, all of which showed that there is a solution through the
implementation of traceability applications.

We can say that ACO (ant colony optimization) plays an important role in the develop-
ment of algorithms of this kind. This type of algorithm aims to minimize the total time and
risks in the design, analysis, or planning process of all resources, along with the previous
relations about the constraints. Therefore, after analyzing and performing the calculations
in the presented concept, dead times were highlighted in the resource optimization process,
and planning with the help of intelligent algorithms dedicated to optimization is imper-
atively necessary (see Algorithm 4, in which the pseudocode is highlighted). Therefore,
the developed algorithm is based on several assumptions, but also aspects that gravitate
around all exhaustible resources that facilitate a certain activity, and the architecture is
made in the NET framework (see Algorithm 4). Therefore, for an activity, a supplier assigns
certain tasks and the resources necessary for its development, and the algorithm will allo-
cate the most suitable characteristics for generating the final estimate. Resources are limited
from the point of view of the volume or the number of hours allocated daily, but, with the
help of the participatory economy and heuristic algorithms, the allocation of resources for
an activity will remain constant for the entire duration of the project.

The system requirements for making mappings between the items in the providers’
platforms and the base object of our system were defined. The mappings necessary to
collect data through our basic model were also implemented following the finalization
of the specifications necessary for this process. The aim was to identify the platforms on
which the stores of potential suppliers are built and the ERP systems from which data can
be imported. Considering the multitude of existing systems, a sorting of them was carried
out, according to their position at the top of the most used platforms.

From the multitude of elements of a platform of this type, the one of interest is the
management of articles and their categories, from where the collection of data necessary
for good testing of the algorithms will be carried out.

The steps required to implement such a solution are as follows:

1. Adding the library to the solution;
2. The creation of configuration profiles;
3. The creation of object–object mappings.

As reported in our article, the mapping of products from different systems was
conducted in the Coestim system and we were able to connect and import data. Connecting
to ERP systems is important because these systems are becoming indispensable to any
company, knowing that such a system is defined as a unique IT platform, useful for the
integrated monitoring, control, and management of all activities, processes, and operations
carried out by a company. The ERP component of interest is the inventory, which allows
accurate, real-time management and monitoring of all product stocks and stock movements,
regardless of whether it is for one or more locations. Based on the analysis of the needs
of such a dynamic system, it was decided to use AutoMapper as support for mapping
between objects. Starting from the fact that previously the mappings for ERP systems and
e-commerce platforms were created, in this stage of the Coestim research project mappings
were added for importing items from different files. These files have different formats, so
methods have been defined to interpret data from those formats. Given that a method
of encrypting critical and personal information is required, system requirements have
been defined to secure data at the API level. Based on the specifications defined for the
encryption process, the methods were implemented using the algorithms established for
the needs of the project. Of interest to the data collection process is the processing of items
from files that have subsequently been mapped through the base element and imported

Future Internet 2023, 15, 2 16 of 26

into the system. Supported file types are defined in system settings, so methods can be
created to dynamically interpret data based on any of these types.

In addition, dynamically, based on the settings defined in the authentication protocol,
a connection to the provider was created to download the file. If you choose to load a file, it
will be read using methods specific to the type of data it contains. The encryption algorithm
will need to have as its main functionality the ability to decrypt the data to its original
value so that it can be sent to the providers’ systems to establish a connection with them.
Given that when connecting to a certain provider the settings must be decrypted to the
initial value, the AES encryption algorithm was chosen, which uses a key at the time of
encryption, and the same key is required for decryption. Following specification analysis,
encryption methods have been implemented that are capable of the following:

4. Partially decrypting the information based on the keys set in the API, in case the
information is sent to the UI;

5. Totally decrypting the information based on the API keys in the first step, and in the
second step by using the key received from the user, in case it is desired to connect to
a system from the provider.

Algorithm 4: Pseudocode for designing intelligent algorithms for cost efficiency.
0 references
private async Task FindPossibleSmallerPrice (List<Estimate>estimates) {
foreach (varestimate in estimates) { }
varprojectExecutionItems = await project ExecutionService. Project ExecutionItems By
EstimateId(estimate. Id);
if (project ExecutionItems.Any()) {
foreach (var projectExecutionItem in projectExecutionItems) {
varitemOffers = await _supplier ItemRepository,GetWhereIncludeAsync (x => x.ItemId == project
ExecutionItem. SupplierItem.ItemId,x => x. Include(sip => sip,Prices));
varprices = PreparePrices (ItemOffers, project ExecutionItem.Quantity);
varminPriceItem = prices. OrderBy(x => x.Value. Item1). FirestorDefalut();
f (minPriceItem.Key != [projectExecutionItem. Supplier ItemId && minPriceItem.Value. Item1 <
project ExecutionItem.Sale PricePerItem)
project ExecutionItem. Supplier ItemId = minPriceItem.Key;
projectExecutionItem. SalePricePerItem = minPriceItem.Value. Item1;
projectExecutionItem. Recomended PricePerItem = minPriceItem.Value. Item2;
}
1 reference
private Dictionary<int, Tuple<decimal?, decimal?>> PreparePrices (List<Supplier Item>
supplierItems, doubleitemQty) {
Dictionary<int, Tuple<decimal>, decimal?>> prices = new Dictionary<int, Tuple<decimal?,
decimal?>>();
foreach (var supplierItem in supplierItems) {
var supplierItemPrices = supplierItem.Prices;
if (supplier ItemPrices.Count >0){
var orderByQuantityPrices = supplier ItemPrices. OrderBy(x => x. Quantity).ToList();
var index = intemQty >= orderByQuantity Prices.Max(x => x.Quantity) >
orderByQuantityPrices.Count 1:
orderByQuantityPrices. IndexOf(orderByQuantityPrices. LastOrDefalut (f => itemQty >=
f.Quantity) >> orderByQuantity Prices [0];
if (index != −1)
{ } }
return prices;
prices [supplier Item. Id] = new Tuple<decimal?, decimal?>(supplier ItemPrice [index].Sale Price,
supplier ItemPrice[index]. RecomendedPrice);
}

Future Internet 2023, 15, 2 17 of 26

3.3. User Interface Design and Optimization through Lazy Loading Concepts

In this stage, the data transmission process between the server and the user interface
was analyzed and the implementation of a solution described in more detail was proposed
to optimize this process, by implementing a generic component. This component imple-
ments a smart dropdown control that replaces the classic control of the same type. This
control must be primarily generic, meaning that it can be used anywhere it is needed in the
interface. The component that develops this control automatically connects to the server
to retrieve the data it needs. The improvement that this control brings is that the data
retrieved from the server is paged and not all at once. This aspect improves the response
time between the interface and the server. The control is smart because it manages to fetch
the data from the next page when the user reaches a certain percentage of the scroll of
the already loaded list. So, every time the user will reach a certain scroll percentage of
the newly loaded list, the control will try to automatically load the data for the next page
without affecting the waiting time but also improving the data loading time. The control
also allows data filtering so that you do not need to run the control until all the data in the
system are loaded.

It is important that the data transmission process between the server and the user
interface is as correct and optimized as possible. To improve this process, the most impor-
tant concepts that can improve waiting times and data transmission from the server to the
interface were taken into account: the concept of lazy loading and the concept of paging
in the case of retrieving data lists. The concept of lazy loading helps to load the necessary
sections and postpone the remaining ones until the user needs them. The opposite of
this concept is eager loading, which means that all code will load at once (for example,
when the entire web page is loaded for the first time). The eager loading technique has the
advantage that all content is available immediately when needed, which is great, but the big
disadvantage is that a lot of data are retrieved when a page loads, even data that will never
be required (for example, an image that is rendered in a part of the page that will never be
visited by the user), which increases the load time of the resources. Since the user interface
also uses the Angular language for development, this framework helps to implement this
concept quite easily. The framework helps Angular developers decide which modules to
use for load initialization or when a function is called. Below is an example of lazy loading
used in Angular (see Algorithm 5).

Algorithm 5: NgModule—Outline the decision mode in Angular for lazy loading in the database

@NgModule({
imports:[BrowserModule,
RouterModule.forRoot([
{path: “, component: HomeComponent},
{path: ‘product’,component: ProductDetailComponent},
{path: ‘luxury’,loadChildren: () => import(‘./luxury.module’).then(m => m.LuxuryModule),data:
{preloadme:true} }]
// , {preloadingStrategy: CustomPreloadingStrategy}
)
],
declarations: [AppComponent,HomeComponent,ProductDetailComponent],
providers:[{provide: LocationStrategy,useClass:
HashLocationStrategy},CustomPreloadingStrategy],
bootstrap: [AppComponent]
})

The concept of lazy loading is recommended and will only apply to resources that
are not needed all the time. In this way, lazy loading can provide a benefit and speed
up page load time. The implementation of new interfaces for the newly created models
from the project was pursued. The SuperService model has been implemented, which
offers the possibility of arranging super-services in the form of a tree; so, through the

Future Internet 2023, 15, 2 18 of 26

SuperService model, a hierarchy of services can be defined according to the necessary
order within a project. To improve the code and modules that the application uses, the
webpack-bundle-analyzer package has been implemented, which tells us in detail what
dependencies a given file may contain after the build process. An image parsed by this
package of the vendor.js file can be seen in Figure 4.

Future Internet 2023, 15, x FOR PEER REVIEW 18 of 26

project. To improve the code and modules that the application uses, the webpack-bundle-

analyzer package has been implemented, which tells us in detail what dependencies a

given file may contain after the build process. An image parsed by this package of the

vendor.js file can be seen in Figure 4.

Figure 4. Image parsed by vendor.js file package.

3.4. Testing and Highlighting the Performance of the GUI Designed

It can be said that application testing is extremely important, and aspects such as the

software GUI, displaying messages that appear when a new entity is added, and storing

data in volatile memory for calling them within the same instance are all part of a whole

ensemble. The probability that such an operation will cause a malfunction that is not high-

lighted in the main interface of the application is relatively small. Therefore, in the case of

such a scenario, the differences between the basic state and the exposed data are subject

to filtering operations and the analysis of potentially generated anomalies.

To optimize the data filtering and searching logic, it was proposed to implement a

component that will handle this. The component is a generic one, so it will be able to set

filters for each entity based on the properties available in the entity for filtering. The com-

ponent contains two sections, a section for a quick search and a section for an advanced

search.

The quality of the code written in the interface was optimized, avoiding repetitive

and difficult-to-maintain portions of code. Considering that web application architecture

is a structure that defines how an application is organized on different levels, the quality

of web application architecture is given by the following parameters:

• Whether users can correctly solve the tasks within the application;

• Whether developers can modify and maintain this application easily.

Therefore, the most common way to create a client-server application is to build

three-tier web application architecture. By using three tiers, it is possible to distribute the

application load between the client, server, and database in the most convenient way and

ensure high speed and smooth performance. Writing clean code is also important because

it will be easily understood by another teammate. Being able to go back to previously

written code and understand what it does is essential. To be able to analyze the perfor-

mance and structure of the bundle files, it was decided to use the webpack-bundle-

Figure 4. Image parsed by vendor.js file package.

3.4. Testing and Highlighting the Performance of the GUI Designed

It can be said that application testing is extremely important, and aspects such as the
software GUI, displaying messages that appear when a new entity is added, and storing
data in volatile memory for calling them within the same instance are all part of a whole
ensemble. The probability that such an operation will cause a malfunction that is not
highlighted in the main interface of the application is relatively small. Therefore, in the
case of such a scenario, the differences between the basic state and the exposed data are
subject to filtering operations and the analysis of potentially generated anomalies.

To optimize the data filtering and searching logic, it was proposed to implement a com-
ponent that will handle this. The component is a generic one, so it will be able to set filters
for each entity based on the properties available in the entity for filtering. The component
contains two sections, a section for a quick search and a section for an advanced search.

The quality of the code written in the interface was optimized, avoiding repetitive
and difficult-to-maintain portions of code. Considering that web application architecture is
a structure that defines how an application is organized on different levels, the quality of
web application architecture is given by the following parameters:

• Whether users can correctly solve the tasks within the application;
• Whether developers can modify and maintain this application easily.

Therefore, the most common way to create a client-server application is to build
three-tier web application architecture. By using three tiers, it is possible to distribute the
application load between the client, server, and database in the most convenient way and
ensure high speed and smooth performance. Writing clean code is also important because it
will be easily understood by another teammate. Being able to go back to previously written
code and understand what it does is essential. To be able to analyze the performance and
structure of the bundle files, it was decided to use the webpack-bundle-analyzer package,

Future Internet 2023, 15, 2 19 of 26

which helps to identify the modules that are used in our project and provides insight into
the modules that can be removed. The benefits of this package are as follows:

• Ability to realize what is really in the bundle;
• Finds out which modules are loaded and in which sizes;
• Finds out which modules were loaded by mistake or which useless modules remain

imported;
• Helps to optimize the application.

It was also aimed at identifying ways in which the user interface can be optimized, as
well as running specific tests.

Benefits of testing:

6. Using simulations is generally cheaper, safer, and sometimes more ethical than con-
ducting experiments in the real world. For example, supercomputers are sometimes
used to simulate the detonation of nuclear devices and their effects to support better
preparedness in the event of a nuclear explosion. Similar efforts are undertaken to
simulate hurricanes and other natural disasters.

7. Simulations can often be even more realistic than traditional experiments because
they allow the free configuration of environmental parameters found within the
operational scope of the final product. Examples are supporting the US Navy’s deep-
water operations or simulating the surface of neighboring planets in preparation for
NASA missions.

8. Simulations can often be performed faster than in real-time. This allows their use for
efficient analyses, especially when the data needed to initialize the simulation can
be easily obtained from operational data. The simulations allow the creation of a co-
herent synthetic environment that allows the integration of simulated systems in the
early analysis phase, through mixed virtual systems, with prototypic components in
a virtual test environment for the final system. If managed correctly, the environment
can be migrated from development and testing to training and education in later life
cycle phases for systems (including the option to train and optimize a virtual twin of
the real system, even under realistic constraints) before the first components are built.

The use of M&S in engineering is well recognized. Simulation technology belongs to
the toolkit of engineers in all application domains and has been included in the engineering
management body of knowledge. M&S helps to reduce costs, increase the quality of
products and systems, and enable their documentation. To ensure that simulation results are
applicable in the real world, one must understand the assumptions, conceptualizations, and
constraints of its implementation. In addition, the models can be updated and improved
using the results of real experiments. Based on this information, the ways in which the user
interface can be optimized were analyzed and simulations were carried out at a standard
speed without any limitation, a FAST 3G speed, and a SLOW 3G speed. The testing of
the interfaces was followed from the point of view of the resources used and the loading
and response times. The simulations are presented in Figures 5–7, the waiting times being
distinctly marked with the green color, the download times for downloading the content
are marked with the blue color, the requests and jumps with the gray color.

Perhaps one of the most important factors regarding the improvement process of
loading an application made at the infrastructure level is the total size of each file in
a package. When third-party modules are added to the projects, each of those dependencies
in turn has other sub-dimensions that generate bottlenecks. Following the reeds, it was
observed that for each entity that was operated roughly, a larger number of components
were generated, which then made the listing layout more difficult. Therefore, for each
entity, those components must list each item on a gradual scale, and the layout implements
a new generic logic that efficiently manages each raw operation.

Future Internet 2023, 15, 2 20 of 26

Future Internet 2023, 15, x FOR PEER REVIEW 20 of 26

Figure 5. Simulation without any loading—first page.

Figure 6. FAST 3G limited simulation—first page load.

Figure 7. Simulation with SLOW 3G limitation—loading the first page.

Perhaps one of the most important factors regarding the improvement process of

loading an application made at the infrastructure level is the total size of each file in a

package. When third-party modules are added to the projects, each of those dependencies

in turn has other sub-dimensions that generate bottlenecks. Following the reeds, it was

observed that for each entity that was operated roughly, a larger number of components

were generated, which then made the listing layout more difficult. Therefore, for each

entity, those components must list each item on a gradual scale, and the layout imple-

ments a new generic logic that efficiently manages each raw operation.

Thus, the new layout contains n number of components, but all the entities that lead

to the generation of that layout have a single purpose, that of generating a defined ideal

Figure 5. Simulation without any loading—first page.

Future Internet 2023, 15, x FOR PEER REVIEW 20 of 26

Figure 5. Simulation without any loading—first page.

Figure 6. FAST 3G limited simulation—first page load.

Figure 7. Simulation with SLOW 3G limitation—loading the first page.

Perhaps one of the most important factors regarding the improvement process of

loading an application made at the infrastructure level is the total size of each file in a

package. When third-party modules are added to the projects, each of those dependencies

in turn has other sub-dimensions that generate bottlenecks. Following the reeds, it was

observed that for each entity that was operated roughly, a larger number of components

were generated, which then made the listing layout more difficult. Therefore, for each

entity, those components must list each item on a gradual scale, and the layout imple-

ments a new generic logic that efficiently manages each raw operation.

Thus, the new layout contains n number of components, but all the entities that lead

to the generation of that layout have a single purpose, that of generating a defined ideal

Figure 6. FAST 3G limited simulation—first page load.

Future Internet 2023, 15, x FOR PEER REVIEW 20 of 26

Figure 5. Simulation without any loading—first page.

Figure 6. FAST 3G limited simulation—first page load.

Figure 7. Simulation with SLOW 3G limitation—loading the first page.

Perhaps one of the most important factors regarding the improvement process of

loading an application made at the infrastructure level is the total size of each file in a

package. When third-party modules are added to the projects, each of those dependencies

in turn has other sub-dimensions that generate bottlenecks. Following the reeds, it was

observed that for each entity that was operated roughly, a larger number of components

were generated, which then made the listing layout more difficult. Therefore, for each

entity, those components must list each item on a gradual scale, and the layout imple-

ments a new generic logic that efficiently manages each raw operation.

Thus, the new layout contains n number of components, but all the entities that lead

to the generation of that layout have a single purpose, that of generating a defined ideal

Figure 7. Simulation with SLOW 3G limitation—loading the first page.

Future Internet 2023, 15, 2 21 of 26

Thus, the new layout contains n number of components, but all the entities that lead
to the generation of that layout have a single purpose, that of generating a defined ideal
component. Within the new layout, generic modules are created that reload whenever
a new intermediate module is needed through which a dynamic dialogue is managed,
facilitating the listing or processing of data from any area of the Coestim application.

3.5. Testing and Validating the Designed Application by Overloading the Databases

In this direction, the problem of database testing was addressed, by overloading the
database in relation to the estimated traffic in the conditions where the designed application
will have the role of e-commerce platform, service reservation platform, and construction
design generation. Under these conditions, many more categories of users are targeted
than on a standard building materials platform. “Functional database testing” refers to the
method of testing a database that aims to validate the functional requirements at the data
infrastructure level from the end user’s point of view. We can say that the main purpose is
to test and validate the transactions or operations performed by an end user who accesses
the database, the result being boolean in terms of compliance. “Non-functional testing”
in the context of database testing can be classified into different categories depending on
the application requirements. Things such as response time under stressful conditions are
considered in this step (see Table 2) along with transaction exposure per second (Tps).

Table 2. Results regarding the testing of the database and the use of its performance standards
regarding the number of connections.

Clients Transactions Processed Average Response Time
(ms)

Tps (Excludes Database
Connection Time)

1000 10,000 214 122.1
2000 20,000 266 230.5
3000 30,000 312 318.7
4000 40,000 337 356.3
5000 50,000 389 388.4
6000 60,000 411 422.5
7000 70,000 484 498.5
8000 80,000 535 536.9
9000 90,000 593 582.1

10,000 100,000 688 619.3

The usefulness of such a module can be tested especially in the case of data entered
by loading them from files when later the data can be downloaded in a file with the same
format and structure as the one from where they were taken, in which case the verification
of data can be performed by comparing the original file with the downloaded one. Tests
were also performed for the creating, modifying, deleting, list fetch, and fetch methods
uniquely on an entity using 1000 to 10,000 clients executing 10 queries each to the server.
We can say that database performance can be tested using Pgbench, the simple way to test
PostgreSQL databases. It runs the same sequence of SQL commands repetitively, opening
multiple sessions to the current databases, then calculates an average rate in the weight of
transactions identified as transactions per second. In this case, test scenarios were outlined,
taking into account cases where several more than 10, 100, 1000, or 10,000 clients were
distributed over two execution threads, executing a different number of transactions for
each client. These aspects are exposed in Figure 8 and presented in detail in Table 1.

Future Internet 2023, 15, 2 22 of 26
Future Internet 2023, 15, x FOR PEER REVIEW 22 of 26

Figure 8. Graphical representation of the simulation order processing process (TPS).

When we design a suite of testing and analysis tools to measure the performance of

applications, along with that of software architectures, we must analyze how the database

is populated with data, services, users, suppliers, materials, and their variations. There-

fore, to more easily identify the information from the supplier, text-type columns are

added for the “SupplierItem” entity, and this contains a link to the item from the supplier.

In the case of the “SupplierFeedOutModule” entity, the “CustomItemBaseMapping” col-

umn is deleted because during implementation the “ItemBaseMapping” column proved

to be sufficient for saving an item’s mapping. Later, columns containing iterations for ser-

vices and their identifying resources are added, asynchronously renaming price and

quantity columns in real-time to generate quotes based on user queries. Renamed price

and quantity columns changed date type to “EstimateItem” and “ProjectExecutionItem”

to match their name and type from “SupplierItemPrice”. The “SuperServiceResource” en-

tity with the necessary columns was added to specify the number of hours required for a

resource and to indicate whether it is on the entire super-service. Changes were also made

to the data type for the amount column in the “ServiceResource” and “EstimateServiceRe-

source” entities to accept actual values. What we can highlight, according to the scenarios

tested in the case of Table 3, are aspects related to the number of clients that the Coestim

platform can manage without compromising the integrity of the platform, and the graphic

display in Figure 9. User sets exceeding 100,000 users executing over 1000,000 processed

transactions are established. The flexibility of the platform and its adaptability were some

of the main goals on which the entire architecture was coagulated. The development

team’s experience has been gained over the years from aspects regarding the reliability

process of the existing platforms, especially during the autumn campaigns, when the e-

commerce platforms are extremely overloaded and the waiting time increases. We can say

that at this moment the application for e-commerce and generating quotations for con-

struction, related services, and construction materials meets all the conditions to be one of

the most accurate and stable applications dedicated to the field of construction. The algo-

rithm designed and being released has many strengths compared to what currently exists

in the e-commerce market. The main goal of the Coestim application is to include as many

e-commerce platforms as possible dedicated to the construction and service market seg-

ment, and also to facilitate quality construction, reducing design errors.

Figure 8. Graphical representation of the simulation order processing process (TPS).

When we design a suite of testing and analysis tools to measure the performance of
applications, along with that of software architectures, we must analyze how the database
is populated with data, services, users, suppliers, materials, and their variations. Therefore,
to more easily identify the information from the supplier, text-type columns are added
for the “SupplierItem” entity, and this contains a link to the item from the supplier. In
the case of the “SupplierFeedOutModule” entity, the “CustomItemBaseMapping” column
is deleted because during implementation the “ItemBaseMapping” column proved to be
sufficient for saving an item’s mapping. Later, columns containing iterations for services
and their identifying resources are added, asynchronously renaming price and quantity
columns in real-time to generate quotes based on user queries. Renamed price and quantity
columns changed date type to “EstimateItem” and “ProjectExecutionItem” to match their
name and type from “SupplierItemPrice”. The “SuperServiceResource” entity with the
necessary columns was added to specify the number of hours required for a resource and to
indicate whether it is on the entire super-service. Changes were also made to the data type
for the amount column in the “ServiceResource” and “EstimateServiceResource” entities
to accept actual values. What we can highlight, according to the scenarios tested in the
case of Table 3, are aspects related to the number of clients that the Coestim platform can
manage without compromising the integrity of the platform, and the graphic display in
Figure 9. User sets exceeding 100,000 users executing over 1000,000 processed transactions
are established. The flexibility of the platform and its adaptability were some of the main
goals on which the entire architecture was coagulated. The development team’s experience
has been gained over the years from aspects regarding the reliability process of the existing
platforms, especially during the autumn campaigns, when the e-commerce platforms are
extremely overloaded and the waiting time increases. We can say that at this moment the
application for e-commerce and generating quotations for construction, related services,
and construction materials meets all the conditions to be one of the most accurate and
stable applications dedicated to the field of construction. The algorithm designed and being
released has many strengths compared to what currently exists in the e-commerce market.
The main goal of the Coestim application is to include as many e-commerce platforms as
possible dedicated to the construction and service market segment, and also to facilitate
quality construction, reducing design errors.

Future Internet 2023, 15, 2 23 of 26

Table 3. Intensive testing of the database depends on the processes initiated by the users in relation
to the connections.

Clients Transaction Transactions Processed Tps (Includes Database
Connection Time)

Tps (Excludes Database
Connection Time)

1000 10,000 15,352.53 4161.23
2000 20,000 17,454.63 5336.44
3000 30,000 19,497.54 6289.24
5000 50,000 21,567.97 6817.81
8000 80,000 26,458.44 7881.90

10,000 100,000 33,582.17 8517.31
50,000 500,000 46,868.52 8852.45

100,000 1000,000 59,840.71 9128.27
500,000 500,0000 63,141.82 9455.45
1000,000 10,000,000 65,984.98 9839.87

Future Internet 2023, 15, x FOR PEER REVIEW 23 of 26

Figure 9. Graphical representation of the endurance of the database in relation to the processes

initiated by the users.

Table 3. Intensive testing of the database depends on the processes initiated by the users in rela-

tion to the connections.

Clients Transaction Transactions Processed
Tps (Includes Database Connection

Time)

Tps (Excludes Database

Connection Time)

1000 10,000 15,352.53 4161.23

2000 20,000 17,454.63 5336.44

3000 30,000 19,497.54 6289.24

5000 50,000 21,567.97 6817.81

8000 80,000 26,458.44 7881.90

10,000 100,000 33,582.17 8517.31

50,000 500,000 46,868.52 8852.45

100,000 1000,000 59,840.71 9128.27

500,000 500,0000 63,141.82 9455.45

1000,000 10,000,000 65,984.98 9839.87

4. Discussion

We can say that planning tools are used with the aim of predicting when an order

will be completed; more precisely, planning refers directly to the way to estimate the de-

livery time within a production system. All these aspects are based on some unknowns

that the Coestim application managed to identify and transform from time-influencing

factors into key elements and indicators for decision-making evaluation through the prin-

ciple of the participatory economy. These are made with the help of construction special-

ists, including depot printers, construction companies, craftsmen, and engineers. Regard-

ing the occupancy rate, it was highlighted that while some activities were in the query

process, others gained time, and the weight of the degree of use of time generated 80%

time dedicated to the workflow, and for the difference of 20 % of the time, orders and

quotations are generated. Therefore, a higher degree of occupation in the task execution

process applies limitations even in the case of delivery time, aspects that lead to fewer

estimation errors. Neglecting these leads to a margin of error of approximately 10% cu-

mulatively; therefore, the initial prediction of delivery time becomes difficult to predict.

If there is a second effect, it complicates the entire process of planning and generating an

order in the allotted time, especially through variability. Therefore, two types of

Figure 9. Graphical representation of the endurance of the database in relation to the processes
initiated by the users.

4. Discussion

We can say that planning tools are used with the aim of predicting when an order will
be completed; more precisely, planning refers directly to the way to estimate the delivery
time within a production system. All these aspects are based on some unknowns that
the Coestim application managed to identify and transform from time-influencing factors
into key elements and indicators for decision-making evaluation through the principle
of the participatory economy. These are made with the help of construction specialists,
including depot printers, construction companies, craftsmen, and engineers. Regarding
the occupancy rate, it was highlighted that while some activities were in the query process,
others gained time, and the weight of the degree of use of time generated 80% time
dedicated to the workflow, and for the difference of 20 % of the time, orders and quotations
are generated. Therefore, a higher degree of occupation in the task execution process
applies limitations even in the case of delivery time, aspects that lead to fewer estimation
errors. Neglecting these leads to a margin of error of approximately 10% cumulatively;
therefore, the initial prediction of delivery time becomes difficult to predict. If there is
a second effect, it complicates the entire process of planning and generating an order in
the allotted time, especially through variability. Therefore, two types of variability in
the same process can negatively influence the entire planning process. Therefore, we

Future Internet 2023, 15, 2 24 of 26

consider extremely important and useful the development of a solution like Coestim, which
aims to dynamize and automate the processes dedicated to the generation of construction
estimates in relation to the client’s demand and needs. The Coestim solution incorporates
several principles of the participative economy, along with intelligent algorithms for the
optimization and processing of nomenclature, and at their base is a convolutional API
dedicated to the recipes of work quotes. It has highly dynamic elements and combines
important implementation practices based on communication and data processing, with no
limitation on the size of data packets. The modularity of the projects or APIs with which the
Coestim application is integrated does not depend on third parties, as it is able to adapt to
absolutely all invoicing programs, e-commerce platforms or existing databases, courier or
accounting companies, and management. Continuous implementations led to the creation
of new entities, which were followed by CRUD operations generating new components.
Therefore, Coestim can advance technologically by using a layout that is able to implement
a new type of generic logic, this being ideal in the process of managing CRUD operations.

5. Conclusions

We can say that the Coestim application is based on the most advanced analysis pro-
cedures and advanced calculations. In addition to these aspects, the heuristic algorithms
that facilitate imports from several databases and e-commerce platforms support all the
new elements necessary for a study dedicated to the e-commerce market. To these essential
conditions are added elements regarding invoicing methods, ERP integration, download as
a plug-in, and integration with all types of existing online platforms. The construction field
can be revitalized and propelled by incorporating such a highly feasible solution that has
channeled all its attention onto the generation of funds dedicated to the construction field,
at the same time operating as an e-commerce platform for construction materials, along
with craftsmen or specialized companies, 3D design, or the generation of projects based on
which there will be specialized recipes, and errors in the process of purchasing construction
materials will no longer exist. We considered necessary future implementations based on
dynamic lean or QRM principles in the final Coestim solution, to improve the designed
algorithms. We can say that the Coestim application includes e-commerce dedicated to
the field of construction, but with an extremely interesting approach, that at every step
the algorithm corrects errors in the generation of an estimate based on the data from the
construction nomenclature developed by engineers and designers. When you complete an
order and need services, Coestim delivers alternatives to choosing a team or a specialist
within the platform. In a word, in addition to having the possibility to purchase products at
the most advantageous prices, you can also have a team of professionals to complete your
work. In conclusion, the Coestim application generates work estimates that are later as-
signed to several work teams, distributors, markets in the field, services, prescriptions, and
price quotes of warehouses. These features of the application led to a database populated
with over 220,000 articles shortly after its launch. We want to introduce new standards
that will guide the construction industry and that will subsequently increase the level of
quality and the persuasion of related services. The direct involvement of clients, suppliers,
builders, engineers, and architects stimulates electronic commerce and develops a new
trend in the field of construction.

Author Contributions: Conceptualization, A.S. and N.S.; methodology, A.S., M.M. and M.B.; soft-
ware, A.S.; validation, A.S. and N.S.; formal analysis, A.S.; investigation, A.S.; resources, M.B.; data
curation, A.S. and E.Z.; writing—original draft preparation, A.S., N.S. and E.Z.; writing—review and
editing, A.S.; visualization, E.Z.; supervision, A.S.; project administration, A.S.; funding acquisition,
A.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not Applicable, the study does not report any data.

Future Internet 2023, 15, 2 25 of 26

Acknowledgments: Project co-financed by the European Regional Development Fund through the
Operational Program Competitiveness 2014–2020 “Center for the transfer of knowledge to enterprises
in the field of ICT—CENTRIC”.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Lai, G.; Liu, H.; Xiao, W.; Zhao, X. “Fulfilled by Amazon”: A Strategic Perspective of Competition at the e-Commerce Platform.

MSOM 2022, 68. [CrossRef]
2. Li, Z.; Agarwal, A. Platform Integration and Demand Spillovers in Complementary Markets: Evidence from Facebook’s

Integration of Instagram. Manag. Sci. 2017, 63, 3438–3458. [CrossRef]
3. Li, P.; Wei, H.; Wang, Y.; Tan, D. Research on Retailer’s Business Model Based on Product Quality and Service Level. J. Ind.

Eng./Eng. Manag. 2020, 34, 164–177.
4. Nistor, A.; Zadobrischi, E. The Influence of Fake News on Social Media: Analysis and Verification of Web Content during the

COVID-19 Pandemic by Advanced Machine Learning Methods and Natural Language Processing. Sustainability 2022, 14, 10466.
[CrossRef]

5. Di Nardo, M.; Yu, H. Special Issue “Industry 5.0: The Prelude to the Sixth Industrial Revolution”. Appl. Syst. Innov. 2021, 4, 45.
[CrossRef]

6. Wang, G.; Ai, X.; Zhong, L. The Choice of a E-Retailer’s Operation Modes under Network Platform Service Environment. Oper.
Res. Manag. Sci. 2021, 30, 226–233.

7. Zhou, C.; Yu, J.; Li, H. Single or Hybrid: Selling Mode Choices of Self-Run Platform Under Dual Competition Environment.
J. Northeast. Univ. (Nat. Sci.) 2021, 42, 1349–1359.

8. Domagała, A.; Grobler-Dębska, K.; Wąs, J.; Kucharska, E. Post-Implementation ERP Software Development: Upgrade or
Reimplementation. Appl. Sci. 2021, 11, 4937. [CrossRef]

9. Liu, C.; Dan, Y.; Dan, B.; Xu, G. Cooperative strategy for a dual-channel supply chain with the influence of free-riding customers.
Electron. Commer. Res. Appl. 2020, 43, 101001. [CrossRef]

10. Akintoye, A. Analysis of factors influencing project cost estimating practice. Constr. Manag. Econ. 2000, 18, 77–89. [CrossRef]
11. Fu, W.K.; Drew, D.S.; Lo, H.P. The effect of experience on contractors’ competitiveness in recurrent bidding. Constr. Manag. Econ.

2002, 20, 655–666. [CrossRef]
12. Black, C.; Akintoye, A.; Fitzgerald, E. An analysis of success factors and benefits of partnering in construction. Int. J. Proj. Manag.

2000, 18, 423–434. [CrossRef]
13. Wang, X.J.; Huang, J. The Relationships between Key Stakeholders’ Project Performance and Project Success: Perceptions of

Chinese Supervising Engineers. Int. J. Proj. Manag. 2006, 24, 253–260. [CrossRef]
14. Al-Jibouri, S.H.S. Monitoring systems and their effectiveness for project cost control in construction. International journal of project

management 2003, 21, 145–154. [CrossRef]
15. Matthess, M.; Kunkel, S. Structural change and digitalization in developing countries: Conceptually linking the two transforma-

tions. Technol. Soc. 2020, 63, 101428. [CrossRef]
16. Moeuf, A.; Pellerin, R.; Lamouri, S.; Tamayo-Giraldo, S.; Barbaray, R. The Industrial Management of SMEs in the Era of Industry

4.0. Int. J. Prod. Res. 2018, 56, 1118–1136. [CrossRef]
17. Nistor, A.; Zadobrischi, E. The Consumption Analysis of Economic Media at the Regional Level in a Developing Country.

Sustainability 2022, 14, 16140. [CrossRef]
18. Lin, C.-L.; Fan, C.-L.; Chen, B.-K. Hybrid Analytic Hierarchy Process–Artificial Neural Network Model for Predicting the Major

Risks and Quality of Taiwanese Construction Projects. Appl. Sci. 2022, 12, 7790. [CrossRef]
19. Holland, J.L. A theory of vocational choice. J. Couns. Psychol. 1959, 6, 35–45. [CrossRef]
20. Wudhikarn, R.; Pongpatcharatorntep, D. An improved intellectual capital management method for selecting and prioritizing

intangible-related aspects: A case study of small enterprise in Thailand. Mathematics 2022, 10, 626. [CrossRef]
21. Géron, A. hands-on machine learning with scikit-learn and tensorflow. In Concepts, Tools, and Techniques to Build Intelligent Systems;

O’Reilly Media: Sebastopol, CA, USA, 2017.
22. Yuwono, M.; Guo, Y.; Wall, J.; Li, J.; West, S.; Platt, G.; Su, S.W. Unsupervised feature selection using swarm intelligence and

consensus clustering for automatic fault detection and diagnosis in heating ventilation and air conditioning systems. Appl. Soft.
Comput. 2015, 34, 402–425. [CrossRef]

23. Chattapadhyay, D.B.; Putta, J. Risk identification, assessments, and prediction for mega construction projects: A risk prediction
paradigm based on cross analytical-machine learning model. Buildings 2021, 11, 172. [CrossRef]

24. Fan, C.L. Defect risk assessment using a hybrid machine learning method. J. Constr. Eng. Manag. 2020, 146, 04020102. [CrossRef]
25. Kifokeris, D.; Xenidis, Y. Risk source-based constructability appraisal using supervised machine learning. Autom. Constr. 2019,

104, 341–359. [CrossRef]
26. Pereira, E.; Ali, M.; Wu, L.; Abourizk, S. Distributed Simulation–Based Analytics Approach for Enhancing Safety Management

Systems in Industrial Construction. J. Constr. Eng. Manag. 2020, 146, 04019091. [CrossRef]

http://doi.org/10.1287/msom.2022.1078
http://doi.org/10.1287/mnsc.2016.2502
http://doi.org/10.3390/su141710466
http://doi.org/10.3390/asi4030045
http://doi.org/10.3390/app11114937
http://doi.org/10.1016/j.elerap.2020.101001
http://doi.org/10.1080/014461900370979
http://doi.org/10.1080/0144619022000014060
http://doi.org/10.1016/S0263-7863(99)00046-0
http://doi.org/10.1016/j.ijproman.2005.11.006
http://doi.org/10.1016/S0263-7863(02)00010-8
http://doi.org/10.1016/j.techsoc.2020.101428
http://doi.org/10.1080/00207543.2017.1372647
http://doi.org/10.3390/su142316140
http://doi.org/10.3390/app12157790
http://doi.org/10.1037/h0040767
http://doi.org/10.3390/math10040626
http://doi.org/10.1016/j.asoc.2015.05.030
http://doi.org/10.3390/buildings11040172
http://doi.org/10.1061/(ASCE)CO.1943-7862.0001897
http://doi.org/10.1016/j.autcon.2019.04.012
http://doi.org/10.1061/(ASCE)CO.1943-7862.0001732

Future Internet 2023, 15, 2 26 of 26

27. Yan, F.; Lin, Z.B.; Azarmi, F.; Sobolev, K. Evaluation and prediction of bond strength of GFRP-bar reinforced concrete using
artificial neural network optimized with genetic algorithm. Compos. Struct. 2017, 161, 441–452. [CrossRef]

28. Ehsani, E.; Kazemi, N.; Olugu, E.U.; Grosse, E.H.; Schwindl, K. Applying fuzzy multi-objective linear programming to a project
management decision with nonlinear fuzzy membership functions. Neural. Comput. Appl. 2017, 28, 2193–2206. [CrossRef]

29. Jin, J.; Li, Z.; Zhu, L.; Tong, X.H.; Yang, C.W. Application of BP neural network in risk evaluation of railway construction. J. Railw.
Eng. Soc. 2019, 3, 103–109.

30. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. In Advances in Neural
Information Processing Systems 25; Pereira, F., Burges, C.J., Bottou, L., Weinberger, K.Q., Eds.; Curran Associates, Inc.: Red Hook,
NY, USA, 2012; pp. 1097–1105.

31. Marsh, H.W.; Hau, K.T. Confirmatory factor analysis: Strategies for small sample sizes. In Statistical Strategies for Small Sample
Research; Hoyle, R.H., Ed.; SAGE Publishing: London, UK, 1999; pp. 252–284.

32. Arabyat, Y.A.; AlZubi, A.A.; Aldebei, D.M.; Al-oqaily, S.Z. An Efficient Method for Pricing Analysis Based on Neural Networks.
Risks 2022, 10, 151. [CrossRef]

33. Haigh, T. Cleve Moler: Mathematical Software Pioneer and Creator of Matlab. IEEE Ann. Hist. Comput. 2008, 30, 87–91. [CrossRef]
34. Sfichi, A.; Sfichi, N.; Bădelit,ă, M.; Medrihan, M.; Zadobrischi, E. Utility of Designing Intelligent Algorithms to Streamline

E-Commerce Operations and Construction Costs Estimates by Applying Principles of Sharing Economy: Coestim. Telecom 2022, 3,
484–503. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/j.compstruct.2016.11.068
http://doi.org/10.1007/s00521-015-2160-0
http://doi.org/10.3390/risks10080151
http://doi.org/10.1109/MAHC.2008.2
http://doi.org/10.3390/telecom3030026

	Introduction
	Literature Review and Cost Estimation Methods
	Cost Estimation Techniques
	Qualitative Approaches
	Statistical Methods in Cost Estimation

	Study of the Construction of the BP (Back-Propagation) Neural Network Model
	Analysis of Gray Theory in Cost Estimation
	Coestim—Design Simulator for Creating Construction Projects

	Prototyping and Implementation of the Proposed Algorithm—Coestim
	Designing Project Creation and Optimization RESTful API
	Designing Intelligent Algorithms for Cost Efficiency
	User Interface Design and Optimization through Lazy Loading Concepts
	Testing and Highlighting the Performance of the GUI Designed
	Testing and Validating the Designed Application by Overloading the Databases

	Discussion
	Conclusions
	References

