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Abstract: Federated learning (FL) is a collaborative machine-learning (ML) framework particularly
suited for ML models requiring numerous training samples, such as Convolutional Neural Networks
(CNNs), Recurrent Neural Networks (RNNs), and Random Forest, in the context of various applica-
tions, e.g., next-word prediction and eHealth. FL involves various clients participating in the training
process by uploading their local models to an FL server in each global iteration. The server aggregates
these models to update a global model. The traditional FL process may encounter bottlenecks, known
as the straggler problem, where slower clients delay the overall training time. This paper introduces
the Latency-awarE Semi-synchronous client Selection and mOdel aggregation for federated learNing
(LESSON) method. LESSON allows clients to participate at different frequencies: faster clients
contribute more frequently, therefore mitigating the straggler problem and expediting convergence.
Moreover, LESSON provides a tunable trade-off between model accuracy and convergence rate by
setting varying deadlines. Simulation results show that LESSON outperforms two baseline methods,
namely FedAvg and FedCS, in terms of convergence speed and maintains higher model accuracy
compared to FedCS.

Keywords: federated learning; client selection; model aggregation; semi-synchronous; IoT

1. Introduction

With the development of the Internet of Things (IoT), numerous smart devices, such
as smartphones, smartwatches, and virtual-reality headsets, are widely used to digitize
people’s daily lives. Traditionally, a huge volume of data generated by these IoT devices is
uploaded to and analyzed by a centralized data center that generates high-level knowledge
and provides corresponding services to users, thus facilitating their lives [1]. A typical
example is smart homes, where various IoT devices, such as smart meters, thermostats,
motion detectors, and humidity sensors, are deployed to monitor the status of the smart
homes. The data generated by the IoT devices would be uploaded to a centralized data cen-
ter, which applies a deep reinforcement learning model to intelligently and autonomously
control, for example, the smart bulbs and air conditioners in smart homes, to improve the
quality of experience and reduce the energy usage of smart homes [2].

On the other hand, sharing data with third-party data centers may raise privacy
concerns as data generated by IoT devices may contain personal information, such as users’
locations and personal preferences [3]. As a result, various policies have been made, such as
General Data Protection Regulation (GDPR) made by the European Union [4], to regulate
and hinder data sharing. To fully utilize these personal data while preserving privacy
(i.e., without sharing the data), federated learning (FL) is proposed to distributively train
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machine-learning models by enabling different IoT devices to analyze their data locally
without uploading them to a central facility [5]. A typical example of using FL is to train
a next-word prediction model, which is used to predict what word comes next based on
the existing text information [6]. Basically, as shown in Figure 1, an FL server would first
initialize the parameters of the global model and then broadcast the global model to all the
clients via wireless networks. Each client would train the received global model based on
its local data sets (i.e., their text messages) and upload the updated model to the FL server
via wireless networks. The FL server then aggregates the received models from the clients
to generate a new global model and then starts a new iteration by broadcasting the new
global model to the clients. The iteration continues until the model is converged.

Figure 1. Wireless federated learning.

The traditional FL method can resolve the privacy issue to allow the clients to train
the model locally, and it applies the synchronous strategy, where the FL server must wait
until it receives the models from all the clients in each global iteration. This may lead to
the straggler problem when the configurations of clients are heterogeneous, meaning that
they have different computing and communications capabilities. Hence, some stragglers
take much longer time to train and upload their models in a global iteration because of
their lower computing and communications capabilities, and thus significantly prolong the
model training process. To resolve the straggler problem, many client selection methods
have been proposed [7–12], which would select the qualified clients that can finish their
model training and uploading before a predefined deadline. Normally, client selection
and resource allocation are jointly optimized to maximize the number of selected qual-
ified clients. Selecting qualified clients can resolve the straggler problem but may raise
other issues. First, the proposed client selection may significantly reduce the number of
participating clients, which may slow down the convergence speed [13], thus leading to
longer training latency (which equals the sum of the latency for all the global iterations).
Second, the proposed client selection may result in the model overfitting issue caused by
the reduction of data diversity, i.e., if the FL server only selects the qualified clients to
participate in the model training, then the generated model can only fit the data samples
in these qualified clients, but not the non-qualified clients. The model overfitting issue
would be compounded if the data samples of the qualified clients are not sufficient [14].
The other solution to solve the straggler problem is to apply asynchronous FL, where the
FL server does not need to wait until the deadline expires for each global iteration but
would update the global model once it receives a local model from a client [15]. However,
the asynchronous FL may suffer from (1) the high communications cost since both the FL
server and clients will more frequently exchange their models and (2) the stale issue, where
some slow clients are training based on an outdated global model, which may lead to slow
convergence rate or even global model divergence [16,17].

To solve the slow convergence and model overfitting issues in the synchronous FL
while avoiding model divergence in the asynchronous FL, we propose a semi-synchronous
FL method, i.e., Latency awarE Semi-synchronous client Selection and mOdel aggregation
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for federated learNing (LESSON). The basic idea of LESSON is to allow all the clients to
participate in the whole learning process with different frequencies. Specifically, the clients
are clustered into different tiers based on their model training and uploading latency. The
clients in a lower tier (i.e., lower model training and uploading latency) would participate
in the learning process more frequently than those in a higher tier (with higher model
training and uploading latency). As a result, the straggler problem can be resolved (since
the FL server does not need to wait for stragglers in each global iteration), and the model
overfitting problem can be fixed (since all the clients join the learning process to provide
high data diversity). The main contributions of the paper are summarized as follows.

1. A new semi-synchronous FL algorithm, i.e., LESSON, is introduced. LESSON intro-
duces a latency-aware client clustering technique that groups clients into different tiers
based on their computing and uploading latency. LESSON allows all the clients in the
system to participate in the training process but at different frequencies, depending
on the clients’ associated tiers. LESSON is expected to mitigate the straggler prob-
lem in synchronous FL and model overfitting in asynchronous FL, thus expediting
model convergence.

2. LESSON also features a specialized model aggregation method tailored to client
clustering. This method sets the weight and timing for local model aggregation for
each client tier.

3. The proposed LESSON algorithm also integrates the dynamic model aggregation and
step size adjustment according to client clustering and offers flexibility in balancing
model accuracy and convergence speed by adjusting the deadline τ.

4. Extensive experimental evaluations show that LESSON outperforms FedAvg and
FedCS in terms of faster convergence and higher model accuracy.

The rest of this paper is organized as follows. The related work is summarized in
Section 2. System models are described in Section 3. Section 4 elaborates on the proposed
LESSON algorithm, which comprises client clustering and model aggregation. In Section 5,
the performance of LESSON is compared with the other two baseline algorithms via
extensive simulations, and simulation results are analyzed. Finally, Section 6 concludes
this paper.

2. Related Work

Solving the straggler issue is one of the main challenges in synchronous FL. The
existing solutions mainly focus on jointly optimizing client selection and resource allocation.
Nishio and Yonetani [18] aimed to maximize the number of selected clients that can finish
their model training and uploading before a predefined deadline in each global iteration.
By assuming that the selected clients must iteratively upload their models to the FL server,
they designed FedCS that jointly optimizes the uploading schedule and client selection
to achieve the objective. Abdulrahman and Tout [19] designed a similar client selection
method FedMCCS. The goal of FedMCCS is to maximize the number of selected clients
who can not only finish the model training and uploading before a predefined deadline but
also guarantee the resource utilization is less than the threshold to avoid device dropout.
Albelaihi et al. [11] proposed a client selection method that tries to achieve the same
objective as FedCS, but they argued that the latency of a client in waiting for the wireless
channel to be available for model uploading should be considered; otherwise, the selected
clients may not upload their local models before the deadline. Yu et al. [20] proposed
to dynamically adjust and optimize the trade-off between maximizing the number of
selected clients and minimizing the total energy consumption of the selected clients by
picking suitable clients and allocating appropriate resources (in terms of CPU frequency
and transmission power) in each global iteration. Shi et al. [21] also jointly optimized the
client selection and resource allocation for FL. However, the objective is to minimize the
overall learning latency (which equals the product of the average latency of one global
iteration and the number of global iterations) while achieving a certain model accuracy.
They formulated a system model to estimate the number of global iterations given the global
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model accuracy requirement. All the mentioned client selection methods for synchronous
FL can alleviate the straggler problem but may lead to a slow convergence rate and model
overfitting issues, as we illustrated previously.

Instead of selecting qualified clients to avoid stragglers, Li et al. [22] proposed to let
fast clients train their local models by running more gradient descent iterations in each
global iteration. In this way, the fast and slow clients could upload their models at a
similar time, but the fast clients may provide better models to fit their local data samples,
thus potentially speeding up the model convergence. This method, however, may lead
to local model overfitting issues when some fast clients run too many gradient descent
iterations over the limited data samples. The overfitted local models would significantly
slow down the global model convergence. Wu et al. [23] proposed to perform spilt learning,
where a global neural network is divided into two parts. The parameters in the former
and latter layers are trained in the clients and the FL server, respectively. As a result, the
computational complexity of the clients is reduced, thus potentially reducing the training
time and energy consumption of the clients.

Other works aim to design asynchronous FL, where the FL server does not need to
wait for the selected clients to upload their local models; instead, once the FL server receives
a local model from a client, it would aggregate the received local model to update the
global model, and then send the updated global model to the client [24–27]. However,
as mentioned before, the fast clients and the FL server must exchange their models more
frequently, thus leading to higher communications costs for both the fast clients and FL
server [28,29]. Meanwhile, in asynchronous FL, the slower clients may train their local
models based on an outdated global model, which results in slow convergence or even
leads to model divergence [30,31].

To overcome the drawbacks in synchronous and asynchronous FL, we propose the
semi-synchronous FL to allow all the clients to participate in the whole learning process
with different frequencies. Although the term “semi-synchronous FL” has been used
by the existing works, the definitions are different from what we defined in this paper.
For example, Stripelis and Ambite [32] defined semi-synchronous FL as the clients train
their local models over different sizes of local data sets, depending on their computing
capabilities. The semi-synchronous FL proposed in [33] periodically re-selects a number
of clients and follows the same method as asynchronous FL to aggregate and update the
global model.

3. System Models
3.1. Federated Learning Preliminary

The idea of FL is to enable distributed clients to cooperatively train a global model
such that the global loss function, denoted as F (ω), can be minimized. That is,

arg min
ω

F (ω) = arg min
ω

∑
i∈I

|Di|
|D| fi(ω), (1)

where ω is the set of the parameters for the global model, I is the set of the selected clients,
|D| is the number of the training data samples of all the clients, |Di| is the number of the
training data samples at client i (where D =

⋃
i∈I

Di), and fi(ω) is the local loss function of

client i, i.e.,

fi(ω) =
1
|Di| ∑

n∈Di

f (ω, ai,n, bi,n). (2)

Here, (ai,n, bi,n) is the input-output pair for the nth data sample in user i’s data set,
and f (ω, ai,n, bi,n) captures the error of the local model (with parameter ω) over (ai,n, bi,n).

In each global iteration, FL comprises four steps.

1. Server broadcast: In the k-th global iteration, the FL server broadcasts the global model
generated in the previous global iteration, denoted as ω(k−1), to all the selected clients.
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2. Client local training: Each client i trains its local model over its local data set Di, i.e.,

ω
(k)
i = ω

(k−1)
i − δ∇ fi

(
ω

(k−1)
i

)
, where δ is the learning rate.

3. Client model uploading: After deriving the local model ω
(k)
i , client i uploads its local

model to the FL server.
4. Server model aggregation: The FL server aggregates the local models from the

clients and updates the global model based on, for example, FedAvg [5], i.e., ω(k) =

∑
i∈I

|Di |
|D| ω

(k)
i .

The global iteration keeps executed to update the global model ω(k) until the global
model converges.

3.2. Latency Models of a Client

There are four steps in each global iteration for FL, and so the latency of a global
iteration equals the sum of the latency among these four steps. The local model training
latency in Step (2) and local model uploading latency in Step (3) are different among the
clients, depending on their computing and communications capacities. In addition, the
global model broadcast latency in Step (1) and model aggression latency in Step (4) are the
same for all the clients and are normally negligible as compared to local model training and
uploading latency. Thus, we define the latency of client i in a global iteration as follows.

ti = tcomp
i + tupload

i , (3)

where tcomp
i is the computing latency of client i in training its local model over its local data

samples in Step (2), and tupload
i is the uploading latency of client i in uploading its local

model to the FL server in Step (3).

3.2.1. Computing Latency

The computing latency of client i in a global iteration can be estimated by [34]

tcomp
i = θ log2

(
1
ε

)
Ci|Di|

fi
, (4)

where θ is a constant determined by the structure of the desired model; θ log2

(
1
ε

)
indicates

the estimated number of local iterations to achieve the required training accuracy ε; Ci in
cycles/sample is the number of CPU cycles required for training one data sample of the
local model; |Di| is the number of training samples used by client i; fi in cycles/second is
CPU frequency of client i, which is determined by the device hardware.

3.2.2. Uploading Latency

The achievable data rate of client i can be estimated by

ri = b log2

(
1 +

pgi
N0

)
, (5)

where b is the amount of bandwidth allocated to each participating client, p is the transmis-
sion power of the client, gi is the channel gain from client i to the BS calculated, and N0 is
the average background noise and inter-cell interference power density. We assume that
the size of the local model is s, and so the latency of client i in uploading its local model to
the BS is

tupload
i =

s
ri

=
s

b log2

(
1 + pgi

N0

) . (6)
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4. Latency-awarE Semi-Synchronous Client Selection and mOdel Aggregation for
Federated learNing (LESSON)

In contrast to synchronous FL, the proposed LESSON method aims to allow all the
clients to participate in the whole learning process while avoiding the straggler problem.
The basic idea of LESSON is to cluster the clients into different tiers based on their latency
and the deadline. The clients in different tiers would train and upload their local models at
different frequencies.

4.1. Latency-Aware Client Clustering

We denote τ as the deadline of a global iteration. The FL server would accept all the
models uploaded from the clients before the deadline τ and reject the rest in each global
iteration. Hence, we cluster the clients into several tiers, and xij is used to indicate whether
client i is in Tier j (i.e., xij = 1) or not (i.e., xij = 0). Basically, if client i can finish its local
model training and uploading before deadline τ, i.e., ti ≤ τ, then client i is in Tier 1, i.e.,
xi1 = 1. Similarly, if client i can finish its local model training and uploading between τ
and 2× τ, i.e., τ < ti ≤ 2× τ, then client i is in Tier 2, i.e., xi2 = 1. The following equation
provides a general mathematical expression to cluster client i into a specific tier.

xij =

{
1, if τ × (j− 1) < ti ≤ τ × j,
0, otherwise,

(7)

where j is the index of tiers.

4.2. Semi-Synchronized Model Aggregation

In each global iteration, clients from different tiers upload their local models, and the
FL server can estimate when a client may upload its local model according to its associated
tier. Figure 2 provides one example to illustrate the scheduling of the clients from four tiers
in LESSON. For example, the clients in Tier 1 are expected to upload their local models in
each global iteration, and the clients in Tier 2 are expected to upload their local models in
every two global iterations. Denote k as the index of the global iterations, and let yjk be the
binary variable to indicate whether the clients in Tier j are expected to upload their local
models by the end of kth global iteration, where

yjk =

{
1, if k%j = 0,
0, otherwise,

(8)

where % is the modulo operation, and so k%j = 0 indicates k is divisible by j. Meanwhile,
let zik be the binary variable to indicate whether client i is expected to upload its local
model by the end of kth global iteration (zik = 1) or not (zik = 0), where

zik = xijyjk. (9)

Based on the value of zik, the FL server would expect which clients will upload their
local models in global iteration k, and then aggregate all the received local models based on

ω(k) = ∑
i∈I

|Di|
∑

i∈I
|Di|zik

ω
(k)
i zik, (10)

where ∑
i∈I
|Di|zik indicates the total number of the data samples among all the clients, who

would upload their local models in global iteration k.
Please note that, in synchronous FL (e.g., FedAvg), each selected client would update

its local model ω
(k)
i based on Equation (11) in each global iteration.

ω
(k)
i = ω

(k−1)
i − δ∇ fi

(
ω

(k−1)
i

)
, (11)
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where δ is the step size, which is the same for all the selected clients. In LESSON, different
clients update their local models in different frequencies, depending on their associated
tiers, so it is reasonable to adopt different step sizes for the clients in different tiers [24].
Here, we adjust the step size of a client proportional to its tier (i.e., δ× j). Thus, when
k%j = 0, client i in Tier j would update its local model based on

ω
(k)
i = ω

(k−j)
i − jδ∇ fi

(
ω

(k−j)
i

)
(12)

Figure 2. Illustration of client scheduling in LESSON.

4.3. Summary of LESSON

Algorithm 1 provides an overview of the LESSON algorithm. Initially, the FL server
estimates the latency of all the clients and clusters the clients into different tiers based on
Equation (7), i.e., Steps 1–2 in Algorithm 1. Then, the FL server broadcasts the initial global
model ω(0) to start the collaborative model training process, which unfolds over numerous
global iterations.

Within each global iteration k, each client trains and updates its local model ω
(k)
i based

on Equation (12). If zik = 1, client i should upload its local model to the FL server by the
end of global iteration k. Then, client i would wait until it receives the updated global
model ω(k) from the FL server to start the next round of local model training.

Concurrently, the FL server keeps receiving the local models from the clients in global
iteration k. Once the deadline expires, the FL server updates the global model ω(k) based
on Equation (10), and then broadcasts the new global model ω(k) to the clients, who just
uploaded their local models in global iteration k.

Please note that the deadline of a global iteration, i.e., τ, is a very crucial parameter
to adjust the performance of LESSON. Specifically, if τ → +∞, a single tier is employed,
housing all clients. This setup operates akin to the FedAvg. Here, the FL server must
patiently await the arrival of local models from all clients during each global iteration.

Conversely, if τ → 0, LESSON acts as asynchronous FL, where clients with varying
latency (i.e., ti) are distributed across distinct tiers. The FL server will promptly aggregate
the local models from the clients with low latency, subsequently updating and broadcasting
the global model. This adaptability in τ constitutes one of LESSON’s strengths, and we
will delve into how different values of τ impact LESSON’s performance in Section 5.
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Algorithm 1: LESSON algorithm

1 Estimate the latency of all the clients based on Equation (3).
2 Cluster the clients into different tiers based on Equation (7).
3 The FL server initializes the global model ω(0) and broadcasts to all the clients.
4 Initialize the global iteration index, k = 1;
5 for each global iteration k do
6 Client side:{
7 if zik = 1, derived with Equation (9) then
8 Receive the broadcast global model ω(k) as the local model ω

(k−j)
i with

klocal := kglobal + j, ω(k) k:=k+j−−−→ ω
(k−j)
i ;

9 Perform local model training based on Equation (12) over j global
iteration;

10 Upload its local model ω
(k)
i to the FL server;

11 end
12 }
13 FL server side:{
14 Receive all the local models uploaded from the clients during kth global

iteration, with time length of τ;
15 Update the global model ω(k) based on Equation (10);
16 Broadcast the updated global model ω(k) to the corresponding clients;
17 k := k + 1;
18 }
19 end

5. Simulation

In this section, we conduct extensive simulations to evaluate the performance of LESSON.

5.1. Simulation Setup
5.1.1. Configuration of Clients

We assume that there are 50 clients that are uniformly distributed in a 2 km× 2 km area,
which is covered by a BS located at the center of the area. All the clients upload their local
models to the FL server via the BS. The pathloss between the BS and client i is calculated
based on 128.1 + 37.6× di, where di is the distance in kilometer between the BS and client
i. Then, the channel gain is calculated based on gi = 10−(128.1+37.6×di)/10 [35]. Meanwhile,
the transmission power pi is set to be 1 Watt for all the clients, and the amount of available
bandwidth for each client in uploading its local model is 30 kHz. In addition, each client
has around |Di| = 1000 data samples (i.e., 50,000 combined for all clients) to train its
local model. The number of CPU cycles required for training one data sample (i.e., Ci)
among clients is randomly selected from a uniform distribution, i.e., Ci ∼ U (3, 5)×105 CPU
cycles/sample. The CPU frequency of a client fi is also randomly selected from a uniform
distribution, i.e., fi ∼ U (0.8, 3) GHz. Other simulation parameters are listed in Table 1.

Figure 3 shows the probability density function of the latency (i.e., ti) among all the
clients in a specific time instance. The median value in the clients’ latency is around 10 s, so
we initially set up the deadline τ of a global iteration to be 10 s, and we will change the
value of τ, later, to see how it affects the performance of LESSON.
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Table 1. Simulation parameters.

Parameter Value

Noise and inter-cell interference (N0) −94 dBm
Bandwidth B 30 kHz
Transmission power 0.1 watt
Size of the local model (s) 100 kbit
Number of local iterations (θ log2(

1
ε )) 1× log2(

1
0.05 )

Number of local samples |Di| 1000
CPU cycles required for training one data sample Ci U (3, 5)×108

CPU frequency fi U (0.8, 3) GHz
Number of local epochs 1
Number of local batch size 20
Non-IID Dirichlet distribution parameter β [0.1, 1, 10]
Client Learning Rate δ, 0.02

0 20 40 60 80
Delay (s)

0.00

0.01

0.02

0.03

0.04

Pr
ob

ab
ilit

y 
de

ns
ity

 fu
nc

tio
n

Figure 3. Clients’ latency distribution.

5.1.2. Machine-Learning Model and Training Datasets

We will use two benchmark datasets to train the corresponding machine-learning
model.

1. CIFAR-10 [36] is an image classification dataset containing 10 labels/classes of images,
each of which has 6000 images. Among the 60,000 images, 50,000 are used for model
training and 10,000 for model testing.

2. MNIST [37] is a handwritten digit dataset that includes many 28× 28 pixel grayscale
images of handwritten single digits between 0 and 9. The whole dataset has a training
set of 60,000 examples and a test set of 10,000 examples.

We apply the convolutional neural network (CNN) to classify the CIFAR-10 images.
The CNN model has four 3 × 3 convolution layers (where the first layer has 32 channels,
and each of the following three layers has 64 channels. Also, only the first two layers are
followed with 2× 2 max pooling), followed by a dropout layer with rate of 75%, a fully
connected 256 units ReLU layer, and a 10-unit SoftMax output layer. There are a total of
1,144,650 parameters in this CNN model.

With respect to MNIST, which is a much simpler image dataset than CIFAR-10, a
smaller CNN model has been used. Specifically, the CNN model has two 5 × 5 convo-
lution layers (where the two layers have 6 and 16 channels, respectively, each of which
is followed with a 2× 2 max pooling), followed with two fully connected ReLU layers
with 120 and 84 units, respectively, and a 10-unit SoftMax output layer. There are a total of
61,706 parameters in this CNN model.
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In addition, we partition the MNIST/CIFAR-10 dataset among the 50 clients based on
the non-independent and identical distribution (Non-IID), and the probability of having
ηm images in label class m at client i is assumed to follow a Dirichlet distribution [38], i.e.,

f (η1, η2, . . . , ηM; β) =
Γ(βM)

Γ(β)M

M

∏
m=1

η
β−1
m , (13)

where M is the total number of label classes (i.e., M = 10 for both CIFAR-10 and MNIST),
Γ() is the gamma function (Γ(z) =

∫ ∞
0 xz−1e−xdx), and β is the concentration parameter

that determines the level of label imbalance. A larger β results in a more balanced data
partition among different labels within a client (i.e., much closer to IID) and vice versa.
Figure 4 shows how different labels of images are distributed by varying β. In addition, we
assume each client would train its CNN model over |Di| = 20 data samples locally based
on stochastic gradient descent (SGD) with base learning rate δ = 0.1 [39] and epoch equal
to 1.

0

5
=0.1

0

5
=1

0.0 0.2 0.4 0.6 0.8 1.0
0

5
=10

Figure 4. Probability distribution of 10 categories samples for 5 clients with different β.

5.1.3. Baseline Comparison Methods

The performance of LESSON will be compared with the other two baseline client
selection algorithms, i.e., FedCS [18] and FedAvg [13]. FedCS only selects the clients that
can finish their model uploading before the deadline τ in each global iteration, i.e., only the
clients in Tier 1 will be selected to participate in the training process. In FedAvg, all the
clients in the network will be selected to participate in the training process for each global
iteration, i.e., the FL server will wait until it receives the local models from all the clients
and then update the global model for the next global iteration. In addition, the source code
of LESSON can be found in https://github.com/fzvincent/FL_AoR/tree/master (accessed
on 29 September 2023).

5.2. Simulation Results

Assume that β = 1 and τ = 20 s. Figure 5 shows the test accuracy of the three
algorithms over the global iterations and simulation time for CIFAR-10 and MNIST. From
Figure 5a,b, we can find that LESSON and FedAvg have similar test accuracy, i.e., ∼70%
for CIFAR-10 and ∼95% for MNIST. However, the test accuracy achieved by FedCS is
lower than LESSON and FedAvg, i.e., ∼60% for CIFAR-10 and ∼90% for MNIST. This is
because FedCS only selects fast clients to participate in the training process, and so the
derived global model can only fit the data samples for fast clients, not slow clients, thus
reducing the model accuracy. Meanwhile, the convergence rate with respect to the number
of global iterations for LESSON and FedAvg is also very similar, which is slightly faster
than FedCS. However, by evaluating the convergence rate with respect to the time, as
shown in Figure 5c,d, we find out that LESSON is faster than FedAvg. For example, the

https://github.com/fzvincent/FL_AoR/tree/master
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global model in LESSON has already converged at 20,000 s for MNIST, but the global model
in FedAvg is still under-trained. This is because the FL server in FedAvg must wait until
the local models from all the clients have been received in each global iteration, and thus,
the latency of a global iteration incurred by FedAvg is much higher than that incurred
by LESSON. Table 2 shows the average delay of a global iteration incurred by different
algorithms, where the average latency of a global iteration incurred by LESSON is 48 s
faster than FedAvg. As a result, FedAvg only runs around 588 global iterations at 20,000 s
in Figure 5d, respectively, but LESSON runs 2000 global iterations.

Table 2. Average latency per global iteration for different algorithms.

Algorithms Average Latency of a Global Iteration

FedAvg 68 s
FedCS 20 s

LESSON 20 s
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Figure 5. Test accuracy of different algorithms for CIFAR-10 and MNIST with β = 1, where (a) test
accuracy vs. the number of global iterations for CIFAR-10, (b) test accuracy vs. the number of global
iterations for MNIST, (c) test accuracy vs. time in CIFAR-10, and (d) test accuracy vs. time in MNIST.

We further investigate how the data sample distribution affects the performance of
the algorithms based on CIFAR-10. As mentioned before, β is used to change the data
sample distribution, i.e., a larger β implies a more balanced data partition among the
labels in a client or data sample distribution much closer to IID, and vice versa. Assume
τ = 20 seconds, and Figure 6 shows the test accuracy of different algorithms over the
number of global iterations by selecting different values of β. From the figures, we can
see that if the data sample distribution exhibits non-IID, i.e., β = 0.1, FedAvg has higher
test accuracy than LESSON and FedCS. As β increases, i.e., the data sample distribution
is growing closer to IID, the test accuracy gap between FedAvg and LESSON is growing
smaller, while the test accuracy of FedCS remains unchanged. On the other hand, Figure 7
shows the test accuracy of different algorithms over time by selecting different values of
β. From the figure, we can see that LESSON achieves 2× faster convergence rate than
FedAvg under different values of β. Therefore, we conclude that LESSON achieves a faster
convergence rate at the cost of slightly reducing the model accuracy, especially when the
data distribution exhibits non-IID.
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Figure 6. Test accuracy over the number of global iterations for CIFAR-10, where (a) β = 0.1,
(b) β = 1.0, and (c) β = 10.0.
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Figure 7. Test accuracy over the time for CIFAR-10, where (a) β = 0.1, (b) β = 1.0, and (c) β = 10.0.

As mentioned in Section 4.3, the deadline of a global iteration, i.e., τ, is a very important
parameter to adjust the performance of LESSON. Basically, if τ → +∞, LESSON acts as
FedAvg, and if τ → 0, LESSON acts as asynchronous FL. Figure 8 shows the test accuracy
of LESSON by having different values of τ and β for CIFAR-10 over global iterations, where
we can find that τ = 60 seconds incurs the highest test accuracy for both β = 0.1 and β = 1.
This is because a larger τ (1) reduces the number of tiers in the system, thus alleviating the
performance degradation caused by stale issues, and (2) increases the average number of
clients in uploading their local models in a global iteration, which can mitigate the impact
caused by non-IID. Also, we can see that the blue curve, i.e., τ = 10 s, is more sensitive to
the change in β than the other two curves. This is because as τ reduces, LESSON acts more
like asynchronous FL, which has the convergence issue under non-IID. Figure 9 shows the
test accuracy of LESSON by having different values of τ and β for CIFAR-10 over time.
From Figure 9a, we can find that τ = 60 exhibits the slowest convergence rate with respect
to the time because a larger τ implies a longer latency of a global latency, i.e., τ = 60 runs
the fewest global iterations than τ = 10 and τ = 20 within a time period. Therefore, we
conclude that changing τ can adjust the trade-off between the model accuracy and model
convergence rate with respect to time. A large τ can increase the model accuracy but reduce
the model convergence rate, and vice versa. Meanwhile, as the data distribution is closer to
IID (i.e., as β increases), the difference in the convergence rate among the three algorithms
increases, as shown in Figure 9b.
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Figure 8. Test accuracy over the number of global iterations for CIFAR-10, where (a) β = 0.1 and
(b) β = 1.0.
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Figure 9. Test accuracy over the time for CIFAR-10, where (a) β = 0.1 and (b) β = 1.0.
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The two foundational approaches select clients based on their availability. FedAvg
emphasizes the importance of client presence but suffers from delays caused by slow
participants, known as stragglers. On the other hand, FedCS prioritizes models that have
been recently updated. LESSON integrates the strengths of both approaches: it places
stragglers in higher tiers to minimize system disruption and effectively incorporates less
up-to-date models to enhance the global model’s generalization capability. When dealing
with clients who drop out intermittently, FedAvg can experience significant delays, and
FedCS does not account for the contributions of clients with unstable connections in the
first place. Although LESSON cannot offer guarantees, it provides an opportunity for such
disconnected clients to make a partial contribution to the global model.

6. Conclusions

To address challenges related to data diversity and stragglers in synchronous Fed-
erated Learning (FL) while also minimizing the risk of model divergence found in asyn-
chronous FL, we introduce LESSON. This novel approach blends semi-synchronous client
selection with model aggregation, ensuring the participation of all clients in the FL process,
albeit at differing frequencies.

The simulation results show that LESSON and FedAvg have comparable model test
accuracy, both of which outperform FedCS at least 10% under different non-IID scenarios. In
addition, LESSON reduces the test accuracy by around 5% but accelerates convergence rate
at least 2× faster as compared to FedAvg. The adaptability of LESSON is further highlighted
through its deadline parameter τ, which allows for adjusting the trade-off between model
accuracy and convergence rate, that higher τ can improve model accuracy. Due to the high
convergence rate, LESSON can be applied to applications that require quickly deriving a
reasonable model adaptive to dynamic environments, such as autonomous drone swarm
control [40,41], where actor-critic networks that can be adaptive to be the current wind
perturbation should be quickly trained and derived to, for example, avoid collisions.

Future work is poised to delve into the adaptive modification of the τ parameter to
augment LESSON’s performance. This paper has demonstrated that a lower τ accelerates
the model convergence rate, whereas a higher τ achieves a better model accuracy, especially
in non-IID data scenarios. As such, dynamically calibrating τ to achieve a resilient and
practical FL algorithm is critical but unexplored. In addition, the computing and uploading
latency of a client may change over time. If a client moves towards the edge of a base
station’s coverage area, the uploading latency of this client will be significantly increased.
As a result, this client will finally be clustered into a higher tier to train and upload its
local model at a lower pace but with a higher learning rate. Yet, how LESSON dynamically
adjusts the client clustering based on the updated computing and uploading latency and
how the client clustering adjustment affects the performance of LESSON is still unveiled
and will be part of our future work.
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