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Abstract: In combination with the expected traffic avalanche foreseen for the next decade, solutions
supporting energy-efficient, scalable and flexible network operations are essential. Considering
the myriad of user case requirements, THz and mmW bands will play key roles in 6G networks.
While mmW is known for short-rate LOS connections, THz transmission is subjected to even severe
propagation losses, resulting in very short-range connections. In this context, we evaluate a dynamic
multi-band user association algorithm to optimize connectivity in coexisting RF/mmW/THz net-
works. The algorithm periodically calculates association scores for each user–base station pair based
on real-time channel conditions across bands, accounting for factors like signal strength, link blockage
risk and noise. It then reassociates users in batches to balance loads while considering user priorities
and network conditions. We simulate the algorithm’s performance within a realistic propagation
model, where high path loss, molecular absorption, blockage, and narrow beam widths contribute to
lower coverage at higher frequencies. Results demonstrate the algorithm’s ability to efficiently utilize
network resources across diverse operating environments. In addition, our results show that the
choice of frequency band depends on the specific requirements of the application, the environment,
and the trade-offs between coverage distance, capacity, and interference conditions.

Keywords: coverage probability; SINR distribution; user association; millimeter wave; terahertz; 6G
wireless networks

1. Introduction

Sixth-generation wireless networks are expected to support a wide range of emerging
applications, including augmented reality, tactile Internet, wireless brain interfaces, con-
nected robotic systems, and holographic telepresence. To enable these applications, 6G will
require extremely high data rates with low latency and high reliability [1].

As the current sub-6 GHz spectrum is becoming crowded and cannot meet the growing
demands, mmW and THz frequency bands have been proposed to provide the needed
additional spectrum and higher data rates [2,3]. Broadly, RF includes all frequencies from
around 9 kHz to 300 GHz, encompassing both microwaves and lower frequencies. This
is the broadest definition. More specifically, RF is often defined as 3 kHz to 30 GHz, with
microwaves considered separately from 30 GHz to 300 GHz. For cellular communications
(Telecom), “RF bands” commonly refers to frequencies below 6 GHz (aka sub-6 GHz),
which includes licensed LTE and 5G bands.

mmW and THz technologies are poised to enable key capabilities that will drive many
emerging applications. Specifically, the use of higher frequencies allows for the highly
accurate estimation of wireless channel characteristics and device-positioning parameters.
This level of precision will underpin the delivery of location-aware services that have
become increasingly prevalent. In addition, the massive bandwidths available at mmW
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and THz frequencies facilitate multi-gigabit data rates and wireless connections with ultra-
low latency. Together, the abilities to accurately localize, deliver high data throughput,
and minimize latency will be crucial for applications such as augmented/virtual real-
ity, autonomous systems, telemedicine, and industrial automation that require real-time,
context-aware wireless connectivity. mmW and THz communications are widely seen as
essential technologies for fully realizing these next-generation applications [4,5].

The International Telecommunication Union (ITU) defines mmW frequencies as rang-
ing from 30 GHz to 300 GHz. This is a broad definition encompassing the whole millimeter
wavelength range, which offers multi gigabit data rates due to the large available band-
width. For 5G cellular applications (also defined by the US Federal Communications
Commission), mmW is often referred to more narrowly as frequencies between 24 GHz
and 100 GHz. This captures the mid-band mmW frequencies being used for 5G. Currently,
in Canada, 5G mmW describes radio signals in three frequencies: 26, 28, and 38 GHz. How-
ever, mmW signals have high attenuation and cannot penetrate solid materials and walls.
This leads to blockage issues and requires LOS or highly directional transmissions [6]. THz
bands (0.3 to 10 THz) or wavelengths between 1 mm and 100 µm provide even higher data
rates and capacity, enabling terabit wireless applications. For communication applications,
some sources define THz as frequencies above 100 GHz, i.e., bordering the upper end of
mmWave bands. This definition includes lower THz frequencies. The term “THz gap” is
sometimes used to refer specifically to frequencies between 0.3 and 3 THz [7], reflecting the
challenges of this mid-band range. Some sources define THz communication beginning at
wavelengths shorter than 1 mm, or frequencies above 1 THz. This excludes lower THz fre-
quencies. However, it faces challenges due to high atmospheric and molecular absorption
losses, strong signal attenuation, and limited propagation range [8,9].

To compensate for the high propagation losses at THz/mmW frequencies, 6G networks
will utilize “ultra-massive MIMO” techniques with large antenna arrays embedded in
surfaces, dense arrays of plasma nano-antennas that can be integrated into walls and objects
to provide highly directional beamforming gains. The integration of satellite, optical, and
molecular communications with intelligent reflecting surfaces will help provide a truly
ubiquitous connectivity envisioned for 6G networks [10,11].

Although THz and mmW bands offer much larger bandwidths compared to RF, the
impact of interference and noise becomes more critical with the increased bandwidth, and
practical implementation challenges arise [9]. Therefore, the greatly expanded spectrum at
the mmW and THz frequencies will be key enablers for 6G applications that will require ter-
abit data rates and low latency. However, overcoming challenges like blockage, absorption
losses, and limited range will require innovative user association techniques [12].

The seamless integration of high- and low-frequency bands’ cells imposes a number
of challenges since different BSs will have different transmission powers, coverage areas
and data rate capabilities and need to cater to different types of UEs. Therefore, developing
a proper UE-BS association algorithm for diverse 6G networks is a tough task [13]. Such an
appropriate algorithm shall not only improve the QoS performance for each UE, but shall
also ensure fairness for both UEs and BSs [14].

UE association methods have been widely used in cellular networks to optimize
network performance by selecting the best serving cell or frequency band for each UE.
Traditional user association strategies that simply maximize the SINR ratio [15] cannot
be applied here. This will lead to imbalanced load distributions across frequency bands
and cells since the UEs tend to associate with the lowest-frequency (RF) band BSs, which
would have better better SINR due to the better propagation characteristics and higher
transmit powers.

This imbalanced load distribution will result in the inefficient utilization of the net-
work’s resources, where RF band cells would be overloaded, while the THz/mmW band
would be underutilized. To achieve an equitable load distribution and efficient resource
utilization, more sophisticated user association strategies that go beyond simply maximiz-
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ing the received signal strength are needed. Individual user association, just considering
only one band at a time, will not yield globally optimized results.

In this paper, we propose a unified multi-band user association algorithm to optimize
the user throughput and satisfaction in next-generation 6G wireless networks considering
all three bands. We consider three types of user cases: enhanced broadband, low latency
and high-reliability connections, each with different QOS requirements. Our proposed
algorithm aims to associate each user with the best available BS using the best possible
band considering real-time channel conditions across bands, while accounting for user
preferences. It considers key factors, such as signal strength and link blockage probability
that vary significantly by frequency. The algorithm recomputes user–BS scores periodically
and reassociates users in batches to dynamically balance loads. Through comprehensive
system-level simulations under realistic scenarios, we demonstrate the effectiveness of our
approach in efficiently utilizing network resources across diverse operating conditions. The
multi-band association technique paves the way for optimized performance in emerging
multi-band wireless networks.

2. Related Work

User association methods have been widely used in cellular networks to optimize
network performance by selecting the best serving cell or frequency band for each user.
Traditional user association schemes utilize parameters like received signal strength (like
max-SINR [15]) and channel conditions to associate users with the cell or band that provides
the highest SNR or SINR. However, such approaches often lead to load imbalance issues
and inefficient resource utilization, potentially causing severe impairments in certain links.

To address these issues, some authors have introduced biased algorithms, such as the
CRE algorithm [16,17], which artificially enhances the signal strength of weaker BSs by
applying a certain bias factor. While this approach has shown promise in increasing system
throughput and capacity, its performance is contingent upon the choice of the bias factor,
which poses challenges in determining the optimal value. As a result, the performance of
less powerful BSs may be negatively affected.

Another interference avoidance method is resource partitioning, called time domain
eICIC [18,19]. eICIC uses the muting/coordination of resources, where it coordinates
resource allocation between overlapping macro and small cells. Macro cells can mute
some subframes, allowing small cells to reuse those resources. This reduces interference
from macrocells to small cell users without changing the TX power levels. While eICIC is
effective for same-RAT HetNets, applying its interference coordination approach across
fundamentally different radio technologies with varying capabilities will be very complex.

Some works consider both the SINR and existing load (like our previous algorithms [20,21].
While this balances the SINR and load distribution better than max-SINR, this still considers
absolute SINR values without normalization across bands. This would skew results towards
the RF band.

Even incorporating blockage probability [22] instead of raw SINR may still favor the
RF band since its blockage probability of RF is effectively zero. Normalization or other
techniques are needed to overcome this bias.

More recent work has explored optimization-based user association methods that aim
to maximize network-wide utility or fairness metrics while balancing the load across cells
and frequency bands [23–25]. Such schemes incorporate factors like network congestion,
user rates, cell capacities, load variances, cell loads, bandwidths, and handover costs
into the optimization objective, which can enable load balancing across the network to
improve service rates for all UEs. For example, some studies [26–29] have formulated user
association as a mixed-integer program that jointly optimizes user–cell associations and
resource allocation to maximize the sum rate of the network. However, these algorithms
often result in complex integer programs that are difficult to solve in real time.

Other works have used game-theoretic approaches [30,31], where each user associates
with the cell or band that maximizes its own utility while considering the impact on
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other users. Game theoretic approaches require iterative signaling between users and the
network, increasing the signaling overhead. They also assume rational users who would
compromise their own utility.

Machine learning methods such as reinforcement learning [32–34] have also been
explored to dynamically associate users based on real-time network conditions. These self-
organizing techniques can address issues like non-convexity and complexity that arise in
optimization formulations. However, reinforcement learning approaches generally require
large amounts of data and high-dimensional state and action spaces, and may suffer from
poor reproducibility and explainability.

In summary, existing algorithms either do not provide fair load distribution, skew
results towards RF bands due to higher intrinsic SINR/lower blockage probability, or have
issues with high complexity, signaling overhead or data requirements as shown in Table 1.
A low-complexity, efficient algorithm is needed to avoid these limitations.

Table 1. Summary of previous user association methods.

Method Year Key Advantages Key Limitations Suitability for mmW/THz

SINR-based 2012
Simple implementation;
associates users to BS with
strongest signal

Does not consider load
balancing or multi-band
characteristics

Not suitable due to
variability in bands

Biased algorithms 2015–2017 Increased capacity and
throughput

Optimal bias factor difficult
to determine

Marginally improves
performance

eICIC 2013–2017 Reduces interference in
HetNets

Complex to apply across
technologies

Complexity limits
applicability

Load-aware 2019–2020 Balances SINR and load Favors RF band due to
higher intrinsic SINR

Better than SINR but still
biased

Blockage-aware 2021 Considers propagation
effects

Improved but bias toward
RF remains

Optimization 2018–2023 Maximizes network utility Complex formulations, high
complexity

High complexity limits
real-time use

Game theory 2020–2021 Models user self-interest High signaling overhead,
assumptions

Signaling overhead
challenging

Reinforcement learning 2017–2021 Adapts dynamically
High computational cost;
requires extensive training;
poor explainability

Applicable but
data/complexity concerns

3. System Model

We consider a system with BSs that are subdivided into three BS types: (1) RF (k1),
where k1 ∈ {1, 2, 3, ....K1}; (2) mmW (k2); and (3) THz (k3). These BS are geographically
distributed according to a homogeneous Poisson point process (PPP) [35], φk of density
λk. The BS transmission power is PTk , and the minimum allowed distance between any
two BSs is dmin. Each BS serves U number of single-antenna users with the same transmit
power Pu. Note that λu is the UE density.

Each BS and user is equipped with an antenna array that can form directional beams
via beamforming. Beamforming vectors define the direction and beamwidth of each link.
Beamwidths vary by frequency based on array size. Incorporating directional beamforming
provides a realistic 5G/6G channel model by capturing aspects such as gain/interference
variations due to beams, multi-user MIMO through multi-beam transmission, and 3D
propagation characteristics.

For the RF band, we model the interference-limited coverage probability. Also, UEs,
interferers, and blockages are distributed according to a PPP. Blockages are modeled as
rectangles with a defined length and width. Links can be either LOS or NLOS depending on
whether they are blocked. For the THz system, molecular absorption loss and exponential
path loss are used to model propagation loss. System losses are also defined. The total
noise consists of thermal noise and molecular noise.
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For the BS-UE links, we consider a block-fading channel model with large- and small-
scale Rayleigh fading [36,37]. Large-scale fading depends on the distance and path loss,
which vary by frequency band. The multi-path small-scale fading coefficients are assumed
to be Rayleigh distributed.

The system is assumed to be open access, where there is no restriction on the associa-
tion of UEs to a certain BS.

OFCDM is considered for the BS to UE links (access downlinks), as it outperforms
OFDM for high-speed communications. The system uses coded orthogonal channels,
where Nb is the number of transmitted bits (each with bit energy Eb). Also, N and F are
the spreading factors in time and frequency domains, respectively. The transmitted signal
is spread with Pseudo Noise (PN) sequences in the time domain with chip energy Ec and
chip duration Tc, where

Ec = Eb/(N × F) (1)

3.1. SINR Calculation

SINR is estimated using frequency-specific path loss and noise models. For the RF
band, the path loss is modeled using a logarithmic distance-based model (COST 231) [38].
For mmWave bands, additional penetration losses are considered based on common build-
ing materials measured as in TR38.901 [39]. For THz bands, molecular absorption losses are
characterized using coefficients from propagation measurements in varying atmospheric
compositions [40,41].

The SINR model for RF communication can be given as follows [42]:

SINRRF =
PT0 GTGR Ad−α

0 h0

N0 + A ∑N
i=1 PTi Gid−α

i hi
(2)

where A = c2

16π2 f 2 , f is frequency, c is light speed, GT and GR are the directional gains of
the transmitting and receiving beams, α is the attenuation coefficient, d is the distance from
the transmitter to the receiver, PT0 is the transmitted power, N0 is the Johnson–Nyquist
noise, N is the number of interferes, Gi is the interfering link beam gain that is reduced if
beams do not align well, and h0 is the small-scale fading gain.

SINR for mmW LOS BSs communication is calculated as [43,44]:

SINRmmW
LOS =

PT0 GTGR A0d−α
0 Bmm

N0 + ∑N
i=1 PTi Gi Aid−α

i
(3)

SINR for mmW NLOS BSs communication is calculated as:

SINRmmW
NLOS =

PT0 GTGR A(d10 + d20)
−αBmm

N0 + A ∑
Nrays
i=1 ∑N

i=1 PTi Gi(d1i + d2i )
−α

(4)

The path loss received from NLOS components communication considers the presence
of scatters between the transmitter and the receiver [43], where d1 is the distance from the
transmitter to the scatterer, d2 is the distance from the scatterer to the receiver, Nrays is the
number of NLOS rays, and Bmm represents the blockage probability, which is calculated
analytically as:

Bmm = e−
2πλbρ

γ (5)

Here, λb is the density of blockages, ρ is the typical width of blockages, and γ is the
viewing angle. The blockage calculation considers beam directions—a blockage may only
partially obstruct a directional link.

SINR for THz LOS communication is calculated as [43,44]:

SINRTHz
LOS =

PT0 GTGR Ad−α
0 e−Kd0 Bmm

N0 + A ∑N
i=1 PTi Gid−α

i
(6)
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where K is the absorption coefficient of the medium, and N0 is the Johnson–Nyquist noise
plus the molecular noise equal to N0 = KBT + PT0 A0d−2

0 (1− e−Kd0), considering KB as
the Boltzman constant and T as the temperature.

SINR for Tera Hertz NLOS communication is calculated as:

SINRTHz
NLOS =

PT0 GTGR A(d10 + d20)
−αe−K(d10+d20 )R( f )Bmm

N0 + A ∑
Nrays
i=1 ∑N

i=1 PTi Gi(d10 + d2i )
−α

(7)

where R( f ) is the reflection coefficient of a rough surface equal to the Rayleigh roughness
factor times the smooth surface reflection coefficient derived from the Fresnel equations.
This is given by the expression [45]:

R( f ) = e−
2 cos(θ1)√

µrεr − 1
× e−

8π f σ cos(θ1)

c× d2
(8)

where θ1 is the angle of incidence, and σ is the rough surface height standard deviation,
commonly assumed to be Gaussian distributed.

Based on the equations provided, the total SINR would be a weighted sum of the LOS
and NLOS SINR:

SINRtotal = wLOS ∗ SINRLOS + wNLOS ∗ SINRNLOS (9)

where wLOS and wNLOS are the weights for the LOS and NLOS SINR, representing their
relative importance or reliability wLOS + wNLOS = 1.

LOS signal tends to be more reliable, so typically wLOS > wNLOS.

3.2. Beamforming Model

Directional beamforming is implemented at BSs and UEs using uniform linear antenna
arrays. The beamforming vectors define the direction and beamwidth of each link.

3.2.1. Beam Management

Beam training and tracking ensure proper alignment between the transmitter and
receiver beams.

• Training: At association/handover, beams are aligned through channel estimation
and feedback over τ seconds. To calculate the training overhead, let τ be the beam
training time, T be the data transmission time per beam, and the total overhead per
beam = τ + T.
The effective rate reduces to:

Re f f = (1− τ/T)R (10)

where Re f f is the effective achievable rate accounting for the beam training overhead
(bps), and R is the max achievable rate without the beam training overhead (bps).

• Tracking: The beam tracking mechanism accounts for the continuous adaptation of
beams to changing channel conditions over time. Due to channel variations between
BSs and UEs, the optimal beamforming weights need periodic adjustment to maintain
high signal quality. The model captures this by estimating the channel state every
Tb seconds to perform beam tracking. However, there is an inherent tracking error
that causes an angular offset. Beams may not be perfectly aligned due to factors like
mobility; this misalignment leads to reductions in the beamforming gain achieved.
The beamforming gain equals:

G = Gmax × e
(− θ

θ3dB
)

(11)
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where θ is the offset between the adapted beam and the true optimal beam orientation,
which follows a Gaussian distribution, θ3dB represents the half-power beamwidth, and
Gmax is the maximum possible beamforming gain attained with perfect beam alignment.
The lower gain resulting from tracking errors then translates to an additional rate
loss for each user. By incorporating beam tracking dynamics, the model realisti-
cally reflects the time-varying nature of wireless channels and associated impacts on
beamformed transmissions.

3.2.2. Beam Scanning:

The beam scanning mechanism models the periodic beam scanning performed by
the base station to enable user discovery and handovers between beams/BSs. During the
scanning process, the BS sequentially surveys each of the S sectors in its coverage area. For
each sector, there is a time ttrain required to train the beam in that direction. Once the beam
training is complete, there is also a detection time tdet needed to detect the pilot signal from
any user equipment currently in that sector. The total time spent scanning each individual
sector is therefore given by ttrain + tdet. As the BS must sequentially scan through all S
sectors, the overall latency experienced by a UE to associate with the network through
the beam scanning process is S ∗ (ttrain + tdet). This model captures the overhead incurred
during the initial network access and handovers between beams or cells.

3.2.3. Beamwidth Adjustment:

Array antennas dynamically adjust beamwidths to balance coverage vs. interference
footprints.

The dynamic beamwidth adjustment mechanism allows the beamwidth to be con-
trolled via a parameter β, where 0 < β ≤ 1. The nominal beamwidth of each beam is de-
fined as BWnominal . The actual beamwidth formed is then given by BWactual = β ∗ BWnominal .
A smaller value of β results in a narrower actual beamwidth. This affects the coverage area
and beamforming gain differently. The coverage area provided by a beam is directly propor-
tional to the actual beamwidth. Meanwhile, the beamforming gain is inversely proportional
to the actual beamwidth. Therefore, selecting a smaller β increases the beamforming gain
but reduces the coverage area serviced by that beam. This allows a tradeoff between the
coverage and gain that can be exploited based on dynamic network conditions.

4. Coverage Probability Analysis

To calculate the coverage probability for a given scenario with three types of users
and three types of base stations, let us consider the subscript u and k for any user and base
station indices in general and z for the subcarrier index.

The coverage probability for a given user u associated with base station k and served
by subcarrier z, denoted as (the same equation is applicable to all three bands) Pc(γ

(z)
k,u), can

be expressed as [20]:

Pc(γ
(z)
k,u) =

√
σ

2
N2E2

c λk

∫
R2

e


 ζ2

k
P2

Tk
|dk,u |−2α

σ2

2 −(µ+σ2)

(
ζk

PTk
|dk,u |−α

)
d(dk,u) (12)

where λk is the density of base station k (BSs per unit area), E2
c is the signal power consider-

ing the PN sequence, ζk is the SINR threshold for coverage for user u associated with BS k,
PTk is the transmit power of BS k, µ is the mean of the interference distribution, σ2 is the
variance of the interference distribution, R is the cell radius, |dk,u| is the distance from the
BS k to the user u, and α is the path loss exponent. Since there are three different types of
users (radio frequency, millimeter wave, and terahertz), each with its own SINR threshold
and path loss exponent, we need to calculate the coverage probability separately for each
user type and then combine the results.
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Let us denote the three types of users as u1 (radio frequency), u2 (millimeter wave),
and u3 (terahertz), and their corresponding base stations as k1, k2, and k3, respectively.

The total coverage probability, denoted as Pc,total, is the probability that any of the
three users achieves the required SINR threshold. Therefore, it can be expressed as:

Pc,total = 1−
3

∏
i=1

(1− Pc(γ
(z)
ki ,ui

)) (13)

Here, Pc(γ
(z)
ki ,ui

) represents the coverage probability for user ui associated with base
station ki and served by subcarrier z. The expression above accounts for the fact that the
overall coverage probability is determined by the probability that at least one of the three
users achieves coverage.

To evaluate Pc,total, we need to calculate the individual coverage probabilities Pc(γ
(z)
ki ,ui

)

for each user type based on their respective SINR thresholds, path loss exponents, and
other parameters.

The coverage probability for a randomly located UE can be written as:

Pc = P(
⋃

k∈K

max
dk∈φk

γk > ζk) (14)

where γk is the SINR from the kth BS, ζk is the SINR threshold, and φk is the set of BSs in
the kth tier.

Using the Law of Total Probability and Union Bound, we can rewrite the coverage
probability for an RF user as:

Pc = ∑
k∈K

λk N2E2
c

∫
R2

P(γk > ζk)d(dk) (15)

where λk is the density of the BSs in each band, `(dk,u) = ‖dk,u‖−α, d(·) is the derivative
operator, and dk is the measure of the distance from the UE to the serving BS.

The probability term can be expressed using the Laplace transform of interference
LI(.) as:

P(γk > ζk) = LI

(
ζkPTk`(dk)

σ2
n

)
e
− ζkσ2

n
PTk

`(dk) (16)

Assuming interference is Gaussian distributed, with µ and σ2 being the mean and vari-
ance of the Gaussian distribution, respectively, the Laplace transform can be calculated as:

LI(s) =
√

σ

2
e

s2σ2
2 −s(µ+σ2) (17)

Substituting this back into the coverage probability expression, we obtain (12), which is typi-
cally the coverage probability equation for the RF band. This equation can be solved analytically.

For mmW and THz systems, blockages are a significant factor due to the higher fre-
quency of waves. These blockages can be modeled by incorporating a blocking probability.
The modified coverage probability for the millimeter wave user, denoted as Pc,mm, can be
expressed as

Pc,mm = (1− Bmm)Pc(γ
(z)
kmm,umm

) (18)

Here, Pc(γ
(z)
kmm,umm

) is the coverage probability for the millimeter wave user, and
(1− Bmm) accounts for the probability of the user not being blocked. In more detail, the
equation is expressed as follows:

Pc,mm = (1− Bmm)

√
σ

2
N2

mmE2
c,mm ∑

k∈Kmm

λk,mm

∫
R2

e[...]d(dk,mm) (19)
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For the THz user, we need to consider molecular absorption losses and Lambertian
scattering loss, which can significantly impact the signal strength. The coverage probability
will be:

Pc,THz = e−κadk,THz GTHz(1− Bmm)

√
σ

2
N2

THzE2
c,THz ∑

k∈KTHz

λk,THz

∫
[...]d(dk,THz) (20)

where κa is the absorption coefficient, dk,THz is the distance to the serving THz BS, and
GTHz is the antenna gain due to the Lambertian scattering loss given by:

GTHz =
n + 1

2π
cosn(θ) (21)

where n is the Lambertian emission order, and θ is the irradiation angle.
This probability depends on the specific environmental conditions and absorption

properties of the medium the signal travels through.

5. Algorithm Description

Our algorithm aims to distribute users evenly among base stations to balance the
network load among all three frequency bands.

Any user association algorithm that is based on simply taking the max SINR would
not provide a fair load distribution. It skews associations towards the RF band, which often
has higher SINR. It also does not consider load balancing between base stations, and it is
prone to ping-pong handovers, as SINR can fluctuate.

Combined SINR/Load Balancing user association algorithms take into account both
the channel conditions (SINR) and queue length (BS load) when making user association
decisions. This allows it to find a good balance between SINR and load distribution.

However, they still consider the absolute SINR values directly, without any normaliza-
tion across bands. This ends up skewing the results, as it does not properly address the
bias towards RF bands inherent in the raw SINR values. Normalization or randomized
selection is needed.

In addition, mmW and THz bands are affected by blockage, but the RF band is not.
If we prioritize users based on the future expected blockage probability, since RF has no
blockage, the results will be skewed too.

The algorithm may still favor associating users to RF BSs if the blockage probability is
not considered for RF.

To address this, one approach is the following:

- Incorporate a blockage probability model for each band (mmW/THz higher than RF).
- Calculate an expected SINR value that factors in the blockage probability.

For example:
Expected SINR = Raw SINR × (1 − Blockage Probability)

- Use the expected SINR values (instead of raw SINR) when calculating metrics.

However, even with incorporating an expected SINR that factors in the blockage
probability, the results may still skew towards RF associations since the blockage probability
for RF is effectively zero.

A better algorithm would need to normalize/equalize the SINR across bands in a
more fundamental way before associating users. A few approaches:

1. Normalize raw SINR values across bands to a common scale (e.g., 0–1) before any
metric calculation.

2. Calculate a score for each user–BS pair that considers both the SINR and blockage risk,
rather than just the expected SINR. For example: Score = NormSINR/(1 + BlockageRisk)

3. Assign users randomly to BSs in different bands based on weighted probabilities,
where weights are adjusted based on NormSINR and BlockageRisk.
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4. Explicitly require a minimum number/percentage of users to associate to each band
to enforce balanced associations.

5. Introduce an additional “band preference” or reward factor for mmW/THz that
compensates for their higher risk, to make the bands more competitive against RF.

Here, the key challenge is finding a way to equalize the impact of SINR and reliability
across bands before associating users, rather than relying on the expected SINR alone.
Normalization and introducing separate scoring factors seems needed.

We need to bear in mind that not all users in 6G systems have the same needs—some
prioritize high data rates, others reliability, latency, etc. This affects which frequency
bands may be preferable for different users. Also, this exploits multi-band diversity and
dynamically optimizes associations under different channel conditions.

1. The algorithm should categorize users based on their profile/preferences:

• High-data-rate users prefer THz.
• Low-latency users prefer mmWave.
• Users requiring reliable connectivity prefer RF.

2. Then, prioritize associating users to bands that best match their needs:

• Higher weight/preference given to preferred bands in scoring.
• Explicit cap on preferred band’s user limits.

3. User profiling could consider:

• Application types (video, voice, and IoT sensors).
• Device capabilities.
• Service-level agreements.
• The profile is learned/updated over time based on user behavior.

Here are the steps to implement the multi-band user association algorithm based on
the problem statement:

1. Collect the network parameters:

- User profiles, positions, and applications.
- Base station positions and supported frequency bands.
- Blockage probability models per band.

2. Categorize users based on profile:

- High data, low latency, reliability, etc. Users are categorized into profiles like
high-data, low-latency, etc., based on their usage preferences. This forms associa-
tion priorities.

3. Calculate band metrics:

- Raw SINR per user–BS per band. SINR is estimated for each user–BS link based
on path loss models.

- Blockage probability per user–BS per band. The blockage probability is obtained
from the respective environment models (indoor, urban, and rural), accounting
for materials, density etc. RF does not consider blockage, so its probability is
zero for all BSs.

The blockage model would contain information about the types of blockages in the
environment (e.g., buildings), their positions and dimensions. Our function returns
the blockage probability calculated based on the positions and the blockage model.
We considered the urban environment in our model, so we used ray tracing. The
urban model contains:

• A 3D map of buildings in the urban environment.
• Total number of rays to trace.

It uses ray tracing to simulate signal propagation. The ray trace function traces
the number of rays from the given position towards the surrounding buildings
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represented in the urban map. It returns the number of rays “hits” that intersect
with buildings.
The blockage probability is then calculated as the number of hits over the number
of rays. This estimates the probability based on the fraction of rays that encounter a
building during propagation.

- Normalize SINR across bands. SINR values are normalized to a 0–1 scale to
make them comparable across frequency bands with different intrinsic path loss.

4. Calculate the blockage risk per band. Blockage risk is calculated as (1− Blockage
Probability) to quantify the likelihood of an unblocked link. Higher values mean
lower risk.

5. Calculate user scores per BS:
The proposed dynamic user association algorithm periodically calculates the associa-
tion scores for each user–BS pair. The scores are based on real-time measurements.
User association scores are computed as the normalized SINR divided by (Block-
age Risk + Category Weights). This balances the SINR, blockage effect, and user
preferences differently for each band.

- Score = NormSINR/(BlockageRisk + ProfileWeight).

Let Suk represent the association score between user u and BS k.
The score is computed as a weighted sum of the SINR and blockage probability terms:

Suk = w1 ∗ SINR + w2 ∗ Bmm (22)

- Higher weight given to preferred band based on user profile.
User categories (e.g., high data rate, low latency, and high reliability) inform the
weighting of blockage risk vs. SINR in scores. Higher weights prioritize users
sensitive to that metric.

• The ’highData’ category is assigned a weight of 0.8.
• The ’lowLatency’ category is assigned a weight of 0.6.
• The ’reliability’ category (default/else case) is assigned a weight of 0.4.

- Scores balance link metrics, blockage risk and user priorities.

Figure 1 shows snapshot plots of the user scores for the three bands for several user
profiles. This pattern suggests that there are distinct clusters or groups of users with
different levels of performance or satisfaction. Some users are experiencing very
poor performance or low satisfaction. These users may have low signal quality, high
blockage probabilities, or other factors that lead to low user scores. Distribution does
not significantly change between bands, which suggests load balancing among bands.

6. Rank the top BSs for each user by score.
7. Reassociate users in batches: Scores are periodically recomputed based on changing

channel conditions. Users are reassigned to the best BSs in batches to gradually
optimize the associations over time (based on time-varying scores).

- Rank the top BSs for each user by score.
- Select the BS from the top ranks weighted by scores.
- Maintain the minimum users per band.

8. Monitor the network over time:

- Track the SINR and throughput per user.
- Update the blockage models and user profiles (categories) periodically.

9. Balance the BS loads if needed:

- Transfer users from overloaded to underloaded BSs.

10. Repeat periodic reassociations:

- Recompute the network state.
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- Gradually reduce the preferred band weights.

11. Output and analyze:

- User distributions per band.
- Load balancing metrics.
- Data rates and satisfaction levels.

Figure 1. Scores illustration.

6. Results

MatlabTM software (version MatlabR2023b) is used to analyze the performance of
our proposed model. Monte Carlo simulations are run to estimate the coverage probabil-
ity for different SINR thresholds, and an analytical solution for coverage probability is
also derived.

Matlab simulation is performed to evaluate the performance of the proposed user
association Algorithm 1. Table 2 lists the values we use in estimating the performance of
the proposed method. Using 900 MHz to represent the sub-6 GHz RF band would be more
appropriate than 2.4 GHz, given real-world deployments.

Here are some details on Canadian spectrum allocations for RF:

• In Canada and other countries, 900 MHz falls within the mainstream cellular alloca-
tions. Instead, 2.4 GHz is used mostly for unlicensed WiFi, so it does not represent the
licensed cellular spectrum in the same way.

• The 700 MHz band (698–806 MHz) was auctioned off for commercial use and is being
deployed for LTE.

• Cellular networks traditionally used the 800–900 MHz Extended Range CDMA (ER-
CDMA) block, now being reframed for LTE.

• Bell Mobility and Telus operate terrestrial digital PCS networks in the 850–900 MHz bands.
• The 900 MHz band (806–960 MHz) is allocated for cellular and PMR use. It is com-

monly used by GSM networks.

The Microwave system models interference-limited coverage probability at a frequency
of 900 MHz. Interferers are distributed according to a PPP. The user is interested in
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achieving a target SINR threshold. Monte Carlo simulations are run to determine the
coverage probability.

Algorithm 1 Multi-band user association algorithm.

1: Initialize: numUsers, numBS, userProfiles, BSbands, blockageModels, userPositions,
BSpositions, associations
Categorize Users:

2: Categorize each user based on profile
Calculate Time-Varying Band Metrics:

3: Calculate raw SINR.
4: Calculate blockage Prob.
5: Normalize SINR across bands

Calculate Blockage Risk:
6: Calculate blockage risk per band

Calculate User Scores:
7: for each user i do
8: for each BS j do
9: score[i][j] = normalizeSINR[i][j]/(blockageRisk[j] + profileWeight[i][j])

10: end for
11: end for

Reassociate Users:
12: for each batch of users do
13: Rank BSs for each user by score
14: Select BS weighted by scores
15: Maintain min. Users Per Band
16: end for

Monitor Network:
17: Periodically track metrics
18: Update models and profiles

Balance Loads:
19: Transfer users between overloaded/underloaded BSs
20: Repeat re-associations periodically
21: Output results

Table 2. Simulation parameters.

Parameter Value

Absorption coefficient 0.01 dB/km
Area Length 2000 m
Ref Distance 50 m
Density of interferers 0.00005 /m2

Density of blockages 4 × 106 /m2

blockage Len. 500 m
User Power 1 Watt
Transmitted power for RF 40 dBm
Transmitted power for mmW 30 dBm
Transmitted power for THz 10 dBm
Freq. RF 900 MHz
Freq. mmW 28 GHz
Freq. THz 1 THz
Number of Monte Carlo iterations 50

The interference power is modeled as a lognormal random variable, and the coverage
probability is calculated analytically using the CDF of the interference power distribution.
The results show which interference power distribution provides the closest match to
the simulations.

The millimeter wave system consists of base stations, interferers, and blockages (mod-
eled as rectangles), which are distributed according to a PPP. In our blockage model, first
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we define the expected length and width of blockages and the number of blockages in
the network area. We generate random blockage coordinates, then we check if a link is
blocked by any of the blockages. If a link is blocked, then the path loss exponent is set
to PLNLOS, and the received signal strength is set to 0, modeling the complete blockage,
and the interference from that interferer is also set to 0. If a link is not blocked, then the
path loss exponent is set toPLLOS, and the received signal and interference are calculated
normally based on the distance, fading gains, and antenna gains.

THz wireless communication system is modeled using molecular absorption loss
and exponential path loss. Also, system losses (L) are defined. The total noise consists of
thermal noise and molecular noise.

This simulation models a wireless network with multiple base stations supporting
different frequency bands, including RF, mmW and THz.

Users are distributed in the network area and can associate with different base stations
based on the radio link quality and blockage risk. Environmental factors like propagation
loss, blockage from walls, buildings, etc., are modeled to realistically capture how the
signal strength (SINR) and link blockage probability vary across frequency bands and
locations. The algorithm periodically evaluates SINR and blockage models to compute the
association scores for each user–BS pair. It then reassociates users in batches to balance
loads while considering each user’s data needs and preferred band based on their category
(e.g., high data and low latency). Network metrics like throughput and satisfaction levels
are monitored over time as environmental conditions and user profiles dynamically change.
This provides an end-to-end simulation of the multi-band user association approach to
validate its effectiveness under realistic radio channel and deployment scenarios. The
methodology considers changes to the network topology and BSs deployments over the
simulated time period. The environment and network configuration are not static—they
evolve dynamically as part of the long-term simulation.

The algorithm periodically re-evaluates user associations and network metrics, as
both the environmental/user conditions and underlying network topology/deployments
change and adapt over time.

As an example to clarify the UE profile change, UE profiles change with respect to
latency/reliability requirements during the simulation. Each user is classified/categorized
based on their expected data usage and priority needs. For example, some users may
be considered “low latency critical” like VoLTE, while others are “high data” like video
streaming. These categories define the user’s preferred network characteristics—i.e., low-
latency users want fast response times above all. However, a user’s real-time needs are
not static—a video caller may sometimes prioritize latency over reliability. To model this,
each user’s profile is associated with a time-varying probability distribution. For instance,
a user has an 80 percent chance of being “low latency” but 20 percent of being “high
reliability” at any given instant. When user profiles are updated, these probabilities are
sampled to randomly switch users between categories. This simulates how priorities may
change—a gaming user may occasionally download large files. The algorithm then adapts
user associations accordingly to meet altered performance demands, capturing a more
realistic scenario than that based on fixed assumptions about each user.

Figure 2 shows a comparison of load distribution for the proposed user association
algorithm with max-SINR. For RF bands (sub-6 GHz), the number of users could range
from a few hundred to over 1000 users within a 2000 m × 2000 m area depending on
traffic levels. The number of base stations of usually 1–4 BSs would be needed to provide
coverage within this area. For mmW bands (24–100 GHz), due to higher path loss, smaller
cell sizes are needed (100 s of meters). The number of users could range from 50 to 200
within a single base station coverage area of 2000 m × 2000 m. The number of base stations
is a very large number, 10–30, which would be needed within this area to provide coverage
due to the small cell sizes needed. For THz bands (>100 GHz), cell sizes are expected to
be tens of meters or less. The number of users is typically 1–10 users within a single base
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station coverage area. The number of base stations is an extremely large number, 50–100,
which would likely be needed within a 2000 m × 2000 m area to provide coverage.

Comparison Between Various Bands Performance for Max-SINR Algorithm
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Figure 2. User association comparison. (a) max-SINR for three bands. (b) Proposed algorithm for
three bands.

We consider a network with 200 RF UEs and 6 RF BSs, 80 mmW UEs and 21 mmW BSs,
and for THz 10 UEs and 30 BSs. The network has 80 high-data users, 70 low-latency users,
and 50 high-reliability users for RF; 30 high-data users, 20 low-latency users, and 30 high-
reliability users for mmW; and 4 high-data users, 3 low-latency users, and 3 high-reliability
users for THz.

The results demonstrate that our algorithm associates users more effectively than the
performance of max-SINR (this is evaluated by comparing standard deviation) balances
the load across BSs, including those with lower transmit power that are underutilized by
traditional approaches. Our proposed algorithm maintained an average standard deviation
around 0.5 for the RF and mmW bands and 0.3 for THz band, unlike max-SINR, which
has a standard deviation of 6.3456 for RF, 2.1543 for mmW, and 0.6972 for THz for all user
categories as shown in Figure 2a,b. It is worth mentioning that max-SINR may show an
acceptable performance in the THz band, but this is only because the number of users is
much fewer than the number of BSs, so most of the distribution will be zeros, except for the
associated ones, and this keeps the standard deviation low.

However, that is not the only issue, as the figures are only considering independent
frequency bands assuming three independent networks, and each one is operating in a
separate band.

When we evaluated an integrated network of RF, mmW, and THz BSs and UEs working
together (a coexisting network of RF/mmW/THz), we concluded that any UE association
algorithm, not just max-SINR that relies on SINR values or even the blockage score like
many proposed methods in the literature, will fail in 6G coexisting networks. SINR for RF
is the maximum value, which skews the results towards SINR RF after a certain point. No
users are associated with the mmW or THz BSs. On the other hand, our algorithm still
works well and provides a fair load distribution despite the wide spectrum of SINR values.

Figure 3 shows the SINR distribution plot and visualizes how SINR values are dis-
tributed across all users in each frequency band. The SINR distribution plot provides
valuable insights into the quality of the wireless communication links between the users
and the base stations in each frequency band.

The y-axis values indicate the count of occurrences of a particular SINR range in the
histogram plot. This count is not directly related to the total number of users in the system.
The count represents how many data points (in this case, SINR values) fall within each
specified bin (SINR range) on the x-axis.

The histogram is constructed using the SINR values of users across the entire system,
and it is possible for multiple users to have similar or the same SINR values, leading to
multiple counts in the same SINR range.
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max-SINR has a skewed distribution as in Figure 3a, which suggests that some users
experience much better SINR than others, indicating an uneven user experience.

(a) (b)

Figure 3. SINR distribution comparison for the three bands. (a) max-SINR algorithm. (b) Proposed
algorithm.

As shown in Figure 3b, our proposed algorithm has a bell-shaped distribution, which
indicates that most users experience SINR values around a certain central value, indicating
good overall performance.

Figure 4 shows a comparison between the SINR coverage probability of three users
(RF, millimeter, and THz users) in our network as a function of the SINR threshold for our
proposed user association algorithm. THz and mmW bands can offer higher data rates
and capacity due to their wider bandwidths, but their coverage distance may be limited
due to higher path loss and attenuation. MW bands may provide more extended coverage
distances and better penetration through obstacles but with comparatively lower data rates
and capacity. The detailed reasons behind this are that at higher frequencies, the free space
path loss increases significantly due to the shorter wavelengths. This results in higher signal
attenuation and worse coverage. In addition, at frequencies above 100 GHz, molecular
absorption due to oxygen, water vapor, and other gases starts to become significant. This
leads to additional signal attenuation and reduces the coverage area. This effect is most
prominent in the THz band. Higher-frequency signals have more difficulty penetrating
common solid materials like walls, windows, foliage, etc. This results in more blockages and
reduced coverage probability. This effect worsens with increasing frequency. Furthermore,
to compensate for the higher path loss, transmitters at higher frequencies tend to use more
directional antennas with narrower beamwidths. This reduces the coverage area of each
transmitter. Simulation results follow the analytical solution.

Figure 5 shows the normalized throughput comparison (high data, low latency, and
reliability) across the three bands (RF, mmW, and THz). High-data users prioritize high
data rates, so they require more throughput to support their demands. However, the
system may allocate resources preferentially to users with less stringent throughput needs
like low latency and reliability. This could explain why high-data users see the lowest
relative throughput.

Low-latency users have tight latency constraints that the network aims to satisfy,
potentially at the expense of maximizing throughput. Their intermediate values suggest
that resources are balanced between latency and throughput goals.

Reliability users are the most tolerant of throughput fluctuations. The system can
prioritize their connections to maintain service quality. This likely leads to reliability users
achieving the highest normalized throughput.

The RF band provides the least available bandwidth, limiting maximum the achievable
throughput. mmW offers a bandwidth improvement but is more prone to blockage effects.
THz has the highest bandwidth to maximize throughput, though it may face greater
atmospheric attenuation challenges.
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Figure 5. Throughput for the three bands by category.

Together, the user category priorities and band characteristics provide context for the
observed trends of relatively lower throughput for high-data users sensitive to resource
allocation, intermediate values for latency-focused associations, and the highest ones for
reliability optimized connections across bands with increasing spectrum resources.

7. Conclusions

Multi-band solutions from RF to THz will play an important role in beyond 5G net-
works. However, optimized network planning, resource management and user association
across multiple bands are needed to harness their full potential while mitigating the impact
of higher propagation losses and interference at mmWave and THz frequencies.

We presented a novel dynamic user association algorithm for optimizing load bal-
ancing in integrated RF/mmWave/THz cellular networks. The algorithm periodically
evaluates channel conditions and blockage risks across multiple frequency bands to calcu-
late association scores for each user–BS pair. By factoring in user priorities and network
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load metrics, it aims to reassociate users in a balanced way that optimizes overall resource
utilization and QoE.

The simulation results demonstrate the algorithm’s ability to efficiently utilize net-
work resources across diverse channel conditions that vary with frequency. It provides
an effective way to harness the advantages of multiple spectrum bands while mitigating
their intrinsic propagation trade-offs. The algorithm achieves more balanced load distri-
bution compared to traditional max-SINR approaches, while avoiding bias towards lower
frequency bands.

The results also show that higher-frequency bands can offer advantages in terms
of capacity and data rates, while lower-frequency bands provide better coverage. The
choice of the optimal frequency band thus depends on specific application requirements,
environment factors and performance trade-offs.

Future work includes extending the model to capture beamforming and directional
communication effects at higher frequencies. Experimental validation on a multi-band
prototype system would provide further validation of the approach. Overall, dynamic
user association algorithms present a promising solution for realizing the full potential of
multi-spectrum 5G and beyond networks.
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Abbreviations
mmW Millimeter wave
RF Radio frequency
6G Sixth generation
LOS Line of sight
NLOS Non-line of sight
SINR Signal-to-interference and noise ratio
SNR Signal-to-noise ratio
MIMO Multiple input multiple output
BS Base station
UE User equipment
QoS Quality of service
QoE Quality of experience
CRE Cell range expansion
eICIC Enhanced intercell interference coordination
PPP Poisson point process
OFCDM Orthogonal frequency and code division multiplexing
OFDM Orthogonal frequency division multiplexing
RAT Radio access technology
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