Electric Drive with an Adaptive Controller and Wireless Communication System
Abstract
:1. Introduction
1.1. Problem Formulation
1.2. Related Work
2. Mathematical Model of the Control Structure and the Controller
3. ADALINE Predictor
4. Utilization of Artificial Bee Colony Algorithm
5. Simulation Tests
6. Experimental Verification
6.1. Description of the Laboratory Setup
6.2. Remote Data Visualization
6.3. Experimental Results
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Blagodarov, D.A.; Grigorian, D.D.; Safonov, Y.M. The Approach to Design Control System for the Electric Drive with Flexible Mechanics. Procedia Eng. 2017, 206, 540–545. [Google Scholar] [CrossRef]
- Zhan, B.; Jin, M.; Liu, J. Extended-state-observer-based adaptive control of flexible-joint space manipulators with system uncertainties. Adv. Space Res. 2022, 69, 3088–3102. [Google Scholar] [CrossRef]
- Zawarczynski, L.; Stefanski, T. Damping of torsional vibrations in electric drive with AC motor. In Proceedings of the 2018 International Interdisciplinary PhD Workshop (IIPhDW), Swinouscie, Poland, 9–12 May 2018; pp. 74–80. [Google Scholar] [CrossRef]
- Luczak, D.; Pajchrowski, T. Application of Adaptive Neural Controller and Filter Tune for Multi-Mass Drive System. In Proceedings of the 20th European Conference on Power Electronics and Applications (EPE’18), Riga, Latvia, 17–21 September 2018; pp. 1–9. [Google Scholar]
- Brock, S.; Luczak, D.; Nowopolski, K.; Pajchrowski, T.; Zawirski, K. Two approaches to Speed Control for Multi-Mass System with Variable Mechanical Parameters. IEEE Trans. Ind. Electron. 2017, 64, 3338–3347. [Google Scholar] [CrossRef]
- Kaminski, M.; Orlowska-Kowalska, T. FPGA Implementation of ADALINE- Based Speed Controller in a Two-mass system. IEEE Trans. Ind. Inform. 2013, 9, 436–445. [Google Scholar] [CrossRef]
- Dhaouadi, R.; Kubo, K.; Tobise, M. Two-degree-of-freedom robust speed controller for high-performance rolling mill drives. IEEE Trans. Ind. Appl. 1993, 29, 919–926. [Google Scholar] [CrossRef]
- Zhu, H.; Yoshida, S. Disturbance observer-based torsional vibration damper for variable-speed wind turbines. IFAC J. Syst. Control 2020, 14, 100112. [Google Scholar] [CrossRef]
- Li, R.; Huang, Q. Model of Resonance Predictive in Pitch System of Wind Turbine Based on Vector Fitting. In Proceedings of the 2021 International Conference on Power System Technology (POWERCON), Haikou, China, 8–9 December 2021; pp. 1220–1223. [Google Scholar] [CrossRef]
- Li, J.; Wang, D.; Wu, X.; Xu, K.; Liu, X. Vibration prediction of the robotic arm based on elastic joint dynamics modeling. Sensors 2022, 22, 6170. [Google Scholar] [CrossRef]
- Madsen, E.; Rosenlund, O.S.; Brandt, D.; Zhang, X. Comprehensive modeling and identification of nonlinear joint dynamics for collaborative industrial robot manipulators. Control Eng. Pract. 2020, 101, 104462. [Google Scholar] [CrossRef]
- Liu, L.; Yao, W.; Guo, Y. Prescribed Performance tracking control of a free-frying flexible-joint robot space robot with distrubances under input saturation. J. Frankl. Inst. 2021, 358, 4571–4601. [Google Scholar] [CrossRef]
- Zhang, G.; Furusho, J. Speed control of two-inertia system by PI/PID control. IEEE Trans. Ind. Electron. 2000, 47, 603–609. [Google Scholar] [CrossRef]
- Brock, S.; Gniadek, M. Analysis of input shaping and PID-controller interaction structures for two-mass systems. In Proceedings of the 16th International Conference on Mechatronics—Mechatronika 2014, Brno, Czech Republic, 3–5 December 2014; pp. 625–630. [Google Scholar] [CrossRef]
- Thomsen, S.; Hoffmann, N.; Fuchs, F.W. PI Control, PI-Based State Space Control, and Model-Based Predictive Control for Drive Systems With Elastically Coupled Loads—A Comparative Study. IEEE Trans. Ind. Electron. 2011, 58, 3647–3657. [Google Scholar] [CrossRef]
- Choudhary, S.; Sharma, S.K.; Shrivastava, V. Modelling of speed controller for industrial applications: A two mass drive system. In Proceedings of the 2016 IEEE 7th Power India International Conference (PIICON), Bikaner, India, 25–27 November 2016; pp. 1–5. [Google Scholar] [CrossRef]
- Saarakkala, S.E.; Hinkkanen, M. State-Space Speed Control of Two-Mass Mechanical Systems: Analytical Tuning and Experimental Evaluation. IEEE Trans. Ind. Appl. 2014, 50, 3428–3437. [Google Scholar] [CrossRef] [Green Version]
- Hori, Y.; Iseki, H.; Sugiura, K. Basic consideration of vibration suppression and disturbance rejection control of multi-inertia system using SFLAC (state feedback and load acceleration control). IEEE Trans. Ind. Appl. 1994, 30, 889–896. [Google Scholar] [CrossRef]
- Pajchrowski, T.; Siwek, P.; Wojcik, A. Application of the Reinforced Learning Method for adaptive electric drive control with variable parameters. In Proceedings of the IEEE 19th International Power Electronics and Motion Control Conference (PEMC), Gliwice, Poland, 25–29 April 2021; pp. 687–694. [Google Scholar] [CrossRef]
- Dallolio, A.; Overaas, H.; Johansen, T.A. Gain-scheduled steering control for a wave-propelled unmanned surface vehicle. Ocean Eng. 2022, 257, 111618. [Google Scholar] [CrossRef]
- Azahar, M.I.P.; Irawan, A.; Ismail, R.M.T.R. Self-tuning hybrid fuzzy sliding surface control for pneumatic servo system positioning. Control Eng. Pract. 2021, 113, 104838. [Google Scholar] [CrossRef]
- Usama, M.; Kim, J. Improved self-sensing speed control of IPMSM drive based on cascaded nonlinear control. Energies 2021, 14, 2205. [Google Scholar] [CrossRef]
- Pajchrowski, T. The direct drive with variable moment of inertia in the structure of the reference model. In Proceedings of the 2014 16th International Power Electronics and Motion Control Conference and Exposition, Antalya, Turkey, 21–24 September 2014; pp. 695–700. [Google Scholar] [CrossRef]
- Zhang, D.; Wei, B. A reiew on model reference adaptive control of robotic manipulators. Annu. Rev. Control 2017, 43, 188–198. [Google Scholar] [CrossRef]
- Talebi, H.A.; Patel, R.V.; Wong, M. A Neural-Network Based Observer for Flexible-Joint Manipulators. IFAC Proc. 2002, 35, 317–322. [Google Scholar] [CrossRef] [Green Version]
- Hong, J.; Wang, Z.; Chen, W.; Wang, L.Y.; Qu, C. Online joint-prediction of multi-forward-step battery SOC using LSTM neural networks and multiple linear regression for real-world electric vehicles. J. Energy Storage 2020, 30, 101459. [Google Scholar] [CrossRef]
- Pietrzak, P.; Wolkiewicz, M.; Orlowska-Kowalska, T. PMSM Stator Winding Fault Detection and Classification Based on Bispectrum Analysis and Convolutional Neural Network. IEEE Trans. Ind. Electron. 2022, 70, 5192–5202. [Google Scholar] [CrossRef]
- Ding, S.; Peng, J.; Zhang, H.; Wang, Y. Neural network-based adaptive hybrid impedance control for electrically driven flexible-joint robotic manipulators with input saturation. Neurocomputing 2021, 458, 99–111. [Google Scholar] [CrossRef]
- Rego, R.C.B.; Meneghetti, F.; de Araujo, U. Lyapunov-based continuous-time nonlinear control using deep neural network applied to underactuated systems. Eng. Appl. Artif. Intell. 2022, 107, 104519. [Google Scholar] [CrossRef]
- Zychlewicz, M.; Stanislawski, R.; Kaminski, M. Grey Wolf Optimizer in Design Process of the Recurrent Wavelet Neural Controller Applied for Two-Mass System. Electronics 2022, 11, 177. [Google Scholar] [CrossRef]
- Hannan, M.A.; Ali, J.A.; Mohamed, A.; Hussain, A. Optimization techniques to enhance the performance of induction motor drives: A review. Renew. Sustain. Energy Rev. 2018, 81, 1611–1626. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R. Particle Swarm Optimization. In Proceedings of the 1995 IEEE International Conference on Neural Networks, Perth, Australia, 27 November–1 December 1995; pp. 1942–1948. [Google Scholar]
- Shirzadeh, M.; Amirkhani, A.; Tork, N.; Taghavifar, H. Trajectory tracking of a quadrotor using a robust adaptive type-2 fuzzy neural controller optimized by cuckoo algorithm. ISA Trans. 2021, 114, 171–190. [Google Scholar] [CrossRef] [PubMed]
- Knypinski, L.; Kuroczycki, S.; Marquez, F.P.G. Minimization of torque ripple in the brushless DC motor using Constrained Cuckoo Search Algorithm. Electronics 2021, 10, 2299. [Google Scholar] [CrossRef]
- Lin, C.-H. Permanent-Magnet Synchronous Motor Drive System Using Backstepping Control with Three Adaptive Rules and Revised Recurring Sieved Pollaczek Polynomials Neural Network with Reformed Grey Wolf Optimization and Recouped Controller. Energies 2020, 13, 5870. [Google Scholar] [CrossRef]
- Knypinski, L.; Paweloszek, K.; Menach, Y.L. Optimization of low-power line-start PM motor using Gray Wolf Metaheuristic Algorithm. Energies 2020, 13, 1186. [Google Scholar] [CrossRef] [Green Version]
- Colorni, A.; Dorigo, M.; Maniezzo, V. Distributed optimization by ant colonies. In Proceedings of the 1st European Conference on Artificial Life, York, UK, 11–13 November 1991; pp. 131–142. [Google Scholar]
- Szczepanski, R.; Tarczewski, T.; Erwinski, K.; Grzesiak, L.M. Comparison of constraint-handling techniques used in Artificial Bee Colony Algorithm for auto-tuning of state feedback speed controller for PMSM. In Proceedings of the 15th International Conference on Informatics in Control, Automation and Robotics, Porto, Portugal, 29–31 July 2018; pp. 269–276. [Google Scholar] [CrossRef]
- Tarczewski, T.; Niewiara, L.J.; Grzesiak, L.M. Artificial bee colony based state feedback position controller for PMSM servo-drive—The efficiency analysis. Bull. Pol. Acad. Sci. Tech. Sci. 2020, 68, 997–1007. [Google Scholar] [CrossRef]
- Yang, X.S.; Gandomi, A.H. Bat algorithm: A novel approach for global engineering optimization. Eng. Comput. 2012, 29, 464–483. [Google Scholar] [CrossRef] [Green Version]
- Balasubramani, K.; Marcus, K. A Comprehensive review of Artificial Bee Colony Algorithm. Int. J. Comput. Technol. 2013, 5, 15–28. [Google Scholar] [CrossRef] [Green Version]
- Pianegiani, F.; Macii, D.; Carbone, P. An open distributed measurement system based on an abstract client-server architecture. IEEE Trans. Instrum. Meas. 2003, 52, 686–692. [Google Scholar] [CrossRef]
- Winiecki, W.; Karkowski, M. A new Java-based software environment for distributed measuring systems design. IEEE Trans. Instrum. Meas. 2002, 51, 1340–1346. [Google Scholar] [CrossRef]
- Guo, Z.; Chen, P.; Zhang, H.; Jiang, M.; Li, C. IMA: An Integrated Monitoring Architecture With Sensor Networks. IEEE Trans. Instrum. Meas. 2012, 61, 1287–1295. [Google Scholar] [CrossRef]
- Singh, H.V.P.; Mahmoud, Q.H. NLP-Based Approach for Predicting HMI State Sequences towards Monitoring Operator Situational Awareness. Sensors 2020, 20, 3228. [Google Scholar] [CrossRef] [PubMed]
- Vuckovic, M.; Schmidt, J.; Ortner, T.; Cornel, D. Combining 2D and 3D Visualization with Visual Analytics in the Environmental Domain. Information 2022, 13, 7. [Google Scholar] [CrossRef]
- Wang, G.; Ren, G.; Hong, X.; Peng, X.; Li, W.; O’Neill, E. Freehand Gestural Selection with Haptic Feedback in Wearable Optical See-through Augmented Reality. Information 2022, 13, 566. [Google Scholar] [CrossRef]
- Sun, Z.; Zhu, M.; Lee, C. Progress in the Triboelectric Human–Machine Interfaces (HMIs)-Moving from Smart Gloves to AI/Haptic Enabled HMI in the 5G/IoT Era. Nanoenergy Adv. 2021, 1, 81–120. [Google Scholar] [CrossRef]
- Juneja, A.; Das, N.N. Big Data Quality Framework: Pre-Processing Data in Weather Monitoring Application. In Proceedings of the 2019 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon), Faridabad, India, 14–16 February 2019; pp. 559–563. [Google Scholar] [CrossRef]
- Sigüenza, Á.; Díaz-Pardo, D.; Bernat, J.; Vancea, V.; Blanco, J.L.; Conejero, D.; Hernández Gómez, L. Sharing Human-Generated Observations by Integrating HMI and the Semantic Sensor Web. Sensors 2012, 12, 6307–6330. [Google Scholar] [CrossRef] [Green Version]
- Mourtzis, D.; Angelopoulos, J.; Panopoulos, N. A Literature Review of the Challenges and Opportunities of the Transition from Industry 4.0 to Society 5.0. Energies 2022, 15, 6276. [Google Scholar] [CrossRef]
- Akundi, A.; Euresti, D.; Luna, S.; Ankobiah, W.; Lopes, A.; Edinbarough, I. State of Industry 5.0—Analysis and Identification of Current Research Trends. Appl. Syst. Innov. 2022, 5, 27. [Google Scholar] [CrossRef]
- Nahavandi, S. Industry 5.0—A Human-Centric Solution. Sustainability 2019, 11, 4371. [Google Scholar] [CrossRef] [Green Version]
- Szczepanski, R.; Kaminski, M.; Tarczewski, T. Auto-Tuning Process of State Feedback Speed Controller Applied for Two-Mass System. Energies 2020, 13, 3067. [Google Scholar] [CrossRef]
- Pajchrowski, T.; Janiszewski, D. Control of multi-mass system by on-line trained neural network based on Kalman filter. In Proceedings of the 17th European Conference on Power Electronics and Applications (EPE’15 ECCE-Europe), Geneva, Switzerland, 8–10 September 2015; pp. 1–10. [Google Scholar] [CrossRef]
- El-Sousy, F.F.M. Intelligent Optimal Recurrent Wavelet Elman Neural Network Control System for Permanent-Magnet Synchronous Motor Servo Drive. IEEE Trans. Ind. Inform. 2013, 9, 1986–2003. [Google Scholar] [CrossRef]
- Derugo, P.; Szabat, K.; Zawirski, T.P.K. Fuzzy Adaptive Type II Controller for Two-Mass System. Energies 2022, 15, 419. [Google Scholar] [CrossRef]
- Widrow, B.; Stearns, S.D. Adaptive Signal Processing; Prentice Hall: Upper Saddle River, NJ, USA, 1985; ISBN 0-13-004029-0. [Google Scholar]
- Garanayak, P.; Naayagi, R.T.; Panda, G. A High-Speed Master-Slave ADALINE for Accurate Power System Harmonic and Inter-Harmonic Estimation. IEEE Access 2020, 8, 51918–51932. [Google Scholar] [CrossRef]
- Kaminski, M. Adaptive Controller with Neural Signal Predictor Applied for Two-Mass System. In Proceedings of the 2018 23rd International Conference on Methods & Models in Automation & Robotics (MMAR), Miedzyzdroje, Poland, 27–30 August 2018; pp. 247–252. [Google Scholar] [CrossRef]
- Karaboga, D.; Basturk, B. A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC) algorithm. J. Glob. Optim. 2007, 39, 459–471. [Google Scholar] [CrossRef]
- Xiang, W.-L.; Li, Y.-Z.; He, R.-C.; An, M.-Q. Artificial bee colony algorithm with a pure crossover operation for binary optimization. Comput. Ind. Eng. 2021, 152, 107011. [Google Scholar] [CrossRef]
- Aranburu, E.; Lasa, G.; Gerrikagoitia, J.K.; Mazmela, M. Case study of the experience capturer evaluation tool in the design process of an industrial HMI. Sustainability 2020, 12, 6228. [Google Scholar] [CrossRef]
- Sitompul, T.A. Human–Machine Interface for remote crane operation: A review. Multimodal Technol. Interact. 2022, 6, 45. [Google Scholar] [CrossRef]
- Zheng, S.; Zhang, Q.; Zheng, R.; Huang, B.-Q.; Song, Y.-L.; Chen, X.-C. Combining a multi-agent system and communication middleware for smart home control: A universal control platform architecture. Sensors 2017, 17, 2135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duobiene, S.; Ratautas, K.; Trusovas, R.; Ragulis, P.; Šlekas, G.; Simniškis, R.; Račiukaitis, G. Development of wireless sensor network for environment monitoring and its implementation using SSAIL technology. Sensors 2022, 22, 5343. [Google Scholar] [CrossRef] [PubMed]
- Mandza, Y.S.; Raji, A. IoTivity cloud-enabled platform for energy management applications. IoT 2022, 3, 73–90. [Google Scholar] [CrossRef]
- Aghenta, L.O.; Iqbal, M.T. Low-cost, open source IoT-based SCADA system design using Thinger.IO and ESP32 thing. Electronics 2019, 8, 822. [Google Scholar] [CrossRef] [Green Version]
- ESP32 Series Datasheet Version 4.1; Espressif Systems: Shanghai, China, 2022.
- Balde, A.Y.; Bergeret, E.; Cajal, D.; Toumazet, J.-P. Low Power Environmental Image Sensors for Remote Photogrammetry. Sensors 2022, 22, 7617. [Google Scholar] [CrossRef] [PubMed]
- Programmable Terminal NB Series/NB-S Series Datasheet; Omron: Kyoto, Japan, 2021.
Structure | Fitness Function Values |
---|---|
MRAC | 0.0525 |
MRAC with predictor | 0.0499 |
Parameter | Value |
---|---|
Motor nominal power | 500 W |
Load nominal power | 500 W |
Shaft length | 600 mm |
Shaft nominal diameter | 5 mm |
Encoder impulse | 36,000 ppr |
Device | Siemens Simatic Panel Basic | ESP32 | Omron NB-Series HMI |
---|---|---|---|
Power consumption | 3 W | ≈1 W | ≈5 W |
Screen size | up to 15″ | end-user device dependent | up to 10″ |
Connectivity interfaces | Ethernet + Profinet | USB + Wi-Fi + Bluetooth | Ethernet + USB + RS232 |
User memory size | 10 MB | 4 MB (up to 16 MB) | 128 MB |
HMI design language/ required software | TIA PORTAL WINCC | HTML/CSS/C++ | NB-Designer |
Price | $$$ | $ | $$$ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malarczyk, M.; Zychlewicz, M.; Stanislawski, R.; Kaminski, M. Electric Drive with an Adaptive Controller and Wireless Communication System. Future Internet 2023, 15, 49. https://doi.org/10.3390/fi15020049
Malarczyk M, Zychlewicz M, Stanislawski R, Kaminski M. Electric Drive with an Adaptive Controller and Wireless Communication System. Future Internet. 2023; 15(2):49. https://doi.org/10.3390/fi15020049
Chicago/Turabian StyleMalarczyk, Mateusz, Mateusz Zychlewicz, Radoslaw Stanislawski, and Marcin Kaminski. 2023. "Electric Drive with an Adaptive Controller and Wireless Communication System" Future Internet 15, no. 2: 49. https://doi.org/10.3390/fi15020049
APA StyleMalarczyk, M., Zychlewicz, M., Stanislawski, R., & Kaminski, M. (2023). Electric Drive with an Adaptive Controller and Wireless Communication System. Future Internet, 15(2), 49. https://doi.org/10.3390/fi15020049