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Abstract: In the past decade, different sensing mechanisms and algorithms have been developed
to detect or estimate indoor occupancy. One of the most recent advancements is using networked
sensor nodes to create a more comprehensive occupancy detection system where multiple sensors can
identify human presence within more expansive areas while delivering enhanced accuracy compared
to a system that relies on stand-alone sensor nodes. The present work reviews the studies from 2012
to 2022 that use networked sensor nodes to detect indoor occupancy, focusing on PIR-based sensors.
Methods are compared based on pivotal ADPs that play a significant role in selecting an occupancy
detection system for applications such as Health and Safety or occupant comfort. These parameters
include accuracy, information requirement, maximum sensor failure and minimum observation rate,
and feasible detection area. We briefly describe the overview of occupancy detection criteria used by
each study and introduce a metric called “sensor node deployment density” through our analysis.
This metric captures the strength of network-level data filtering and fusion algorithms found in the
literature. It is hinged on the fact that a robust occupancy estimation algorithm requires a minimal
number of nodes to estimate occupancy. This review only focuses on the occupancy estimation
models for networked sensor nodes. It thus provides a standardized insight into networked nodes’
occupancy sensing pipelines, which employ data fusion strategies, network-level machine learning
algorithms, and occupancy estimation algorithms. This review thus helps determine the suitability of
the reviewed methods to a standard set of application areas by analyzing their gaps.

Keywords: smart devices; occupancy detection; networked sensors; data fusion

1. Introduction

In the last decade, there has been a considerable shift from high-performance and
energy-efficient buildings towards co-optimizing occupant comfort and building energy
demand [1,2]. However, multiple studies show that a significant proportion of occupants
in U.S. office buildings (up to 75%) are dissatisfied with their thermal environment [3,4].
The primary motivation behind this review article is to assess the suitability of networked
node occupancy detection methods for a standard set of application areas. Our focus on
networked nodes-based occupancy sensing methods derives from existing stand-alone
occupancy sensors providing limited performance that can cause false negatives (switching
off heating and lights during occupancy), resulting in occupant dissatisfaction [2]. Stand-
alone occupancy sensor-based methods struggle to achieve the same level of improvement
in occupant comfort level compared to networked occupancy sensor nodes while deployed
under the same configuration [5]. Among recent review articles [2,6–9], an overwhelming
majority focus on the methods that are based on stand-alone occupancy sensors. As
such, no review exists that is dedicated to an algorithmic aspect of multi-node occupancy
sensing [10]. Thus, in the past decade, a marked shift in the trend is observed where a
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growing number of methods propose more thorough and accurate occupancy detection
models for applications such as HVAC Control and Occupant Comfort [11], involving
an interconnected network of occupancy sensors. These models are aware of the room
connectivity, time-sensitive occupancy behavior, and expected use of each space under
observation.

The use of multiple sensing nodes is a common technique for improving detection
performance. A few examples of how this can be achieved include extracting ML network-
level features from a multivariate raw-sensor data [12] or determining occupancy via a
PF [5] that fuses the node-level ML inference to estimate an occupancy belief.

We also observed that among all the reviewed articles, a basic premise is missing, i.e.,
the actual occupancy behavior depends upon the building design, sensor node positioning,
room connectivity, purpose of each space in a residential or office unit, and occupant
priorities, which tend to be highly time sensitive. Thus, any review study that lists out
the subjective accuracy measures comparisons in a non-standardized form leaves a certain
margin of uncertainty for the intended audience. While there are review studies that use
evaluation metrics from the cost [9] of the proposed solution, to the accuracy and the failure
rate [13] of the solution, our review study aims to evaluate the occupancy sensing methods
for networked sensor nodes from an application’s perspective while using suggested
standard parameters that help in the evaluation process. Methods are assessed based on
the ADPs, i.e., accuracy requirement, information requirement, maximum sensor failure,
minimum observation rate, and feasible detection area. While we value the importance
of underlying sensor technologies toward greater occupancy detection accuracy, it is not
the focus of our review study. We instead focus and comment on the employed occupancy
detection measure by the methods, network-level data filtering and fusion techniques, NDD,
and the spatial and temporal resolution of occupancy detection. The presented review
is novel in assessing the impact, the gaps, and the enhanced accuracy networked-node
occupancy detection systems offered.

In Section 2, gaps in closely related review articles from the literature are highlighted.
Section 3 outlines the methodology for conducting this review. Section 4 identifies occu-
pancy sensing gaps, application areas, and their ADPs based on the searched literature.
Section 5 presents various networked node sensor-based occupancy detection solutions
and their suitability to the already presented application areas. In Section 6, an accuracy
and suitability analysis are performed for each identified solution, determining the extent
to which each solution satisfies the ADPs put forward by each application area. Section 7
notes several emerging trends in the networked sensor nodes-based occupancy estimation
domain. Finally, Section 8 presents a conclusion to this review article.

2. Comparison with Contemporary Review Articles

It may be helpful to elaborate here on the contributions of this review. This review
offers the following unique advantages.

a. The review’s primary objective is to guide a method selection process for occupancy
sensing via a decision-making process that relies on quantifiable parameters called
ADPs. A flowchart that illustrates the method selection process based on ADPs is
presented in Figure 1.

b. The review limits its focus by only considering methods employing networked sensor
nodes and making it mandatory to use PIR technology in combination with other
underlying sensing technologies. PIR was explicitly chosen to judge the algorithmic
performance of occupancy sensing methods; these need to perform on a standard
modality. PIR is the most frequently used occupancy sensing modality [14].

c. The review comments on the conformity of reviewed articles to the claimed applica-
tion areas based on the conformance criteria attached to ADPs which is detailed in
Section 4.
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Figure 1. A decision tree that illustrates the expected use of ADPs (in diamond shaped boxes) to
determine the suitable application area for the reviewed method. The same illustration is used to
perform suitability analysis in Section 6. Sensor failure rate ADP is not used in the decision-making
process as some reviewed methods did not specify the sensor details.

Moreover, to further establish the novelty of this review, the contributions of contem-
porary review studies related to occupancy sensing, along with their corresponding gaps
are listed in Table 1.

Table 1. Contribution and gaps for contemporary occupancy sensing review studies involving
networked sensor nodes.

Reference Review Study Title Study Gaps

[15] Review on occupancy detection and
prediction in building simulation

a. Although occupancy models from the literature are
compared under three broad categories. the models’
accuracies are not standardized and thus no meaningful
comparison is made.

b. Details about the presence and deployment of networked
sensor nodes are not provided.

c. Suitability of methods to applications is not made using any
quantifiable parameters.

[10] A comprehensive review of approaches
to building occupancy detection

a. The study compares the performance, the occupancy
resolution, the type of sensors used, the type of buildings,
and the energy-saving potential of occupancy sensing
algorithms, yet it does not focus on algorithms specifically
designed for networked sensor nodes.

b. The performance comparison lists the accuracy without
considering the spatial complexity of the observed
environment. Temporal resolution information is missing
from the analysis.

c. Application suitability for the algorithms is not discussed.
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Table 1. Cont.

Reference Review Study Title Study Gaps

[16] Deep and transfer learning for building
occupancy detection

a. Although the study compares occupancy sensing algorithms
for networked nodes, it does not differentiate between single
node and multiple sensor node algorithms. The node
quantity, spatial resolution and temporal resolution are
missing from the accuracy analysis.

b. No application suitability analysis is performed for the
reviewed algorithms.

[17]
Occupancy detection systems for indoor
environments: A survey of approaches

and methods

a. The study presents a novel taxonomy that helps classify the
occupancy sensing methods, yet it primarily relies on sensor
features rather than occupancy prediction and detection
algorithms for classification purposes.

b. There is no algorithmic analysis that signifies accuracy
improvement due to networked nodes.

c. No application suitability analysis is conducted except that
suitable target environment categories such as Office,
Residential, Others, are associated with each reviewed
algorithm.

[18]
Occupancy detection in non-residential
buildings: A survey and novel privacy

preserved occupancy monitoring solution

a. The study provides the area of overall observed space and
the temporal resolution for each of the occupancy sensing
algorithms, yet it does not mention the number of deployed
nodes and thus, spatial resolution information is missing.

b. There is no discussion about the fusion techniques or fusion
framework execution platform.

c. No application suitability analysis is presented.

[19]

Occupancy detection and localization
strategies for demand modulated

appliance control in Internet of Things
(IoT) enabled home energy management

system

a. The study evaluates the occupancy detection and
localization schemes based on various factors that decide
their suitability for home energy management systems.
These factors do not include spatial or temporal resolution of
the occupancy sensing system.

b. No discrimination was made among multi-node and single
node systems. Accuracy comparison was performed using
non-standardized measures.

[2]
Sensor impacts on building and HVAC
controls: A critical review for building

energy performance

a. Five major factors were used for evaluating occupancy
sensing algorithms, i.e., control loops for sensors, sensor
types, sensor locations, sensor data, and a sensor impact
evaluation framework.

b. Spatial and temporal resolution for occupancy sensing
algorithms was completely ignored during the comparison
phase.

[8]
Indoor human occupancy detection using

Machine Learningclassification
algorithms and their comparison

a. The study evaluates methods that determine occupancy with
the help of datasets whose data was collected from different
sensors and using different ML algorithms.

b. While the study evaluates models with datasets comprising
of multivariate time-series, spatial and temporal resolution
details are missing from the comparison.

c. No application suitability analysis is presented.

[20]
Fit-for-purpose: Measuring occupancy to
support commercial buildingoperations:

A review

a. First, the data requirements and characteristics for the
applications are established. Then, certain occupancy
sensing technologies are recommended for each application.

b. Sensor features and spatial sensing resolution are considered
during the sensing technology to application suitability
analysis.

c. Temporal resolution and multi-node occupancy sensing
algorithm analysis is missing.
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3. Methodology

This review considers research articles that outline the occupancy estimation methods
and algorithms involving two or more networked occupancy sensor nodes. It tabulates
the studies highlighting gaps in using networked sensor nodes for occupancy sensing.
These occupancy sensing gaps exist in several application areas. Each application area
demands a specific set of parameters from the networked sensor nodes and the occupancy
estimation methods to address application area challenges. These parameters are termed
as ADPs. These ADPs are identified from the reviewed studies and are tabulated and
associated with these studies. This phase is referred to as Occupancy Sensing Gap and
ADP Identification phase. Articles in the literature that address the identified gaps are
then evaluated. Comments are added to each article on whether the proposed solutions
in the articles contain the ADPs demanded by a particular application area. This phase is
termed the Solution to Application Mapping phase. The review is concluded by comparing
the accuracy delivered by each solution. A discussion is added at the end of this chapter
about the occupancy estimation methods used by each solution, and the reasons behind
the reported accuracies are highlighted. Explanations are also listed as to why specific
proposed solutions are not suitable to some application areas despite the contrary claims
of the authors. This phase is termed the Accuracy and Suitability Analysis phase. The
review thus presents a complete picture to the reader, from identifying sensing gaps, to
the suitability of each available solution in the literature, to the gaps and application areas.
It must be mentioned here that although the review’s primary focus lies on networked
sensor nodes-based occupancy estimation solutions, the underlying sensor modalities for
each solution are listed. The reviewed estimation methods may not be agnostic to the
underlying sensing technology. An illustration summarizing the review methodology is
shown in Figure 2.
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Figure 2. A phased methodology chart outlines the review strategy. First, occupancy sensing gaps
that require networked occupancy sensors and corresponding estimation techniques are identified.
ADPs for the application area are identified. Solutions from the literature are explored and an analysis
is performed to see whether the solutions are suited to the claimed application area.

4. Occupancy Sensing Gaps and ADP Identification

We first focus on identifying the occupancy detection gaps found in the literature for
networked sensor node methods. Table 2 provides a non-exhaustive, but representative
list of the most common gaps and the corresponding occupancy detection application
area found within a set of representative studies. The gaps identified in Table 2 point



Future Internet 2023, 15, 116 6 of 20

towards a specific set of incapabilities that are present either within the underlying sensing
technologies, the occupancy estimation method, or the communication and integration
framework that enables the networking between these sensor nodes. As mentioned, this
review only focuses on the shortcomings of the occupancy estimation methods. The impact
of underlying sensing technologies and wireless sensor networks’ communication reliability
are separate topics with dedicated studies [8,21] in the literature dealing with these topics.
The shortcomings present within occupancy estimation methods for any given application
area can be overcome through a set of parameters to which the estimation method must
conform. We term these parameters ADPs. Table 3 transforms the identified gaps into
ADPs with specific application values. Standard documents from various associations
and agencies, such as the ASHRAE [22], CEC [23], IBC [24], NFPA [25], and IECC [26], are
used in the table. The table lists IoT and Edge AI devices among the potential execution
platforms.

Table 2. Occupancy sensing gaps for Networked Sensor Nodes-Based Estimation Methods.

References Application Area Gaps

[5,12,20–25] HVAC Control and Occupant Comfort

a. Stationary human detection
b. Real-time occupancy detection
c. Privacy concerns
d. Infrastructure overhead
e. False Negatives
f. Historical and expected occupancy data required.
g. Reliability and fault tolerance required

[12,20–22,25–31] Health and Safety

a. Stationary human detection
b. Real-time occupancy detection
c. Privacy concerns
d. Infrastructure overhead
e. False positives
f. Zone-level detection
g. Historical and expected occupancy data required.
h. High accuracy required
i. Reliability and fault tolerance required

[23,25,26,32–34] Energy and Space Utilization

a. Stationary human detection
b. Occupant count required
c. Zone level detection
d. Infrastructure overhead

[35–40] Security

a. Stationary human detection
b. Infrastructure overhead
c. Realtime occupant tracking required.
d. False negatives
e. High accuracy required
f. Zone-level detection
g. Infrastructure overhead
h. Reliability and fault tolerance required
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Table 3. ADPs for each Application Area.

Application Area ADPs

HVAC Control and Occupant Comfort

Accuracy requirement (ASHRAE): ≥90%
Info requirement: Historical/expected occupancy info
Execution platforms: Enterprise core appliances, Datacenters, IoT and
Edge AI devices
Min sensor obs rate (ASHRAE): ≤30 min
Max sensor failure rate: No quantification found. Still a research gap [2]
Feasible Detection Area (ASHRAE): Office (≤250 ft2), storage (≥50 ft2

and ≤1000 ft2)
Feasible Detection Area (CEC): Office (≤250 ft2), multipurpose rooms
(≤1000 ft2), indoor spaces (≤300 ft2)
Feasible Detection Area (IECC): Indoor spaces (≤300 ft2)

Health and Safety

Accuracy requirement (IBC, NFPA): ≥95%
Info requirement: Historical/expected occupancy info
Execution platforms: IoT, Edge AI devices
Min sensor obs rate: ≤1 min (dictated by sensor limitations)
Max sensor failure rate (IBC, NFPA): 0.01%
Feasible Detection Area (CEC): Lightening control not permitted for
shutoff control in healthcare facilities or Egress lightening where power
consumption ≤0.1 W/ft2

Energy and Space Utilization

Accuracy requirement (ASHRAE, IECC): ≥90%
Info requirement: Contiguous indoor spaces need to be monitored to
enable tracking applications. No historical or expected occupancy data
needed.
Execution platforms: Enterprise core appliances, Datacenters, IoT, Edge
AI devices
Min sensor obs rate:Hourly
Max sensor failure rate: No quantification found. Still a research gap [2]
Feasible Detection Area (CEC): Indoor spaces (≤300 ft2), storage rooms
(≥50 ft2 and ≤1000 ft2), office space (≤250 ft2).

Security

Accuracy requirement (IBC): ≥95%
Info requirement: Moderate NDD to enable tracking applications.
Execution Platforms: IoT, Edge AI devices
Min sensor obs rate: ≤1 min (dictated by sensor limitations)
Max sensor failure rate (IBC): 0.01%
Feasible Detection Area (CEC): Indoor spaces (≤300 ft2), storage rooms
(≥50 ft2 and ≤1000 ft2), office space (≤250 ft2).

The ADPs listed in Table 3 serve as the suitability criteria when selecting a particular
occupancy estimation solution for a specific application. These ADPs also bring to light
certain exciting insights. For example, the accuracy requirement for occupancy sensors
used for HVAC controls varies depending on the specific application and building type.
However, the occupancy sensor accuracy should generally be high enough to correctly
detect the presence or absence of occupants in a particular area. The accuracy requirement
becomes more stringent in the case of both safety and security applications. This is because
these applications include critical services, such as emergency evacuation, fire detection
and suppression, and security depending on the occupancy sensor’s ability to accurately
detect the presence or absence of people in a building. Another important insight is that
the response time of the occupancy detection method becomes essential for safety and
security applications, as it should be fast enough to detect the presence of people and
activate the safety system accordingly. We thus see that the potential execution platform
for such applications excludes time-consuming cloud-based processing options, such as
Enterprise core appliances and Datacenters.

It is additionally worth noting that CEC standards recommend using occupancy
sensors in smaller indoor spaces with high traffic that have an area less than 300 ft2, while
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at the same time, these standards recommend using occupancy sensors in storage rooms or
multi-purpose spaces as large as 1000 ft2. It must be mentioned here that these standards
do not make recommendations for emergency facilities such as healthcare facilities or fire
stations since critical operations may be affected due to automated control.

We observe that security applications demand high sensor NDD since it is crucial to
achieving reliable tracking of occupants indoors. In addition, security applications such as
intrusion detection are required to detect the path or trajectory (entering or leaving) that
the occupant is pursuing.

5. Solutions to Application Mapping

This review aims to establish the suitability of state-of-the-art networked sensor nodes-
based occupancy estimation solutions to occupancy detection application areas. It is critical
to mention that the sensor nodes can be exposed to phenomena that interfere with sen-
sor measurements. The phenomena can include pronounced variations of temperature,
pressure, radiation, IR shielding [27], EM shielding [28], IR noise [5], and EM noise [29]. In
short, sensor measurements are error prone. Data fusion techniques have been widely em-
ployed in the literature to overcome such errors. Data fusion is “the use of techniques that
combine data from multiple sources and gather this information to achieve inferences” [30].
The inferences are expected to be more accurate and robust than if these were achieved
via simple aggregation techniques, such as average, maximum, minimum, or a union of
outputs of multiple sensor nodes. Moreover, strong inferences can be achieved through
networked sensor nodes whenever a node-level communication breakdown occurs as these
may observe common observation zones. In practice, networked sensor nodes commonly
suffer from communication breakdowns. The literature contains data fusion methods that
can be centralized or distributed systems. In centralized systems, raw sensor data is sent
to a central hub or sink node, and the data fusion method processing is performed at the
central node. In distributed systems, the distributed components of the fusion method
would execute on distributed nodes in the design, with each node utilizing its local data.

It is well known that data fusion caters to the spatial and temporal coverage blind spots
of sensor nodes [5]. For occupancy sensors, the spatial coverage of a sensor usually means
the sensor’s FoV or its effective volumetric detection range. Their temporal coverage usually
depends on the sensor’s sampling rate, node’s duty cycle, and communication delays [30].
Table 4 lists the reviewed methods along with the employed occupancy detection measure,
network-level data filtering and fusion techniques, NDD, and the spatial and temporal
resolution of the occupancy detection.

Table 4. Reviewed solution details and claimed application area.

Solution
Data Filtering

and Fusion
Techniques

Input Data
Streams

Detection
Measure NDD

Spatial/Temporal
Resolution and

Average
Accuracy

Author Claimed
Application

Areas

[31]
Bayesian

Occupancy
Model

PIR sensor
nodes

Bayesian
Inference based

on Prior
Probability

computed over
historical data

and Sensor
Model output

403 ft2/node
Multiple Zones,

60 s, 71%
Energy and Space

Utilization

[32]
SVM, LDA,

QDA, RF-based
ML algorithms

PIR, Light,
Temperature,
Sound, CO2

ML Inference 49 ft2/node
Single Zone, 30 s,

98.4%

Health and Safety,
Security, HVAC

Control and
Occupant
Comfort
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Table 4. Cont.

Solution
Data Filtering

and Fusion
Techniques

Input Data
Streams

Detection
Measure NDD

Spatial/Temporal
Resolution and

Average
Accuracy

Author Claimed
Application

Areas

[33] Decision Tree PIR, Sound,
Power use, CO2

ML Inference 28 ft2/node
Single Zone, 60 s,

97.9%

Health and Safety,
Security, HVAC

Control and
Occupant
Comfort

[35]
RBF-based

Neural
Network

PIR, Humidity,
Light, Sound,
Temperature,

CO2

ML Inference 430 ft2/node
Multiple Zones,

60 s, 87.62%
Energy and Space

Utilization

[34]
Statistical

Feature-based
FFNN

PIR,
Temperature,
Sound, CO2

ML Inference

27 sensor nodes
in an open-plan

office space
with max 8
occupants

Multiple Zones,
5 min, 75%

Energy and Space
Utilization

[5]
Particle

Filter-based
Estimator

SLEEPIR, PIR,
Temperature

Threshold
placed on
presence

probability

364 ft2/node
Zone-level, 60 s,

96.2%

HVAC Control
and Occupant

Comfort, Energy
and Space
Utilization

[36] AR HMM

PIR,
Temperature,

Reed switches,
Airspeed, CO2

Expectation
Maximization

algorithm
applied to find

the local
optimal

solution for AR
HMM

19 sensor nodes
in a lab with

max 10
occupants

Multiple Zones,
20 s, 84%

Energy and Space
Utilization

[41]
Multinomial

Logistic
Regression

PIR, Power
usage,

Temperature,
Humidity,

Light, Door
sensors, CO2

Predicted
probability of
the occupants
being active,
inactive or

away

14 ft2/node
Multiple Zones,

60 s, 94.9%

HVAC Control
and Occupant

Comfort

[37]
RF, Decision
Tree, KNN,

SVM

PIR,
Temperature ML Inference 140 ft2/node

Multiple Zones
variable time,

99%

Energy and Space
Utilization

[7] FFNN

PIR, Humidity,
Light, Pressure,
Temperature,
CO2, TVOC,
Sound, Door
and Window

sensor

ML Inference 296 ft2/node
Multiple Zones,

60 s, 94.3%

HVAC Control
and Occupant

Comfort, Energy
and Space
Utilization

[38]

Trajectory
Analysis of

Indoor Climate
Sensor data

PIR, Temp,
CO2, VOC, RH,

AWT, Sound

2-min and
5-min trends of
sensor data are

analyzed to
determine
occupancy
probability

54 ft2/node
Single Zone,
5 min, 77.8%

HVAC Control
and Occupant

Comfort
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Table 4. Cont.

Solution
Data Filtering

and Fusion
Techniques

Input Data
Streams

Detection
Measure NDD

Spatial/Temporal
Resolution and

Average
Accuracy

Author Claimed
Application

Areas

[39]
Gaussian

Distribution
Model

PIR

Gaussian
distribution

used to fit the
occupancy

profiles. An
accumulative

function of
Gaussian

distributions
for all sensors is
used to predict

occupancy

731 ft2/node
Multiple Zones,

60 min, 85%
Energy and Space

Utilization

[40] Multi-sensor
Aggregation PIR

Aggregation of
PIR triggers
over 5 min
duration

122 ft2/node
Multiple Zones,

5 min, 87.5%

HVAC Control
and Occupant

Comfort, Energy
and Space
Utilization

[42] Inhomogeneous
HMM PIR

Posterior
probability

evaluated via
Maximum a

posteriori and
Viterbi

Algorithm

18 ft2/node
Single Zone, 60 s,

99%

HVAC Control
and Occupant

Comfort, Energy
and Space
Utilization

Some specific observations can be made about the data presented in Table 4.

a. A solution can only be used in Energy and Space Utilization applications if and only if
these are scalable, i.e., NDD is low. Energy and Space utilization is usually measured
across an entire commercial or residential unit. Any solution with a relatively high
NDD is essentially non-scalable due to additional infrastructure costs.

b. Health and Safety and Security applications require high occupant tracking and
detection accuracy. The solutions usually achieve this at the expense of high NDD.
Even though such solutions have high accuracy (≥95%), these cannot be employed
for HVAC Control, and Occupant Comfort and Energy and Space Utilization applica-
tions as scalability is infeasible.

c. Although NN-based classification and regression techniques achieve relatively high
accuracy, the network training input size is fixed. Thus, any missing sensor time-
series data would need to be imputed for the model to be able to produce an inference.
Moreover, the pre-requisite of collecting a dataset must be satisfied to deploy any NN.

d. Sensors such as CO2 and VOC require almost 30 min to respond reliably to occupancy.
Likes of PIR, temperature and light sensors can register occupancy several times a
second. This disparity and the resulting advantage of high frequency sensors should
be kept in mind while comparing the accuracies for various presented solutions.

e. Sensors such as CO2 and VOC are sometimes placed at the ventilation ducts in some
of the methods listed in Table 4. Under such scenarios, NDD tends to be very low for
these sensors, thus presenting an advantage for using these sensors.

6. Accuracy and Suitability Analysis

There are broad fusion implementation categories mentioned in [10], namely: (1) ana-
lytical methods, (2) knowledge-based methods, and (3) data-driven methods. Each of these
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categories has its own set of shortcomings that either emanate from node-level detection
errors or are an artifact of the network-level occupancy detection method.

The analytical methods study the physical behavior of occupants and its impact on
the indoor environment. These methods exploit the relationship between environmental
variables and human presence to derive occupancy decisions. For example, Ref. [22]
presents an occupancy detection method based on various indoor climate sensor data
trajectories. Data from CO2 and VOC sensors were used to evaluate vacancy, while data
from PIR sensors were used to judge occupancy. No prior information about the testbed or
dataset prerequisites is required by this method. Despite relying on three different sensor
modalities, this method reported as much as 43.5% false negatives and 11.8% false positives
for a dormitory occupancy scenario.

The knowledge-based methods, also known as expert systems, use specialized knowl-
edge represented by rules to solve complex problems. A good example is a Finite State
Machine-based State Switch algorithm [43] that utilizes SLEEPIR [44] nodes capable of
detecting stationary occupants. Yet, it is not able to robustly handle the node-level detection
errors, and a transition to the wrong state would be produced in case a false occupancy
determination was made at the node level. Similarly, any network-level aggregation al-
gorithm, e.g., the union of outputs of stand-alone sensor nodes, will fail to handle a false
positive detection determination made at the node level.

The data-driven methods include the following sub-categories of methods.

1. Statistical and deep learning ML methods
2. Bayesian inference methods
3. HMM-based methods

ML-based network-level occupancy detection methods that process statistical features
extracted from raw sensor-node observations can handle uncertainty, but have limited
application due to the pre-requisite of acquiring labeled training dataset [37]. Not only auto-
mated occupancy labeling itself is resource intensive for such datasets, but also achieving a
class balance between “occupied” and “unoccupied” label classes is an equally challenging
task [37]. It has also been shown that typical ML algorithms only accept training data
with fixed sizes; thus, a networked node occupancy detection problem which can have a
variable number of sensor nodes (due to occasional communication or hardware failure),
would need to reformat the data into a fixed format, which often requires data fusion to
happen prior to ML training phase [37,45]. Furthermore, deep learning ML models require
large datasets to train. Thus, it is infeasible to re-collect a large amount of data to retrain
to handle any novelty in the occupancy patterns [46]. In the Bayesian inference methods
sub-category, node-level occupancy estimation is usually performed via ML algorithms
or knowledge-based methods. In contrast, the network-level occupancy estimation is
performed by fusing the node-level assessment through a Bayesian inference-based frame-
work [45]. Although this approach has produced accuracies up to 93% [21] in uncontrolled
experiments, generating ML inference for each node, on-device, is resource intensive.

Based on the above discussion on categorizing occupancy sensing methods for net-
worked nodes, a taxonomy chart is presented in Figure 3.

In the past, many review articles attempted to vaguely attribute the categories of
occupancy sensing methods to specific application areas. As such, no one-to-one or one-
to-many correspondence exists between the method categories shown in Figure 3 and
the application areas mentioned in Table 2. The problem of suitability of applications to
methods is much more nuanced and requires specific criteria to be met before suitability
can be established. To achieve this end, Table 5 details the breakdown of how the ADPs for
each application area map to each of the reviewed solutions in Table 4.
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Table 5. ADPs conformance for each application area.

Solution ADPs

[31]

Accuracy: 71.0%
Information requirement: Prior probabilities for Bayesian model were calculated using four weeks of
historical data.
Execution Platforms: Samsung SmartThings Hub
Sensor observation rate: 60 s
Sensor Failure rate: High MTBF as per datasheet for ZMOTION® ZEPIR0AA PIR sensor
Detection Area: 403 ft2/node

[32]

Accuracy: 98.4%
Information requirement: Labeled dataset for ML
Execution Platforms: ARM based Beaglebone SoC
Sensor observation rate: 30 s
Sensor Failure rate: Unspecified PIR sensor
Detection Area: 49 ft2/node

[33]

Accuracy: 97.9%
Information requirement: Labeled dataset for ML
Execution Platforms: PC/Server
Sensor observation rate: 60 s
Sensor Failure rate: PIR Sensor MTBF unknown (Phidgets 1111 IR Motion Sensor)
Detection Area: 28 ft2/node

[35]

Accuracy: 87.6%
Information requirement: Labeled dataset for ML
Execution Platforms: Arduino Black Widow single-board MCU, MATLAB on PC/Server
Sensor observation rate: 60 s
Sensor Failure rate: Unspecified PIR sensor
Detection Area: 430 ft2/node

[34]

Accuracy: 75.0%
Information requirement: Labeled dataset for ML
Execution Platforms: HOBO U series event loggers, MATLAB and WEKA on PC/Server
Sensor observation rate: 5 min
Failure rate: Unspecified PIR sensor
Detection Area: <50 ft2/node

[5]

Accuracy: 96.2%
Information requirement: Sensor data for correlation evaluation, Labeled dataset for ML
Execution Platforms: Onboard SoC (EFR32BG13, Silicon Labs) onboard nodes, Edge AI (Raspberry Pi 4)
Sensor observation rate: 60 s
Sensor Failure rate: >10,000 h (Panasonic® EKMB1391111K)
Detection Area: 364 ft2/node
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Table 5. Cont.

Solution ADPs

[36]

Accuracy: 84.0%
Information requirement: time-series data correlations need to be evaluated pre-deployment.
Execution Platforms: wireless measurement nodes, PC/Server
Sensor observation rate: 20 s
Failure rate: Unspecified PIR sensor
Detection Area: <50 ft2/node

[41]

Accuracy: 94.9%
Information requirement: Labeled dataset for ML
Execution Platforms: BACnet ™ for sensor connectivity, R on Workstation
Sensor observation rate: 60 s
Failure rate: Unspecified PIR sensor
Detection Area: 14 ft2/node

[37]

Accuracy: 99.0%
Information requirement: Domain knowledge, Labeled dataset for ML
Execution Platforms: NI Compact DAQ, scikit-learn on ARM based Beaglebone Black SoC
Sensor observation rate: Variable
Failure rate: Unspecified PIR sensor
Detection Area: 140 ft2/node

[7]

Accuracy: 94.3%
Information requirement: Labeled dataset for ML
Execution Platforms: Arduino Uno, ARM based Kerlink® IoT Wirnet 868 Station
Sensor observation rate: 60 s
Failure rate: >10000 h (Panasonic® PaPIRs EKMB)
Detection Area: 296 ft2/node

[38]

Accuracy: 77.8%
Information requirement: Some method parameters and thresholds are set empirically for each sensor
node.
Execution Platforms: Arduino Mega, PC/Server
Sensor observation rate: 5 min
Failure rate: High MTBF as per datasheet (RE 200 B)
Detection Area: 54 ft2/node

[39]

Accuracy: 85%
Information requirement: Historical sensor data required for past twenty-four days.
Execution Platforms: PC/Server
Sensor observation rate: 60 min
Failure rate: High MTBF as per datasheet (HPC005 infrared people counter)
Detection Area: 731 ft2/node

[40]

Accuracy: 87.5%
Information requirement: No historical data required.
Execution Platforms: SmartThings cloud platform, IoT devices
Sensor observation rate: 5 min
Failure rate: High MTBF as per datasheet (T3L-SS014, IM6001-MTP01, STS-IRM-25)
Detection Area: 122 ft2/node

[42]

Accuracy: 99%
Information requirement: Prior ground-truth and historical sensor data required for parameter training.
Execution Platforms: MATLAB 2016a, Pycharm
Sensor observation rate: 60 s
Failure rate: High MTBF as per datasheet (AMG8853)
Detection Area: 18 ft2/node

Comments on Solution Conformance to the Claimed Application Areas

Ref. [31]: Not feasible for the author-claimed Energy and Space Utilization application
as the solution accuracy does not meet ADP accuracy criteria, i.e., 71% < 90%. It is a data-
driven method, thus has a pre-requisite of historical data collection before its deployment.
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Ref. [32]: Suitable for the author claimed HVAC Control and Occupant Comfort applica-
tion on a smaller scale. The solution cannot scale up well as the spatial NDD is high, i.e.,
49 ft2/node. It is a data-driven method.

Ref. [33]: Not feasible for the author-claimed HVAC Control and Occupant Comfort
application even on a smaller scale. This is because the execution platform for the algorithm
is a PC or Server, and the implementation is not optimized for an IoT or Edge AI device. In
addition, the solution cannot scale up well as the spatial NDD is high, i.e., 28 ft2/node. It is
a data-driven method and has a dataset pre-requisite. Alternatively, the method is suitable
for Energy and Space Utilization applications.

Ref. [35]: Not feasible for the author-claimed HVAC Control and Occupant Comfort
application. Although the sensor node data is logged via MCU, the ML algorithm execution
platform for the algorithm is a PC/Server. Moreover, solution accuracy does not meet
ADP accuracy criteria, i.e., 87.6% < 90%. It is a data-driven method and has a dataset
pre-requisite.

Ref. [34]: Not feasible for the author-claimed HVAC Control and Occupant Comfort
application. Sensor data is logged via third party loggers, the ML algorithm execution
platform for the algorithm is MATLAB/WEKA on a PC or Server. Moreover, solution
accuracy does not meet ADP accuracy criteria, i.e., 75% < 90%. It is a data-driven method
and has a dataset pre-requisite.

Ref. [5]: Suitable for the author-claimed HVAC Control and Occupant Comfort and Energy
and Space Utilization applications. The solution can scale up as the spatial NDD is low, i.e.,
364 ft2/node. It is a data-driven method and thus requires a labeled dataset to be collected.
The method also needs historical sensor data for correlation evaluation. The solution is
optimized in terms of node power consumption, local processing at nodes via an IoT device.
The ML pre-processing inference is made on an IoT device, which is mentioned to be a CPE.
The solution is also alternatively suitable for Health and Safety applications as it meets the
desired ADP guidelines for this application area and can track occupancy at room level.
For reference, a system level diagram for the solution is illustrated in Figure 4.
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Figure 4. PF-based human occupancy detection method flow chart. Networked sensor nodes
(SLEEPIR) generate voltage, ambient temperature, and PIR data. The voltage is converted to bi-
nary occupancy observations via an ML-based thresholding algorithm. The node-level occupancy
observations then update a system-level occupancy estimate via a PF.

Ref. [36]: Not feasible for the author-claimed HVAC Control and Occupant Comfort
application. Algorithm execution platform for the algorithm is a PC or Server. Moreover,
solution accuracy does not meet ADP accuracy criteria, i.e., 84.0% < 90%. It is a data-driven
method and requires historical sensor data for time-series data correlation evaluation.
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Ref. [41]: Not feasible for the author-claimed HVAC Control and Occupant Comfort
application. The solution cannot scale up well with the spatial NDD of 14 ft2/node. It
is a data-driven method and thus, requires a labeled dataset. Although the method uses
a standard protocol by ASHRAE for sensor communication, the regression algorithm
execution is not optimized for IoT execution which makes the feasibility of the algorithm
questionable to be used as a solution for occupancy detection.

Ref. [37]: Suitable for the author-claimed HVAC Control and Occupant Comfort ap-
plication. The solution can scale up well as the spatial NDD is sufficient to cover an
average-sized room, i.e., 140 ft2/node. It is a data-driven method; thus, it requires a dataset
to be collected pre-deployment. Moreover, a human activities layer is incorporated in the
learning model which requires domain knowledge about the occupancy patterns. The
solution has matured to the point that it has been implemented over an IoT device.

Ref. [7]: Suitable for the author-claimed HVAC Control and Occupant Comfort and Energy
and Space Utilization applications. The solution can scale up as the spatial NDD is low, i.e.,
296 ft2/node. It is a data-driven method and thus, requires a labeled dataset to be collected.
The solution is optimized in terms of node power consumption and local processing at
nodes via an IoT device. The ML pre-processing, training and inference, however, is made
at a back-end machine. Since a two FFNN is relatively simple to implement over an IoT-
compatible ML framework, such as TensorFlow Lite, a case can be made that the solution
is suitable for an IoT-based implementation. The solution is also alternatively suitable for
Health and Safety applications as it meets the desired ADP guidelines for this application area.

Ref. [38]: Not feasible for the author-claimed HVAC Control and Occupant Comfort
application. The solution can also not scale up well with the spatial NDD of 54 ft2/node. It
is an analytical method; thus, it may only require domain knowledge, yet certain thresholds
and parameters for Zero Lag Exponential Moving Average algorithm require empirical
tuning. The algorithm can be easily ported to IoT for execution which makes the method
suitable for IoT execution, but the accuracy needs to meet ADP accuracy criteria, i.e.,
77.8% < 90%. Ref. [39]: Not feasible for the author-claimed Energy and Space Utilization
application. The solution accuracy does not meet ADP accuracy criteria, i.e., 85% < 90%.
It is a data-driven method and requires historical sensor data for developing Gaussian
distribution models for diverse occupancy patterns for all monitored spaces. It is achieved
via averaging the fitting results for the past twenty-four days.

Ref. [40]: Not feasible for the author-claimed Energy and Space Utilization and HVAC
Control and Occupant Comfort applications. The solution accuracy does not meet ADP
accuracy criteria, i.e., 87.5% < 90%. Although the execution platforms are mature (IoT and
cloud-based), the fusion algorithm is a simple aggregation algorithm that does not work
well with motion sensors. The motion sensors are placed at a distance no less than 30 cm
from under the desk of subjects, yet the occupancy sensing algorithm assumes that subjects
not completely stationary while sitting at their desks and while not present at their desks,
the office space is vacant.

Ref. [42]: Suitable for the author-claimed HVAC Control and Occupant Comfort and
Energy and Space Utilization applications. The solution is not expected to scale up as the
spatial NDD is very high, i.e., 18 ft2/node. The method requires ground-truth data to label
and train IHMM parameters via supervised learning. New sensor data is also needed
to update the historical dataset to periodically tweak the model parameters, for accurate
long-term applications, such as space usage analysis and occupancy modeling. The solution
is not optimized in terms of node power consumption and IoT/Edge AI execution. The
solution system level diagram is shown in Figure 5 for reference.
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Figure 5. Raw data is obtained through infrared array sensors along with a camera to build occupancy
transition probability matrix A. The parameter learning process of the IHMM model is introduced
and the emission probability matrix B is calculated by Softmax Regression Model. Finally, according
to the constructed IHMM, the Forward Algorithm and the Viterbi Algorithm are used to realize the
online estimation and offline estimation of the indoor occupancy of a building.

7. Discussion and Future Trends

One of the important ADP indicators used in the suitability analysis is NDD. It is
interesting to note here that this density is a simple indicator that is evaluated by dividing
the total area of the monitored indoor space by the number of sensor nodes employed by
the method. This indicator has no direct relationship with the sensor FoV or range, which
is usually significantly smaller than the NDD. There is a list of factors that contributes
to determining the NDD. The most impactful ones include the node positioning strategy,
estimation method accuracy, network/communication reliability, environment-contributed
sensor noise, and the floor plan of the monitored area. Among these factors, the node
positioning strategy, estimation method accuracy, and network reliability are the factors
that can be optimized to decrease NDD. In effect, NDD can be considered a proposed
optimization measure by a method for the node positioning strategy, estimation method
accuracy, and network reliability. However, dedicated studies exist for the node-positioning
strategy [47] and network reliability [21], but none of the reviewed articles devised their
positioning strategy.

During the review effort, it was noticed that most studies focused on HVAC Control
and Occupant Comfort and Energy and Space Utilization applications rather than applications
such as Health and Safety and Security. This is because the latter have ADPs that require high
reliability and accuracy, which is difficult to achieve given the challenging task of occupancy
detection and tracking in dynamic environments. Most of the reviewed works attempted
to tackle the challenge of highly noise-prone and dynamic environments by adding to the
suite of sensor modalities. However, a small minority of methods [7,38] presented the
sensor data responsible for false positives or negatives and proposed consequent solutions
to resolve the errors.

Among the researched literature, one of the significant gaps for data-driven occupancy
detection methods was the need for periodic collection of training sets to incorporate novel
occupancy scenarios. The dataset also includes ground-truth occupancy data. This is a
problem because the collection and labeling of new training datasets are far from ideal tasks
for an end user or, in some cases, infeasible. To address this issue, certain studies [48–50]
have suggested unsupervised methods, as these algorithms do not need to label the dataset.
Yet, such methods have limited applicability since error-prone prior expert knowledge is
used to initialize classes. This knowledge may be based on assumptions or sensor data
distribution that may only be valid once the occupancy patterns evolve.

The future for tracking such a complex issue lies in employing more capable IoT
devices, such as Edge AI devices [51], so that on-device ML training and inference can be
produced incorporating newer occupancy scenarios. The dedicated field of ODLL [46,52,53]
offers benefits, such as a local learning approach where occupancy patterns are learned
on the fly, thus making such methods suitable for practice. Moreover, privacy-preserving
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automated labeling techniques are the flip side of the coin when an OODL approach is
used, as the collected dataset also needs to be labeled. The literature needs reliable privacy-
preserving techniques, but video or image-based automated yet privacy-compromising
ground-truth collection techniques [54,55] can be found.

8. Conclusions

This review presents a matching strategy for mapping occupancy estimation methods
involving networked sensor nodes to the most suitable application areas. During the
course of the evaluation, multiple application areas were investigated to identify a set
of ADPs that can help guide the suitability determination process. The ADPs represent
the most demanding requirements presented by each application area, as suggested by
the literature. The ADPs can be used to derive design specifications for developing a
new occupancy-sensing solution or can equally be used to assess an already designed
solution. ADPs are determined based on occupancy standards documentation published
by various regulatory and research bodies, performance constraints dictated by the sensing
technologies and computing equipment, and application area considerations. As a result
of stringent application area requirements placed by standardization agencies, sensor
limitations, and challenging environmental constraints, only a limited number of reviewed
methods conform to the ADPs criteria proposed by this review study.

In future work, more ADPs can be extracted for each application area. In addition, con-
formance criteria can be fine-tuned for each ADP based on industrial demands, published
building and sensing technology codes, as well as market trends.
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Abbreviations

AI Artificial Intelligence ML Machine Learning
ADP Application-desired Parameters MTBF Mean Time Before Failure
AR Autoregressive NDD Node Deployment Density
ARM Advanced RISC Machine NEMA National Electrical and Manufacturers Association

ASHRAE
American Society of Heating, Refrigerating and

NN Neural Networks
Air-Conditioning Engineers

AWT Absolute Water Content NFPA National Fire Protection Association
CEC California Energy Commission ODLL On-device Lifelong Learning
CPE Customer Premise Equipment PF Particle Filter
EM Electromagnetic PIR Passive Infrared
FFNN Feed-Forward NN QDA Quadratic Discriminant Analysis
FoV Field-of-View RF Radiofrequency
HMM Hidden Markov Model RH Relative Humidity
HVAC Heating Ventilation and Air-Conditioning SLEEPIR Synchronized Low Energy Electronically chopped PIR
IHMM Inhomogeneous HMM SoC System-on-a-Chip
IBC International Building Code SVM Support Vector Machine
IECC International Energy Conservation Code TVOC Total VOC
IR Infrared VOC Volatile Organic Compounds
IoT Internet of things WEKA Waikato Environment for Knowledge Analysis
KNN K-Nearest Neighbor
LDA Linear Discriminant Analysis
MCU Microcontroller Unit
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11. Nastasi, B.; Markovska, N.; Puksec, T.; Duić, N.; Foley, A. Renewable and sustainable energy challenges to face for the achievement
of Sustainable Development Goals. Renew. Sustain. Energy Rev. 2022, 157, 112071. [CrossRef]

12. Cao, N.; Ting, J.; Sen, S.; Raychowdhury, A. Smart Sensing for HVAC Control: Collaborative Intelligence in Optical and IR
Cameras. IEEE Trans. Ind. Electron. 2018, 65, 9785–9794. [CrossRef]

13. Dong, B.; Kjærgaard, M.B.; De Simone, M.; Gunay, H.B.; O’Brien, W.; Mora, D.; Dziedzic, J.; Zhao, J. Sensing and Data Acquisition.
In Exploring Occupant Behavior in Buildings; Springer International Publishing: Berlin/Heidelberg, Germany, 2018; pp. 77–105.

14. Feagin, B., Jr.; Poplawski, M.E.; Day, J.T. A Review of Existing Test Methods for Occupancy Sensors. United States. 18 August
2020. Available online: https://www.osti.gov/biblio/1668746 (accessed on 17 February 2023).

15. Ding, Y.; Han, S.; Tian, Z.; Yao, J.; Chen, W.; Zhang, Q. Review on occupancy detection and prediction in building simulation.
Build. Simul. 2022, 15, 333–356. [CrossRef]

16. Sayed, A.N.; Himeur, Y.; Bensaali, F. Deep and transfer learning for building occupancy detection: A review and comparative
analysis. Eng. Appl. Artif. Intell. 2022, 115, 105254. [CrossRef]

17. Trivedi, D.; Badarla, V. Occupancy detection systems for indoor environments: A survey of approaches and methods. Indoor Built
Environ. 2020, 29, 1053–1069. [CrossRef]

18. Ahmad, J.; Larijani, H.; Emmanuel, R.; Mannion, M.; Javed, A. Occupancy detection in non-residential buildings–A survey and
novel privacy preserved occupancy monitoring solution. Appl. Comput. Inform. 2021, 17, 279–295. [CrossRef]

19. Natarajan, A.; Krishnasamy, V.; Singh, M. Occupancy detection and localization strategies for demand modulated appliance
control in Internet of Things enabled home energy management system. Renew. Sustain. Energy Rev. 2022, 167, 112731. [CrossRef]

20. Azimi, S.; O’Brien, W. Fit-for-purpose: Measuring occupancy to support commercial building operations: A review. Build. Environ.
2022, 212, 108767. [CrossRef]

21. Rodriguez, I.; Lauridsen, M.; Vasluianu, G.; Poulsen, A.N.; Mogensen, P. The Gigantium Smart City Living Lab: A Multi-Arena
LoRa-based Testbed. In Proceedings of the 2018 15th International Symposium on Wireless Communication Systems (ISWCS),
Lisbon, Portugal, 28–31 August 2018. [CrossRef]

22. Gunay, B.; Nagy, Z.; Miller, C.; Ouf, M.; Dong, B. Using Occupant-Centric Control for Commercial HVAC Systems. ASHRAE J.
2021, 63, 30–40. (In English)

23. California Energy Commission. Building Energy Efficiency Standards for Residential and Nonresidential Buildings: For the 2022
Building Energy Efficiency Standards Title 24, Part 6, and Associated Administrative Regulations in Part 1 (Building Energy Efficiency
Standards-Title 24); California Energy Commission: Sacramento, CA, USA, 2022.

24. International Code Council. International Building Code. 2021. Available online: https://search.library.wisc.edu/catalog/999907
647602121 (accessed on 17 February 2023).

25. NFPA 99; Standard for Health Care Facilities. N.F.P. Association: New York, NY, USA, 2021.
26. International Code Council. International Energy Conservation Code; International Code Council, Inc.: Country Club Hills, IL,

USA, 2021.
27. Jeong, S.-M.; Ahn, J.; Choi, Y.K.; Lim, T.; Seo, K.; Hong, T.; Choi, G.H.; Kim, H.; Lee, B.W.; Park, S.Y.; et al. Development of a

wearable infrared shield based on a polyurethane–antimony tin oxide composite fiber. NPG Asia Mater. 2020, 12, 32. [CrossRef]

http://doi.org/10.1016/j.rser.2022.112704
http://doi.org/10.1016/j.adapen.2021.100068
http://doi.org/10.1145/2422531.2422534
http://doi.org/10.1016/j.buildenv.2017.10.024
http://doi.org/10.1109/JSEN.2022.3192270
http://doi.org/10.1016/j.adapen.2021.100055
http://doi.org/10.1109/GIOTS.2019.8766374
http://doi.org/10.1088/1757-899X/1110/1/012020
http://doi.org/10.1016/j.buildenv.2020.106966
http://doi.org/10.1016/j.rser.2022.112071
http://doi.org/10.1109/TIE.2018.2818665
https://www.osti.gov/biblio/1668746
http://doi.org/10.1007/s12273-021-0813-8
http://doi.org/10.1016/j.engappai.2022.105254
http://doi.org/10.1177/1420326X19875621
http://doi.org/10.1016/j.aci.2018.12.001
http://doi.org/10.1016/j.rser.2022.112731
http://doi.org/10.1016/j.buildenv.2022.108767
http://doi.org/10.1109/iswcs.2018.8491077
https://search.library.wisc.edu/catalog/999907647602121
https://search.library.wisc.edu/catalog/999907647602121
http://doi.org/10.1038/s41427-020-0213-z


Future Internet 2023, 15, 116 19 of 20

28. George, B.; Zangl, H.; Bretterklieber, T.; Brasseur, G. Seat Occupancy Detection Based on Capacitive Sensing. IEEE Trans. Instrum.
Meas. 2009, 58, 1487–1494. [CrossRef]

29. Zhang, Y.; Rasmussen, K. Detection of Electromagnetic Interference Attacks on Sensor Systems. In Proceedings of the 2020 IEEE
Symposium on Security and Privacy (SP), San Francisco, CA, USA, 18–21 May 2020. [CrossRef]

30. Abdelgawad, A.; Bayoumi, M. Data Fusion in WSN. In Resource-Aware Data Fusion Algorithms for Wireless Sensor Networks;
Springer: New York, NY, USA, 2012; pp. 17–35.

31. Tryon, D.L. Bayes’ Network and Smart Sensors–Occupancy Detection. Ph.D. Thesis, The University of Nebraska-Lincoln, Ann
Arbor, MI, USA, 2020.

32. Singh, A.P.; Jain, V.; Chaudhari, S.; Kraemer, F.A.; Werner, S.; Garg, V. Machine Learning-Based Occupancy Estimation Using
Multivariate Sensor Nodes. In Proceedings of the 2018 IEEE Globecom Workshops (GC Wkshps), Abu Dhabi, United Arab
Emirates, 9–13 December 2018; pp. 1–6. [CrossRef]

33. Hailemariam, E.; Goldstein, R.; Attar, R.; Khan, A. Real-time occupancy detection using decision trees with multiple sensor types.
In Proceedings of the 2011 Symposium on Simulation for Architecture and Urban Design, Boston, MA, USA, 3–7 April 2011;
pp. 141–148.

34. Ekwevugbe, T.; Brown, N.; Pakka, V.; Fan, D. Real-time building occupancy sensing using neural-network based sensor network.
In Proceedings of the 2013 7th IEEE International Conference on Digital Ecosystems and Technologies (DEST), Menlo Park, CA,
USA, 24–26 July 2013. [CrossRef]

35. Yang, Z.; Li, N.; Becerik-Gerber, B.; Orosz, M. A Multi-Sensor Based Occupancy Estimation Model for Supporting Demand Driven
HVAC Operations. In Proceedings of the 2012 Symposium on Simulation for Architecture and Urban, San Diego, CA, USA, 26
March 2012.

36. Ai, B.; Fan, Z.; Gao, R.X. Occupancy estimation for smart buildings by an auto-regressive hidden Markov model. In Proceedings
of the 2014 American Control Conference, Portland, OR, USA, 4–6 June 2014. [CrossRef]

37. Wang, C.; Jiang, J.; Roth, T.; Nguyen, C.; Liu, Y.; Lee, H. Integrated sensor data processing for occupancy detection in residential
buildings. Energy Build. 2021, 237, 110810. [CrossRef]

38. Pedersen, T.; Nielsen, K.; Petersen, S. Method for room occupancy detection based on trajectory of indoor climate sensor data.
Build. Environ. 2017, 115, 147–156. [CrossRef]

39. Ding, Y.; Chen, W.; Wei, S.; Yang, F. An occupancy prediction model for campus buildings based on the diversity of occupancy
patterns. Sustain. Cities Soc. 2021, 64, 102533. [CrossRef]

40. Sheikh Khan, D.; Kolarik, J.; Anker Hviid, C.; Weitzmann, P. Method for long-term mapping of occupancy patterns in open-plan
and single office spaces by using passive-infrared (PIR) sensors mounted below desks. Energy Build. 2021, 230, 110534. [CrossRef]

41. Kim, S.H.; Moon, H.J. Case study of an advanced integrated comfort control algorithm with cooling, ventilation, and humidifica-
tion systems based on occupancy status. Build. Environ. 2018, 133, 246–264. [CrossRef]

42. Yuan, Y.; Li, X.; Liu, Z.; Guan, X. Occupancy Estimation in Buildings Based on Infrared Array Sensors Detection. IEEE Sens. J.
2020, 20, 1043–1053. [CrossRef]

43. Chen, Z. Data Processing for Device-Free Fine-Grained Occupancy Sensing Using Infrared Sensors. Ph.D. Thesis, Texas A&M
University, Ann Arbor, MI, USA, 2021.

44. Wu, L.; Gou, F.; Wu, S.-T.; Wang, Y. SLEEPIR: Synchronized Low-Energy Electronically Chopped PIR Sensor for True Presence
Detection. IEEE Sensors Lett. 2020, 4, 2500204. [CrossRef]

45. Fayed, N.S.; Elmogy, M.M.; Atwan, A.; El-Daydamony, E. Efficient Occupancy Detection System Based on Neutrosophic Weighted
Sensors Data Fusion. IEEE Access 2022, 10, 13400–13427. [CrossRef]

46. Lin, J.; Zhu, L.; Chen, W.M.; Wang, W.C.; Gan, C.; Han, S. On-Device Training Under 256KB Memory. arXiv 2022, arXiv:2206.15472.
47. Azizi, S.; Rabiee, R.; Nair, G.; Olofsson, T. Effects of Positioning of Multi-Sensor Devices on Occupancy and Indoor Environmental

Monitoring in Single-Occupant Offices. Energies 2021, 14, 6296. [CrossRef]
48. Ebadat, A.; Bottegal, G.; Varagnolo, D.; Wahlberg, B.; Hjalmarsson, H.; Johansson, K.H. Blind identification strategies for

room occupancy estimation. In Proceedings of the 2015 European Control Conference (ECC), Linz, Austria, 15–17 July 2015;
pp. 1315–1320. [CrossRef]

49. Becker, V.; Kleiminger, W. Exploring zero-training algorithms for occupancy detection based on smart meter measurements.
Comput. Sci.-Res. Dev. 2018, 33, 25–36. [CrossRef]

50. Jin, M.; Jia, R.; Kang, Z.; Konstantakopoulos, I.; Spanos, C. PresenceSense: Zero-training Algorithm for Individual Presence
Detection Based on Power Monitoring. In Proceedings of the BuildSys 2014-1st ACM Conference on Embedded Systems for
Energy-Efficient Buildings, Memphis, TN, USA, 3 November 2014. [CrossRef]

51. Filho, C.P.; Marques, E.; Chang, V.; dos Santos, L.; Bernardini, F.; Pires, P.F.; Ochi, L.; Delicato, F.C. A Systematic Literature Review
on Distributed Machine Learning in Edge Computing. Sensors 2022, 22, 2665. [CrossRef] [PubMed]

52. Cai, H.; Gan, C.; Zhu, L.; Han, S. TinyTL: Reduce Memory, Not Parameters for Efficient On-Device Learning. In Proceedings of
the Neural Information Processing Systems 2020, Online, 6–12 December 2020.

53. Hayes, T.; Kanan, C. Online Continual Learning for Embedded Devices. arXiv 2022, arXiv:2203.10681.

http://doi.org/10.1109/TIM.2009.2009411
http://doi.org/10.1109/sp40000.2020.00001
http://doi.org/10.1109/GLOCOMW.2018.8644432
http://doi.org/10.1109/dest.2013.6611339
http://doi.org/10.1109/acc.2014.6859372
http://doi.org/10.1016/j.enbuild.2021.110810
http://doi.org/10.1016/j.buildenv.2017.01.023
http://doi.org/10.1016/j.scs.2020.102533
http://doi.org/10.1016/j.enbuild.2020.110534
http://doi.org/10.1016/j.buildenv.2017.12.010
http://doi.org/10.1109/JSEN.2019.2943157
http://doi.org/10.1109/LSENS.2020.2976801
http://doi.org/10.1109/ACCESS.2022.3146346
http://doi.org/10.3390/en14196296
http://doi.org/10.1109/ECC.2015.7330720
http://doi.org/10.1007/s00450-017-0344-9
http://doi.org/10.1145/2674061.2674073
http://doi.org/10.3390/s22072665
http://www.ncbi.nlm.nih.gov/pubmed/35408281


Future Internet 2023, 15, 116 20 of 20

54. Petersen, S.; Pedersen, T.H.; Nielsen, K.U.; Knudsen, M.D. Establishing an image-based ground truth for validation of sensor
data-based room occupancy detection. Energy Build. 2016, 130, 787–793. [CrossRef]

55. Hobson, B.; Lowcay, D.; Gunay, H.B.; Ashouri, A.; Newsham, G.R. Opportunistic occupancy-count estimation using sensor
fusion: A case study. Build. Environ. 2019, 159, 106154. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/j.enbuild.2016.09.009
http://doi.org/10.1016/j.buildenv.2019.05.032

	Introduction 
	Comparison with Contemporary Review Articles 
	Methodology 
	Occupancy Sensing Gaps and ADP Identification 
	Solutions to Application Mapping 
	Accuracy and Suitability Analysis 
	Discussion and Future Trends 
	Conclusions 
	References

