
Citation: Cho, H.-H.; Chien, W.-C.;

Tseng, F.-H.; Chao, H.-C. Artificial-

Intelligence-Based Charger

Deployment in Wireless

Rechargeable Sensor Networks.

Future Internet 2023, 15, 117. https://

doi.org/10.3390/fi15030117

Academic Editor: Xiumin Wang

Received: 20 December 2022

Revised: 8 March 2023

Accepted: 13 March 2023

Published: 22 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

future internet

Article

Artificial-Intelligence-Based Charger Deployment in Wireless
Rechargeable Sensor Networks
Hsin-Hung Cho 1, Wei-Che Chien 2, Fan-Hsun Tseng 3 and Han-Chieh Chao 4,5,*

1 Department of Computer Science and Information Engineering, National Ilan University, Yilan 260, Taiwan
2 Department of Computer Science and Information Engineering, National Dong Hwa University,

Hualien 974, Taiwan
3 Department of Computer Science and Information Engineering, National Cheng Kung University,

Tainan 701, Taiwan
4 Department of Electrical Engineering, National Dong Hwa University, Hualien 974, Taiwan
5 Institute of Computer Science and Innovation, UCSI University, Kuala Lumpur 5600, Malaysia
* Correspondence: hcc@mail.ndhu.edu.tw

Abstract: To extend a network’s lifetime, wireless rechargeable sensor networks are promising
solutions. Chargers can be deployed to replenish energy for the sensors. However, deployment
cost will increase when the number of chargers increases. Many metrics may affect the final policy
for charger deployment, such as distance, the power requirement of the sensors and transmission
radius, which makes the charger deployment problem very complex and difficult to solve. In this
paper, we propose an efficient method for determining the field of interest (FoI) in which to find
suitable candidate positions of chargers with lower computational costs. In addition, we designed
four metaheuristic algorithms to address the local optima problem. Since we know that metaheuristic
algorithms always require more computational costs for escaping local optima, we designed a new
framework to reduce the searching space effectively. The simulation results show that the proposed
method can achieve the best price–performance ratio.

Keywords: wireless rechargeable sensor network (WRSN); wireless sensor network (WSN); power
consumption; network planning; artificial intelligence; internet of things

1. Introduction

Recently, wireless sensor networks (WSNs) [1–3] have been among the most widely
used techniques due to people wanting to easily collect more and more information about
everything. For example, people want take care of their elderly family and enhance the
quality of their family life. They use various sensors to collect heartbeat, blood pressure
and sleep quality of the elderly or ill [4,5], so that family members can instantly handle any
status. As another example, a wrong command may cause soldiers’ deaths in a war, so the
army needs to use WSNs to get useful data to ensure correct commands. Furthermore, some
dangerous environments may need to be investigated, such as volcanoes and underwater
environments [6–8]. In these cases, sensors can serve as the competent technology to sense
anything in a variety of harsh environments. Obviously, WSNs are gradually affecting our
lives more and more.

However, WSNs still have some intrinsic problems. A WSN is composed of wireless
sensors and some relay nodes. Each sensor node will sense various kinds of information
and then transfer it to the relay nodes. All of these actions will consume power, but a
sensor’s power is limited by battery capacity so that its power will be exhausted. Many
sensors collect multimedia data, and their power consumption will be more obvious. Note
that these sensors may be placed in the dangerous places we just mentioned, so that we cannot
immediately replace the batteries; therefore, the WSN will be paralyzed if the relay node
dies. In view of this, researchers have proposed some methods to solve the network lifetime
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problem [9–12]. Some scholars think that all of the sensors should not work at the same time
because it will cause power to be wasted unnecessarily. Scheduling sensor working time can
make efficient use of the power of sensors. However, the lifetime of the WSN still depends on
the upper bound of a battery’s capacity 12; this is a fact which cannot be changed.

In order to solve the power problem, the development of wireless charging technology
has been proposed for wireless rechargeable sensor networks (WRSNs) [13–16]. A WRSN
is composed of charger, sensor and relay node; the charger is the main power source in
such an environment. Each WRSN has its own suitable environment so that the user is
able to choose specialized charging equipment according to his requirements. Of course,
different charger equipment has different wireless charging methods. For example, wireless
charging technology of mobile phone uses electromagnetic induction.

WRSNs can be roughly divided into two types: those that operate in indoor envi-
ronments, and those that operate in outdoor environments. The deployment strategy of
the chargers needs to consider various impacts from those different environments. Most
studies discuss outdoor scenarios; too few studies consider indoor scenarios. Actually,
wireless sensor networks are very helpful indoors as well [17,18]; for example, they can help
factories control production for better quality and provide disaster prevention and relief.
Life will become more convenient if sensors never run out of power. This is one of the main
reasons why the wireless rechargeable sensor network is increasingly popular. In this paper,
the deployment scenario is the indoor environment; it entails a complex problem because
the charger deployment strategy will be affected by the sensors’ positions, RF interference
and the charger’s efficiency, since those metrics have very frequent trade-off relationships.
We have to balance each factor and then make sure the resultant deployment strategy can
provide more charging efficiency. In previous work, we proposed the moveable-charger-
based algorithm (MCBA) [19] to achieve a good charger deployment strategy. First, find the
candidate nodes for charger deployment through mapping. Calculate the number of sen-
sors that each candidate node can cover. Then, select candidate nodes in order from large to
small by sorting until all sensors are covered. However, MCBA still has some defects, such
as the MCBA being a greedy-based algorithm, so it has more of an opportunity to fall into
the local optimum. The charger deployment has been proven to be an NP-hard problem.
Since charger deployment has been proven to be an NP-hard problem, it is inefficient to
solve this problem by using brute-force algorithms [17]. In order to solve this problem
and to reduce deployment costs as much as possible to achieve optimization, we used a
metaheuristic algorithm to design a charger-deployment algorithm.

Although metaheuristic algorithms are potential methods to find better solutions [20,21],
the optimal solution can only be found through a large number of iterations, thereby costing
more computational time to converge. Therefore, excluding non-essential solutions is a
necessary step. This paper makes two major contributions: (1) we used four metaheuristic
algorithms to design the strategy for charger deployment; (2) we proposed a layoff algo-
rithm to improve these metaheuristic algorithms and analyzed each algorithm to determine
in which scenario it is suitable for the application.

The sections of this study are as follows. In Section 2, the background knowledge of
wireless rechargeable sensor networks and related research papers are briefly described,
analyzed and discussed. In Section 3, problem definition is introduced. The proposed
schemes are presented in Section 4. The simulation results are shown in Section 5. Finally,
the conclusions are discussed and future developments are proposed.

2. Related Works

To clearly present this paper, we introduce the backgrounds of WRSN, previous works
and some metaheuristic algorithm as follows.

2.1. Wireless Rechargeable Sensor Network

Wireless charging technologies can be divided into two categories according to their
power sources. The first category involves using the power of nature, such as wind power
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and solar power. The power of nature will be changed to alternating current to power
equipment. However, it will be limited in the environment; the sensor will die if the natural
power is gone because it is not always sunny or windy. The second category involves power
which is less influenced by the environment. The common charging techniques are as
follows: (1) magnetic induction [22], (2) magnetic resonance [23], (3) laser light sensor [24]
and (4) micro-wave conversion [25].

2.2. Wireless Charging Planning

Some scholars mapped the charging problem as a Hamilton cycle and let the whole
environment be divided into multiple clusters. They also proposed a greedy-based 26
algorithm to find a shortest path for charging. However, this method did not consider that
some sensors have too little energy so that they will run out of energy before charging
vehicles arrive [26]. In [27], the authors took Washington as an example. They tried to
detect the number of pedestrians from infrared images and then figured out which area
of pedestrians is the most intensive. The major goal of this work was to improve the
survival rate of terminal devices. However, statistics-based methods usually do not have
good environmental adaptability. In [28], the authors used unmanned aerial vehicles
(UAVs) for charging. They can be used in the extremely rough terrain which cannot be
traversed by self-propelled vehicles. The authors also divided the sensors into multiple
clusters. The data of sensors were transmitted when the UAV was arriving for charging.
Their proposed one-side matching algorithm considers the remaining power and distance
of UAV flight to calculate the optimal charge-priority order. In addition, some scholars
considered the collision avoidance [29], minimum number of disjoint shortest trees [30]
and multiple self-propelled vehicles [31] to design a better charging plan. Most works
adopted intermittent charging. This means that the charging process only begins when
the self-propelled vehicle has arrived, and then it will stay in there until the termination
condition is met. However, sensors will sense current as long as the self-propelled vehicle
passes by them. In [32], the authors proposed a real-time charging method to extend
network lifetime. The authors proposed a spatial-temporal discretization method in which
each time block is independently assigned based on travel speed and the distance from
the sensors. In other words, this method can optimize where to go to charge the sensors.
For the indoor scenario, the authors of [19] proposed a greedy-based method to quickly
deploy chargers. In [33], the authors adopted the concept of a center of gravity to find
the best charging position and proposed a charging-schedule algorithm to increase the
remaining-use durations of sensor nodes. In [34], the authors proposed a particle swarm
charger-deployment algorithm that utilizes the local optimal result and the global optimal
result to adjust locations and antenna orientations of chargers.

2.3. Movable-Charger-Based Algorithm

Most studies on WRSNs involve an outdoor scenario planning the path for charging
a car or airplane, so it is necessary to further charging technology, including the indoor
scenario. In our previous work, we proposed the minimum-charging-based algorithm
(MCBA) to deploy charging in an indoor scenario and a novel means of reducing the
deployment cost. They have the advantages of centralized power and a large charging area.

The MCBA step can be divided into two parts. The first is finding a candidate charger.
The IoT is located by aGPS. We then map the transmission range of the sensor nodes to
the ceiling. This means that the sensor will be charged if the charger is deployed there.
The second is finding the optimal position where the charger will be finally deployed. The
increased overlapping area means that the charger can cover more sensors. We used this
point to find the better solution.

3. Problem Definition

The WRSN scenarios can be simply divided into indoor and outdoor scenarios. Differ-
ent environments will affect the problem definition and the code of the solutions. In this
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paper, we focus on the deployment problem in an indoor scenario. The network model and
wireless charger model will be presented in the next part.

3.1. Network Model

A wireless rechargeable sensor network model is as follows, where Vc = {C1, C2, . . . , Cn}
is a subset of candidate chargers in the network, VS = {S1, S2, . . . , Sm} is a set of subset
of sensor nodes in the network and VE =

{
E1, E2, . . . , Ep

}
is a subset of the final positions

of deployed chargers. Sensor nodes are deployed randomly in 3-dimension space. Each
sensor node can receive power from the chargers. To reduce the impacts of interference
and obstacles, the chargers were deployed on the ceiling that is shown in Figure 1. The
chargers emitted a radio wave down to cover the sensors. Each charger has its own effective
charging distance (ECD) so that each sensor can enjoy better charging efficiency when the
distance from sensor to charger is closer, and vice versa. To ensure that each sensor can be
charged effectively, we assume that the height of the indoor scenario must be less than the
ECD, which is defined in Equation (2). In this paper, we followed the method of positioning
the candidate charger Vc from our previous method, MCBA.
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3.2. Wireless Charging Model

The most important deployment problem is that the power consumption of each sensor
node differs because each sensor has its own sensing function and power consumption.
Therefore, we must calculate the received power of each sensor:

PS
i,j(d) =

GcGsη

Lp

(
λ

4π
(
di,j + β

))2

PC
i,j, (1)

where PS
i,j(d) represents that the jth sensor’s power received from the ith charger; PC

i,j

represents power transferred from the jth charger to the ith sensor; Gc is a value of antenna
gains of the chargers; Gs represents a value of antenna gains of sensor nodes; η is a value of
rectifier efficiency; Lp is polarization loss; λ is the wavelength of RF; β is a unique adjustable
parameter in an indoor environment. To ensure each sensor can be charged, the first step is
to find the amount of power which the most power-hungry sensor needs. If the provided
power can meet the requirements of the most power-hungry sensor, all of the sensors can
receive enough power in this scenario. In view of this, we further define the ECD, as shown
in Equation (2)

R =
λ

4π

√
(

WMax Lp

nGcGsηPS
i,j(d)

)
− β, (2)

where R is ECD; WMax is the maximum power consumption of all sensors; N is the number
of chargers needed for the most power-hungry sensor. We assume PS

i,j(d) = WMax; it
represents that the most power-hungry sensor will run out of power received from the
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chargers. In other words, all of sensors will receive enough power when the distance of
sensor to charger is between R. According this assumption, R is also equal to di,j. We can
deduce Equation (1) by Equation (2).

We assume that all of chargers will provide the same power to have better fairness. The
charging efficiency is better when the effective charging distance is less than R, and vice versa.

3.3. Linear Programing Model

In this paper, we follow the method of finding the position of a candidate charger by
our previously proposed method, MCBA. In order to decrease the deployment cost and
reduce the chance of falling into the local optimum, we use a metaheuristic algorithm to
solve this problem. According to the above-mentioned expected goal, we define a linear
programing model for this problem:

Minimize∑n
i=1 Fi (3)

s.t.

∑n
j=1 PS

i,j(d) ≥WS
i , (4)

PC
i,j > PS

i,j, (5)

di,j < E, (6)

∑n
j=1 PS

i,j(d)

n
> 0 (7)

The main goal of this paper is to minimize the number of chargers, Fi, and make sure
that each sensor can continue working. A lot of chargers will lead to a higher deployment
cost. Conversely, fewer chargers will lead the power of sensor nodes to become exhausted
more quickly. Therefore, the most important thing is to balance these two metrics to make
sure that sensor nodes can continue working. We defined some restrictions to make this
paper closer to a real scenario. The first restriction represents that sensor nodes’ total
collected power must be larger or equal to the power consumption. According to the
energy conservation law, the chargers’ power needs to be greater than the power received
by the sensor nodes because power will be lost during the process of power transfer, as
described in the second restriction. To guarantee that the sensor nodes will be charged
exactly, the third restriction is to restrict the efficient charging distance. This means that
the distance between the charger and sensor must less than E. For deployment results,
the energy efficiency must be greater than zero as the fourth restriction. Energy efficiency
means the sum of the energy received by all sensors divided by the number of chargers.

4. Proposed Scheme

The subset of a candidate charger was calculated by our previous work. How to find
the best solution from among a lot of candidate chargers is an NP-hard problem. The
exhaustion method is a complete solution for optimization finding, but it will entail more
computational costs and time. Therefore, we used the concept of metaheuristic algorithms
to design our method. Although a metaheuristic algorithm cannot guarantee that the best
solution can always be found, it still finds an acceptable solution in time. In order to speed
up the time to find the best solution, we use the simulated annealing algorithm (SA), tabu
search algorithm (TS), genetic algorithm (GA) and ant colony optimization (ACO); and we
propose a layoff algorithm (LA) to enhance it in this study.

4.1. Metaheuristic Algorithm

Different coding methods can affect the final results. In order to compare all of
algorithms fairly, we used the same coding method for them. Each candidate charger
position has two statuses. The Boolean value of one represents a charger to be deployed,
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and vice versa. In order to judge the quality of the solution, we define the fitness function
as follows:

f (x) =
Scoverd

Soverlapping
, (8)

4.2. SA-Based Charging Algorithm

The concept of SA is that some worse solutions have the chance to be accepted [35].
In other words, this method can reduce the chance of falling into a local optimum. Thus,
we used the SA concept to design a deployment method that is called the SA-based
charging algorithm (SABC). With SABC, candidate chargers will be randomly chosen in
the beginning. The status of candidate chargers will be changed at every iteration. This
means that this method will compare various possibilities for making a decision as to
whether or not to deploy the charger according to f(x). The SA predetermined temperature
will continue to decrease. When the temperature is still high, it has a high probability of
accepting poor solutions. The temperature needs to be lowered because convergence that
is too fast will lead to the solution quickly falling into the local optimum. The probability
that a poor solution can be accepted declines when the temperature decreases. The reason
is simple: the final solution may become a set of low-quality solutions if poor solutions are
always accepted in each iteration.

The first step is that SABC creates a number of Nc bits; the values of the bits are repre-
sented by 1s or 0s randomly. A value of 1 means that the candidate charger can be deployed
in this position, whereas 0 means that the charger is not deployed. We set the experimental
group and control group fairly. However, in copying the L neighbor solution, L is a value
which can be freely adjusted by the user. The next step is to randomly change the status of bits
and calculate f(x). If the solution meets the threshold of acceptance, the experimental group
will be replaced; this process is repeated until the termination criterion is met.

In this section, we show the pseudocode of the algorithm. In the first step, we set
an initial temperature by the annealing schedule and randomly created an initial solution
Nc, as shown in lines 1–2 of Algorithm 1. To compare the quality of solutions, f(x) will
be calculated for any just found solution, as shown in line 3. The next step is randomly
choosing Ci from each solution and changing the status shown in line 5. Line 6 shows that
the original solution and new solution will calculate their f(x). We can replace the original
solution if the new solution is better, and the temperature, as shown in lines 7–9, is also
adopted. The last step is to update the temperature according to the SA rule. This process
is repeated until the termination criterion is met.

Algorithm 1 SA-based charging algorithm (SABC)

SA-Based Charging Algorithm (SABC)

Input: Vc, Vs
Outpus: VE

1. Set the initial temperature according to the annealing schedule
2. Create the initial solution Nc randomly
3. Calculate the f(x)
4. While the termination criterion is met choice Ci randomly
5. Fitness Function (Nc, Ci)
6. If quality is better and temperature is adapted
7. Replace the solution
8. Update temperature
9. End

4.3. TS-Based Charging Algorithm

The concept of the TS is that the best solution will be recorded in the tabu list [36].
Therefore, the solution will be better than those before each iteration. The tabu list can
avoid some solutions which were found repeatedly. In other words, the main principle of
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TS using the tabu list is to record the best solution of each iteration. However, we can find
better solutions via a comparison with all the previous experiences. We used this concept to
design the charger deployment algorithm called the TS-based charging algorithm (TSBC).
In the beginning of TSBC, candidate chargers are chosen randomly. The deployed status
of candidate chargers will be changed in each iteration. The solution can be evaluated by
f(x). We can find the current best solution and record it in the tabu list. Note that if the
currently found solution is the same as the solution recorded in the tabu list, we cannot
accept it, even if it is better. This is like human memory; information will be stored in the
memory for a long time. The size of the tabu list will affect the quality of solutions and the
computational cost, as too much storage will increase the time spent on checking the TS list,
thereby increasing the computational time. With too little storage, past experience cannot
be completely recorded. In view of this, the storage of the tabu list should be changed
according to environmental factors. This is an important parameter in TS.

The first step creates Nc bits; the value of each bit will be randomly set as 1 or 0. A
value of 1 means that the candidate charger is able to deploy in this specified position, and a
value of 0 represents that the charger cannot be deployed in this position. To ensure the fairness
in comparing algorithms, we set up the experimental group and control group. We copied the
L neighbor solution as the experimental group. Then, Ci was chosen randomly, and the status
of Ci was reversed. The next step was calculating the f(x) of the solution. If the solution was
better than before and was not the same as a solution on the tabu list, the experimental group
was replaced; this process was repeated until the termination criterion was met.

In the first step, we randomly create the initial solution Nc and empty the tabu list, as
shown in lines 1–2 of Algorithm 2. To compare the quality of the experimental group and
control group, f(x), as shown in line 3, is calculated. The next step is to randomly choose
Ci, change the status of Ci and compare their f(x), as shown in lines 5–6. We can replace
the solution if another one’s f(x) is better and the solution is not the same as a solution on
the tabu list, as shown in lines 7–9. The last step is to update the tabu list. If the size of the
tabu list is exceeded, we use first-in first-out (FIFO) as the main process to record the next
solution. Finally, this algorithm will repeat until the termination criterion is met.

Algorithm 2 TS-based charging algorithm (TSBC).

TS-Based Charging Algorithm

Input: Vc, Vs
Output: VE

1. Empty the tabu list
2. Create the initial solution Nc randomly
3. Calculate the f(x)
4. While the termination criterion is not met
5. choice Ci randomly
6. Fitness Function(Nc, Ci)
7. If f(x) is better and didn’t same with tabu list
8. replace the solution
9. end if
10. Update tabu list by FIFO

4.4. GA-Based Charging Algorithm

The concept of the GA [37,38], as mentioned above, originated from the theory of
evolution. The GA-based charging algorithm (GABC) based on this concept was used to
design the deployment problem. In this paper, the chromosome represents the solution.
The gene represents the candidate position and whether or not it will be deployed. GABC
is composed of three steps. The first step is selection. We can choose a better solution
according to f(x). This is an important mechanism for convergence. The better solution
will be selected, and the worse one will be eliminated. The second step is crossover.
Chromosomes can exchange genes with each other. In this way, the solution will be better
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because the better chromosomes will be chosen in the selection. The third step is mutation.
The gene has an opportunity to change the status of genes in each chromosome so that
the solution will have the ability to avoid fall into a local optimum through mutation. The
GA’s greatest difference from SA and TS is that they are single-solution methods, whereas
the GA is a multi-solution method. This means that the GA has a large solution space to
expand and find the best solution, although it will require more computational time.

The first step is to create L chromosomes. A difference from SA and TS is that the
GA needs different chromosomes to evolve, so genes of the chromosomes have different
statuses. In the second step, we need to calculate fitness function f(x). The third step is
selection, which can choose a better solution by f(x). The fourth step is crossover. The fifth
step is mutation. All of the above steps will repeat until the termination criterion is met.

This part shows the GABC algorithm by its pseudocode. The first step is to randomly
create the initial chromosomes whose length is Nc, as shown in line 1 of Algorithm 3. Note
that each status of the gene will be created randomly, ensuring biological diversity. Each
chromosome will then calculate the f(x), as shown in line 3. The next step is selection:
randomly choosing two chromosomes to compare them with f(x) and then saving the
better one, as shown in line 4. The following step is crossover: randomly choosing two
chromosomes and then exchanging the genes randomly, as shown in line 5. The next step
is mutation: randomly choosing genes to exchange their statuses. For example, a candidate
charger will change its status from “to be deployed” to “not to be deployed”, as shown
in line 6. This process is repeated until the termination criterion is met so that the best
chromosome will be found.

Algorithm 3 GA-based charging algorithm.

GA-Based Charging Algorithm

Input: Vc, Vs
Output: VE

1. Randomly create the initial chromosome which length is Nc
2. While the termination criterion is not met
3. Fitness Function(chromosome)
4. Selection
5. Crossover
6. Mutation
7. End
8. Find the best solution
9. Randomly create the initial chromosome which length is Nc
10. While the termination criterion is met

4.5. ACO-Based Charging Algorithm

The concept of ACO originated from the behavior of ants seeking food [39]. Ants
will follow the pheromone on the road where other ants have walked. The other ants can
find the better solution according to the pheromone. We used this concept to design the
deployment algorithm that is called the ACO-based charging algorithm (ACOBC). In this
method, ants will walk to the position of the candidate charger. If this position is a better
solution, the ant pheromone will remain, and vice versa; that is called online updating. At
the end of each run, the pheromone will be updated offline regarding the best road in this
run. Offline updating is a method by which to follow the best previous experience. The
other important factor of ACOBC is overlapping areas. The solution will be better if the
overlapping area is small. The directions of ant searches will be decided according to both
above-mentioned factors. To make the solution converge, the pheromone will evaporate
if ants have not walked there. In the beginning, the direction of ants searching will be
decided by the factor of overlapping. As the values of the pheromones are the same, the
solution will avoid falling into the local optimum through randomly choosing nodes at the



Future Internet 2023, 15, 117 9 of 18

beginning and updating pheromones. Ants will choose the candidate charger according to
fant, which is calculated as follows:

fant(x) =
Pα × 1

Soverlapping

β

∑n
i=1 Pα × 1

Soverlapping

β
, (9)

where P is the pheromone; Soverlapping is the value of overlapping; α and β are the values
of weights and can be adjusted in different environments. Ants will walk to each position
of candidate chargers only once and ensure that the solution will not fall into an infinite
loop. At the outset, ACOBC does not choose any candidate charger. Ants will choose the
direction of the solution according to fant. When an ant arrives at a new node, ACOBC
will evaluate the deployment status and whether or not to deploy by f(x). The position
which ants have arrived at will be recorded on the checklist to ensure that the ants has
arrived only once at each position. The position of the candidate charger will be deployed
and updated on the online pheromone if the value of f(x) is better than that. If the value of
f(x) is worse, the checklist is updated but not the online pheromone, as shown in case 2.
The pheromone which ants retained as the best solution will be updated offline in the end.
We present the ACOBC algorithm by its pseudocode. The first step initiates the values
of Soverlapping and P, while setting the solution value as zero and calculating the f(x), as
shown in lines 1–3 of Algorithm 4. The number of ants is Nant. Each ant will choose the
position by fant(x) and update the checklist; the f(x) will be calculated at the same time, as
shown in lines 7–8. If ants arrived at new positions and the f(x) will be better, pheromone
will be added and the online pheromone updated, as shown in lines 9–11. The covered
sensor will be recorded in Scovered. If the value of Scovered is equal to the value of Ns, the ant
is finished finding positions in this run. In other words, all the sensors will be covered by
the candidate charger shown in lines 12–13. In the end, the best solution is found to update
the online pheromones, as shown in lines 16–17.

Algorithm 4 ACO-based charging algorithm (ACOBC).

ACO-based charging algorithm (ACOBC)

Input: Vc, Vs
Output: VE

1. Initialize the values of Soverlapping and P
2. Create the initial solution Nc
3. Calculate the f(x)
4. While the termination criterion is not met
5. For i = 1 to Nant
6. For j = 1 to Ns
7. Choice the position by fant (x) and calculate f(x)
8. Update check list
9. if f(x) is better length is Nc
10. add the pheromone
11. end if
12. update the online pheromone and update the Scovered
13. if Scovered = Ns
14. break
15. end if
16. end for
17. end for
18. Find the best solution and add the pheromone
19. update the offline pheromone
20. end
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4.6. Layoff Algorithm

Although metaheuristic algorithms can find the better solutions, they still have some
defects. For example, they will require a lot of computational time to converge. As
metaheuristic algorithms will continue to repeatedly match all of the solutions to find the
best solution, this process will waste computation. The solution has a chance of falling into
a local optimum when using a metaheuristic algorithm. As the deployment problem is a
continuity problem, the candidate chargers which are deployed in the beginning can cover
a greater area and have fewer overlapping areas. The coverage area will be smaller when
the candidate charger continues to be deployed. This phenomenon will apparently occur
when the sensor nodes are increased in number, so we propose using the layoff algorithm
(LA) to solve it.

The concept of the LA has two parts. The first part involves removing useless candidate
chargers to reduce the computational time. The second part is to ensure that the sensor
nodes will be covered in each iteration. According to this concept, not only can the quality
of the solution be promised, but it can also ensure that the lost-covered-sensor problem
will not happen. We define fitness function as follows:

In the LA, the first step is randomly firing the candidate chargers and updating the
CCL. If the CCL complies with the standard, the Soverlapping is calculated. If the CCL does
not comply with the standard, it will randomly choose new Ci. The next step is to calculate
f (x). It can evaluate the quality of the solution.

f (x)=
1

Soverlapping
, (10)

In the layoff algorithm, all the sensor nodes will be covered in each iteration. The
value of Scovered can be simplified to 1 to decrease the computational time. All the candidate
chargers will be deployed in the beginning. We can lay off the useless positions of candidate
chargers in each iteration. Notice that the layoff algorithm is just a screening scheme for
the selection and deletion of candidate chargers. It cannot work alone but can be combined
with any metaheuristic algorithm. We used pseudocode to represent the layoff algorithm.
The first step is to create the initial solution Nc and the CCL, and then calculate the initial
fitness function, as shown in lines 1–2 of Algorithm 5. In the next step, the position of the
candidate charger Ci is randomly laid off. If the solution is better, Ci will be laid off, and
vice versa, shown in lines 4–7 of Algorithm 5. The detailed method of design is presented
in the next part.

Algorithm 5 Layoff algorithm

Layoff Algorithm

Input: Vc, Vs
Output: VE

1. Create the initial solution Nc and CCL
2. Calculate initial Fitness Function
3. While the termination criterion is not met
4. Choice Ci by metaheuristic algorithm
5. Fitness Function (Nc, Ci)
6. If quality is not better
7. Recovery the Ci
8. End If
9. End While

5. Simulation Results
5.1. Simulation Settings

In this study, we adopted Matlab (Version 7.11, R201b) as the simulation tool. The
scenario of our paper was a 30 × 25 × 3 indoor environment. The number of sensor nodes
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was set as 50 to 400, and they were randomly deployed. The effectual charger distance was
5 m. The details of simulation parameters are shown in Table 1.

Table 1. Simulation parameters.

Parameters Values

Size of the venue
The number of sensor nodes
Effectual charger distance
CPU

30 × 25 × 3 m3

50–400
5 m
i5-11400

RAM 16 G
Simulator Matlab (Version 7.11, R201b)

5.2. Deployment of Chargers

Figure 2A,B show the deployment of SABC and LSABC; the blue points are sensor
nodes. Green circles are charger areas. There were 400 sensor nodes randomly deployed.
The simulation shows that SABC can cover most of sensor nodes, but the sensor node in
the upper left corner is ignored. Conversely, LSABC can cover all of the sensor nodes. This
means that SABC still cannot completely avoid falling into a local optimum.
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Figure 2C,D show the area covered by TSBC and LTSBC. The sensor nodes in the
upper left corner were not covered by TSBC. In other words, TSBC still cannot completely
break through the local optimum problem.

Obviously, the GABC cannot choose suitable candidate chargers to cover all the sensor
nodes. In Figure 2E, there are many overlapping areas. In other words, many unnecessary
candidate chargers are deployed by GABC. The charger which had not been deployed has
a chance to be deployed in the mutation of GABC. That is the season why GABC cannot
converge, as shown in Figure 2E,F.

The deployment of both ACOBC and LACOBC is shown in Figure 2G,H. The concepts
of ACOBC and LACOBC completely differ. Ants will choose the best candidate charger in
the ACOBC. In the LACOBC, ants will choose which candidate charger should be laid off.
There was a problem when all of sensor nodes were covered: the ant would stop seeking
the next node in GABC. In each iteration, the ants could not find all of nodes; this led to a
worse solution.

5.3. Comparison of Number of Chargers

In this section, we compare the number of chargers while the number of sensor nodes
increased from 50 to 400. The x-axis represents the number of sensors, and the y-axis
represents the number of chargers. To ensure objectivity and accuracy, all of the algorithms
performed 1000 iterations.

Figure 3 shows a comparison of the number of chargers for SABC and LSABC. In the
LSABC, if the number of sensor nodes increases, the curve of LSABC will tend to signify
an exponential function. This phenomenon shows that the LSABC can effectively avoid
falling into a local optimum. SABC’s deployment cost will increase when the number of
sensor nodes increases.
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The growth curves of LTSBC and TSBC are like those of LSABC and SABC. According
to the coding method of SA and TS, they can be classified as a single solution. The layoff
algorithm can help the single solution to have better quality; the benefit will be notable
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when the number of sensor nodes increases because the most important concept of the
layoff algorithm is that all the sensor nodes will be covered in each iteration. The original
solution is randomly created in SABC and TSBC. If the sensor nodes cannot be covered
in the beginning, it is hard to guarantee that the sensor nodes can be covered in some
other iteration.

Moreover, LGABC can strongly reduce the number of deployed chargers compared to
GABC. To have better convergence in every iteration, the status of the candidate charger
can only change from zero to one. In LGABC, the selection step will perform better in the
condition of convergent data. Conversely, many deployed chargers will lead to a worse
solution in the selection step; that is the reason why the number of chargers of GABC is
double that in LGABC.

We can see that the simulation shows that LACOBC can reduce the deployment cost by
at least a third, proving that the layoff algorithm can enhance the ACOBC’s ability to find a
better solution. In ACOBC, the pheromones retain any candidate charger that is a good
choice for next path, but ants will stop searching when all of the sensor nodes are covered.
In other words, the sensor cannot check most of the paths. The deployment problem is
continuous. This means that there are many combinations of paths, and ACOBC cannot
check most of them, which is why ACOBC cannot converge.

Finally, the simulation indicates that the layoff algorithm can enhance SA, TS, GA and
ACO in the deployment problem to reduce deployment cost. The enhanced performance is
obvious in the LGABC and LACOBC.

5.4. Comparison of Computational Time

In this section, we compare the computational time while the number of sensor nodes
increased from 50 to 400. The x-axis represents the number of sensors, and the y-axis
represents computational time. To ensure objectivity and accuracy, all of the algorithms
performed 1000 iterations.

In Figure 4, the computational time of LSABC is less than that of SABC because the
layoff algorithm can remove unnecessary candidate chargers to reduce computational time.
Most of the computational time is used for calculating the covered sensor nodes.
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The computational time of LTSBC is less than that of TSBC. The reason is the same
as for TSABC; the layoff algorithm can remove unnecessary candidate chargers to reduce
computational time. In LTSBC and TSBC, most of the computational time is used for calcu-
lating covered sensor nodes and checking the tabu list, so it will take more computational
time than TSABC.

In LGABC and GABC, the computational time is used for checking which sensor
nodes are covered by candidate chargers. The computational time will increase if more
candidate chargers are deployed. The layoff algorithm can improve the convergence of
LGABC, so the computational time can be reduced at the same time.

The computational time of LACOBC is less than that of ACOBC; thus, LACOBC will
record the CCL in the beginning. However, ACOBC will calculate the number of covered
sensor nodes when ants arrive at a new node in every iteration, and it will require more
computational time. The difference in computational time between LACOBC and ACOBC
will be large if the sensor nodes increase. The layoff algorithm uses the CCL table to record
the covered sensor nodes and change the method used to find the solution; this application
reduces the computational time.

Obviously, LGABC and LACOBC will require more computational time than LTSABC
and LSABC because they are complicated methods. In LTSBC or LSABC, there is only one
solution in every iteration, whereas LGABC and LACOBC have multiple solutions in every
iteration; therefore, they will require more computational time to find the best solution.

5.5. Comparison of Energy Efficiency

In this section, we compare the energy efficiency while the number of sensor nodes
increased from 50 to 400. The x-axis represents the number of sensors, and the y-axis
represents computational time. To ensure objectivity and accuracy, all of the algorithms
performed 1000 iterations. The energy efficiency was determined by evaluating the power
used by the sensor node. It is very wasteful if the sensor node receives too much power;
however, it will not run out; conversely, the power will run out completely with insufficient
power. This means energy efficiency needs to be good.

Figure 5 shows the comparison of the energy efficiency with original algorithms and
layoff versions. The energy efficiency of LSABC is better than that of SABC because LSABC
can use fewer chargers to deploy in this environment. In other words, each sensor node
can receive enough energy, as there are no useless chargers to add for overlapping areas.

LTSBC uses the layoff algorithm to remove useless chargers and useless sub-solutions
at the same time. The simulation showed that LTSBC has better energy efficiency than
TSBC because overlapping areas will be decreased through LA.

In the LGABC, the layoff algorithm ensures that all of the sensor nodes will be covered
in each iteration, and it will remove useless chargers in the mutation. LGABC can find better
solutions through the above-mentioned method. In other words, LGABC can decrease
overlapping areas, and the energy efficiency will be increased at the same time.

LACOBC can efficiently decrease the overlapping area. The reason is that LACOBC
can check the status of coverage of all the sensors and ensure that LACOBC will not
remove the important candidate chargers. For example, there is a sensor node which is
only covered by one candidate charger; therefore, we cannot remove this charger because
all of sensor nodes should be covered. Obviously, the simulation shows that the LA can
enhance ACOBC to find the better solution and decrease overlapping areas.

This simulation showed that the curve of energy efficiency will exhibit negative growth
when the number of sensors decreases because the overlapping area will affect the quality
of energy efficiency, and overlapping areas increase as the sensor nodes increase in number.
The relationship of the number of chargers and energy efficiency is not a positive correlation.
If there are many chargers and less overlapping area, it will still have high energy efficiency;
this is the reason why energy efficiencies of LSABC and LTSBC will be close to those of
SABC and TSBC.
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5.6. Comparison of Time Complexity

The time complexity of SABC depends on several factors, such as the amount of
input data, the cooling schedule, and the convergence criterion. The main steps of SABC
include generating initial solutions, calculating their objective functions’ values, generating
neighboring solutions by applying random perturbations and accepting or rejecting them
based on a probability determined by the current temperature. The number of iterations
required for SABC to converge to a near-optimal solution depends on the cooling schedule
and the convergence criterion. The cooling schedule determines the rate at which the
temperature is decreased during the search. A slower cooling schedule can result in a
longer runtime but can also increase the probability of finding a near-optimal solution.
On the other hand, a faster cooling schedule can result in a shorter runtime but can also
decrease the probability of finding a near-optimal solution. The convergence criterion
determines when the search is terminated. SABC is terminated when the temperature falls
below a certain threshold or when a maximum number of iterations is reached. Overall,
the time complexity of SABC can be approximated as O(kn), where n is the size of the input
dataset and k is the number of iterations required to converge to a near-optimal solution.

The time complexity of TSBC depends on several factors, such as the size of the input
dataset, the neighborhood structure and the length of the tabu list. The main steps of TSBC
include generating initial solutions, calculating their objective functions’ values, generating
neighboring solutions by applying local moves and selecting the best solution based on
a tabu search strategy. The time complexity of each iteration of TSBC is O(n2), where n is
size of the input dataset, which corresponds to the time required to evaluate the objective
function for the current solution and its neighbors. The neighborhood structure determines
the set of moves that can be applied to the current solution to generate neighboring
solutions. The time complexity of generating neighboring solutions can vary depending
on the complexity of the neighborhood structure. The tabu list is used to avoid revisiting
previously visited solutions and to prevent cycling in the search. The length of the tabu
list determines the number of solutions that are prohibited from being revisited. The time
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complexity of maintaining the tabu list can vary depending on the implementation. The
number of iterations required for TSBC to converge to a near-optimal solution depends on
the convergence criterion and the quality of the initial solution. Overall, the time complexity
of TSBC can be approximated as O(kn2), where n is the size of the input data and k is the
number of iterations required to converge to a near-optimal solution.

The time complexity of GABC depends on several factors, such as the size of the input
dataset, the population size, the crossover and mutation operators and the convergence
criterion. The main steps of GABC include generating an initial population, evaluating
the fitness of each individual, selecting parents for reproduction, applying crossover and
mutation operators to create new offspring and selecting the best individuals for the next
generation. The time complexity of each iteration of GABC is O(nm), where n is the size
of the input data and m is the time required to evaluate the fitness of an individual. The
fitness evaluation involves computing the objective function’s value for each individual
in the population. The time complexity of the objective function evaluation can vary
depending on the complexity of the problem. The crossover and mutation operators are
used to generate new offspring from the selected parents. The time complexity of the
crossover and mutation operators can vary depending on the implementation and the
complexity of the problem. The number of iterations required for GABC to converge to a
near-optimal solution depends on the convergence criterion and the quality of the initial
population. The convergence criterion can be based on the number of generations, the
fitness improvement or the solution quality. Overall, the time complexity of GABC can be
approximated as O(knm), where k is the number of generations required to converge to a
near-optimal solution.

The time complexity of ACOBC depends on several factors, such as the size of the
input dataset, the number of ants, the pheromone-update rule and the convergence criterion.
The main steps of the ACOBC algorithm include generating an initial pheromone matrix,
constructing solutions using probabilistic transition rules based on the pheromone matrix,
updating the pheromone matrix based on the quality of the constructed solutions and
repeating the process until convergence. The time complexity of each iteration of ACOBC
is O(n2m), where n is size of the input dataset, m is the number of ants and the exponent
2 is due to the need to calculate the transition probabilities for each ant. The pheromone-
update rule is used to update the pheromone matrix based on the quality of the constructed
solutions. The time complexity of the pheromone-update rule can vary depending on the
implementation and the complexity of the problem. The number of iterations required for
ACOBC to converge to a near-optimal solution depends on the convergence criterion and
the quality of the initial pheromone matrix. The convergence criterion can be based on
the number of iterations, the pheromone level or the solution quality. Overall, the time
complexity of ACOBC can be approximated as O(kn2m), where k is the number of iterations
required to converge to a near-optimal solution.

The layoff algorithm can efficiently remove the solution that cannot lead to an optimal
solution. It needs to be used with SABC, TSBC, GABC and ACOBC. The time complexity
of layoff algorithm can be approximated as O(k), where k is the number of generations
required to converge to a near-optimal solution and n is size of the input data. Compared
with the algorithm before adding the layoff approach, time complexities are similar to the
original algorithm. However, the layoff approach is more efficient in practice, due to its
ability to remove unnecessary solutions.

6. Conclusions

In this paper, we aimed to solve on the indoor charging planning problem of WRSNs.
Four metaheuristic algorithms and an optimization method were proposed. In the results,
we can see that the proposed metaheuristic algorithms can achieve more efficient fixed
charger deployment than the original method can. In addition, in the proposed enhance-
ment method, the layoff algorithm can efficiently reduce the number of deployed chargers,
guarantee coverage and get a faster convergence rate. Sometimes, some chargers may
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serve only a few sensors, so such charger deployment is not cost-effective. In future works,
WRSN planning in dynamic environments will be considered.
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