
Citation: Lymperis, D.;

Goumopoulos, C. SEDIA: A Platform

for Semantically Enriched IoT Data

Integration and Development of

Smart City Applications. Future

Internet 2023, 15, 276. https://

doi.org/10.3390/fi15080276

Academic Editor: Claude Chaudet

Received: 8 July 2023

Revised: 26 July 2023

Accepted: 16 August 2023

Published: 18 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

future internet

Article

SEDIA: A Platform for Semantically Enriched IoT Data
Integration and Development of Smart City Applications
Dimitrios Lymperis and Christos Goumopoulos *

Information and Communication Systems Engineering Department, University of the Aegean,
83200 Samos, Greece; dlyberis@gmail.com
* Correspondence: goumop@aegean.gr

Abstract: The development of smart city applications often encounters a variety of challenges. These
include the need to address complex requirements such as integrating diverse data sources and
incorporating geographical data that reflect the physical urban environment. Platforms designed
for smart cities hold a pivotal position in materializing these applications, given that they offer a
suite of high-level services, which can be repurposed by developers. Although a variety of platforms
are available to aid the creation of smart city applications, most fail to couple their services with
geographical data, do not offer the ability to execute semantic queries on the available data, and
possess restrictions that could impede the development process. This paper introduces SEDIA, a
platform for developing smart applications based on diverse data sources, including geographical
information, to support a semantically enriched data model for effective data analysis and integration.
It also discusses the efficacy of SEDIA in a proof-of-concept smart city application related to air
quality monitoring. The platform utilizes ontology classes and properties to semantically annotate
collected data, and the Neo4j graph database facilitates the recognition of patterns and relationships
within the data. This research also offers empirical data demonstrating the performance evaluation of
SEDIA. These contributions collectively advance our understanding of semantically enriched data
integration within the realm of smart city applications.

Keywords: smart cities; geospatial data; Internet of Things (IoT); semantic enrichment; air pollution;
Air Quality Index (AQI); Neo4j; GraphQL

1. Introduction

The development of IoT-driven smart applications has become essential in addressing
sustainability challenges and improving the quality of life for citizens in smart cities [1].
In this context, information and communication technologies have enabled smart cities to
collect and analyze vast amounts of data from diverse sources such as sensor networks,
public data sources, and personal devices. The data are then used to develop applications
that enhance city services, support economic development, and improve society’s well-
being. However, developing smart city applications presents various challenges, such as
integrating heterogeneous data sources and accounting for geographical information that
accurately represents the urban environment [2]. A platform that supports the integration
of semantically enriched IoT data and the development of smart applications can help
overcome these challenges.

Smart city platforms are critical in realizing the development of smart city applications
by providing high-level services that can be reused by developers. To achieve this, it
is essential to ensure interoperability and effectively manage large-scale heterogeneous
data [3,4]. In addition, smart city platforms must also provide secure access to data. This
involves implementing robust security protocols that protect sensitive data from unau-
thorized access or breaches. Ensuring data privacy and confidentiality is also important,
especially when dealing with personal or sensitive data.

Future Internet 2023, 15, 276. https://doi.org/10.3390/fi15080276 https://www.mdpi.com/journal/futureinternet

https://doi.org/10.3390/fi15080276
https://doi.org/10.3390/fi15080276
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://orcid.org/0000-0003-1096-4439
https://doi.org/10.3390/fi15080276
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/article/10.3390/fi15080276?type=check_update&version=1

Future Internet 2023, 15, 276 2 of 38

Furthermore, smart city platforms must effectively incorporate geographical infor-
mation to enable applications that can accurately represent and address urban environ-
ments [5]. This requires integrating location-based data with other data sources to provide
insights into different aspects of urban life, such as transportation, energy consumption,
and environmental factors [6]. Geospatial analytics can also help in understanding the
relationships between different variables in urban environments.

Lack of standardization is another challenge in the development of smart city appli-
cations. To ensure interoperability and scalability, it is important to establish common
standards and protocols for data sharing and application development [7]. In this context,
the use of a standardized and semantically enriched data model is critical for enabling
effective data integration and analysis in smart city platforms [8]. This involves developing
ontologies and taxonomies that can help to capture the meaning and relationships between
different data elements. By providing semantic support, smart city platforms can help to
improve the accuracy and relevance of data analysis, thereby enabling the development of
more effective and targeted applications [9,10].

Recent literature reviews have identified a collection of platforms designed to facilitate
the development of smart city applications [11,12]. These reviews also highlighted crucial
requirements to be addressed, such as device, event, resource, and data management, data
processing, external data access, application runtime support, as well as maintaining a
city model and historical data. Upon examining some of the existing solutions, it becomes
evident that most of them take into account important requirements, such as data collection,
management, and sharing. However, they do not incorporate a diverse array of services
related to geographical information, nor do they perform semantic queries on the data.

In response to the identified shortcomings, this paper presents a new platform for
semantically enriched IoT data integration and the development of smart city applications,
referred to as SEDIA. This platform is capable of processing heterogeneous data streams
from varying sources, including geographical data, by leveraging a semantically enriched
data model. This unique approach significantly simplifies data integration and facilitates
enhanced data analysis. To validate our solution, we further explore a practical smart city
application, revealing the efficacy and potential of SEDIA in actual, real-world situations.
The contribution of our work can be summarized as follows:

i. an architecture with components that are capable of handling diverse data sources
including geographical information and support a semantically enriched data model,
which can facilitate effective data integration and analysis;

ii. an implementation of the proposed architecture on top of an existing IoT middleware by
enhancing its services, capitalizing on abstraction levels, and fostering interoperability;

iii. a discussion on the efficacy of SEDIA in a proof of concept smart city application
related to air quality monitoring; and

iv. a demonstration of experimental data in relation to a performance assessment of SEDIA.

Overall, this research is distinct in that it provides a holistic approach covering all
aspects of data management, from collection and semantic annotation to storage, analysis,
and presentation. The emphasis that SEDIA places on semantic enrichment and the
integration of geographical relationships represents a novel focus not typically prioritized
in related research. The integration of an enriched data model, practical implementation,
case study, and performance assessment offers a well-rounded examination of the proposed
platform, going beyond the typical scope of related studies. This multi-faceted approach,
combined with the innovative aspects of SEDIA, constitutes a significant contribution to
the field.

The structure of this paper is organized in the following manner. Section 2 presents
the SEDIA architecture showcasing our first significant contribution. Section 3 provides
a comprehensive exploration of our second and third significant contributions. In par-
ticular, it presents an implementation of the proposed architecture in terms of a proof
of concept application for environmental monitoring and “Green Route” identification.
Section 4 is dedicated to our fourth key contribution by presenting the results of computa-

Future Internet 2023, 15, 276 3 of 38

tional experiments aimed to evaluate the performance and the scalability of the proposed
architecture. Section 5 provides a concise overview of previous research on semantic en-
vironmental IoT and smart cities. Section 6 discusses a summary of the research insights
and a brief exploration of potential directions for future research. Lastly, Section 7 contains
concluding remarks.

2. SEDIA Architecture
2.1. Overview and Principles of SEDIA Architecture

The SEDIA architecture is designed to integrate data from heterogeneous sources,
potentially located in different geographical locations, and to be utilized across a wide vari-
ety of application areas. This approach to data integration enables a more comprehensive
understanding of urban environments by providing a unified view of data from different
sources. The proposed architecture collects, stores, and processes data by integrating vari-
ous IoT technologies into the existing communication infrastructure. A critical stage of data
integration involves gathering, organizing, and preparing the data for semantic labeling.
Utilizing semantic tools and methods, high-level data analysis is conducted to extract
information for the implementation of new functions and services within the Application
Layer. The overall SEDIA architecture, as illustrated in Figure 1, comprises multiple layers.
These are briefly described in the subsequent paragraphs.

Future Internet 2023, 15, x FOR PEER REVIEW 4 of 41

The exact distribution of these components may vary depending on the specific needs
of the IoT application. Ultimately, the decision on where to execute each part will be
guided by the need to strike a balance among factors such as latency, computational re-
sources, cost, and data privacy considerations.

Mobile App Dashboard

Application
Layer

Data Source
Layer

Network Layer

IoT
Middleware

Layer

IoT Node
Sensors

Message/Event
Broker

Service
Layer

Aggregation,
Formatting,

Semantic
Annotation of IoT

Data

Aggregation,
Formatting,

Semantic
Annotation of Open

Data

Semantic Layer Ontology
(RDF/OWL)

Device
Management

Semantic
Reasoning

EthernetWiFi

Bluetooth

Cellular

Semantic Data
Retrieval

Graph Data Storage

Data Analytics

Open Data Sources Geospatial
Database

Data analysis
Data Export

Data
Transformation

Data
Storage

Protocol
Translation

Gateway

Zigbee

Figure 1. Overview of SEDIA architecture.

2.2. Data Source Layer
The main purpose of this layer is to collect data from multiple sources and transmit

it to upper levels for further analysis and decision-making. This layer consists of sensors,

Figure 1. Overview of SEDIA architecture.

Future Internet 2023, 15, 276 4 of 38

In an IoT system, various components can be executed at different tiers, namely the
Edge, Fog, and Cloud. The placement of these components depends on several factors
including specific application requirements, latency, computational resources, network
bandwidth, and data privacy. The components of the SEDIA architecture can typically be
assigned to these tiers as follows:

• Edge Tier: This tier is closest to the data source and has the least latency, but usually
has limited computational resources and storage. The Data Source Layer, which
includes the IoT nodes themselves and immediate data collection, is typically at the
edge. Furthermore, some elements of the Network Layer, such as the initial data
communication protocols (Bluetooth, Cellular, Ethernet, WiFi, LoRaWan) and part of
the IoT Middleware Layer (specifically, Protocol Translation Gateways for immediate
data translation) can reside at the edge.

• Fog Tier: This is an intermediate tier between the edge and the cloud. It has more
computational resources than the edge, but less than the cloud, and it offers reduced
latency compared to the cloud. More of the Network Layer (such as network gateways),
as well as elements of the IoT Middleware Layer (such as Message Brokers and Device
Management), can reside in the fog. This layer can also host parts of the Service
Layer, especially if faster response times are needed for certain operations such as data
aggregation and formatting.

• Cloud Tier: This tier has the highest computational power and storage capabilities,
but also potentially higher latency due to its distance from the data source. Most of the
IoT Middleware Layer (for more complex operations), the Service Layer (for complex
data processing), the Semantic Layer (for intensive data analysis and reasoning), and
the Application Layer (for user interaction and data visualization) would typically
reside in the cloud.

The exact distribution of these components may vary depending on the specific needs
of the IoT application. Ultimately, the decision on where to execute each part will be guided
by the need to strike a balance among factors such as latency, computational resources, cost,
and data privacy considerations.

2.2. Data Source Layer

The main purpose of this layer is to collect data from multiple sources and transmit
it to upper levels for further analysis and decision-making. This layer consists of sensors,
smart meters, and actuators that monitor the operation of services, activities, or equip-
ment. Moreover, this layer contains datasets supplied by government agencies or open
data sources through application programming interfaces (APIs). In an environmental
application scenario, the Data Source Layer would gather data relevant to monitoring
and understanding environmental conditions. This could include data from temperature,
humidity, and air quality sensors, as well as from geolocation devices, in order to under-
stand the geographical distribution of environmental data and to correlate it with specific
environmental features or events.

2.3. Network Layer

This layer serves as the connecting bridge between the Data Source Layer and the IoT
Middleware Layer. Depending on the source type, it receives data from the source layer
and transmits it using various wired or wireless networking technologies such as Ethernet,
3G, 4G, WiFi, Bluetooth, LoRa, Zigbee, Z-Wave, Sigfox, NB-IoT, IPv4/IPv6, and others. The
networking layer facilitates communication between all data sources and linked systems.
The security of data transfers is maintained depending on the protocol employed, thereby
ensuring data integrity and privacy protection for the received data. Protocols such as
Zigbee, WiFi, and LoRaWAN implement encryption to protect data in transit. For instance,
WiFi’s WPA2 protocol uses AES (Advanced Encryption Standard) encryption, providing a
high degree of security. In the case of 4G and NB-IoT, mutual authentication is conducted
between the device and the network using a shared secret key. LoRaWAN uses message

Future Internet 2023, 15, 276 5 of 38

integrity checks (MIC) to ensure that the data received are the same as the data sent. Zigbee
uses a method called ‘out-of-band’ key exchange, where encryption keys are exchanged via
a different channel than the main data channel, reducing the risk of interception.

2.4. IoT Middleware Layer

This layer is primarily responsible for (a) integrating data received from various types
of connected devices; (b) processing the incoming data; and (c) delivering the processed
data to various applications or services. In addition to storing time series in a database, the
IoT platform layer is responsible for converting, analyzing, and managing the data received
from remote devices. Services at this tier are often accessible via HTTP-based REST APIs,
while implementing the necessary MQTT (Message Queuing Telemetry Transport) protocol
infrastructures to transfer data to higher-layer services or applications.

In real-world networks, not all devices communicate using the same protocol. While
MQTT is a widely used IoT connectivity protocol, other devices might employ different pro-
tocols, such as DNP3 (Distributed Network Protocol 3) and IEC61850, which are extensively
used in the field of power and utility systems. This variety in communication protocols
contributes to the complexity and heterogeneity of the IoT network and its data. If the IoT
devices use protocols such as DNP3 or IEC61850, which are not typically designed for direct
internet communication, a Protocol Translation Gateway (PTG) is required to convert the
data into a format that the IoT middleware can understand. This might involve packaging
the data into TCP/IP packets so that the gateway can transmit the translated data to the
IoT middleware over the internet using MQTT or HTTP. For example, to translate DNP3
messages to MQTT messages, the steps that must be performed by a PTG include:

• Collection of the DNP3 data from the IoT device;
• Parsing the data packets according to the DNP3 protocol specifications;
• Mapping the data fields in the DNP3 packet to corresponding data fields in an

MQTT message;
• Formatting the MQTT message according to the MQTT protocol specifications;
• Transmitting the MQTT message over the internet.

A PTG can be either a device or software, and its placement can vary within the
SEDIA architecture depending on the specific needs and resources of the system. When the
PTG is implemented as a device, it is located at the edge of the network, close to the IoT
devices. This hardware-based PTG has built-in capabilities to communicate with the IoT
devices using their native protocols (such as DNP3 or IEC61850), and also the capability
to connect to the Internet for forwarding translated data to the IoT middleware. On the
other hand, a PTG can also be implemented as software. This software-based PTG could be
deployed on edge devices, fog nodes, or even in the cloud. The choice depends on various
factors including network latency, computational resources, and security requirements. For
example, deploying the PTG software on fog nodes can provide a balance between the
low-latency and powerful data processing capabilities, which can be particularly useful
when the PTG has to handle a large amount of data from numerous IoT devices.

2.5. Service Layer

This layer represents the apex of the data collection strategy, incorporating specialized
services for real-time semantic labeling of the data. During this phase, the IoT data retrieved
from the lower layer are transformed into a singular format and are prepared for performing
semantic labeling based on the ontology established in the upper layer. In addition,
information is collected from open data sources, which are subjected to the same procedures
as IoT data.

2.6. Semantic Layer

At this layer, gathered and organized sensor and open data are represented utilizing
semantic web technologies, such as RDF (Resource Description Framework), OWL (Web
Ontology Language), and SPARQL (SPARQL Protocol and RDF Query Language), which

Future Internet 2023, 15, 276 6 of 38

allow for the annotation and linking of data to facilitate more accurate and meaningful
analysis. The data are converted to their semantic form, categorized according to the SEDIA
ontology, and stored in graph databases. Upon storage, the semantic data retrieval process
is initiated. The collected data are extracted from the graph databases using semantic
queries, often formulated in SPARQL, which enable the identification and retrieval of
relevant data by searching for specific patterns, relationships, and attributes. The retrieved
data can then be utilized in further analysis or decision-making processes. In parallel with
data retrieval, semantic reasoning takes place, involving the application of logical rules
and inferences to the data stored in the graph databases. This reasoning process allows for
the discovery of new relationships, validation of existing knowledge, and the detection of
inconsistencies within the data. By combining the use of queries and semantic reasoning,
the system can find patterns and extract knowledge, such as analyzing abnormalities or
crucial events, from stored data.

2.7. Application Layer

This layer is responsible for providing the user with specialized services. Using
REST APIs or GraphQL, which enable the retrieval and manipulation of data stored in
a graph database, is one method to achieve this. These APIs facilitate seamless interac-
tion between the Application Layer and the underlying semantic databases, promoting
efficient data exchange and streamlined processing. Using visualizations, data analysis,
and other tools provided by the Application Layer, this data can then be presented to
the user in an understandable and actionable manner. These services are applicable to
numerous IoT applications, including smart residences, smart communities, smart health,
and precision agriculture.

Additionally, the Application Layer may incorporate machine learning algorithms,
artificial intelligence, or other advanced analytics techniques to further process and an-
alyze the retrieved data. This enables the generation of valuable insights, predictions,
and recommendations that can enhance the overall performance and effectiveness of the
IoT system.

3. SEDIA Implementation
3.1. Proof of Concept Smart Application

The smart application that is used as a running example in this paper to discuss the
implementation of the SEDIA architecture focuses on improving urban air quality moni-
toring by utilizing IoT data and applying semantic enrichment techniques. Air pollution
is a serious issue that affects the health of citizens, and the development of smart city
applications can contribute to addressing this issue. According to the World Health Orga-
nization, long-term exposure to suspended indoor-outdoor particles can severely impact
health and even cause death [13,14]. The European Air Quality Index (EAQI) serves as a
reference to assess air pollution severity and identify the contributing factors [15]. Such
an application requires services and methods for collecting large volumes of geospatial
and environmental data using sensors embedded in heterogeneous IoT systems. These
systems consist of nodes with embedded microcontrollers of various technologies and
manufacturers, employing different communication and networking methods.

In the proof-of-concept (PoC) scenario presented in this study, an environmental moni-
toring methodology is followed to develop a smart application. This application is designed
to provide users with the shortest route between two locations, while also ensuring the best
air quality along that route. This application has been termed the ‘Green Route’ application.
The proposed methodology consists of a data collection process from heterogeneous IoT
devices and open platforms, semantic annotation of the collected data, and serving the
extracted knowledge through a web application. IoT devices are strategically placed in
urban environments to collect data on air quality metrics, such as concentrations of harmful
pollutants (SO2, NO2, O3) and particulate matter levels (PM2.5, PM10) [16]. Additionally,
environmental data for particular geographical locations are gathered from open plat-

Future Internet 2023, 15, 276 7 of 38

forms through APIs. This data management and enrichment process involves integrating
third-party sources, often resulting in data heterogeneity and different formats. In order
to overcome these challenges, the use of semantic enrichment techniques is crucial, and
the semantic web can be a powerful tool in enabling the IoT to work more effectively and
efficiently. Semantic enrichment enables the harmonization of data from diverse sources
and formats by adding context and meaning to the raw information.

This is precisely where SEDIA comes into play. The collected data by IoT platforms
are transmitted via the MQTT protocol to a central server. Custom services, written in
Python, collect geospatial environmental data from open platforms, and the acquired
data is processed in real time and semantically annotated by assigning ontology classes
and properties. The use of semantic enrichment techniques enables a more complete
understanding of the data as it adds context and meaning to the raw data collected from
different sources. Additionally, storing this semantically enriched data in a Neo4j graph
database facilitates the identification of patterns and relationships, making it easier to
pinpoint areas of concern and potential causes of air pollution.

A web application has been developed to visualize environmental data from moni-
toring stations by submitting GraphQL queries to the Neo4j database. This functionality
allows for the effortless identification of areas with high pollution levels and enables users
to find walking routes with minimal atmospheric pollution by specifying start and end
points on the map.

3.2. Data Source Layer
3.2.1. IoT Devices

At the Data Source Layer, SEDIA envisions collecting heterogeneous geospatial data
to support smart city applications. This involves using various hardware IoT platforms,
such as Arduino Uno WiFi Rev2, Arduino Mega 2560 Rev3, TTGO Lora32 V1.0, and Lopy4,
which act as IoT nodes for measuring crucial parameters. These platforms provide a variety
of features and capabilities, including built-in Wi-Fi and Lora networking, which facili-
tate data transmission over long distances with minimal power consumption. However,
the use of multiple hardware platforms also presents programming and data integration
challenges. Each platform may require different programming languages, such as C/C++
and MicroPython, and the use of different programming tools. This heterogeneity in
hardware and programming languages necessitates careful consideration during the appli-
cation implementation, including the development of a unified communication protocol
and the maintenance of interoperability between different platforms. Such challenges
can be addressed by adopting standardized communication protocols, data formats, and
middleware solutions that enable seamless data exchange and integration across diverse
devices and platforms. By fostering compatibility and simplifying the development process,
these measures ultimately enhance the overall functionality, scalability, and adaptability of
the smart city applications, allowing them to evolve in line with emerging technologies
and requirements.

Each IoT node device employed in the PoC application is equipped with sensors for
measuring critical environmental parameters, which are used to calculate the EAQI [17].
These sensors include the PMS5003 for measuring PM2.5 and PM10 particle matters, the
low-cost MQ Gas sensors MQ131 for measuring O3 and NO2, and the MQ136 for measuring
SO2. The PMS5003 sensor measures particle concentrations based on the principle of laser
scattering. The MQ131 and MQ136 sensors use a gas-sensitive film in which the electrical
conductivity of the film changes upon exposure to the target gas, thereby providing a
measurement of gas concentration [18]. The use of these sensors enables the accumulation
of fine-grained data on air quality, which is essential for accurately determining the Air
Quality Index (AQI) and providing real-time information to users. Figure 2 demonstrates
the physical layout and interconnectivity of the sensors in the context of the IoT node,
specifically designed for the PoC application.

Future Internet 2023, 15, 276 8 of 38Future Internet 2023, 15, x FOR PEER REVIEW 9 of 41

.

Figure 2. ΙοΤ prototype with peripheral sensors for the PoC application.

3.2.2. Open Data Sources
Open data sources serve as invaluable assets for promoting economic growth, stim-

ulating innovation, and improving public services. In a smart city environment, embed-
ded sensors within urban infrastructures and facilities possess the potential to generate a
vast amount of data. APIs are widely utilized in the development of IoT solutions, ena-
bling developers to create advanced applications that can be easily integrated with other
web services.

The PoC application incorporates ambient data from open data sources, in addition
to data collected from heterogeneous IoT nodes. For the application implementation, open
environmental data sources with API capabilities were identified and used (Table 1).
These sources provide atmospheric measurements pertaining to weather data and air pol-
lutants for hundreds of cities around the globe, which are routinely updated and available
for local use. Application developers are given unique API keys to facilitate remote call
requests to these services.

Table 1. Open environmental data sources.

Open Data Source Data Reference
iqair AQI, CO, NO2, O3, SO2, PM2.5, PM10 [19]

ninjas_airq AQI, CO, NO2, O3, SO2, PM2.5, PM10 [20]
open_weather AQI, CO, NO, NO2, O3, SO2, NH3, PM2.5, PM10 [21]

weatherbit AQI, CO, NO2, O3, SO2, PM2.5, PM10, pollen levels [22]

3.3. Network Layer
The Network Layer of a generic architecture supporting the development of smart

city applications plays a crucial role in ensuring reliable and efficient data transmission
among various devices and platforms. By employing a diverse range of networking tech-
nologies, such as Wi-Fi, Ethernet, and LoRa, as well as multiple communication protocols,
including HTTP, MQTT, and LoRaWAN, this layer can accommodate the unique require-
ments of different IoT devices, while maintaining seamless communication.

In such an architecture, the Network Layer facilitates data transmission from IoT de-
vices to the higher-level platforms, making use of various networking technologies and
protocols that are best suited to the specific devices and application requirements. For
instance, LoRa-enabled devices require a gateway that can wirelessly transmit data to the

Figure 2. IoT prototype with peripheral sensors for the PoC application.

In addition to the sensors for measuring environmental parameters, each IoT node
device in the environmental monitoring application is also equipped with a GPS device
for geolocation. This GPS device acquires the altitude, latitude, and longitude coordinates
of the device, which are then utilized to pinpoint the location of the collected data. This
information is critical in determining the spatial distribution of air quality data and is used
in generating air quality maps. By using GPS devices in each IoT node, the environmental
monitoring application can collect highly accurate location data that enhances the precision
of air quality measurements. This level of precision is essential in providing users with
real-time air quality data that they can use to make informed decisions regarding their
health and safety.

3.2.2. Open Data Sources

Open data sources serve as invaluable assets for promoting economic growth, stimu-
lating innovation, and improving public services. In a smart city environment, embedded
sensors within urban infrastructures and facilities possess the potential to generate a
vast amount of data. APIs are widely utilized in the development of IoT solutions, en-
abling developers to create advanced applications that can be easily integrated with other
web services.

The PoC application incorporates ambient data from open data sources, in addition to
data collected from heterogeneous IoT nodes. For the application implementation, open
environmental data sources with API capabilities were identified and used (Table 1). These
sources provide atmospheric measurements pertaining to weather data and air pollutants
for hundreds of cities around the globe, which are routinely updated and available for local
use. Application developers are given unique API keys to facilitate remote call requests to
these services.

Table 1. Open environmental data sources.

Open Data Source Data Reference

iqair AQI, CO, NO2, O3, SO2, PM2.5, PM10 [19]
ninjas_airq AQI, CO, NO2, O3, SO2, PM2.5, PM10 [20]

open_weather AQI, CO, NO, NO2, O3, SO2, NH3, PM2.5, PM10 [21]
weatherbit AQI, CO, NO2, O3, SO2, PM2.5, PM10, pollen levels [22]

Future Internet 2023, 15, 276 9 of 38

3.3. Network Layer

The Network Layer of a generic architecture supporting the development of smart city
applications plays a crucial role in ensuring reliable and efficient data transmission among
various devices and platforms. By employing a diverse range of networking technologies,
such as Wi-Fi, Ethernet, and LoRa, as well as multiple communication protocols, including
HTTP, MQTT, and LoRaWAN, this layer can accommodate the unique requirements of
different IoT devices, while maintaining seamless communication.

In such an architecture, the Network Layer facilitates data transmission from IoT
devices to the higher-level platforms, making use of various networking technologies and
protocols that are best suited to the specific devices and application requirements. For
instance, LoRa-enabled devices require a gateway that can wirelessly transmit data to the
internet using the LoRaWAN protocol, thus ensuring long-range communication with
minimal power consumption.

The choice of networking technologies and communication protocols is driven by
factors such as the need for energy efficiency, extended communication range, and low
latency. By incorporating a combination of these technologies and protocols, the Network
Layer can provide a versatile and adaptable communication infrastructure, which can cater
to a wide array of smart city applications.

Specifically, the IoT devices used in the PoC application leveraged a range of net-
working technologies and protocols to transmit the collected data to the IoT platforms
in the subsequent layer. The Lorix One WiFX gateway, along with The Things Network
infrastructure, facilitated efficient communication between IoT devices and platforms that
support LoRaWAN networking. Despite the fact that LoRaWAN is not inherently designed
for heavy data traffic or complex workload management, multiple strategies can be im-
plemented to effectively manage workloads and handle peak traffic situations. In this
study, mechanisms such as the Adaptive Data Rate (ADR) and task scheduling have been
employed to ensure efficient communication under extreme conditions.

ADR dynamically adjusts the data rate and transmission power of devices, enhancing
their capacity to manage data traffic while balancing range, capacity, and power consump-
tion through the modulation of Spreading Factors (SFs); additionally, data reduction tactics
can further optimize workload management. For instance, sensors located in areas with
strong network coverage and minimal interference can use lower SFs, thereby achieving
higher data rates and reducing transmission time, which in turn can save power and extend
the device’s battery life. Conversely, sensors in areas with weaker coverage or higher
levels of interference may require higher SFs to ensure reliable transmission, even though
this comes at the cost of reduced data rate. By modulating data rates according to each
sensor’s individual needs and the overall network capacity, ADR can help balance the load
across the network and prevent congestion, ensuring that all collected data is reliably and
efficiently transmitted to the central server for further processing and analysis.

On the other hand, by employing task scheduling, devices can be programmed to
perform duties at predetermined times in order to prevent simultaneous data transmission.
Scheduling can also be used to dictate when IoT devices collect data. For instance, certain
environmental parameters might need to be monitored more frequently during certain
times of the day or in specific weather conditions. By scheduling data collection tasks, it
is ensured that these devices are actively collecting and transmitting data when they are
most valuable. In environmental monitoring, some data might be more critical than others.
For example, data indicating a high level of a harmful gas might be more important than
data showing a slight increase in temperature. Task scheduling can ensure that critical
data are collected and transmitted more frequently. In a larger-scale implementation, task
scheduling can be used to evenly distribute the workload among multiple gateways and
network servers, avoiding potential bottlenecks and ensuring efficient data handling.

The implemented smart application showcases the feasibility of employing diverse
networking technologies and protocols in the creation of an IoT network, capable of

Future Internet 2023, 15, 276 10 of 38

supporting the collection and processing of heterogeneous data for applications such as
environmental monitoring.

3.4. IoT Middleware Layer

This layer primarily focuses on storing and analyzing data acquired from various types
of connected devices. This data is generally accessible and can be retrieved through RESTful
HTTP APIs or the MQTT protocol, before being relayed to higher-layer services and appli-
cations. IoT middleware solutions such as Thingspeak and Ubidots implement the MQTT
protocol and possess the necessary infrastructure for receiving and transmitting data.

The MQTT Broker serves as the central communication hub, responsible for transfer-
ring messages between senders and valid recipients. Clients are connected devices, services,
and applications that can either publish or subscribe to topics in order to access information.
A topic contains the Broker’s routing information. Clients looking to transmit messages
subscribe to specific topics, while those wishing to receive messages also subscribe to
particular topics. The Broker then delivers all messages containing the corresponding topic
to the relevant clients. Consequently, the connection between the client and the Broker
remains open, but data are only transmitted when necessary. This approach conserves
battery life and network bandwidth while enhancing the real-time experience.

In the PoC application, the MQTT protocol offered by the IoT middleware was utilized
for communication. This addressed the heterogeneity of networking and the use of various
protocols for the transmission of data from IoT devices [23]. Information is gathered
and sent to recipients with a particular information configuration model (JSON object),
thereby enhancing the interoperability of the systems. The emphasis on information
interoperability and the flexibility of IoT platforms make the MQTT protocol the optimal
solution for interfacing with the SEDIA architecture’s upper layers.

During the development of the PoC application, nine distinct IoT devices were utilized.
Five of them transmit their environmental and geospatial data to the Thingspeak IoT
middleware while the other four transmit their data to the Ubidots IoT middleware. The
use of multiple IoT middleware solutions allows for greater flexibility in data processing
and analysis [24]. Figure 3 depicts the general interconnection of the devices to the IoT
middleware. The Thingspeak platform incorporates publish and subscribe functionality
with a QoS level of 0 (“at most once delivery”), whereas the Ubidots platform supports
QoS levels as high as 1 (“at least once delivery”). On both solutions, QoS was set to zero for
faster, but less reliable, communication.

The IoT platforms employed provide access to their APIs via plain MQTT or secure
MQTT with TLS (Transport Layer Security) using the endpoints presented in Table 2, de-
pending on the type of account selected at any given moment. When implementing the
interconnection of publishers and subscribers with their respective Brokers of IoT middle-
ware, the MQTT protocol with TLS was adopted to ensure data encryption and prevent
the exposure of the token API and sensor data to unauthorized parties. Certificates can be
installed on programmable IoT devices and are posted on the IoT middleware websites.

Table 2. MQTT endpoints on IoT middleware platforms.

IoT Middleware
Platform Connection Broker Address Port Encryption

Thingspeak TCP mqtt.thingspeak.com 1883 -
Thingspeak TCP mqtt.thingspeak.com 8883 TLS

Ubidots TCP industrial.api.ubidots.com 1883 -
Ubidots TCP industrial.api.ubidots.com 8883 TLS

Future Internet 2023, 15, 276 11 of 38

Future Internet 2023, 15, x FOR PEER REVIEW 11 of 41

The MQTT Broker serves as the central communication hub, responsible for transfer-
ring messages between senders and valid recipients. Clients are connected devices, ser-
vices, and applications that can either publish or subscribe to topics in order to access
information. A topic contains the Broker’s routing information. Clients looking to transmit
messages subscribe to specific topics, while those wishing to receive messages also sub-
scribe to particular topics. The Broker then delivers all messages containing the corre-
sponding topic to the relevant clients. Consequently, the connection between the client
and the Broker remains open, but data are only transmitted when necessary. This ap-
proach conserves battery life and network bandwidth while enhancing the real-time ex-
perience.

In the PoC application, the MQTT protocol offered by the IoT middleware was uti-
lized for communication. This addressed the heterogeneity of networking and the use of
various protocols for the transmission of data from IoT devices [23]. Information is gath-
ered and sent to recipients with a particular information configuration model (JSON ob-
ject), thereby enhancing the interoperability of the systems. The emphasis on information
interoperability and the flexibility of IoT platforms make the MQTT protocol the optimal
solution for interfacing with the SEDIA architecture’s upper layers.

During the development of the PoC application, nine distinct IoT devices were uti-
lized. Five of them transmit their environmental and geospatial data to the Thingspeak
IoT middleware while the other four transmit their data to the Ubidots IoT middleware.
The use of multiple IoT middleware solutions allows for greater flexibility in data pro-
cessing and analysis [24]. Figure 3 depicts the general interconnection of the devices to the
IoT middleware. The Thingspeak platform incorporates publish and subscribe function-
ality with a QoS level of 0 (“at most once delivery”), whereas the Ubidots platform sup-
ports QoS levels as high as 1 (“at least once delivery”). On both solutions, QoS was set to
zero for faster, but less reliable, communication.

Figure 3. Generalized IoT device interconnection with IoT middleware platforms. Figure 3. Generalized IoT device interconnection with IoT middleware platforms.

3.5. Service Layer

The services tier serves as the final stage in the data integration process, offering
custom-built solutions for real-time semantic labeling of the data. This tier is responsible
for consolidating the data collected from the IoT Middleware Layer, transforming it into a
unified format, and preparing it for semantic annotation based on the ontology defined
in the upper layer. Additionally, the Service Layer retrieves information from open data
sources, subjecting them to similar processes as the IoT data. These custom Python services
not only collect raw data from various sources in the Data Source Layer of the architecture
but also filter and format the useful information, streamlining it for semantic annotation.
This comprehensive approach ensures seamless integration and analysis of the collected
data, paving the way for effective and efficient smart city applications. In the subsequent
subsections, the methodology employed for implementing the Service Layer is discussed.

3.5.1. Multi-Client MQTT Integration: A Unified Approach for Integrating Real-Time
IoT Data

The multi-client MQTT service is a custom service running on a server, written in
Python programming language. Its primary functions involve gathering data sent by IoT
devices to the Thingspeak and Ubidots platforms, filtering relevant information, and struc-
turing it for improved manageability by higher levels of the architecture. Data collection
from IoT middleware occurs in real time by registering the client program in all topics of the
IoT devices, utilizing the MQTT protocol. The IoT data collection service can accommodate
multiple clients simultaneously subscribing to topics via diverse communication channels
(Figure 4).

Future Internet 2023, 15, 276 12 of 38Future Internet 2023, 15, x FOR PEER REVIEW 13 of 41

MQTT
Publisher 1

LoRaWAN
Network

Server

...
...

MQTT Subscriber 1

MQTT Subscriber k

IoT
Node1IoT

Node k

IoT
Node n

...

MQTT Subscriber n

...

IoT
Middleware

Multi-Client
MQTT Service

Figure 4. Multi-client MQTT service for IoT data aggregation.

Eclipse Paho, an open-source project providing high-quality implementations of M2M
and IoT communication tools and libraries, is utilized for implementing subscriptions in
the topics of IoT devices on each platform. Paho Python Client offers a client class with
support for MQTT in Python, along with utility functions for easy individual message
publication to an MQTT server.

The Service Layer module is composed of individual files containing function imple-
mentations that collaborate to execute the aforementioned tasks. The configuration file
contains essential information about IoT platforms, data tags, and credentials for estab-
lishing connections with the respective Brokers. Upon launching the service’s primary
program, the configuration file’s list of clients is read. Then, asynchronous connection
queries are sent to MQTT servers based on the Broker’s contact information and the cre-
dentials of the corresponding client. The service utilized the MQTT protocol v3.1.1, with
SSL/TLS 1.3 for secure message transmission and reception. The service is designed to
manage multiple client connections to Brokers using a thread pool that efficiently man-
ages server computing resources. Additionally, the service program includes an event log-
ging system to help understand its flow and rectify production-related issues. SEDIA gen-
erates a log file which stores information about connections to Brokers, entries in device
topics on IoT platforms, and inbound messages before and after processing. This facili-
tates error resolution and performance analysis of applications.

3.5.2. Asynchronous Data Retrieval: A Custom Service for Concurrent Open Data Source
Integration

The asynchronous data retrieval is a custom service that makes HTTP API requests
to open data sources, filters the responses, and formats the data into a unified structure.
Written in Python, it operates at predetermined 15-min intervals, similar to the frequency
of data transmission by IoT devices. It uses asynchronous operation to simultaneously
send multiple queries to various servers, ensuring smooth service operation without de-
lays.

The service employs Python’s asyncio library for concurrent programming, allowing
multiple operations to simultaneously run using a single thread and processor component
[25]. The configuration file contains connection details and geographical coordinates for
querying environmental data. Upon starting the primary service program, an HTTP client

Figure 4. Multi-client MQTT service for IoT data aggregation.

Eclipse Paho, an open-source project providing high-quality implementations of M2M
and IoT communication tools and libraries, is utilized for implementing subscriptions in
the topics of IoT devices on each platform. Paho Python Client offers a client class with
support for MQTT in Python, along with utility functions for easy individual message
publication to an MQTT server.

The Service Layer module is composed of individual files containing function imple-
mentations that collaborate to execute the aforementioned tasks. The configuration file
contains essential information about IoT platforms, data tags, and credentials for estab-
lishing connections with the respective Brokers. Upon launching the service’s primary
program, the configuration file’s list of clients is read. Then, asynchronous connection
queries are sent to MQTT servers based on the Broker’s contact information and the cre-
dentials of the corresponding client. The service utilized the MQTT protocol v3.1.1, with
SSL/TLS 1.3 for secure message transmission and reception. The service is designed to
manage multiple client connections to Brokers using a thread pool that efficiently manages
server computing resources. Additionally, the service program includes an event logging
system to help understand its flow and rectify production-related issues. SEDIA generates
a log file which stores information about connections to Brokers, entries in device topics
on IoT platforms, and inbound messages before and after processing. This facilitates error
resolution and performance analysis of applications.

3.5.2. Asynchronous Data Retrieval: A Custom Service for Concurrent Open Data
Source Integration

The asynchronous data retrieval is a custom service that makes HTTP API requests
to open data sources, filters the responses, and formats the data into a unified structure.
Written in Python, it operates at predetermined 15-min intervals, similar to the frequency of
data transmission by IoT devices. It uses asynchronous operation to simultaneously send
multiple queries to various servers, ensuring smooth service operation without delays.

The service employs Python’s asyncio library for concurrent programming, allowing
multiple operations to simultaneously run using a single thread and processor compo-
nent [25]. The configuration file contains connection details and geographical coordinates
for querying environmental data. Upon starting the primary service program, an HTTP
client session is established, and requests are placed in a task queue for asynchronous pro-
cessing. Query responses are received as JSON objects and parsed to extract relevant data.

Future Internet 2023, 15, 276 13 of 38

The service module includes an event logging system for debugging potential pro-
duction issues. The AsyncIOScheduler runs the primary schedule every 15 min, which is
suitable for asyncio-based applications as it conserves resources without requiring a new
process or thread.

3.6. Semantic Layer
3.6.1. Neo4j Graph Data Storage

Neo4j is an open source graph database management system designed to store, man-
age, and search graph data, which consists of nodes (representing entities or objects) and
edges (representing relationships or connections between nodes). Neo4j relies on the graph
modeling feature, which represents data as a set of nodes and relationships that have
properties (key-value pairs) attached to them [26]. This allows complex, interrelated data
to be represented in a flexible and scalable way. Neo4j can be highly useful in a smart city
application that involves the semantic annotation of raw data due to its inherent capabilities
in handling complex, interconnected data structures. The advantages of Neo4j that make it
suitable for such an application are:

• Neo4j’s graph-based data representation, by effectively capturing complex interrela-
tionships between entities such as sensors, locations, and environmental parameters,
provides a more intuitive and efficient data storage and querying solution for smart
city applications than traditional relational databases.

• Neo4j’s scalability, capable of handling significant data volumes and traffic, ensures
performance and reliability in data-intensive smart city applications by seamlessly
adapting to their demands.

• Neo4j’s potent Cypher query language, specifically designed for graph data, facilitates
complex searches and analyses on semantically annotated smart city data, enabling
efficient extraction of valuable insights and the full utilization of data potential [27–29].

• Neo4j’s schema-less property graph model provides crucial flexibility for semantic
annotation of raw data in smart city applications, allowing for easy adaptation to
evolving data structures and relationships over time.

• Neo4j’s easy integration with other semantic technologies such as RDF stores and
ontology management systems facilitates a comprehensive and efficient approach to
semantic annotation and analysis of environmental monitoring data.

• The robust and active Neo4j user and developer community, coupled with a rich
ecosystem of tools and libraries, guarantees resource accessibility and support for
developers implementing and maintaining Neo4j-based smart city applications.

3.6.2. Ontology

The adoption of an ontology in the proposed architecture aims to address the chal-
lenges of handling and analyzing complex, interrelated data in smart city environments. By
providing a robust and flexible structure, this ontology facilitates the semantic annotation
of raw data originating from diverse sources. The primary purpose of this ontology is
to enable more efficient data management and processing, paving the way for advanced
applications in smart cities including environmental monitoring in the form of air quality
assessment, pollution detection, and decision support systems.

In this section, the ontology used to represent the data associated with the Semantic
Layer of the proposed architecture is described. The ontology (Figure 5) models data from
measured quantities produced by IoT devices and open data platforms. Furthermore,
geospatial information from either fixed stations or measurements from mobile nodes is
modeled as a potential future extension of the system. The proposed ontology, serving as a
‘lightweight’ version of resource and entity descriptions, contributes to reduced computing
and processing time during the search phase. The ontology’s simplicity renders it suitable
for direct use or extension to annotate data from different application domains.

Future Internet 2023, 15, 276 14 of 38

Future Internet 2023, 15, x FOR PEER REVIEW 15 of 41

a ‘lightweight’ version of resource and entity descriptions, contributes to reduced compu-
ting and processing time during the search phase. The ontology’s simplicity renders it
suitable for direct use or extension to annotate data from different application domains.

Figure 5. Visual representation of the SEDIA Ontology.

The ontology was initially developed in Protégé, a popular ontology editor, using the
OWL format. The ontology was developed as an RDF representation to facilitate modeling
complex relationships and semantic annotation of the raw data from various sources, in-
cluding IoT devices and open data platforms. However, the OWL-based RDF representa-
tion of the ontology is not optimal for use in a graph database such as Neo4j. Neo4j is
based on the Labeled Property Graph (LPG) model, which offers certain advantages over
RDF triple stores, including simplified graph pattern matching, easier querying, and more
intuitive data modeling [30].

In order to take advantage of the benefits offered by the LPG model and Neo4j, the
ontology needed to be converted from the OWL-based RDF representation to an LPG rep-
resentation [31]. To perform this conversion, mapping rules were established to determine
how RDF classes, individuals, object properties, data properties, and annotations would
correspond to LPG nodes, properties, and edges. Specifically, RDF classes and individuals
were represented as LPG nodes, RDF object properties were represented as LPG edges,
RDF data properties were represented as LPG node properties, and RDF annotations were
represented as LPG node or edge properties, depending on the context [32].

The ontology was then exported from Protégé in an RDF serialization format. A con-
version script was developed to read the exported RDF ontology and perform the trans-
formation according to the established mapping rules. This script iterates through the RDF
triples, converting classes, individuals, object properties, and data properties to their cor-
responding LPG elements.

Figure 5. Visual representation of the SEDIA Ontology.

The ontology was initially developed in Protégé, a popular ontology editor, using
the OWL format. The ontology was developed as an RDF representation to facilitate
modeling complex relationships and semantic annotation of the raw data from various
sources, including IoT devices and open data platforms. However, the OWL-based RDF
representation of the ontology is not optimal for use in a graph database such as Neo4j.
Neo4j is based on the Labeled Property Graph (LPG) model, which offers certain advantages
over RDF triple stores, including simplified graph pattern matching, easier querying, and
more intuitive data modeling [30].

In order to take advantage of the benefits offered by the LPG model and Neo4j,
the ontology needed to be converted from the OWL-based RDF representation to an
LPG representation [31]. To perform this conversion, mapping rules were established to
determine how RDF classes, individuals, object properties, data properties, and annotations
would correspond to LPG nodes, properties, and edges. Specifically, RDF classes and
individuals were represented as LPG nodes, RDF object properties were represented as LPG
edges, RDF data properties were represented as LPG node properties, and RDF annotations
were represented as LPG node or edge properties, depending on the context [32].

The ontology was then exported from Protégé in an RDF serialization format. A
conversion script was developed to read the exported RDF ontology and perform the
transformation according to the established mapping rules. This script iterates through the
RDF triples, converting classes, individuals, object properties, and data properties to their
corresponding LPG elements.

The LPG representation of the ontology was loaded into a Neo4j graph database,
enabling more efficient data management, processing, and querying. By converting the
ontology to the LPG format and leveraging the capabilities of Neo4j, the system can
effectively handle the challenges of processing and analyzing complex, interrelated data in
smart city applications.

Future Internet 2023, 15, 276 15 of 38

The primary ontology class, Entity, represents any heterogeneous data source. Two
subclasses, IoT_Entity and OpenData_Entity, are derived from this class. IoT_Entity repre-
sents real IoT nodes, while OpenData_Entity represents virtual nodes with data from open
sources. Moreover, the ontology facilitates the representation of platforms through the
Platform class to describe the information’s origin. IoT_Platform and OpenData_Platform
subclasses are implemented for IoT platforms (e.g., Thingspeak, Ubidots) and open data
platforms (e.g., iqair, open_weather, weatherbit), respectively. Table 3 summarizes the
ontology classes.

Table 3. Ontology Classes.

Class Parent Class Description

Entity - General form of system entity
IoT_Entity Entity Entities of real IoT nodes

OpenData_Entity Entity Virtual IoT node entities from open platform data
Platform - Origin of the data

IoT_Platform Platform Platforms specifically designed for managing and exchanging data from IoT nodes
OpenData_Platform Platform Platforms that provide open access to data from various sources

Location - Node geospatial location
Sensor - Node sensor

SensorProperty - Measurement Category

LPG edges extend the class hierarchy framework of an ontology, connecting a subject
and an object with a predicate to form a semantic triplet. A key feature of LPG edges is the
ability to link entity instances belonging to different classes based on semantic associations
between objects. The hasNeighbor relation, invoking neighbor relations due to the distance
between two entities belonging to the Entities class, is particularly noteworthy. This relation
is employed at the reasoning level in the PoC application to identify walking paths free of
atmospheric pollutants. Table 4 summarizes the ontology relationships.

Table 4. Ontology Relationships.

Relationship Subject Predicate Description

hasLocation Entity,
SensorProperty Location Entity or SensorProperty hasLocation Location

hasPlatform Entity Platform Entity hasPlatform Platform
hasSensor IoT_Entity Sensor IoT_Entity hasSensor Sensor

hasSensorProperty OpenData_Entity,
Sensor SensorProperty OpenData_Entity or Sensor hasSensorProperty

SensorProperty
hasNeighbor Entity Entity Entity hasNeighbor Entity

LPG node properties are specific to each class and describe the raw data received
from respective sources. Expressed in various data types these properties identify the
class they belong to and the type of data they describe. Table 5 summarizes the ontology
node properties.

The proposed ontology reuses multiple established ontologies to model IoT and
geospatial concepts, ensuring interoperability and a semantically rich representation. In
particular, the ontology leverages the Semantic Sensor Network (SSN) ontology [33], IoT-
Lite ontology [34,35], and GeoSPARQL ontology [36]. The SSN ontology is utilized to
represent sensor-related concepts. The Sensor entity is aligned with the ssn:Sensor class,
and the SensorProperty entity is aligned with the ssn:Observation class. Additionally, the
IoT_Platform entity is aligned with the ssn:System class, treating an IoT platform as a system
in the context of IoT. The IoT-Lite ontology is employed to represent IoT-specific con-
cepts. The IoT_Entity is aligned with the iot-lite:Device class, enabling the integration of
device-related information such as manufacturer, model, and communication protocol.

Future Internet 2023, 15, 276 16 of 38

The GeoSPARQL ontology is used to represent geospatial concepts. The Location entity
is aligned with the geo:Point class, providing a standard way to model geographical co-
ordinates such as latitude, longitude, and altitude. Reusing these ontologies is primarily
intended to promote interoperability with other systems and data sources employing the
same ontologies. It facilitates data integration and exchange between diverse IoT and
geospatial systems by ensuring the consistent and accurate representation of concepts
and relationships.

Table 5. Ontology Node Properties.

Property Class Type Description

channel_id IoT_Platform Integer Platform channel id
platformURL IoT_Platform String The URL of the IoT platform’s API

apiUrl OpenData_Platform String The base URL of the platform’s API

dataFormat OpenData_Platform String The format in which the open data
platform provides the data

deviceManufacturer IoT_Entity String Manufacturer of the IoT device
deviceModel IoT_Entity String The specific model of the IoT device

communicationProtocol IoT_Entity String Communication protocol used by the IoT
device to transmit data

manufacturer Sensor String The sensor’s manufacturer

lastCalibrationDate Sensor dateTime The most recent date on which the sensor
was calibrated

Alt Location Double Altitude
Lat Location Double Latitude

Long Location Double Longitude
Unit SensorProperty String Measurement unit

TimeStamp SensorProperty dateTime Timestamp
Value SensorProperty float Measurement value

Name

Entity, Platform, IoT_Entity,
OpenData_Entity, Location,

IoT_Platform,
OpenData-Platform, Sensor,

SensorProperty

String The name of each entity

3.6.3. Semantic Annotation

The semantic annotation service, developed for the purpose of semantically describing
the data and recording it in the Neo4j database, is a custom service that processes data
received from the services defined in the Service Layer. Semantic annotation is carried out
according to the ontology, which models the structure of the data as mentioned earlier. The
service is written in Python and its main functions are to receive filtered data from the
Service Layer, model it, and write it in the form of nodes and relations in the Neo4j graph
database. The Neo4j Python Driver is used for interfacing with the Neo4j graph database,
enabling the creation, reading, updating, and querying of graph data.

The service program consists of two separate modules. One module implements the
Neo4j base connection establishment functions, and the other implements the semantic
annotation functions. The configuration file contains the base URI, password, and the
maximum total number of connections allowed per host to be managed by the connection
pool. The file that establishes a connection to the database according to the connection
information contained in the configuration file has global driver and logger variables, so
they can be accessed by other parts of the program. Additionally, it includes functions to
terminate the database connection and establish a new one if necessary.

Three functions are defined that model the data of IoT nodes and open platforms ac-
cording to the defined ontology. One function models the data collected by the Thingspeak
platform, with function arguments being the query in Neo4j’s Cypher language and the
data properties for each IoT node connected to the Thingspeak platform. Another function
models the data collected by the Ubidots platform and is similar to the previous function

Future Internet 2023, 15, 276 17 of 38

in terms of arguments. This function checks whether the name of the variable refers to
geospatial data or values of measured quantities in order to execute the corresponding
Cypher code. The last function models the data collected from open data platforms, with
arguments being the Cypher query and the data properties.

In Neo4j, a transaction is a series of operations performed together as a single, individ-
ual unit of work. The Python driver for Neo4j provides a way to work with transactions
using the session object. This object simplifies the process of executing a Cypher statement
within a database write transaction. It handles starting the transaction, committing changes,
and handling any errors that may occur.

Considering the way the driver function works, two additional functions were created
to handle write transactions for both IoT data and data from open platforms. One function
is responsible for recording IoT data and processes the message from the IoT platforms. It
establishes a session and performs the registration transaction according to the appropriate
functions. Similarly, another function is responsible for writing data from open platforms
and processes the message from the IoT platforms’ data retrieval requests. A session is
established, and the registration transaction is performed according to the relevant function.
These functions are directly called from the data collection services of the Service Layer. In
both cases, after the payload configuration is complete, a session is established, and data
write transactions are performed.

3.7. Application Layer

In the proposed SEDIA architecture, the Application Layer comprises the software
and services constructed on top of the foundational platform infrastructure, with the
purpose of delivering distinct functions and services to users. This layer is responsible for
interpreting data gathered from various sources while presenting a user-friendly interface
and facilitating system interaction. The Application Layer holds critical importance within
the overall architecture, as it furnishes essential features that render the system a valuable
tool for its users.

Application development generally adheres to a three-tier model, encompassing a
web application (frontend), an API tier (GraphQL), and a database (backend). In a full-stack
application employing GraphQL, the interface layer is utilized on both the client and server
sides. The frontend is tasked with managing the user interface and issuing GraphQL
queries to the server, while the backend addresses GraphQL queries, performs required
database operations, and delivers the requested data back to the client. This improves
application performance and scalability [37,38]. Furthermore, using GraphQL on both
the client and server allows for consistent and unified data interaction, regardless of the
data’s origin.

Specifically, for the PoC application discussed in this paper, the primary aim at the
application level is to accumulate semantic data for determining the AQI within a desig-
nated geographical area of interest to the user. The ultimate goal is to propose a map route
characterized by minimal atmospheric pollutants, based on calculated air quality indicators
for each area. In the “Green Route” application, users input their starting location and
destination, and the application computes and displays the recommended route, taking
into account AQI values from stations in the vicinity of the points of interest.

3.7.1. Utilizing GraphQL API for Improved Application Layer Performance

This section focuses on the tools used in the application development, particularly
those that enable the application to interact with the Neo4j database, accessing and pre-
senting the stored data in an accessible and user-friendly format. Particular attention is
devoted to the intricacies of Neo4j and the employment of the Cypher query language.

GraphQL, a specification for building APIs, offers an efficient and flexible alternative to
RESTful APIs, representing complex nested data dependencies in modern applications [39].
With a strict type system, GraphQL describes the available data for an API. These type
definitions specify the API, and the client application can request data based on these defi-

Future Internet 2023, 15, 276 18 of 38

nitions, which also outline the API’s entry points. GraphQL boasts numerous advantages
over RESTful APIs, such as flexibility, improved developer experience, better documen-
tation, real-time capabilities, and data integration from different systems. GraphQL uses
a strong type system to specify an API’s capabilities. The GraphQL Schema defines how
a client can access data, the types and fields that can be queried or modified, and the
organization of data sent over the Internet [40]. The Schema is designed to match the data
structure in the Neo4j database as closely as possible.

In this study, the Neo4j GraphQL library is employed to leverage its powerful feature
of directly embedding Cypher queries within the GraphQL schema using the @cypher
directive. This capability allows developers to harness the robustness of the Cypher query
language for conducting intricate calculations or retrieving specific data from the Neo4j
database. The @cypher directive maps query results to the declared GraphQL field and
necessitates the installation of the Awesome Procedures On Cypher (APOC) add-on library.

Apollo, a suite of tools used for implementing GraphQL on the server, client application,
or in the cloud, was instrumental in the development of the application in this study.
Specifically, Apollo Server was used to generate the GraphQL API, Apollo Client, a client-side
JavaScript library, was employed to query the GraphQL API from the application, and
Apollo Studio’s Explorer, a tool for creating and executing GraphQL queries, was utilized for
the same.

In particular, Apollo Server is employed to build GraphQL backends, providing a set
of tools and libraries for constructing and operating a GraphQL server within a Node.js
environment. It is specifically responsible for defining the schema, managing queries and
data modifications with resolver functions, connecting to various data sources, overseeing
query performance through caching and clustering, ensuring security, and facilitating
real-time data updates.

On the other hand, Apollo Client offers a set of tools and libraries for interacting
with a GraphQL backend and managing client-side data. With integrations for numerous
frontend frameworks, such as React and Vue.js, as well as native mobile versions for iOS
and Android, Apollo Client handles client data caching and can also be employed to
manage local state data [41].

3.7.2. Deriving the European Air Quality Index Using GraphQL Query

Upon accessing the application’s web interface, a GraphQL query is dispatched to the
database to obtain the environmental data from the observation stations, encompassing
the geographical area displayed on the map. The data retrieval query seeks to extract all
measured quantities (SO2, NO2, O3, PM10, PM2.5) and the AQI values of the stations, as well
as their geospatial data for visualization purposes. According to the European Air Pollution
Agency, a higher AQI value indicates increased air pollution levels [42]. Consequently, the
AQI is calculated by considering the maximum individual AQI indices of environmental
pollutants (Equation (1)).

AQI = max(AQISO2, AQINO2, AQIO3, AQIPM10, AQIPM2.5) (1)

In this study, the Cypher language’s syntax limitations necessitate the use of helper
functions within the Neo4j base, employing the additional APOC library for direct combi-
natorial calculations of data. These functions take pollutant concentration measurements
as input and return an integer index ranging from 0 to 5, corresponding to the verbal
description of air pollution levels. Five distinct functions were developed for the monitored
pollutants, and their slopes were combined into a new function that accepts a pollutant’s
name and returns the corresponding index value (Figure 6).

Future Internet 2023, 15, 276 19 of 38

Future Internet 2023, 15, x FOR PEER REVIEW 20 of 41

well as their geospatial data for visualization purposes. According to the European Air
Pollution Agency, a higher AQI value indicates increased air pollution levels [42]. Conse-
quently, the AQI is calculated by considering the maximum individual AQI indices of en-
vironmental pollutants (Equation (1)). 𝐴𝑄𝐼 ൌ max ሺ𝐴𝑄𝐼ୗଶ, 𝐴𝑄𝐼ଶ, 𝐴𝑄𝐼ଷ, 𝐴𝑄𝐼ଵ, 𝐴𝑄𝐼ଶ.ହሻ (1)

In this study, the Cypher language’s syntax limitations necessitate the use of helper
functions within the Neo4j base, employing the additional APOC library for direct com-
binatorial calculations of data. These functions take pollutant concentration measure-
ments as input and return an integer index ranging from 0 to 5, corresponding to the ver-
bal description of air pollution levels. Five distinct functions were developed for the mon-
itored pollutants, and their slopes were combined into a new function that accepts a pol-
lutant’s name and returns the corresponding index value (Figure 6).

Figure 6. APOC function to calculate individual AQI for each pollutant. (a) APOC custom function
to calculate AQI for PM10. (b) Merged function that calculates AQI for every pollutant.

By leveraging the Neo4j GraphQL library’s ability to incorporate custom logic into
the application API, a Query-type GraphQL query was utilized, embedding the Cypher
language query code. The @cypher directive is employed to integrate the Cypher query
within the Schema, mapping the query results to the specified GraphQL field. This query
accepts three lists as parameters, containing names of air pollutants, suspended particles,
and verbal air quality indicators, and returns the environmental and geospatial data of
the stations as a list (Figure 7).

Figure 6. APOC function to calculate individual AQI for each pollutant. (a) APOC custom function
to calculate AQI for PM10. (b) Merged function that calculates AQI for every pollutant.

By leveraging the Neo4j GraphQL library’s ability to incorporate custom logic into
the application API, a Query-type GraphQL query was utilized, embedding the Cypher
language query code. The @cypher directive is employed to integrate the Cypher query
within the Schema, mapping the query results to the specified GraphQL field. This query
accepts three lists as parameters, containing names of air pollutants, suspended particles,
and verbal air quality indicators, and returns the environmental and geospatial data of the
stations as a list (Figure 7).

Future Internet 2023, 15, x FOR PEER REVIEW 21 of 41

Figure 7. GraphQL query to retrieve environmental and geospatial data.

Utilizing the additional Neosemantics (ns10) library, the query cypher code begins by
searching for Entity-labeled entities and those labeled as its subclasses with the SubClassOf
(SCO) relation. For each returned station node, paths featuring a hasLocation relation and
ending at a Location node are explored, calculating the average longitude and latitude as-
sociated with each station.

In this study, the query utilizes the localdatetime function in Cypher to obtain the cur-
rent time in the appropriate geographical time zone, which is then used to filter pollutant
data based on the duration between the ‘timestamp’ property and the current time. Air
pollutant data are filtered for the last hour, while particulate pollutant data are filtered for
the last 24-h period. The query matches a variable-length relationship pattern that allows
for any number of hasSensor relationships between a starting node (which could be an
IoT_Entity or OpenData_Entity) and an intermediate node, followed by a single hasSen-
sorProperty relationship between the intermediate node and a SensorProperty labeled node.
The resulting SensorProperty nodes are filtered based on whether their ‘name’ property
matches any of the pollutants listed in a specific list and their ‘timestamp’ property is
within a certain time window.

The query’s final result includes the station name, its geographical coordinates, the
final AQI, and the pollutant collection (pollutant name, AQI, average value). Figure 8 con-
solidates all aspects of the query submission process to the aforementioned database and
the respective technologies employed for the implementation of distinct application tiers.
The diagram demonstrates the interaction between individual components, outlining the
flow of a request from the client application, retrieving environmental data from the sta-
tions, submitting it to the GraphQL API, resolving data from the Neo4j database, and re-
turning it to the client for rendering the results in an updated view of the user interface.
This comprehensive process ensures seamless data retrieval and visualization, providing
users with relevant and timely information on air quality and pollutant levels within the
specified geographical area.

Figure 7. GraphQL query to retrieve environmental and geospatial data.

Utilizing the additional Neosemantics (ns10) library, the query cypher code begins by
searching for Entity-labeled entities and those labeled as its subclasses with the SubClassOf
(SCO) relation. For each returned station node, paths featuring a hasLocation relation and

Future Internet 2023, 15, 276 20 of 38

ending at a Location node are explored, calculating the average longitude and latitude
associated with each station.

In this study, the query utilizes the localdatetime function in Cypher to obtain the current
time in the appropriate geographical time zone, which is then used to filter pollutant data
based on the duration between the ‘timestamp’ property and the current time. Air pollutant
data are filtered for the last hour, while particulate pollutant data are filtered for the last
24-h period. The query matches a variable-length relationship pattern that allows for any
number of hasSensor relationships between a starting node (which could be an IoT_Entity
or OpenData_Entity) and an intermediate node, followed by a single hasSensorProperty
relationship between the intermediate node and a SensorProperty labeled node. The resulting
SensorProperty nodes are filtered based on whether their ‘name’ property matches any of
the pollutants listed in a specific list and their ‘timestamp’ property is within a certain
time window.

The query’s final result includes the station name, its geographical coordinates, the
final AQI, and the pollutant collection (pollutant name, AQI, average value). Figure 8
consolidates all aspects of the query submission process to the aforementioned database
and the respective technologies employed for the implementation of distinct application
tiers. The diagram demonstrates the interaction between individual components, outlining
the flow of a request from the client application, retrieving environmental data from the
stations, submitting it to the GraphQL API, resolving data from the Neo4j database, and
returning it to the client for rendering the results in an updated view of the user interface.
This comprehensive process ensures seamless data retrieval and visualization, providing
users with relevant and timely information on air quality and pollutant levels within the
specified geographical area.

Future Internet 2023, 15, x FOR PEER REVIEW 22 of 41

GraphQL API

Response

Apollo
Client

Request

Vue.js

Apollo
Server Cypher

Figure 8. Request environmental data retrieval, through the full-stack GraphQL implementation.

3.7.3. Computing Shortest Paths Based on Air Pollution Data with GraphQL Mutation
After acquiring the environmental data from the stations, users are prompted to in-

teract with the application map and input the geographical locations of their starting point
and destination, enabling the application to compute the recommended route. In this as-
pect of the application, a GraphQL query of the mutation type was employed since it en-
ables the writing of new data to the database. The query accepts six lists as parameters
(Figure 9), which include the names of air pollutants, suspended particles, verbal air qual-
ity indicators, permissible air quality indicators, as well as the geographical starting and
ending points of the route. The query response returns a list of geospatial data points cor-
responding to the stations comprising the suggested route.

Figure 9. GraphQL mutation parameters.

The route is determined by computing the AQI of all stations located within the
broader geographical vicinity of the points of interest. The results are filtered to only retain
the stations with an index corresponding to the following levels: Good, Fair, Moderate,
and Poor. Following this, the query computes the kilometer distance between all potential
combinations of stations, sorts these results in ascending order, and separately yields a
dataset containing the four nearest nodes for each station.

Subsequently, the query creates new weighted hasNeighbor semantic relationships be-
tween the filtered nodes within the database; these relationships are based on the calcu-
lated distances. This process results in the creation of a graph of interconnected stations,
which is subsequently used to compute the shortest “Green Route”—the series of points

Figure 8. Request environmental data retrieval, through the full-stack GraphQL implementation.

3.7.3. Computing Shortest Paths Based on Air Pollution Data with GraphQL Mutation

After acquiring the environmental data from the stations, users are prompted to
interact with the application map and input the geographical locations of their starting
point and destination, enabling the application to compute the recommended route. In this
aspect of the application, a GraphQL query of the mutation type was employed since it
enables the writing of new data to the database. The query accepts six lists as parameters
(Figure 9), which include the names of air pollutants, suspended particles, verbal air quality
indicators, permissible air quality indicators, as well as the geographical starting and

Future Internet 2023, 15, 276 21 of 38

ending points of the route. The query response returns a list of geospatial data points
corresponding to the stations comprising the suggested route.

Future Internet 2023, 15, x FOR PEER REVIEW 22 of 41

GraphQL API

Response

Apollo
Client

Request

Vue.js

Apollo
Server Cypher

Figure 8. Request environmental data retrieval, through the full-stack GraphQL implementation.

3.7.3. Computing Shortest Paths Based on Air Pollution Data with GraphQL Mutation
After acquiring the environmental data from the stations, users are prompted to in-

teract with the application map and input the geographical locations of their starting point
and destination, enabling the application to compute the recommended route. In this as-
pect of the application, a GraphQL query of the mutation type was employed since it en-
ables the writing of new data to the database. The query accepts six lists as parameters
(Figure 9), which include the names of air pollutants, suspended particles, verbal air qual-
ity indicators, permissible air quality indicators, as well as the geographical starting and
ending points of the route. The query response returns a list of geospatial data points cor-
responding to the stations comprising the suggested route.

Figure 9. GraphQL mutation parameters.

The route is determined by computing the AQI of all stations located within the
broader geographical vicinity of the points of interest. The results are filtered to only retain
the stations with an index corresponding to the following levels: Good, Fair, Moderate,
and Poor. Following this, the query computes the kilometer distance between all potential
combinations of stations, sorts these results in ascending order, and separately yields a
dataset containing the four nearest nodes for each station.

Subsequently, the query creates new weighted hasNeighbor semantic relationships be-
tween the filtered nodes within the database; these relationships are based on the calcu-
lated distances. This process results in the creation of a graph of interconnected stations,
which is subsequently used to compute the shortest “Green Route”—the series of points

Figure 9. GraphQL mutation parameters.

The route is determined by computing the AQI of all stations located within the
broader geographical vicinity of the points of interest. The results are filtered to only retain
the stations with an index corresponding to the following levels: Good, Fair, Moderate,
and Poor. Following this, the query computes the kilometer distance between all potential
combinations of stations, sorts these results in ascending order, and separately yields a
dataset containing the four nearest nodes for each station.

Subsequently, the query creates new weighted hasNeighbor semantic relationships
between the filtered nodes within the database; these relationships are based on the calcu-
lated distances. This process results in the creation of a graph of interconnected stations,
which is subsequently used to compute the shortest “Green Route”—the series of points
the user will traverse en route to their destination (Figure 10). The weight assigned to the
relationships is determined by the calculated distance between the nodes [43].

Future Internet 2023, 15, x FOR PEER REVIEW 23 of 41

the user will traverse en route to their destination (Figure 10). The weight assigned to the
relationships is determined by the calculated distance between the nodes [43].

Figure 10. Graph of interconnected nodes with hasNeighbor relations.

It is crucial to highlight that the Cypher code initially incorporates the capability to
delete any pre-existing hasNeighbor relationships between entities. This facilitates the for-
mation of new hasNeighbor relationships each time the query is run. This approach guar-
antees the generation of new “Green Route” search graphs, reflecting the most up-to-date
environmental data from the stations.

In summary, the query computes the nearest nodes to user-defined starting and end-
ing points (start_node, end_node) within the graph. It uses Dijkstra’s algorithm through
the shortestPath function in Cypher to determine the shortest path between these nodes
[44,45], which are connected by the hasNeighbor relation. The maximum distance allowed
between the given starting and ending nodes is set to 15 hops. A succession index is com-
puted for each node in the path, beginning with the start_node. The query ultimately re-
turns a list of nodes in the path, comprising the name, latitude, longitude, and marker on
the path, ordered by the node marker (Figure 11).

Figure 10. Graph of interconnected nodes with hasNeighbor relations.

Future Internet 2023, 15, 276 22 of 38

It is crucial to highlight that the Cypher code initially incorporates the capability
to delete any pre-existing hasNeighbor relationships between entities. This facilitates the
formation of new hasNeighbor relationships each time the query is run. This approach
guarantees the generation of new “Green Route” search graphs, reflecting the most up-to-
date environmental data from the stations.

In summary, the query computes the nearest nodes to user-defined starting and ending
points (start_node, end_node) within the graph. It uses Dijkstra’s algorithm through the
shortestPath function in Cypher to determine the shortest path between these nodes [44,45],
which are connected by the hasNeighbor relation. The maximum distance allowed between
the given starting and ending nodes is set to 15 hops. A succession index is computed for
each node in the path, beginning with the start_node. The query ultimately returns a list
of nodes in the path, comprising the name, latitude, longitude, and marker on the path,
ordered by the node marker (Figure 11).

Future Internet 2023, 15, x FOR PEER REVIEW 24 of 41

Figure 11. GraphGL mutation example response.

3.7.4. “Green Route” Application Front-End
Various software technologies were combined to create a web application that pre-

sents an interactive map with routing functionality. The front-end of the developed appli-
cation is a Single Page Application (SPA), a web application that dynamically updates the
content of the current page through user interactions rather than loading entire new
pages. This specific application consists of an HTML file, which serves as the central body
of the application, while its content dynamically changes by modifying the Document Ob-
ject Model (DOM). The Vue.js framework was employed for the visual component of the
front-end application. Bootstrap was also used to design and build the front-end visual
layout, guaranteeing dynamic content responsiveness on mobile devices.

The Leaflet library, an open-source JavaScript library for creating interactive web ap-
plication maps, was utilized alongside Vue.js. The capabilities of Leaflet were exploited to
generate customized markers, pop-ups, and other features, enhancing the user experience
of the application. Furthermore, the broad compatibility of Leaflet with various mapping
providers, including OpenStreetMap, Google Maps, and Mapbox, provided flexibility and
variety in terms of mapping resources. Additionally, the Leaflet-Routing-Machine (LRM)
plugin, which adds routing capabilities to maps, was used. This plugin is instrumental in
integrating turn-by-turn directions into the application’s maps, facilitating navigation
with options for various modes of transportation, waypoints, and custom markers. This
plugin was employed to identify and display the suggested “Green Route” on the map.

Finally, Mapbox, a JavaScript library for creating vector maps, was another tool used
in developing the web application. The utilization of Mapbox GL, which is constructed on
WebGL, a JavaScript API designed for interactive 3D and 2D graphic rendering, offered a
high-performance and highly customizable geomap rendering experience integral to the
application’s functionality.

Upon starting the application, a GraphQL query submission to the database is initi-
ated to retrieve the environmental data from observation stations within the geographical
area displayed on the map. The query returns all concentration values and individual air
quality indicators for each pollutant monitored at each station. The overall AQI index of

Figure 11. GraphGL mutation example response.

3.7.4. “Green Route” Application Front-End

Various software technologies were combined to create a web application that presents
an interactive map with routing functionality. The front-end of the developed application
is a Single Page Application (SPA), a web application that dynamically updates the content
of the current page through user interactions rather than loading entire new pages. This
specific application consists of an HTML file, which serves as the central body of the
application, while its content dynamically changes by modifying the Document Object
Model (DOM). The Vue.js framework was employed for the visual component of the front-
end application. Bootstrap was also used to design and build the front-end visual layout,
guaranteeing dynamic content responsiveness on mobile devices.

The Leaflet library, an open-source JavaScript library for creating interactive web
application maps, was utilized alongside Vue.js. The capabilities of Leaflet were exploited
to generate customized markers, pop-ups, and other features, enhancing the user experience
of the application. Furthermore, the broad compatibility of Leaflet with various mapping
providers, including OpenStreetMap, Google Maps, and Mapbox, provided flexibility and
variety in terms of mapping resources. Additionally, the Leaflet-Routing-Machine (LRM)
plugin, which adds routing capabilities to maps, was used. This plugin is instrumental in

Future Internet 2023, 15, 276 23 of 38

integrating turn-by-turn directions into the application’s maps, facilitating navigation with
options for various modes of transportation, waypoints, and custom markers. This plugin
was employed to identify and display the suggested “Green Route” on the map.

Finally, Mapbox, a JavaScript library for creating vector maps, was another tool used in
developing the web application. The utilization of Mapbox GL, which is constructed on
WebGL, a JavaScript API designed for interactive 3D and 2D graphic rendering, offered a
high-performance and highly customizable geomap rendering experience integral to the
application’s functionality.

Upon starting the application, a GraphQL query submission to the database is initiated
to retrieve the environmental data from observation stations within the geographical area
displayed on the map. The query returns all concentration values and individual air quality
indicators for each pollutant monitored at each station. The overall AQI index of each
station within the area is also provided, alongside its geospatial data for representation on
the map. Stations are depicted on the map with geographical markers, the color of which
corresponds to the AQI level (Figure 12).

Future Internet 2023, 15, x FOR PEER REVIEW 25 of 41

each station within the area is also provided, alongside its geospatial data for representa-
tion on the map. Stations are depicted on the map with geographical markers, the color of
which corresponds to the AQI level (Figure 12).

Figure 12. Initial application interface displaying stations returned by the GraphQL query.

Upon selecting a station’s geographical marker, a pop-up window displaying the sta-
tion’s environmental data appears on the screen (Figure 13). The upper section of the win-
dow exhibits the overall AQI of the station, with its corresponding color representation.
Following this, a table presents the calculated pollutant concentrations in µg/m3 and the
associated AQI index for each pollutant. The individual coloring of each pollutant enables
users to discern which pollutants contribute to the formation of the overall AQI index. The
final section provides health-related guidelines and recommendations for both the general
population and sensitive groups. These messages offer advisory information pertaining
to activities that can be undertaken given the current AQI.

Subsequently, the user is provided with the option to input the starting and ending
points of a desired route. The selection of these points is performed by choosing the cor-
responding locations on the map. Upon each selection, a pop-up window emerges,
prompting the user to designate whether the chosen point is the starting or the ending
point. Following each selection, the geographical coordinates of the point are displayed at
the top of the application. Upon clicking the “Calculate Path” button, a Mutation-type
GraphQL query is submitted to the database. The query response yields a list of consecu-
tive geospatial data for the stations, which constitute the proposed route. Subsequently,

Figure 12. Initial application interface displaying stations returned by the GraphQL query.

Upon selecting a station’s geographical marker, a pop-up window displaying the
station’s environmental data appears on the screen (Figure 13). The upper section of the
window exhibits the overall AQI of the station, with its corresponding color representation.

Future Internet 2023, 15, 276 24 of 38

Following this, a table presents the calculated pollutant concentrations in µg/m3 and the
associated AQI index for each pollutant. The individual coloring of each pollutant enables
users to discern which pollutants contribute to the formation of the overall AQI index. The
final section provides health-related guidelines and recommendations for both the general
population and sensitive groups. These messages offer advisory information pertaining to
activities that can be undertaken given the current AQI.

Future Internet 2023, 15, x FOR PEER REVIEW 26 of 41

the Leaflet-Routing-Machine plugin processes the starting point, waypoints, and destina-
tion point, and computes the path. Ultimately, the application exhibits the route on the
map in green, positions geographical markers in blue at the starting and ending points,
and displays a window featuring route navigation instructions (Figure 14).

Figure 13. Examples of station environmental data pop-up windows. Figure 13. Examples of station environmental data pop-up windows.

Subsequently, the user is provided with the option to input the starting and ending
points of a desired route. The selection of these points is performed by choosing the
corresponding locations on the map. Upon each selection, a pop-up window emerges,
prompting the user to designate whether the chosen point is the starting or the ending
point. Following each selection, the geographical coordinates of the point are displayed
at the top of the application. Upon clicking the “Calculate Path” button, a Mutation-type
GraphQL query is submitted to the database. The query response yields a list of consecutive
geospatial data for the stations, which constitute the proposed route. Subsequently, the
Leaflet-Routing-Machine plugin processes the starting point, waypoints, and destination
point, and computes the path. Ultimately, the application exhibits the route on the map
in green, positions geographical markers in blue at the starting and ending points, and
displays a window featuring route navigation instructions (Figure 14).

Future Internet 2023, 15, 276 25 of 38
Future Internet 2023, 15, x FOR PEER REVIEW 27 of 41

Figure 14. Illustration of a proposed “Green Route” on the map.

4. Performance Evaluation
Smart cities face the daunting challenge of managing and processing massive vol-

umes of data produced by IoT devices and open-source platforms. As part of the evalua-
tion of the SEDIA platform, three computational experiments were performed to evaluate
the performance and scalability of the Semantic Layer as well as the retrieval of semantic
data from the database, after a large number of concurrent requests. The experiments were
conducted considering the PoC scenario presented in this study.

In the present evaluation, the system operates within the context of a VMware virtu-
alization environment and is powered by an AMD EPYC 7543 32-Core Processor, of which
a subset of eight cores is specifically allocated to the virtual machine under consideration.
An integral component of this setup is the hierarchical cache memory structure with 256
KB provisioned for L1 data and instruction caches, 4 MB for L2, and a significant 256 MB
for L3 cache, each cache instance being replicated eight times, paralleling the number of
allocated cores. Furthermore, the system is equipped with 16 GB of memory, reinforcing
its potential to handle sizable applications and tasks. Memory access optimization across
the CPU landscape is realized through a single Non-Uniform Memory Access (NUMA)
node configuration.

Within this virtual machine, three Docker containers, each with a discrete function,
are deployed. The initial container hosts the “Green Route” Vue application. The second
container utilizes Apollo Server to execute the GraphQL API. A Neo4j graph database re-
sides in the third container. A virtual network facilitates the intercommunication and data
exchange between these containers, ensuring their isolation and security.

Figure 14. Illustration of a proposed “Green Route” on the map.

4. Performance Evaluation

Smart cities face the daunting challenge of managing and processing massive volumes
of data produced by IoT devices and open-source platforms. As part of the evaluation
of the SEDIA platform, three computational experiments were performed to evaluate the
performance and scalability of the Semantic Layer as well as the retrieval of semantic data
from the database, after a large number of concurrent requests. The experiments were
conducted considering the PoC scenario presented in this study.

In the present evaluation, the system operates within the context of a VMware virtual-
ization environment and is powered by an AMD EPYC 7543 32-Core Processor, of which a
subset of eight cores is specifically allocated to the virtual machine under consideration. An
integral component of this setup is the hierarchical cache memory structure with 256 KB
provisioned for L1 data and instruction caches, 4 MB for L2, and a significant 256 MB
for L3 cache, each cache instance being replicated eight times, paralleling the number of
allocated cores. Furthermore, the system is equipped with 16 GB of memory, reinforcing
its potential to handle sizable applications and tasks. Memory access optimization across
the CPU landscape is realized through a single Non-Uniform Memory Access (NUMA)
node configuration.

Within this virtual machine, three Docker containers, each with a discrete function,
are deployed. The initial container hosts the “Green Route” Vue application. The second
container utilizes Apollo Server to execute the GraphQL API. A Neo4j graph database
resides in the third container. A virtual network facilitates the intercommunication and
data exchange between these containers, ensuring their isolation and security.

Future Internet 2023, 15, 276 26 of 38

Experiment1 aims to study the efficiency and scalability of the Service Layer in the pro-
posed architecture, specifically focusing on the custom service processing MQTT messages
from the IoT Middleware Layer. It measures total time spent on processing, annotating,
and storing these messages in the Neo4j database to understand system performance and
possible scalability issues. Experiment2 explores the performance of a Python service
that uses asyncio for asynchronous operations to retrieve, process, and store data from
open APIs into a Neo4j database. It specifically analyzes the processing time and impacts
of asynchronous handling on the system’s efficiency and effectiveness. Experiment3 is
designed to test the system’s performance under stress, by simultaneously simulating
multiple clients retrieving environmental data from various IoT nodes. The objective is
to understand the system’s capability to handle real-world scenarios with a multitude of
users concurrently fetching data. The sections that follow describe the methodology and
outcomes of these experiments. For increased reliability and robustness of results, each
experiment was conducted 20 times for each scenario investigated.

4.1. Experiment1: Performance Evaluation of MQTT Message Handling

The objective of this experiment is to thoroughly investigate the operational efficiency
and scalability of the Service Layer in the proposed architectural design. Specifically, it
evaluates the custom service responsible for processing MQTT messages received by the IoT
Middleware Layer. This experiment focuses on recording the exact time requirements asso-
ciated with processing received MQTT messages, semantically annotating them, and storing
them in the Neo4j database. A comprehensive evaluation of this process allows for gaining
an insightful understanding of system performance and potential scalability challenges.

This evaluation was achieved using MQTT JMeter plugin [46], a tool specifically
designed for simulating MQTT protocol scenarios. To simulate varying loads of IoT devices
publishing data, a script was created to generate multiple clients, each simulating a unique
IoT device [47]. Each of these MQTT clients was set to publish messages to specific topics
on the open source MQTT broker Mosquitto [48–50], emulating the behavior of a real-world
IoT device sending data updates. The script was executed in Apache JMeter [51]. The
published messages were then received, processed, and written into a Neo4j database.

In the computational experiment assessing the efficiency of an MQTT-based message
processing system, the high-performance results are presented in Table 6. The minimum
processing times showed just a slight decrease between 10 to 15,000 messages. This slight
decline, albeit marginal, underlines the system’s ability to maintain its efficiency under
increased load. One observation regarding the maximum processing times is the system’s
performance when it processes larger quantities of messages, particularly when handling
more than 8000 messages. Even at the upper limit of 2.0881 s for 15,000 messages, the
system demonstrates exceptional adaptability to the sheer volume of incoming data.

Table 6. Experiment1 results: time metrics for processing MQTT messages across different volumes
(measured in seconds).

MQTT Messages Min Max Avg Std.dev

10 0.0043 0.0056 0.0049 0.0005
100 0.0034 0.0107 0.0056 0.0012

1000 0.0034 0.0265 0.0055 0.0030
5000 0.0034 0.0399 0.0056 0.0033
8000 0.0034 2.0453 0.0058 0.0230

10,000 0.0033 2.0643 0.0058 0.0208
15,000 0.0033 2.0881 0.0057 0.0173

When considering the average processing times, they consistently remained low
irrespective of the message quantity, further demonstrating the system’s ability to maintain
efficient message handling operations. The standard deviation values, which quantify the
variation in processing times, progressively increase with the number of messages but

Future Internet 2023, 15, 276 27 of 38

remain relatively low overall. This indicates a high level of consistency in processing times,
ensuring reliable performance.

A critical component of this process, vital to achieving these time metrics, is the utiliza-
tion of a ThreadPoolExecutor. Firstly, it allowed the MQTT clients to concurrently operate,
thereby efficiently utilizing the system’s resources. Each client, or thread, within the Thread-
PoolExecutor’s pool could independently process its incoming messages without blocking
the execution of the other threads. This functionality is particularly vital when dealing with
high-volume, real-time data, such as that from IoT devices, where delays in processing can
result in data loss or inaccurate real-time analysis. Secondly, the ThreadPoolExecutor’s
internal management of the thread life cycle relieved the experiment from the complex task
of manually creating, synchronizing, and terminating threads. By automatically managing
a pool of worker threads, the ThreadPoolExecutor was able to swiftly allocate available
threads to incoming tasks; i.e., processing incoming MQTT messages. Finally, in the context
of the collected time metrics, the ThreadPoolExecutor allowed for the accurate measure-
ment of message processing times within each thread. As each thread independently
processed its messages, the processing time was not influenced by the concurrent execution
of other threads. This aspect allowed the experiment to gather reliable and isolated timing
metrics for each individual processing task.

In summary, the findings from this investigation attest to the system’s scalability,
robustness, and consistency. These favorable characteristics are critical in facilitating
real-time data processing and subsequent database operations, thereby maximizing the
efficiency of IoT-based systems and applications. The system’s ability to maintain high
performance while handling a considerable volume of messages makes it a promising tool
for handling large data streams, a feature becoming increasingly crucial in the rapidly
evolving IoT landscape.

4.2. Experiment2: Performance Evaluation of High Volume HTTP Requests

The second experiment aims to investigate the performance characteristics of a Python-
based service that retrieves data from open sources, processes them, and stores them into
the Neo4j database, using asyncio library for asynchronous operations. The experiment’s
focus is on measuring and analyzing the total time required for processing, annotating, and
storing data from varying numbers of open data source API responses. The main goal of
this experiment is to understand the impact of asynchronous processing on the system’s
efficiency and effectiveness when handling and writing responses into the Neo4j database.

In the experimental setup, a high-performance mocking server was employed, de-
signed in Python using the FastAPI framework [52,53], to simulate high-throughput data
responses. The server was capable of handling substantial concurrent request volumes,
thus simulating scenarios of extreme load. It asynchronously operates, meaning it can
concurrently manage multiple requests without impeding the execution of subsequent
requests, thereby significantly enhancing its capacity to process a high volume of requests.
Each GET request was responded to with a predetermined JSON payload, mimicking real
air pollution data, thus accurately reflecting real open sources. The utilization of a mock
server provided a controlled environment and consistent response data for stress testing,
leading to reliable performance metrics.

In the assessment of the system’s performance, various request-response scenarios
were evaluated. In Table 7, the time taken for processing, formatting, annotating, and
writing data into the Neo4j database is presented. The measurements do not include
the time required for sending requests and receiving responses from the mocking server.
Performance metrics for a system were gathered for request volumes ranging from 1000
to 40,000. Various statistical parameters, including minimum, maximum, average, 95th
percentile, and standard deviation were measured to assess the system’s responsiveness.
This was determined by the elapsed time in seconds between sending a request and
receiving a response.

Future Internet 2023, 15, 276 28 of 38

Table 7. Experiment2 results: time metrics for asynchronous data retrieval and storage in Neo4j
database (measured in seconds).

Responses Min Max Avg 95th Pct Std.dev

1000 0.0200 2.0742 0.0230 0.0225 0.0649
5000 0.0200 2.1069 0.0212 0.0220 0.0295

10,000 0.0195 2.0978 0.0209 0.0219 0.0208
15,000 0.0184 2.0794 0.0202 0.0221 0.0169
20,000 0.0183 2.0939 0.0203 0.0223 0.0147
30,000 0.0185 2.0843 0.0210 0.0243 0.0120
40,000 0.0231 2.1471 0.0254 0.0298 0.0108

For the minimum response times, the system manifested minimal fluctuation, with
values ranging from 0.0183 s to 0.0231 s. As the number of requests escalated from 1000 to
40,000, the system maintained a consistent minimum response time, indicating a robust
capacity to handle requests in a timely manner, irrespective of the load. The maximum
response times demonstrated relative stability, with values marginally varying from 2.0742 s
to 2.1471 s. This suggests that even under heavy load, the system maintained its efficacy in
processing, annotating, and storing the received data.

The consistency of the average response time indicates a consistent level of perfor-
mance across a range of response numbers. It fluctuated between 0.0202 s and 0.0254 s,
indicating the system’s stability under varying load conditions. The 95th percentile re-
sponse times, a crucial metric providing insights about the system’s behavior under peak
load, showed a slight increase as the number of requests escalated, although the incre-
ment was relatively moderate, ranging from 0.0220 s to 0.0298 s. This reflects the system’s
ability to maintain relatively swift processing, annotating, and storing for the majority of
responses, even when under higher loads. The standard deviation progressively reduced as
the number of requests increased. This reduction indicates an improvement in consistency,
leading to a predictably steady response time under varying loads.

Utilizing asyncio, a crucial component of this process, is important for attaining
these time metrics due to its core advantage of facilitating concurrent execution without
the necessity of multithreading or multiprocessing. The execution flow, managed using
coroutines, allows tasks to voluntarily relinquish control during I/O operations, permitting
other tasks to execute, a key characteristic of event-driven programming libraries such as
asyncio. This non-blocking approach to I/O operations can lead to significant performance
improvements, particularly in situations where the system needs to handle a large number
of simultaneous requests, as was the case in the scenarios tested. In the particular case under
discussion, the system was dealing with many network or database I/O operations. The
system was able to concurrently handle many requests, thus effectively utilizing resources
and delivering high performance, as reflected by the low average and 95th percentile
response times.

4.3. Experiment3: Performance Analysis of GraphQL Query Execution on Neo4j

Experiment3 aimed to assess the performance of semantic data retrieval under stress,
by designing and executing a test that simulated multiple clients concurrently accessing
environmental data from various IoT nodes. The synthetic workload was carefully crafted
to imitate real-world situations where a multitude of users might use the application to
simultaneously fetch data.

The experiment was conducted using Apache JMeter [51], an open-source software
designed to load test functional behavior and measure performance. JMeter is particularly
suited to this experiment due to its ability to simulate a heavy load on a server, group of
servers, network, or object to test its strength or analyze overall performance under different
load types. In this context, JMeter’s ability to simulate many different users with concurrent
GraphQL queries was exploited to create a robust and realistic testing environment.

Future Internet 2023, 15, 276 29 of 38

Table 8 provides a comprehensive insight into the performance of a GraphQL server
interfacing a Neo4j database, both running in separate Docker containers within a virtual
network. The parameters evaluated include response times, failure rates, throughput, and
network bandwidth consumption under varying user load conditions.

Table 8. Experiment3 results: performance metrics obtained from a GraphQL query accessing the
Neo4j Database under varying user loads.

GraphQL Query for Environmental Data Retrieval

Executions Response Time (ms) Throughput Network (KB/s)

Users FAIL Error % Min Max Average Transactions/s Received Sent

10 0 0.00% 114 558 160 1.11 0.36 0.38
100 0 0.00% 108 453 125 10.13 3.30 3.48
200 0 0.00% 107 514 128 20.19 6.59 6.94
250 0 0.00% 108 543 134 25.33 8.26 8.71
300 0 0.00% 106 565 137 30.71 10.02 10.56
400 0 0.00% 106 700 144 40.63 13.25 13.97
500 0 0.00% 106 759 157 51.11 16.67 17.57
1000 0 0.00% 105 1058 200 102.29 33.36 35.16
2000 0 0.00% 1484 4832 2879 175.70 57.31 60.40
3000 57 1.90% 1600 107,198 24,471 26.05 9.90 8.79
4000 623 15.57% 4129 95,000 36,884 40.64 31.25 11.79

It designates the number of users.

The performance metrics were observed for user loads ranging from 10 to 4000. For
lower user loads up to 1000, the system demonstrated exceptional resilience and efficiency.
The average response time maintained was under 200 ms. The system also showed a
steady increase in throughput as the user load increased, achieving a peak of approximately
102 transactions per second at 1000 users. This high throughput indicates an efficient use
of resources and well-optimized server and database operations.

A key aspect of system robustness, the failure rate, remained at 0% up to 2000 users,
demonstrating the system’s ability to handle substantial load without compromising the
quality of service. The network metrics, both data sent and received, followed a linear trend,
proportionally increasing with the user load, suggesting stable network performance.

However, beyond 1000 users, the system showed signs of strain. The average response
times dramatically increased, peaking at over 36 s at 4000 users. Concurrently, the failure
rate also began increasing beyond 2000 users, reaching up to 15.57% at 4000 users.

Despite these constraints under high load, it is critical to appreciate the overall perfor-
mance of the GraphQL server and Neo4j setup in individual Docker containers. The system
performance and scalability up to 1000 users are commendable, indicating well-optimized
operations and effective resource utilization within each Docker container.

In conclusion, the successful management of up to 1000 simultaneous users with no
transaction failures, low response times, and a stable network performance showcases the
potential of the adopted architecture. The use of Docker containers allows for process isola-
tion, straightforward setup, reproducibility, and the efficient use of resources, delivering a
high-performance GraphQL server and Neo4j database system for a substantial user load.
These attributes make this architectural approach a promising candidate for developing
scalable, efficient, and reliable data retrieval systems.

5. Related Work

This section briefly presents and discusses some relevant studies that propose the use
of semantic technologies for managing and interpreting sensor data, particularly in the
context of environmental monitoring and smart cities. Most of the papers describe specific
frameworks or systems that implement these technologies. The papers generally address
challenges such as sensor heterogeneity, data quality, real-time processing, and scalability.

Future Internet 2023, 15, 276 30 of 38

A semantic data model for the interpretation of environmental streaming data has
been proposed in a relevant study [54]. The model uses a lightweight ontology approach
to represent IoT data with the Semantic Web, using cross-domain knowledge to map
sensor streaming data and annotation sensors. The proposed data model has several
requirements, including data annotation, sensor and station information, lightweight data
model, reuse domain knowledge, and semantic reasoning. The authors also discussed
possible technological solutions, such as JSON-LD and RDF-Stream, and presented a
conceptual data model. They then described the implementation strategy and prototype
of their proposed model, which includes a set of URIs to identify sensors and sensor data,
and an output of multi-data models that enables service and application.

A system architecture and implementation of an IoT real-time air quality monitoring
system was presented in [55], where semantic annotations were integrated into sensor
stream data for improved interpretation and understanding. The system receives raw
sensor stream data in JSON format from the AQI API and processes it by integrating
semantic annotations based on an ontology. The processed data is then displayed to
users in real-time using an ASP.NET Core Model-View-Controller (MVC) application,
Leaflet, and Apache Cassandra database. The authors also described the technologies
and standards used in the proposed system, such as Spark Streaming, Apache Kafka,
and Open Geospatial Consortium (OGC) standards. Overall, the system presented in
this paper demonstrates the potential of integrating semantic annotations into sensor
stream data for better understanding and decision-making in IoT applications, such as air
quality monitoring.

An integrated system for real-time semantic annotation and interpretation of IoT
sensor stream data, known as IoTSAS, has been proposed [56]. The system architecture
comprises two main components: Real-Time Semantic Annotation (RTSA) and Real-Time
Interpreting Semantically Annotated (RTISA). The system includes six modules: a real-time
processing of integration and interpretation of semantics into sensor stream data module, a
data modeling module, an IoT management metadata module, weather alerts and air qual-
ity monitoring modules, and an APIs for external systems module. To test the performance
of the IoTSAS system, a sensor stream data simulator was developed, which generates
pseudo-random sensor stream data by using the Random C# class in certain ranges de-
fined for each parameter in the metadata module. The IoTSAS system was tested on five
testing phases: unit test, integration test, system test, acceptance test, and performance
testing. Based on the performance testing results, the IoTSAS system processed real time
by annotating with semantics and interpreting the semantic annotations only for 138 s for
1,000,000 sensor observation data, proving the validity of high system performance.

Challenges in achieving interoperability among IoT devices and a proposed solution
leveraging ontologies and machine learning were the focus of another relevant study [57].
The authors argued that the heterogeneity of IoT devices and the lack of a standard
communication protocol between them make it difficult to share data and extract useful
insights from it. To address this issue, they proposed a set of ontologies that can represent
a high-level model of the IoT domain and enable interoperability between connected IoT
systems. The authors used air quality monitoring as a use case to demonstrate how their
proposed approach could work. They proposed a distributed architecture for processing
optimization and collective performance, where a semantic gateway is used for inter-IoT
communication, and two servers are used for data storage, preprocessing, and ontology.
The proposed device model includes features such as time features, location, sensors, and
metrics features. The authors suggested that machine learning models, such as Random
Forest, could be used to extract more insights from the data provided by a single device.
The ontology allows the researchers to gain better insight into the data communicated by
the device, including Air Quality Index insights, as well as providing other insights about
the location, features, and prediction metrics.

An IoT-based platform for environmental data sharing in smart cities, designed ac-
cording to a three-layered IoT architecture, was discussed in [58]. The platform enables

Future Internet 2023, 15, 276 31 of 38

the collection, storage, and processing of data from the city environment at a local region
level, using Fog resources for local processing, and at the city level through services and
resources dynamically deployed in the cloud. The platform uses the concept of adapters
for the seamless integration of heterogeneous sensors and provides functionalities for Fog
and Cloud interfaces to improve flexibility. The Sensor Markup Language (SenML) data
representation format was adopted for compatibility, but the mapping of the Internation-
alized Resource Identifier (IRI) of the sensor is mandatory to reduce message overload
and resource consumption in constrained devices. The platform enables the application
of big data techniques and machine learning on city environmental data and defines the
interrelation of data in a standardized and robust way. The manuscript also proposed
the Environment Indicators Smart City Ontology (EISCO), which covers a broad set of
environmental indicators, making possible the definition of data semantics for Linked Data
Storage, and enabling the extraction of multidomain knowledge.

A Semantic Smart World Framework (SSWF) for constructing a general semantic
big data framework for a smart world was the subject of the work discussed in [59].
The framework includes a universal knowledge base, association rule discovery, Service-
Oriented Architecture (SOA), and the use of semantic RDF standards. The paper presented
a case study of the SSWF to analyze air pollution and weather on migratory birds’ paths,
and the results showed high accuracy in prediction and matching with real data. This
study also revealed a correlation between escalating air pollution levels and changing
weather conditions. Experimental results suggest that the framework offers satisfactory
performance in handling heterogeneous big data.

Another semantic framework that integrates IoT with machine learning techniques
for smart cities was proposed in [60]. The framework leverages an urban knowledge
graph to model and reason regarding city data, and it is designed to handle heterogeneous
and dynamic data streams. The authors presented two use cases to demonstrate the
effectiveness of the proposed framework: pollution detection from vehicles and traffic
pattern analysis. The experiments showed that the framework is scalable and efficient, and
it can provide useful insights for decision-making in smart cities. However, the study also
has some limitations, such as missing data and limited availability of open data, which the
authors plan to address in future work.

Challenges and solutions associated with implementing a semantic data management
system for air quality monitoring in smart cities are the main focus of the OpenSense
project [61]. This project aims to provide transparent access to air quality data by generating
meaningful and semantically understandable data. The paper describes a layered semantic
data management model that adds value to the data through semantic annotations that
describe data cleaning and preprocessing, temporal and spatial aggregations, and event
annotations. The authors believe that this type of deployment can form the basis for a
city-wide infrastructure that enables self-monitoring and self-healing using semantic data
management tools and technologies.

The proposed approach in this study stands out from related works as it provides
a comprehensive platform that covers all stages of data management, from gathering
heterogeneous data to semantic labeling and storage, and from analyzing the data to
presenting the extracted knowledge to users through web applications. Unlike previous
studies, this methodology dynamically creates relationships based on the geographical
distance between entities, resulting in more accurate and relevant results. Additionally, the
system utilizes open data sources and incorporates them into the analysis process, further
enriching the collected data. Overall, this methodology provides a more complete and
effective approach to data collection and analysis, making it a valuable contribution to the
field of geospatial data management.

Table 9 presents a qualitative comparison of the presented semantic integration plat-
forms for smart city applications, including the approach proposed in this study. The
platforms are evaluated based on their semantic data models, annotation capabilities, rea-

Future Internet 2023, 15, 276 32 of 38

soning, real-time processing, dynamic relationships, geographical data handling, machine
learning use, data sources, PoC application, and performance evaluation.

Table 9. Qualitative comparison of semantic integration platforms for Smart City Applications.

Platform Semantic
Data Model 1

Semantic
Annotation

Semantic
Reasoning

Real Time
Processing

Dynamic
Relationships

Geospatial
Data

Machine
Learning Data Sources PoC 2 Perf. Eval. 3 Ref.

Duy
et al.

Semantic
Ontology

(SSN, TIME,
SWEET,
GEO)

4 4 6 6 4 6 IoT 6 None [54]

Sejdiu
et al.

Onto-Core
(SensorML,
O&M, Tans-
duserML)

4 6 4 6 4 6 IoT 6 None [55]

IoTSAS

Onto-Core
(SensorML,

Tans-
duserML,

O&M, SOS,
WNS, SAS,

SPS)

4 6 4 6 4 6 IoT 4 Limited [56]

Noussair
et al.

DeviceModel
(Geonames,
DBpedia)

6 6 6 6 4
Random
Forests IoT 6 None [57]

Rubi
et al.

EISCO
(ENVO,

GCIO, SSN)
6 6 6 6 4 6

IoT, Open
Data 6 Limited [58]

SSFW SCEO
(GEO W3C) 6 4 6 6 4 6

IoT, social
media 6 Limited [59]

Zhang
et al.

Urban
Knowledge

Graph
6 6 6 6 4

Transfer
Learning

IoT,
multimedia

content,
social media,
and crowd-

sourcing

6 Limited [60]

OpenSense OpenSense
(SSN) 4 6 4 6 4 6

IoT crowd-
sourcing 4 None [61]

SEDIA
SEDIA

(SSN, iot-lite,
GeoSPARQL)

4 4 4 4 4 4 6
IoT, Open

Data 4 Extensive this
work

1: Semantic models that were employed in the relevant study are presented in this column. Where the suggested
ontology is specified, its name is given, followed by the collection of semantic standards or ontologies that were
employed in parentheses. 2: The PoC column refers to the comprehensive, detailed account of the PoC, going
beyond a mere overview to provide an in-depth understanding of its functionalities and operations. 3: There are
three distinct levels for the evaluation of performance: ‘Extensive’ which involves rigorous and comprehensive
testing to evaluate performance across multiple parameters; ‘Limited’ which focuses on testing only select features
or under specific conditions; and ‘None’ where no testing is performed. 4: Based on the geographical distance
between entities.

6. Discussion and Future Directions

The rapidly expanding landscape of IoT technology, an integral component of smart
city development, brings forth an unprecedented proliferation of data, marked not only by
its immense volume but also by its striking heterogeneity. As IoT devices, each equipped
with unique sensors and interfaces, continuously generate a wealth of data, they con-
sequently contribute to a flood of information that is as vast as it is diverse. This vast
universe of information is marked by significant format and spatial heterogeneity. Format
heterogeneity arises from the multitude of data types and formats generated by varying
IoT devices. Each device, aligned with its specific functionality and design, produces data
that are fundamentally different in structure and form. Spatial heterogeneity, in contrast,
emerges from the extensive geographical distribution of IoT devices. Data produced reflects
a broad spectrum of local conditions, underscoring the need for sophisticated analytics
capable of comprehending and integrating these diverse datasets. This dual heterogeneity,
while presenting both an opportunity for garnering rich insights and a barrier to seamless
data integration, poses a significant challenge to the effective operation and evolution of
smart cities.

The SEDIA architecture proposed in this paper offers a promising platform for integrat-
ing diverse geographical data that may be utilized across a wide variety of application areas.
The architecture’s components are capable of handling diverse data sources, including
geographical information, and support a semantically enriched data model that facilitates
effective data integration and analysis. The implementation of SEDIA on top of an existing

Future Internet 2023, 15, 276 33 of 38

IoT middleware enhances its services, capitalizes on abstraction levels, and fosters interop-
erability. The PoC smart city application related to air quality monitoring demonstrates the
efficacy of SEDIA in identifying patterns and relationships within the data.

Three computational experiments were performed to evaluate the efficiency and the
potential scalability of the proposed system architecture. The first scrutinized the Service
Layer’s effectiveness in processing MQTT messages from the Middleware Layer. The
overall results of this experiment underscore the system’s scalability, robustness, and
consistency, vital for maximizing the efficiency of IoT-based systems and applications. The
demonstrated high-performance handling of substantial message volume, backed by the
effective use of a ThreadPoolExecutor, bolsters the system’s potential as a tool for managing
large data streams in the rapidly expanding IoT landscape.

The second experiment examined the performance of the Service Layer’s effectiveness
in processing data from open sources through APIs. The experiment demonstrated the sys-
tem’s robust capacity and reliability in managing a significant volume of requests, exhibiting
consistently low response times. The utilization of asyncio library played a crucial role in
achieving these metrics, as its non-blocking approach facilitated the efficient handling of
numerous simultaneous requests. Further research could explore potential enhancements
to maximize response times and reduce variability in response times. Nonetheless, the
current findings reinforce the system’s prowess in managing substantial request volumes
while maintaining consistently satisfactory performance.

The third experiment simulated a scenario of stress performance of semantic data
retrieval from the Semantic Layer with concurrent users accessing environmental data
from various IoT nodes. Despite the constraints under high load, the system’s performance
and scalability of up to 1000 users were laudable, demonstrating the effectiveness of the
Docker-contained GraphQL server and Neo4j setup.

Further optimization could focus on handling higher user loads to enhance scalability
and resilience. In the current research, a virtual environment where three Docker containers
are used, each with a distinct purpose, was considered. The first container runs a “Green
Route” Vue application, offering hosting services. The second container uses an Apollo
server to run the GraphQL API, and the third container hosts a Neo4j graph database. These
containers are connected to each other through a virtual network that facilitates smooth
communication and secure data exchange while maintaining their isolation and security.
For future work, it is suggested to integrate this Docker installation with Kubernetes, load
balancing and replica sets to improve system scalability and resilience, ensuring high avail-
ability under variable load conditions. This integration has the potential to significantly
improve the platforms’ ability to handle increased workloads while maintaining high per-
formance and uptime. Kubernetes can automate the deployment, scaling, and management
of containerized applications. Applying Kubernetes to our existing system can ensure the
seamless operation of Docker containers while automating scaling operations based on
workload and performance metrics, enabling more efficient use of resources [62–64].

In addition, by incorporating load balancing, which refers to evenly distributing
network traffic across multiple servers, this approach can avoid overloading a single
server. This strategy enhances system resilience by helping to evenly distribute work
across containers, thereby increasing overall system performance. Finally, it is intended
to explore the use of ReplicaSets in Kubernetes, which ensures that a certain number
of identical pod versions are running at any time [65]. This approach protects system
availability in the event that a pod or host machine fails. By including multiple copies
of each application component in the Kubernetes configuration, improvements in system
availability, concurrent user handling, and disaster recovery capabilities are expected.
While such integration introduces additional complexity to initial installation and ongoing
maintenance, the expected improvements in user experience and system performance
could provide significant rewards.

Undoubtedly, the incorporation of security protocols into the communication process
introduces additional computational costs, thereby contributing to an increase in overall

Future Internet 2023, 15, 276 34 of 38

processing time overhead. The term ‘overhead’ may refer to multiple aspects, including
additional packet transfers, increased latency, and the system’s ability to efficiently scale.
Our discussion on the overhead of secure data transmission is focused on the utilization of
MQTT with TLS, which was the main mechanism employed in our work. The TLS version
we adopted in our work is TLS 1.3, which has been made more secure and efficient by
removing obsolete and weak security algorithms, and reducing the number of exchanges
needed to complete the handshake. According to a recent study, implementing security
measures such as MQTT with TLS can contribute a significant overhead, leading to a
10–20% increase in mean response time when deploying brokers and clients across a cloud
platform and exchanging MQTT messages using QoS level 0 on a variety of topics [66].
In this scenario, the mean response time ranged from 2 to 12 ms. In another study, the
overheads in IoT systems were examined by comparing the more reliable MQTT and the
less reliable CoAP on an Arduino Uno test-bed. The findings indicate that while MQTT
provides a more reliable infrastructure, it incurs higher power consumption and latency
compared to CoAP [67].

In certain scenarios, specifically in hard real-time applications such as control processes
for smart grids and microgrids (where the maximum permissible response time can be as
low as 100 ms), the overhead imposed by the MQTT + TLS scheme may render it less than
ideal [68]. In an IoT setup, akin to the one employed in this study, which utilized multiple
Arduino Uno devices with WiFi and MQTT + TLS at QoS level 0, the measured processing
time for secure transactions of 5 KB (21 packets) indicated a latency of 140 ms. In contrast,
the latency was a mere 7 ms when security mechanisms were not implemented. Other
schemes such as CoAP + TLS may be more suitable for such stringent latency requirements.
On the other hand, the scalability of the MQTT + TLS scheme, defined as the change in
total response time for a control process as the number of tasks increases, has proven to
be linear compared to the CoAP + TLS scheme which was found to be exponential [68].
This is largely because the TLS security channel in MQTT needs to be established only
once at the beginning, leading to a minimal impact on the response time as the number
of tasks increases. Given the similarities in the IoT devices and security mechanisms used
in our work it is reasonable to assert that despite the inherent overhead, the MQTT + TLS
scheme provides a suitable choice for smart city applications, particularly for soft real-time
scenarios such as the green route example discussed in this paper.

As the present research is focused on scalability in a containerized environment,
the performance implications of operating Docker containers in a virtual machine (VM)
environment must be considered. While containerization offers several benefits such as
portability and ease of deployment, it is essential to consider the impact it may have on
system latency, especially when dealing with cloud-to-edge communications. To assess VM-
based containerization overhead a simple experiment was conducted. In this experiment,
network latency was measured using Netperf’s request/response mode [69]. The client
runs on one host while the server runs on another host, both with Docker and without
Docker for comparison. The client sends 100-byte messages to the server. Upon receipt
of each message, the server immediately responds, creating a round trip. This process
continuously repeats, and the transaction rate, i.e., the number of request/response pairs
completed per second, allows for the calculation of network latency. The findings from
this experiment indicate that the latency of a Docker container running in a VM (0.093 ms)
is 2.5 times higher compared to a non-containerized server (0.037 ms). This is primarily
due to Docker’s use of Network Address Translation (NAT) to manage network ports
and the added virtual device layer created by the VM [70]. Both of these factors result in
extra processing steps, which contribute to increased latency. Future work would benefit
from evaluating the system’s performance by operating containers directly on the bare
metal to avoid virtualization overheads and leveraging modern container technologies
such as Kubernetes.

The performance implications of mapping cloud services to edge nodes require con-
sideration of several crucial factors, including transmission time influenced by distance,

Future Internet 2023, 15, 276 35 of 38

transmission medium, and network traffic, the processing time for data preparation and
server processing, propagation delay, queuing time due to network congestion, encryption
and decryption times for security protocols, communication protocol overhead, container-
related delays, network jitter, and hardware performance of IoT devices and servers. These
factors collectively impact latency in the communication between cloud services and edge
nodes. Detailed performance analysis of the SEDIA platform based on the above factors
will be conducted in the future.

Additionally, as future work, machine learning algorithms can be incorporated into
the Application Layer of SEDIA to further process and analyze the retrieved data. This
can enable the generation of valuable insights, predictions, and recommendations that can
enhance the overall performance and effectiveness of the proposed solution. For example,
machine learning algorithms can be used to predict air quality levels based on historical
data and other environmental factors. Additionally, machine learning can be used to
identify patterns and relationships within the data that may not be immediately apparent,
enabling more effective decision-making and resource allocation. Therefore, incorporating
machine learning algorithms into SEDIA can enhance the platform’s capabilities and enable
more effective monitoring and mitigation of various urban issues.

7. Conclusions

In this paper, we introduced SEDIA, a novel platform designed for data management
and geographical information utilization, specifically tailored for the development of
smart city applications. SEDIA stands out by providing a comprehensive solution that
encompasses the full cycle of data handling: gathering, semantic labeling, storage, analysis,
and presentation. SEDIA places emphasis on semantic enrichment and geographical
relationships, which are not typically at the forefront of similar studies. The platform
utilizes ontology classes and properties to semantically annotate collected data, and the
Neo4j graph database to facilitate the recognition of patterns and relationships within the
data. The PoC smart city application related to air quality monitoring demonstrated the
efficacy of SEDIA in monitoring and mitigating air pollution in urban environments. The
implications of this research are significant, as SEDIA has the potential to be used in a wide
range of smart city applications beyond air quality monitoring, ultimately improving the
quality of life for citizens.

Author Contributions: Conceptualization, C.G.; Methodology, D.L. and C.G.; Software, D.L.; Valida-
tion, D.L. and C.G.; Formal analysis, C.G.; Investigation, D.L. and C.G.; Resources, D.L. and C.G.;
Data curation, C.G.; Writing—original draft, D.L.; Writing—review & editing, C.G.; Visualization,
D.L. and C.G.; Supervision, C.G.; Project administration, C.G.; Funding acquisition, C.G. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by the “Research e-Infrastructure [e-Aegean R&D Network]
Action 1.2 e-Aegean Geospatial data services” project, Code Number MIS 5046494, which is im-
plemented within the framework of the “Regional Excellence” Action of the Operational Program
“Competitiveness, Entrepreneurship and Innovation”. The action was cofunded by the European
Regional Development Fund (ERDF) and the Greek State [Partnership and Cooperation Agreement
2014–2020].

Data Availability Statement: Data will be made available on request.

Acknowledgments: We express our gratitude to our colleagues who have been involved in the
“Research e-Infrastructure [e-Aegean R&D Network] Action 1.2 e-Aegean Geospatial data services”
project for their valuable support throughout the research and development activities presented in
this study.

Conflicts of Interest: The authors declare no conflict of interest.

Future Internet 2023, 15, 276 36 of 38

References
1. Gavalas, D.; Nicopolitidis, P.; Kameas, A.; Goumopoulos, C.; Bellavista, P.; Lambrinos, L.; Guo, B. Smart cities: Recent trends,

methodologies, and applications. Wirel. Commun. Mob. Comput. 2017, 2017, 7090963. [CrossRef]
2. Mahanthappa, S.; Chandavarkar, B.R. Data Formats and Its Research Challenges in IoT: A Survey. In Evolutionary Computing and

Mobile Sustainable Networks; Lecture Notes on Data Engineering and Communications Technologies; Suma, V., Bouhmala, N.,
Wang, H., Eds.; Springer: Singapore, 2021; Volume 53. [CrossRef]

3. Chaturvedi, K.; Kolbe, T.H. Towards establishing cross-platform interoperability for sensors in smart cities. Sensors 2019, 19, 562.
[CrossRef]

4. Pliatsos, A.; Kotis, K.; Goumopoulos, C. A systematic review on semantic interoperability in the IoE-enabled smart cities. Internet
Things 2023, 22, 100754. [CrossRef]

5. Margan, B.; Hakimpour, F.; Saber, M. Linked data geo-statistical analysis of air pollution in urban areas. In Proceedings of the
2018 4th International Conference on Web Research (ICWR), Tehran, Iran, 25–26 April 2018; pp. 86–91. [CrossRef]

6. Pereira, J.; Batista, T.; Cavalcante, E.; Souza, A.; Lopes, F.; Cacho, N. A platform for integrating heterogeneous data and developing
smart city applications. Future Gener. Comput. Syst. 2022, 128, 552–566. [CrossRef]

7. Ahlgren, B.; Hidell, M.; Ngai, E.C.H. Internet of things for smart cities: Interoperability and open data. IEEE Internet Comput.
2016, 20, 52–56. [CrossRef]

8. Kibria, M.G.; Ali, S.; Jarwar, M.A.; Chong, I. A framework to support data interoperability in web objects based IoT environments.
In Proceedings of the 2017 International Conference on Information and Communication Technology Convergence (ICTC), Jeju
Island, Korea, 18–20 October 2017; pp. 29–31. [CrossRef]

9. Nagasundaram, D.; Manickam, S.; Karuppayah, S. Semantic Interoperability Issues and Challenges in IoT: A Brief Review. In
International Conference on Intelligence of Things; Springer International Publishing: Cham, Switzerland, 2022; pp. 16–31. [CrossRef]

10. Gyrard, A.; Zimmermann, A.; Sheth, A. Building IoT-based applications for smart cities: How can ontology catalogs help? IEEE
Internet Things J. 2018, 5, 3978–3990. [CrossRef] [PubMed]

11. Santana, E.F.Z.; Chaves, A.P.; Gerosa, M.A.; Kon, F.; Milojicic, D.S. Software platforms for smart cities: Concepts, requirements,
challenges, and a unified reference architecture. ACM Comput. Surv. 2017, 50, 1–37. [CrossRef]

12. Abadía, J.J.P.; Walther, C.; Osman, A.; Smarsly, K. A systematic survey of Internet of Things frameworks for smart city applications.
Sustain. Cities Soc. 2022, 83, 103949. [CrossRef]

13. 7 Million Premature Deaths Annually Linked to Air Pollution. Available online: https://www.who.int/news/item/25-03-2014-7
-million-premature-deaths-annually-linked-to-air-pollution (accessed on 4 July 2023).

14. Malekafzali, S.; Jozi, S.A.; Kashefiolasl, M.; Zarimdar, M.; Shati, M. Scientometric analysis of health impact assessment of outdoor
air pollution by WHO-AirQ tool (2005–2019). J. Air Pollut. Health 2021, 6, 101–116. [CrossRef]

15. Cromar, K.; Lazrak, N. Risk Communication of Ambient Air Pollution in the WHO European Region: Review of Air Quality
Indexes and Lessons Learned. World Health Organization. Regional Office for Europe. 2023. Available online: https://apps.who.
int/iris/handle/10665/365787 (accessed on 4 July 2023).

16. World Health Organization. WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen
Dioxide, Sulfur Dioxide and Carbon Monoxide. World Health Organization. 2021. Available online: https://apps.who.int/iris/
handle/10665/345329 (accessed on 4 July 2023).

17. Kang, Y.; Aye, L.; Ngo, T.D.; Zhou, J. Performance evaluation of low-cost air quality sensors: A review. Sci. Total Environ. 2022,
818, 151769. [CrossRef]

18. Kortoçi, P.; Motlagh, N.H.; Zaidan, M.A.; Fung, P.L.; Varjonen, S.; Rebeiro-Hargrave, A.; Tarkoma, S. Air pollution exposure
monitoring using portable low-cost air quality sensors. Smart Health 2022, 23, 100241. [CrossRef]

19. AirVisual API. Available online: https://api-docs.iqair.com/ (accessed on 4 July 2023).
20. Air Quality API. Available online: https://api-ninjas.com/api/airquality (accessed on 4 July 2023).
21. Air Pollution API. Available online: https://openweathermap.org/api/air-pollution (accessed on 4 July 2023).
22. Current Air Quality API. Available online: https://www.weatherbit.io/api/airquality-current (accessed on 4 July 2023).
23. Dave, M.; Doshi, J.; Arolkar, H. MQTT-CoAP interconnector: IoT interoperability solution for application layer protocols. In

Proceedings of the 2020 Fourth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC),
Palladam, India, 7–9 October 2020; pp. 122–127. [CrossRef]

24. Jara Ochoa, H.J.; Peña, R.; Ledo Mezquita, Y.; Gonzalez, E.; Camacho-Leon, S. Comparative Analysis of Power Consumption
between MQTT and HTTP Protocols in an IoT Platform Designed and Implemented for Remote Real-Time Monitoring of
Long-Term Cold Chain Transport Operations. Sensors 2023, 23, 4896. [CrossRef] [PubMed]

25. Hattingh, C. Using Asyncio in Python: Understanding Python’s Asynchronous Programming Features; O’ Reilly Media, Inc.: Sebastopol,
CA, USA, 2020.

26. Monteiro, J.; Sá, F.; Bernardino, J. Experimental Evaluation of Graph Databases: JanusGraph, Nebula Graph, Neo4j, and
TigerGraph. Appl. Sci. 2023, 13, 5770. [CrossRef]

27. Kuijpers, J.; Fletcher, G.; Lindaaker, T.; Yakovets, N. Path Indexing in the Cypher Query Pipeline. EDBT 2021, 582–587. [CrossRef]
28. Green, A.; Guagliardo, P.; Libkin, L.; Lindaaker, T.; Marsault, V.; Plantikow, S.; Voigt, H. Updating graph databases with Cypher.

Proc. VLDB Endow. 2019, 12, 2242–2254. [CrossRef]

https://doi.org/10.1155/2017/7090963
https://doi.org/10.1007/978-981-15-5258-8_47
https://doi.org/10.3390/s19030562
https://doi.org/10.1016/j.iot.2023.100754
https://doi.org/10.1109/ICWR.2018.8387242
https://doi.org/10.1016/j.future.2021.10.030
https://doi.org/10.1109/MIC.2016.124
https://doi.org/10.1109/ICTC.2017.8190935
https://doi.org/10.1007/978-3-031-15063-0_2
https://doi.org/10.1109/JIOT.2018.2854278
https://www.ncbi.nlm.nih.gov/pubmed/34734100
https://doi.org/10.1145/3124391
https://doi.org/10.1016/j.scs.2022.103949
https://www.who.int/news/item/25-03-2014-7-million-premature-deaths-annually-linked-to-air-pollution
https://www.who.int/news/item/25-03-2014-7-million-premature-deaths-annually-linked-to-air-pollution
https://doi.org/10.18502/japh.v6i2.7953
https://apps.who.int/iris/handle/10665/365787
https://apps.who.int/iris/handle/10665/365787
https://apps.who.int/iris/handle/10665/345329
https://apps.who.int/iris/handle/10665/345329
https://doi.org/10.1016/j.scitotenv.2021.151769
https://doi.org/10.1016/j.smhl.2021.100241
https://api-docs.iqair.com/
https://api-ninjas.com/api/airquality
https://openweathermap.org/api/air-pollution
https://www.weatherbit.io/api/airquality-current
https://doi.org/10.1109/I-SMAC49090.2020.9243377
https://doi.org/10.3390/s23104896
https://www.ncbi.nlm.nih.gov/pubmed/37430809
https://doi.org/10.3390/app13095770
https://doi.org/10.5441/002/EDBT.2021.68
https://doi.org/10.14778/3352063.3352139

Future Internet 2023, 15, 276 37 of 38

29. Seifer, P.; Härtel, J.; Leinberger, M.; Lämmel, R.; Staab, S. Empirical study on the usage of graph query languages in open source
Java projects. In Proceedings of the 12th ACM SIGPLAN International Conference on Software Language Engineering, Athens,
Greece, 20–22 October 2019; pp. 152–166. [CrossRef]

30. Di Pierro, D.; Ferilli, S.; Redavid, D. LPG-Based Knowledge Graphs: A Survey, a Proposal and Current Trends. Information 2023,
14, 154. [CrossRef]

31. Ferilli, S.; Redavid, D.; Di Pierro, D. LPG-based Ontologies as Schemas for Graph DBs. In Proceedings of the 30th Italian
Symposium on Advanced Database Systems, SEBD, Pisa, Italy, 19–22 June 2022; pp. 19–22. Available online: https://ceur-ws.
org/Vol-3194/paper31.pdf (accessed on 4 July 2023).

32. Ferilli, S. Integration strategy and tool between formal ontology and graph database technology. Electronics 2021, 10, 2616.
[CrossRef]

33. Compton, M.; Barnaghi, P.; Bermudez, L.; Garcia-Castro, R.; Corcho, O.; Cox, S.; Taylor, K. The SSN ontology of the W3C semantic
sensor network incubator group. J. Web Semant. 2012, 17, 25–32. [CrossRef]

34. Bermudez-Edo, M.; Elsaleh, T.; Barnaghi, P.; Taylor, K. IoT-Lite: A lightweight semantic model for the internet of things and its
use with dynamic semantics. Pers. Ubiquitous Comput. 2017, 21, 475–487. [CrossRef]

35. Bermudez-Edo, M.; Elsaleh, T.; Barnaghi, P.; Taylor, K. IoT-Lite: A lightweight semantic model for the Internet of Things. In
Proceedings of the 2016 INTL IEEE Conferences on Ubiquitous Intelligence & Computing, Advanced and Trusted Computing,
Scalable Computing and Communications, Cloud and Big Data Computing, Internet of People, and Smart World Congress,
Toulouse, France, 18–21 July 2016; pp. 90–97. [CrossRef]

36. Battle, R.; Kolas, D. Geosparql: Enabling a geospatial semantic web. Semant. Web J. 2011, 3, 355–370. Available online:
https://www.semantic-web-journal.net/sites/default/files/swj176_1.pdf (accessed on 4 July 2023). [CrossRef]

37. Lawi, A.; Panggabean, B.L.; Yoshida, T. Evaluating graphql and rest api services performance in a massive and intensive accessible
information system. Computers 2021, 10, 138. [CrossRef]

38. Khan, R.; Noor Mian, A. Sustainable IoT sensing applications development through graphQL-based abstraction layer. Electronics
2020, 9, 564. [CrossRef]

39. Hartig, O.; Pérez, J. Semantics and complexity of GraphQL. In Proceedings of the 2018 World Wide Web Conference, Lyon, France,
23–27 April 2018; pp. 1155–1164. [CrossRef]

40. Werbrouck, J.; Senthilvel, M.; Beetz, J.; Bourreau, P.; Van Berlo, L. Semantic query languages for knowledge-based web services in
a construction context. In Proceedings of the 26th International Workshop on Intelligent Computing in Engineering, EG-ICE 2019,
Leuven, Belgium, 30 June–3 July 2019; Volume 2394. Available online: https://ceur-ws.org/Vol-2394/paper03.pdf (accessed on
4 July 2023).

41. Lyon, W. Fullstack GraphQL Applications with GRANDstack Essential Excerpts; Manning Publications: Shelter Island, NY, USA, 2022.
42. Fino, A.; Vichi, F.; Leonardi, C.; Mukhopadhyay, K. An overview of experiences made and tools used to inform the public on

ambient air quality. Atmosphere 2021, 12, 1524. [CrossRef]
43. Erdemir, M.; Göz, F.; Mutlu, A.; Karagoz, P. Comparison of Querying Performance of Neo4j on Graph and Hyper-graph Data

Model. In Proceedings of the KDIR, Vienna, Austria, 17–19 September 2019; pp. 397–404. [CrossRef]
44. Vágner, A. Route planning on GTFS using Neo4j. In Annales Mathematicae et Informaticae; Eszterházy Károly Egyetem Líceum

Kiadó: Eger, Hungary, 2021; Volume 54, pp. 163–179. [CrossRef]
45. Chang, V.; Songala, Y.K.; Xu, Q.A.; Liu, B.S.C. Scientific Data Analysis using Neo4j. In Proceedings of the FEMIB, Online, 24–25

April 2022; pp. 75–84. [CrossRef]
46. MQTT JMeter Plugin. Available online: https://github.com/emqx/mqtt-jmeter/tree/master (accessed on 4 July 2023).
47. Jung, I.H. Design and Implementation of MQTT Load Test System. Turk. J. Comput. Math. Educ. 2021, 12, 564–572. [CrossRef]
48. Mishra, B.; Mishra, B.; Kertesz, A. Stress-testing MQTT brokers: A comparative analysis of performance measurements. Energies

2021, 14, 5817. [CrossRef]
49. Eclipse Mosquitto. Available online: https://mosquitto.org/ (accessed on 4 July 2023).
50. Bender, M.; Kirdan, E.; Pahl, M.O.; Carle, G. Open-source mqtt evaluation. In Proceedings of the 2021 IEEE 18th Annual Consumer

Communications & Networking Conference (CCNC), Las Vegas, NV, USA, 9–12 January 2021; pp. 1–4. [CrossRef]
51. Apache JMeter. Available online: https://jmeter.apache.org/ (accessed on 4 July 2023).
52. Peralta, J.H. Microservice APIs: Using Python, Flask, FastAPI, OpenAPI and More; Manning Publications: Shelter Island, NY, USA, 2023.
53. Tragura, S.J.C. Building Python Microservices with FastAPI: Build Secure, Scalable, and Structured Python Microservices from Design

Concepts to Infrastructure; Packt Publishing: Birmingham, UK, 2022.
54. Duy, T.K.; Quirchmayr, G.; Tjoa, A.; Hanh, H.H. A semantic data model for the interpretion of environmental streaming data. In

Proceedings of the 2017 Seventh International Conference on Information Science and Technology (ICIST), Da Nang, Vietnam,
16–19 April 2017; pp. 376–380. [CrossRef]

55. Sejdiu, B.; Ismaili, F.; Ahmedi, L. A Real-Time Integration of Semantic Annotations into Air Quality Monitoring Sensor Data.
In International Conference on Software Technologies; Springer International Publishing: Cham, Switzerland, 2020; pp. 98–113.
[CrossRef]

56. Sejdiu, B.; Ismaili, F.; Ahmedi, L. IoTSAS: An integrated system for real-time semantic annotation and interpretation of IoT sensor
stream data. Computers 2021, 10, 127. [CrossRef]

https://doi.org/10.1145/3357766.3359541
https://doi.org/10.3390/info14030154
https://ceur-ws.org/Vol-3194/paper31.pdf
https://ceur-ws.org/Vol-3194/paper31.pdf
https://doi.org/10.3390/electronics10212616
https://doi.org/10.1016/j.websem.2012.05.003
https://doi.org/10.1007/s00779-017-1010-8
https://doi.org/10.1109/UIC-ATC-ScalCom-CBDCom-IoP-SmartWorld.2016.0035
https://www.semantic-web-journal.net/sites/default/files/swj176_1.pdf
https://doi.org/10.3233/SW-2012-0065
https://doi.org/10.3390/computers10110138
https://doi.org/10.3390/electronics9040564
https://doi.org/10.1145/3178876.3186014
https://ceur-ws.org/Vol-2394/paper03.pdf
https://doi.org/10.3390/atmos12111524
https://doi.org/10.5220/0008214503970404
https://doi.org/10.33039/AMI.2021.07.001
https://doi.org/10.5220/0011036700003206
https://github.com/emqx/mqtt-jmeter/tree/master
https://doi.org/10.17762/TURCOMAT.V12I6.1994
https://doi.org/10.3390/en14185817
https://mosquitto.org/
https://doi.org/10.1109/CCNC49032.2021.9369499
https://jmeter.apache.org/
https://doi.org/10.1109/ICIST.2017.7926788
https://doi.org/10.1007/978-3-030-83007-6_5
https://doi.org/10.3390/computers10100127

Future Internet 2023, 15, 276 38 of 38

57. Noussair, L.; Fernández Breis, J.T.; Zahir, J.; Mousannif, H. Towards distributed learning in internet of things. Air quality
monitoring use case. In New Trends in Model and Data Engineering: MEDI 2019 International Workshops, DETECT, DSSGA, TRIDENT,
Toulouse, France, October 28–31, 2019; Proceedings 9; Springer International Publishing: Cham, Switzerland, 2019; pp. 154–159.
[CrossRef]

58. Rubí, J.N.S.; de Lira Gondim, P.R. IoT-based platform for environment data sharing in smart cities. Int. J. Commun. Syst. 2021,
34, e4515. [CrossRef]

59. ElDahshan, K.; Elsayed, E.K.; Mancy, H. Semantic smart world framework. Appl. Comput. Intell. Soft Comput. 2020, 2020, 8081578.
[CrossRef]

60. Zhang, N.; Chen, H.; Chen, X.; Chen, J. Semantic framework of internet of things for smart cities: Case studies. Sensors 2016,
16, 1501. [CrossRef]

61. Calbimonte, J.P.; Eberle, J.; Aberer, K. Semantic data layers in air quality monitoring for smarter cities. In Proceedings of the Sixth
Workshop on Semantics for Smarter Cities, Bethlehem, PA, USA, 11–12 October 2015; No. CONF. pp. 3–19. Available online:
https://infoscience.epfl.ch/record/212731 (accessed on 4 July 2023).

62. Kristiani, E.; Yang, C.T.; Huang, C.Y.; Wang, Y.T.; Ko, P.C. The implementation of a cloud-edge computing architecture using
OpenStack and Kubernetes for air quality monitoring application. Mob. Netw. Appl. 2021, 26, 1070–1092. [CrossRef]

63. Ogawa, K.; Kanai, K.; Nakamura, K.; Kanemitsu, H.; Katto, J.; Nakazato, H. IoT device virtualization for efficient resource
utilization in smart city IoT platform. In Proceedings of the 2019 IEEE International Conference on Pervasive Computing and
Communications Workshops (PerCom Workshops), Kyoto, Japan, 11–15 March 2019; pp. 419–422. [CrossRef]

64. Muthanna, M.S.A.; Tselykh, A. Development of Docker and Kubernetes Orchestration Platforms for Industrial Internet of Things
Service Migration. In Proceedings of the 2022 International Conference on Modern Network Technologies (MoNeTec), Moscow,
Russia, 27–29 October 2022; pp. 1–6. [CrossRef]

65. Muralidharan, S.; Yoo, B.; Ko, H. Designing a semantic digital twin model for IoT. In Proceedings of the 2020 IEEE International
Conference on Consumer Electronics (ICCE), Las Vegas, NV, USA, 4–6 January 2020; pp. 1–2. [CrossRef]

66. Liu, Y.; Al-Masri, E. Evaluating the reliability of MQTT with comparative analysis. In Proceedings of the 2021 IEEE 4th
International Conference on Knowledge Innovation and Invention (ICKII), Taichung, Taiwan, 23–25 July 2021; pp. 24–29.
[CrossRef]

67. Safaei, B.; Monazzah, A.M.H.; Bafroei, M.B.; Ejlali, A. Reliability side-effects in Internet of Things application layer protocols. In
Proceedings of the 2017 2nd International Conference on System Reliability and Safety (ICSRS), Milan, Italy, 20–22 December
2017; pp. 207–212. [CrossRef]

68. Kondoro, A.; Dhaou, I.B.; Tenhunen, H.; Mvungi, N. Real time performance analysis of secure IoT protocols for microgrid
communication. Future Gener. Comput. Syst. 2021, 116, 1–12. [CrossRef]

69. Netperf Homepage. Available online: https://hewlettpackard.github.io/netperf/ (accessed on 4 July 2023).
70. Ruan, B.; Huang, H.; Wu, S.; Jin, H. A performance study of containers in cloud environment. In Advances in Services Computing:

10th Asia-Pacific Services Computing Conference, APSCC 2016, Zhangjiajie, China, 16–18 November 2016; Proceedings 10; Springer
International Publishing: Cham, Switzerland, 2016; pp. 343–356. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/978-3-030-32213-7_12
https://doi.org/10.1002/dac.4515
https://doi.org/10.1155/2020/8081578
https://doi.org/10.3390/s16091501
https://infoscience.epfl.ch/record/212731
https://doi.org/10.1007/s11036-020-01620-5
https://doi.org/10.1109/PERCOMW.2019.8730806
https://doi.org/10.1109/MONETEC55448.2022.9960769
https://doi.org/10.1109/ICCE46568.2020.9043088
https://doi.org/10.1109/ICKII51822.2021.9574783
https://doi.org/10.1109/ICSRS.2017.8272822
https://doi.org/10.1016/j.future.2020.09.031
https://hewlettpackard.github.io/netperf/
https://doi.org/10.1007/978-3-319-49178-3_27

	Introduction
	SEDIA Architecture
	Overview and Principles of SEDIA Architecture
	Data Source Layer
	Network Layer
	IoT Middleware Layer
	Service Layer
	Semantic Layer
	Application Layer

	SEDIA Implementation
	Proof of Concept Smart Application
	Data Source Layer
	IoT Devices
	Open Data Sources

	Network Layer
	IoT Middleware Layer
	Service Layer
	Multi-Client MQTT Integration: A Unified Approach for Integrating Real-Time IoT Data
	Asynchronous Data Retrieval: A Custom Service for Concurrent Open Data Source Integration

	Semantic Layer
	Neo4j Graph Data Storage
	Ontology
	Semantic Annotation

	Application Layer
	Utilizing GraphQL API for Improved Application Layer Performance
	Deriving the European Air Quality Index Using GraphQL Query
	Computing Shortest Paths Based on Air Pollution Data with GraphQL Mutation
	“Green Route” Application Front-End

	Performance Evaluation
	Experiment1: Performance Evaluation of MQTT Message Handling
	Experiment2: Performance Evaluation of High Volume HTTP Requests
	Experiment3: Performance Analysis of GraphQL Query Execution on Neo4j

	Related Work
	Discussion and Future Directions
	Conclusions
	References

