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Abstract: Federated Learning (FL) has emerged as a transformative paradigm in machine learning,
enabling decentralized model training across multiple devices while preserving data privacy. How-
ever, the decentralized nature of FL introduces significant security challenges, making it vulnerable to
various attacks targeting models, data, and privacy. This survey provides a comprehensive overview
of the defense strategies against these attacks, categorizing them into data and model defenses
and privacy attacks. We explore pre-aggregation, in-aggregation, and post-aggregation defenses,
highlighting their methodologies and effectiveness. Additionally, the survey delves into advanced
techniques such as homomorphic encryption and differential privacy to safeguard sensitive infor-
mation. The integration of blockchain technology for enhancing security in FL environments is also
discussed, along with incentive mechanisms to promote active participation among clients. Through
this detailed examination, the survey aims to inform and guide future research in developing robust
defense frameworks for FL systems.

Keywords: security; federated learning; attack; defense

1. Introduction

Regarding the Internet of Things (IoT), big data plays a pivotal role, serving as the
lifeblood that fuels innovation and operational efficiency [1,2]. The interconnected network
of devices generates vast amounts of data, offering unprecedented insights into user
behavior, environmental conditions, and operational patterns. This wealth of data enables
organizations to make informed decisions, optimize processes, and enhance services in real
time [3–5]. However, alongside these transformative benefits, the sheer volume of data
generated by IoT devices presents significant challenges. Managing and processing such
enormous datasets can strain traditional server capacities and lead to escalated maintenance
costs [6,7]. Moreover, the transmission of large volumes of data over networks can congest
communication channels, potentially causing delays and reducing the overall system
efficiency. The initial setup costs for robust data servers and infrastructure can also be
prohibitive, especially for smaller enterprises or in resource-constrained environments [8].

Centralized machine learning systems encounter significant security challenges due to
the concentration of data in centralized servers [9–11]. The logistical and financial burdens
of managing vast amounts of data from disparate sources also amplify these concerns [6].
Maintaining the integrity and confidentiality of data becomes paramount as centralized
systems are vulnerable to targeted attacks aimed at breaching server security. Such breaches
not only compromise sensitive information but also jeopardize the entire machine learning
pipeline, leading to potential operational failures [12]. Moreover, the reliance on centralized
communication networks introduces additional vulnerabilities [13]. The data transmitted
over these networks can be intercepted or manipulated, posing risks to data authenticity
and privacy. Furthermore, centralized architectures necessitate robust security measures
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to safeguard against insider threats and unauthorized access attempts, which can exploit
single points of failure within the system [14].

In response to these security challenges, alternative paradigms like FL have gained
traction [15]. FL decentralizes data processing and model training, thereby distributing
the risk associated with data breaches across multiple devices [16,17]. By keeping data
local to where they are generated, FL mitigates the exposure of sensitive information
during transmission and storage [18]. This decentralized approach not only enhances data
security but also reduces the potential impact of security breaches, offering a more resilient
framework for machine learning in IoT and other data-intensive applications [19,20].

FL emerges as a promising solution to the inefficiencies of centralized data systems.
By distributing the model training across decentralized devices while keeping the data
localized, FL addresses the concerns regarding data privacy [20–22] and server failure [20].
Despite its potential, however, FL introduces its own set of security challenges. The
decentralized nature of FL systems can render them vulnerable to various attacks targeting
models, data, and privacy. This paper presents an in-depth survey of the FL techniques
used against data, privacy, and model attacks. Table 1 presents a comparison with the
state-of-the-art surveys. Evidently, some of the presented techniques fail to mention all the
defense frameworks used to defend FL.

Table 1. Comparison of key characteristics and attributes between existing state-of-the-art surveys
and our survey in the field of adversarial attacks on FL.

Ref. AT P BRA R D&R RCS AUA Ho KD SMP TEE SL PG DP BC In

[23] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
[24] ✓ ✗ ✓ ✓ ✓ ✗ ✓ ✓ ✗ ✓ ✓ ✗ ✓ ✓ ✗ ✗
[25] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✗ ✗
[26] ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗
[27] ✓ ✗ ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✗
[28] ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✗
[29] ✓ ✓ ✓ ✗ ✓ ✗ ✓ ✓ ✓ ✗ ✓ ✗ ✗ ✓ ✗ ✗
[20] ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✗ ✗
[30] ✓ ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✓ ✓ ✓ ✗ ✗ ✓ ✗ ✗
[31] ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✗
[18] ✗ ✓ ✓ ✗ ✓ ✗ ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✓
[32] ✗ ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗
[23] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗

Our ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

The main contributions of this paper are as follows:

1. The paper offers an exhaustive overview of the defense mechanisms in FL, catego-
rizing them into pre-aggregation, in-aggregation, and post-aggregation defenses. It
systematically explores how these defenses protect against data, privacy, and model
attacks, making it a critical resource for researchers and practitioners.

2. The paper provides a comparative analysis of the existing surveys, identifying gaps in
the literature. It demonstrates that the previous surveys have not comprehensively
covered all the defense frameworks, thus positioning this paper as a more complete
resource in the domain of FL security.

3. The paper not only reviews the existing defenses but also outlines the critical areas for
future research. It calls for innovations in handling unreliable participants, improving
the energy efficiency in FL, and developing new defense mechanisms that can adapt
to the evolving threat landscape.

4. Recognizing the dynamic nature of the threats in FL environments, the paper stresses
the need for continuous innovation in defense strategies. It advocates for comprehen-
sive strategies that can adapt to new challenges, ensuring the integrity and reliability
of decentralized machine learning systems.
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The remainder of this paper is organized as follows and is presented Figure 1: Section 2
provides an overview of FL. Section 3 discusses the different types of FL. Section 4 offers a
comprehensive overview of the various attacks that can target FL systems, categorizing
them into data, model, and privacy attacks. Section 5 explores the defense strategies
to mitigate these attacks, with an in-depth look at pre-aggregation, in-aggregation, and
post-aggregation defenses. Section 6 presents the defense frameworks against model and
data attacks, while Section 7 focuses on the privacy frameworks. Section 8 discusses the
challenges, Section 9 outlines the future directions, and Section 11 concludes the paper.

Figure 1. Paper distribution.

2. Overview of FL

In FL, the training process involving the coordination of a central server and multiple
client devices (total number of devices N) can be described in five detailed steps depicted in
Figure 2, incorporating mathematical expressions for the aggregation process, local training,
and model sharing [19,33,34]:
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Figure 2. Overview of FL.

2.1. Send Generic Model to Clients

The central server initializes the training process by creating a generic (initial) model
w(0) and sending it to all N client devices. Mathematically, this can be represented as

w(0) → {Client1, Client2, . . . , ClientN} (1)

2.2. Local Model Training

Each client i independently trains the received generic model w(0) on its local dataset
Di. The local training process involves optimizing a local objective function Li(w) using
stochastic gradient descent (SGD) or another optimization algorithm. After E epochs of
local training, the updated model parameters for client i are denoted as w(t)

i :

w(t)
i = w(t−1) − η∇Li(w(t−1)) (2)

where η is the learning rate and t indicates the current round of training.

2.3. Send Local Model to Server

After completing local training, each client i sends its locally updated model parame-
ters w(t)

i to the central server:

{w(t)
1 , w(t)

2 , . . . , w(t)
N } → Server (3)

2.4. Model Aggregation on Server

The central server aggregates the local models received from the clients to form a
single global model w(t). One common method for aggregation is Federated Averaging
(FedAvg), which computes the weighted average of the local model parameters based on
the size of each client’s dataset |Di|:

w(t) =
1
N

N

∑
i=1

|Di|
∑N

j=1 |Dj|
w(t)

i (4)

Alternatively, if we consider equal weighting, the aggregation simplifies to
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w(t) =
1
N

N

∑
i=1

w(t)
i (5)

2.5. Global Model Sharing

Once the aggregation is complete, the central server shares the updated global model
w(t) with all N client devices:

w(t) → {Client1, Client2, . . . , ClientN} (6)

The clients then use this updated global model as the starting point for the next round of
local training, and the process repeats until the model reaches the desired level of accuracy
and performance.

By following the above steps, FL enables collaborative model training across dis-
tributed networks while ensuring data privacy and security, leveraging mathematical
techniques to ensure the integrity and efficiency of the training process.

3. Types of FL

Various types of FL exist, each suited for different applications and scenarios. This
document outlines the primary types of FL, categorized by data partitioning, system
architecture, and operational strategies, as depicted in Figure 3.

Figure 3. Types of FL.

3.1. Categories Based on Data Partitioning
3.1.1. Horizontal Federated Learning (HFL)

Horizontal FL, also known as sample-based FL, occurs when datasets from different
sources share the same feature space but differ in samples [35–38]. It is applicable when
organizations or devices possess data of the same type (i.e., having the same features) but of
different users [39]. For instance, multiple hospitals may collaborate to train a model using
patient records that contain the same set of medical features but from different patients [40].
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Applications

• Healthcare: Collaborative training using patient data from different hospitals.
• Finance: Banks combining transaction records to improve fraud detection models.
• Mobile Devices: Enhancing predictive text models using data from different smartphones.

3.1.2. Vertical Federated Learning (VFL)

Vertical Federated Learning, also known as feature-based FL, involves datasets that
have different feature spaces but share the same sample ID space [41,41]. This scenario
occurs when different organizations or devices hold complementary information about the
same set of entities [42]. For example, one organization may have demographic information
about individuals, while another has purchasing behavior data [43]. By combining these
features, a more comprehensive model can be trained without sharing raw data.

Applications

• Marketing: Combining customer demographic data with purchasing data to improve
recommendation systems.

• Financial Services: Integrating credit scores from one institution with transaction
histories from another to enhance risk assessment models.

3.1.3. Federated Transfer Learning (FTL)

Federated Transfer Learning is used when datasets have different feature spaces and
only partially overlap in sample ID space [44]. This type of FL leverages transfer learning
techniques to transfer knowledge from a source domain (with abundant labeled data)
to a target domain (with limited labeled data) [45]. FTL is useful when collaborating
organizations have different but related data, allowing them to benefit from each other’s
data without direct access.

Applications

• Cross-domain recommendation systems: Using user data from different services to
improve personalized recommendations.

• Cross-organization collaborations: Enhancing machine learning models by leveraging
different feature sets from collaborating organizations.

3.2. Categories Based on System Architecture
3.2.1. Centralized Federated Learning

In Centralized Federated Learning, a central server coordinates the training process.
Clients train local models on their data and send updates to the central server, which aggre-
gates these updates to form a global model. This architecture simplifies the orchestration
and aggregation process but still relies on a central point for coordination.

Applications

• Enterprise environments: Where a central server can manage and coordinate model
updates efficiently.

• Academic collaborations: Coordinated research projects where data are sensitive but
require central oversight.

3.2.2. Decentralized Federated Learning

Decentralized FL eliminates the central server, with clients directly communicating
and sharing model updates with each other [46,47]. This approach enhances resilience and
privacy as there is no single point of failure or central data repository [48,49]. Decentralized
FL requires more complex coordination protocols to manage peer-to-peer communica-
tions [15,50,51].

Applications

• Peer-to-peer networks: Applications in blockchain or decentralized networks where
trust is distributed.
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• Edge computing: IoT devices collaborating directly to update models without a
central server.

3.3. Categories Based on Operational Strategies
3.3.1. Cross-Silo Federated Learning

Cross-Silo FL typically involves a small number of data silos (e.g., organizations or
institutions) with relatively large datasets [52,53]. These silos collaboratively train a model,
ensuring data privacy and security [54]. This type of FL often requires more stable and
reliable communication infrastructure compared to cross-device FL [55].

Applications

• Enterprise collaborations: Multiple companies training a shared model using their
proprietary data.

• Inter-institutional research: Academic institutions combining research data to build
robust predictive models.

3.3.2. Cross-Device FL

Cross-device FL involves a large number of devices (e.g., smartphones and IoT devices)
with relatively small local datasets [45]. This type of FL is characterized by high variability
in device availability, computational power, and network connectivity [56]. Cross-device
FL must handle these challenges efficiently to enable training on a diverse and extensive
network of devices.

Applications

• Mobile applications: Improving user experience on mobile apps by training models
on user behavior data from many devices.

• IoT networks: Enhancing predictive maintenance models using data from various IoT
sensors and devices.

4. Types of Attacks in FL

FL is vulnerable to several types of attacks that can compromise the integrity, confi-
dentiality, and performance of the model. These attacks can be broadly categorized into
data attacks, model attacks, and privacy attacks, as presented in Figure 4. Each of these
attacks affects the Federated Learning process in distinct ways and has cascading effects
throughout the system.

1. Data attack.
2. Model attack.
3. Privacy attack.

Figure 4. Types of attacks in FL.
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4.1. Data Attack

Data attacks in FL aim to corrupt the training data on client devices to influence the
learning process adversely. These attacks can manifest in several forms:

Data Poisoning: Malicious clients inject false or misleading data into their local
datasets [17]. This can skew the model’s training process, leading to a degraded or biased
global model [57]. For example, in an energy forecasting network, an attacker can inject
false data into the forecasting system [58].

Label Flipping: A specific type of data poisoning where the labels of the training data
are intentionally flipped [59,60]. For instance, in an image classification task, images of cats
could be labeled as dogs.

Backdoor Attacks: The attacker modifies the training data to introduce a backdoor
into the model [61]. For example, specific triggers in the input data can cause the model to
output a particular incorrect result.

The impact of data attacks in FL begins with local data corruption at the client level,
where the attacker corrupts the local dataset. These corrupted data then influence the local
model update during the model training phase. Subsequently, the poisoned local model
is sent to the central server for aggregation. At this stage, the central server aggregates
updates from all clients, including the poisoned ones, resulting in a compromised global
model. Finally, this compromised global model is distributed back to all the clients, leading
to degraded performance or backdoor exploitation across the entire system.

4.2. Model Attack

In model attack, malicious clients intentionally manipulate their local model updates
before sending them to the central server [62,63]. The goal of model poisoning is to corrupt
the global model by introducing harmful alterations into the training process. One common
method of model poisoning involves modifying the gradients or parameters of the local
model to push the global model toward incorrect or biased outputs [64].

The impact of model poisoning travels through several stages in the FL process.
Initially, the attack occurs at the client level, where the attacker modifies the local model
updates. These poisoned updates are then transmitted to the central server. During the
model aggregation phase, the central server combines updates from all the clients, including
the malicious ones. Because the server typically lacks the ability to differentiate between
honest and malicious updates, the poisoned updates can significantly influence the global
model. Finally, the compromised global model is redistributed to all the clients, propagating
the effects of the attack throughout the entire FL network.

4.3. Privacy Attacks

Privacy attacks in FL are aimed at extracting sensitive information from the model
updates or the aggregated model itself, thereby compromising the confidentiality of the
training data [65]. Despite the inherent privacy-preserving nature of FL, which keeps raw
data on local devices, these attacks exploit the communication of model updates to infer
details about the data [66,67].

The impact of privacy attacks in FL travels through various stages. Initially, model
updates are transmitted from clients to the central server. During this transmission, at-
tackers intercept and analyze these updates to extract sensitive information. The severity
of the privacy breach depends on the extent to which the attacker can infer details about
the training data. As the extracted information is potentially disseminated, it not only
compromises individual privacy but also undermines trust in the FL system.

5. Defense Frameworks in FL

Given the variety of attacks in FL, it is imperative to deploy a range of defense frame-
works tailored to the specific nature of each attack, considering factors such as device
configurations, FL architecture, and available resources. Each type of attack, including data,
model, and privacy, exploits different vulnerabilities within the FL ecosystem, necessitating
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distinct defensive strategies [68]. For instance, robust data validation and anomaly detec-
tion systems can mitigate data poisoning attacks [69], while secure aggregation protocols
and byzantine fault tolerance mechanisms are more effective against model poisoning [70].
Privacy-preserving techniques, such as differential privacy and homomorphic encryption,
are essential to protect against inference and membership inference attacks. Due to the di-
verse nature of these threats, a one-size-fits-all defense mechanism is impractical. Instead, a
layered defense approach, incorporating multiple frameworks designed to address specific
attack vectors, ensures comprehensive protection and enhances the overall security and
resilience of FL systems [71].

To counter the emerging threats FL, researchers have proposed a variety of defensive
strategies [72–74]. These defense mechanisms address adversarial attacks across distinct
phases of the learning process: pre-aggregation, in-aggregation, and post-aggregation. Pre-
aggregation defenses [72,73,75] focus on early identification and mitigation of malicious up-
dates before they impact the global model. In-aggregation defense techniques [64,74,76–78]
employ robust aggregation operators to mitigate adversarial effects during the global
model update phase. Conversely, post-aggregation defense strategies [79–81] concentrate
on repairing adversarial models after completing the FL training process, ensuring the final
model’s integrity. These phase-specific defense mechanisms are crucial for enhancing the
security and reliability of FL systems against backdoor attacks. The two main categories of
defenses based on attack types are data and model defense, and privacy defense. These de-
fense frameworks can be further categorized based on their working principles, as depicted
in Figure 5.

FL defense strategies

Data and model
defense

Privacy defense

Adversarial 
Training

Model 
Pruning

Byzantine
 Robust

 Aggregation
Techniques

Detect and
 Remove

Robust Client
Selection 

Techniques

Data and 
Update Analysis

Homomorphic
Encryption

Knowledge 
Distillation

Secure 
Multi-party

Computation

Trusted 
Execution

Environments

Split
Learning

Perturbing 
Gradients

Differential
Privacy

Incentivised Blockchain Robust
aggregation

Pre aggregation Post aggregation In aggregation

FL Defense
deployment 

Figure 5. Types of defense strategies.

6. Defenses against Model and Data Attacks

To effectively counter the diverse threats posed by model and data attacks in FL, it
is crucial to implement specialized defense mechanisms. The upcoming subsections will
explore various strategies designed to detect and mitigate these attacks. We will discuss the
methods employed to identify and remove malicious updates, enhance robustness through
anomaly detection, and leverage secure aggregation techniques to ensure the integrity
of the global model. Each approach addresses different aspects of the attack lifecycle,
providing a comprehensive defense framework for FL systems.
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6.1. Detect and Remove

This method is typically implemented on the server side and focuses on detecting and
removing malicious updates to the model. It involves continuously monitoring incoming
updates from clients and analyzing them for any signs of abnormality or inconsistency.
Suspicious updates that do not conform to the expected pattern of legitimate updates are
flagged. These deviations might be detected through statistical analysis, machine-learning-
based anomaly detection, or by comparing the updates against a baseline of known good
updates. Once identified, these flagged updates are removed from the aggregation process
to prevent them from negatively impacting the model’s performance, thereby ensuring
the integrity and reliability of the FL system. The block diagram of the detect and remove
method is presented in Figure 6.

Figure 6. Visual representation of detect and remove defense strategy.

The defense framework presented in [82], called Local Malicious Factor (LoMar), is
a two-phase algorithm designed to defend against poisoning attacks in FL. In Phase I,
the Malicious Client Factor phase, each remote client update’s maliciousness is scored.
This involves finding the k-nearest neighbors of each update to form a reference set and
using kernel density estimation (KDE) to calculate a “maliciousness factor” F(i) for each
update. In Phase II, the Decision Threshold phase, a threshold is determined to classify
the F(i) scores as clean or malicious. The threshold is derived by combining the theoretical
lower bound for malicious updates and the expected boundary value for clean updates
in a trusted system. By applying this threshold, LoMar effectively identifies and defends
against poisoning attacks in FL.

Similarly, the authors in [83] introduced a defense strategy called FederatedReverse,
which involves reverse engineering, trigger generation, outlier detection, and model repair.
Each participant generates local reverse triggers for each label by finding minimal pertur-
bations that identify samples as specific labels, revealing backdoor triggers. These local
triggers are sent to the central server, which aggregates them into robust global reverse
triggers. The server then detects outliers among these triggers using an absolute median
method, flagging abnormal scores that indicate attacks. If an attack is detected, the global
reverse trigger for the infected label is added to each participant’s training data to “unlearn”
the backdoor influence while preserving the main task accuracy. This approach enhances
the security and reliability of FL systems.

The authors in [84] introduced a defense strategy termed Dynamic Defense Against
Byzantine Attacks (DDaBA). The framework operates by dynamically deciding which client
updates to aggregate and which to discard, specifically targeting potentially adversarial
clients attempting to poison the model. Central to DDaBA is the use of an Induced
Ordered Weighted Averaging (IOWA) operator for aggregation. This operator assigns
weights to client contributions based on their performance on a validation dataset, ordering
the clients from best to worst. A linguistic quantifier adjusts these weights dynamically,
leveraging statistical outlier detection to identify and exclude potential adversarial clients.
By adapting weights based on performance discrepancies modeled as an exponential
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distribution, DDaBA effectively filters out adversarial influences while improving the
overall performance of the FL model.

The SecFedNIDS framework [85] defends FL-based network intrusion detection sys-
tems against poisoning attacks with two main mechanisms. At the model level, it centrally
detects and rejects poisoned local intrusion detection models by selecting critical param-
eters using gradient information and employing the Stochastic Outlier Selection (SOS)
algorithm for real-time anomaly detection among local models. This prevents poisoned
models from influencing the global model. On the client side, SecFedNIDS employs a
data-level defense by identifying and filtering out poisoned traffic data using class path
similarity analysis via Layer-wise Relevance Propagation.

Further, ref. [86] introduced two targeted defense strategies for FL environments.
The first, Defense Against Convergence-Round Attack with Similarity Measurement (PA-
SM), employs a pre-aggregation step to compute an interim model (wrP) before the final
aggregation. By assessing the cosine similarity between wrP and each local model update
(wri), updates with high similarity above a set threshold (e.g., 0.95–0.99) are identified as
potentially malicious and excluded from the aggregation. This prevents backdoor attacks
aiming to manipulate the model convergence. The second strategy, Defense Against Early-
Round Attack with Backdoor Neuron Activation (ACCDR), uses the Data-Free TrojanNet
Detector (DF-TND) to detect backdoor activations. It assesses models based on abnormal
scores derived from comparisons between neuron representations of recovered patterns and
original inputs. Models exceeding a threshold for abnormality are flagged as compromised
and excluded from the aggregation, ensuring that the final model remains robust against
early-round backdoor intrusions.

Another defense framework, called density-based anomaly detection [87], introduces
a density-based algorithm to assess the anomaly scores for each client’s uploaded local
model, marking a model as anomalous if it stands out as denser than its closest neighbors.
An anomaly score is computed based on how isolated a model is compared to its neighbors.
Additionally, the framework proposes dynamically adjusting the weight of each local
model during aggregation based on these anomaly scores.

BAFFLE is a defense framework designed to enhance the security of FL against
backdoor attacks [61]. It operates through a feedback loop mechanism where, during
each training round, a subset of clients independently validate the global model from the
previous round using their private datasets. These clients assess the model for suspicious
behavior by comparing its error rates across different classes with those of previously
accepted “trusted” models. Significant discrepancies in error rates above a set threshold
indicate potential backdoor presence, prompting the clients to vote on the model’s integrity.
The server then aggregates these votes and accepts the model only if the number of
suspicious votes falls below a predefined quorum threshold.

Further, ref. [88] proposed a defense framework for FL against data poisoning attacks.
It utilizes Kernel Principal Component Analysis (KPCA) for the dimensionality reduction of
participant updates to capture data patterns and reduce noise. An algorithm (Algorithm 2)
based on KPCA identifies malicious updates by measuring the deviation from the global
model update. Optionally, K-means clustering may be applied after KPCA, although KPCA
alone proves more effective due to its simplicity. The identified malicious participants are
blacklisted or ignored in future FL rounds to prevent model poisoning. The framework
includes real-time online detection to continuously monitor updates and take immediate
mitigation actions like blacklisting, ensuring ongoing protection during FL training.

The authors in [89] proposed a defense for detecting abnormal samples, including
out-of-distribution and adversarial ones. It derives a generative classifier from a pre-trained
softmax neural model using Gaussian discriminant analysis (GDA), assuming that the class
features follow Gaussian distributions. A confidence score based on Mahalanobis distance
assesses the proximity of test samples to these distributions, gauging their probability den-
sity. Calibration techniques involve adding controlled noise to test samples and combining
confidence scores from multiple layers to improve detection. The framework demonstrates
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robustness under conditions like noisy labels, small training datasets, and minimal hyper-
parameter tuning without out-of-distribution data. It extends beyond anomaly detection to
support class-incremental learning applications, showcasing its broad applicability.

6.2. Adversarial Training

Such defense frameworks are designed for data and model poising attacks. Since data
are controlled by individual devices, these frameworks are placed at each local model. The
working principle of these frameworks is based on teaching the framework identifying
actual and poised data or updates. This is achieved by training the model on adversarial
updates. The block diagram of adversarial training is presented in Figure 7. The authors
in [90] presented the integration of adversarial training into the FL training process. In
each communication round, the server distributes the global model to all the clients. The
clients then train their local version of the model using a mix of real data and adversarial
examples generated from their own private datasets. After training, the clients send both
their regular model updates and the perturbed updates from the adversarial training back
to the server. The server combines these updates—both natural and perturbed—from
all the clients to refine the global model. The goal is that, by averaging the perturbed
updates from various clients, the global model becomes more robust, similar to the effect
of centralized adversarial training. This process is repeated over multiple rounds, with
the clients continually training their local models and the server aggregating the updates,
ultimately resulting in a robust final model.

Figure 7. Visual representation of adversarial training.

The authors in [91] observed a significant decline in model performance when applying
adversarial training directly within an FL setup compared to centralized training. This
drop was due to model drift and non-IID data distribution. To address these issues, they
proposed the FedDynAT framework. FedDynAT builds on FL algorithms like Federated
Averaging (FedAvg) and Federated Curvature (FedCurv) [92] for model aggregation. Each
client uses adversarial training with Projected Gradient Descent (PGD) to create adversarial
examples from their local data. Unlike the traditional methods, FedDynAT employs a
dynamic schedule for local training epochs (E) instead of a fixed number. The schedule
starts with a high initial value (E0) and decreases over communication rounds by a factor γE
every FE rounds, balancing convergence speed and model drift. FedDynAT uses FedCurv
for model aggregation, adding a regularization term to minimize the drift between local
models. The process alternates between local adversarial training with dynamic epochs,
model sharing, and FedCurv aggregation until convergence is reached.

Another framework called Generative Adversarial Label Poisoner (GALP) [93] is
a system to counteract label poisoning attacks in FL. It includes a generator (G) and a
discriminator (D). The generator creates artificial label noise from random inputs, while
the discriminator distinguishes between real and noisy labels. Noisy label classifiers, like
LMNL and Masking, are trained on data poisoned by the generator, effectively “vaccinating”
them against label poisoning attacks. In each round, benign clients send parameters of
their vaccinated classifiers to the server, which aggregates these to update the global model.
Malicious clients then initialize their local models with this global update. Since the update
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includes vaccinated parameters, the malicious models are also vaccinated, reducing the
impact of any local label poisoning attempts. The attacker’s parameters have minimal
effects on the global model. By combining GALP with noisy label classifiers, the framework
ensures that the global model update is resistant to label poisoning attacks in FL.

6.3. Model Pruning

Pruning a neural network is a technique used to enhance the efficiency of the model
by eliminating redundant or insignificant parameters, such as weights, neurons, or entire
layers, without substantially compromising the network’s performance [94]. This process
involves identifying and removing those components that have minimal impacts on the
network’s output, thereby reducing the model’s size and computational complexity [95].
The block diagram of model pruning is presented in Figure 8.

Figure 8. Model pruning.

There are two main types of pruning: structured and unstructured pruning. Structured
pruning involves removing entire structures within the network, such as neurons, filters,
or even layers [96]. This method simplifies the network architecture and leads to more
efficient computation and memory usage as the remaining network can be more easily
optimized for parallel processing and hardware acceleration. In contrast, unstructured
pruning targets individual weights, removing the least important ones based on criteria
such as magnitude [97]. While unstructured pruning can yield a highly sparse network,
it often requires specialized hardware or libraries to fully capitalize on the sparsity as the
remaining network structure is irregular.

Pruning is widely used in FL [98,99] and can significantly enhance the defense of
local models by reducing the attack surface and improving model robustness [100]. By
eliminating redundant or less important weights and neurons, pruning minimizes the
impact of adversarial manipulations [101]. This reduction in model complexity makes
it harder for attackers to inject malicious updates without detection [102]. Additionally,
pruning improves the generalization ability of local models, making them less sensitive to
minor perturbations introduced by attacks [103]. With fewer parameters, pruned models
also reduce communication overhead during parameter sharing, enabling faster and more
secure aggregation processes [17,98]. Punning can be implemented on both the server and
client sides.

6.4. Byzantine Robust Aggregation Techniques

Byzantine robust aggregation techniques in FL are designed to ensure that the global
model can learn effectively even when some clients send malicious updates, either inten-
tionally or due to faults. These techniques aim to mitigate the influence of these byzantine
clients and ensure the integrity and performance of the global model. The block diagram of
byzantine robust aggregation is presented in Figure 9.

One such technique is Krum [77], a robust algorithm for aggregating gradient vectors
in distributed stochastic gradient descent (SGD). Krum selects the vector from clients with
the smallest summed distance to its closest n − f other vectors, where f represents the
maximum number of byzantine clients. This selection ensures that the aggregated vector
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aligns closely with the majority of the correct vectors, minimizing the impact of outliers
or malicious updates. Krum satisfies the (α, f )-Byzantine resilience property, ensuring
that the vector chosen aligns within an angle α of the true gradient direction. Variants like
Multi-Krum combine Krum and averaging to balance resilience against byzantine failures
with convergence speed.

Figure 9. Visual representation of byzantine robust aggregation techniques.

Another approach, the trimmed mean [104], focuses on robust algorithms for dis-
tributed statistical learning in the presence of byzantine failures. It proposes two robust
distributed gradient descent algorithms based on coordinate-wise median and trimmed
mean operations, effectively handling arbitrary messages from byzantine machines. These
algorithms achieve optimal statistical error rates across different loss function scenarios. A
communication-efficient one-round algorithm based on a coordinate-wise median is also
proposed for quadratic loss functions.

The Bulyan algorithm [105] addresses challenges in high-dimensional settings like
neural networks. Bulyan aggregates gradients by majority vote per coordinate, significantly
enhancing robustness and limiting the attacker’s influence to O(1/

√
d). This approach

ensures effective learning under attack scenarios, as validated by both the theoretical
analysis and empirical results.

RLR (Robust Learning Rate) [78] adjusts learning rates dynamically based on the signs
of agent updates to counteract divergences caused by malicious agents with backdoors.
By inverting the learning rate when necessary, RLR effectively reduces backdoor accuracy
while maintaining overall model accuracy better than previous defenses. This approach
enhances the collective impact of updates from honest agents on model predictions for
compromised inputs.

ZeKoC [106] enhances FL’s resilience against poisoning attacks by using MaxMin
initialization and a robust distance metric in K-means clustering. Before aggregation,
the clusters are evaluated with a test dataset to exclude those degrading performance.
This filtering detects and removes adversarial updates from compromised nodes while
aggregating enough nodes for an effective global model.

ShieldFL [107] introduces a defense strategy using secure cosine similarity over en-
crypted gradients to combat model poisoning attacks. It employs a two-trapdoor homo-
morphic encryption scheme to detect poisonous gradients. ShieldFL includes a byzantine-
tolerance aggregation mechanism, ensuring robustness across diverse data distributions. Gra-
dients are weighted by confidence values rather than discarding outliers outright, preserving
privacy and minimizing the influence of malicious gradients on the final model update.

The Adaptive Federated Averaging (AFA) algorithm [108] secures FL against faulty
or malicious client updates with a robust aggregation rule. It detects and discards outlier
updates by comparing their similarity to the median and standard deviation of the aggre-
gated model update. A Bayesian Hidden Markov Model estimates each client’s probability
of providing beneficial updates over iterations, helping to identify and block consistently
malicious clients.
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Similarly, FLTrust [109] introduces a robust framework for FL by establishing a root
of trust through a clean training dataset collected independently by the server. FLTrust
evaluates the trustworthiness of each local update using a “trust score”, determined by
the similarity of its direction to that of the server model update. This approach minimizes
the influence of unreliable client contributions by normalizing the magnitudes of local
updates and computing the final global model update as a weighted average based on the
trust scores.

These byzantine robust aggregation techniques collectively ensure the security and
reliability of FL by addressing the various threats posed by malicious clients.

6.5. Robust Client Selection Techniques

Robust client selection techniques are implemented on the server side to ensure that
only the most dependable and trustworthy clients contribute to the FL process. This
minimizes the likelihood of incorporating malicious updates and helps to maintain the
integrity of the model aggregation process. This process is illustrated in Figure 10.

Figure 10. Visual representation of robust client selection.

Building on this concept, the authors in [110] proposed an ensemble framework to
defend against malicious clients in FL. By training multiple global models using randomly
sampled subsets of clients, this approach mitigates the impact of malicious updates. During
inference, the ensemble model aggregates predictions via majority voting, providing re-
silience against a bounded number of malicious clients. A “certified security level” for each
test example is derived based on the gap between the highest and second-highest label prob-
abilities across the models, indicating robustness. This adaptable defense maintains high
“certified accuracy” against adversarial behaviors, as validated empirically, demonstrating
the importance of secure client selection.

Expanding on the need for diversity and accuracy in client selection, the authors
in [111] introduced the DivFL framework. This approach selects a diverse subset of clients
through submodular maximization to approximate the full gradient with minimal error.
Using a greedy algorithm, DivFL efficiently maximizes a submodular facility location func-
tion to select representative clients. Integrated with FedAvg, DivFL substitutes averaging
over all the clients by aggregating updates only from the selected diverse clients after they
perform local SGD updates on their data. The framework’s convergence analysis shows
that it achieves an O(1/T) convergence rate similar to FedAvg, with an additional error
term dependent on the gradient quality. This ensures effective performance, particularly in
scenarios with non-IID and heterogeneous client data distributions, emphasizing the value
of strategic client selection for robust FL.

Complementing these techniques, FedClean offers a robust defense framework against
parameter poisoning attacks in FL [112]. It employs a reputation-based agent sampling
strategy using Bayesian principles to assign reputation scores, prioritizing agents with
higher reputations for contributing to the global model update. Additionally, FedClean fea-
tures a peer truth-serum-aided hypersphere-based update selection mechanism that utilizes
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a hypersphere classifier and an oracle for distinguishing between honest and malicious
updates. This approach, combined with reputation-based weighted averaging aggregation
and an oracle-driven detection framework, enhances security without compromising model
convergence and performance stability, comparable to FedAvg.

6.6. Data and Update Analysis

This defense strategy can be implemented on both the server and client sides in FL.
On the server side, it focuses on examining aggregated client updates to detect suspicious
patterns or inconsistencies. Techniques such as statistical analysis, outlier detection, and
machine-learning-based anomaly detection are used to identify potential malicious activ-
ity or data manipulation. On the client side, the approach involves preprocessing data,
conducting data quality checks, validating, and cleaning the data to ensure their integrity
before training. This dual-layered approach helps to maintain the security and reliability
of the FL system by addressing potential threats at multiple points in the data lifecycle.
Clients also verify their local updates before sending them to the server. This framework is
graphically presented in Figure 11.

Figure 11. Visual representation of data and update analysis.

The defense strategy outlined in [113] introduces a proactive security measure named
Siren, aimed at strengthening the resilience of FL systems against byzantine attacks. Siren is
implemented on both the client and server sides. On the client side, each client engages in a
dual process involving training and alarming. Clients reserve a portion of their local dataset
as a test set to assess the performance of the global model. During each communication
round, clients receive the global model weights from the server and compare them against
the performance of their local model on the test dataset. If the global model’s accuracy
exceeds a predefined threshold compared to the local model, the client proceeds with
training using the global model and informs the server that the model is reliable. However,
if the global model’s performance falls below the local model, the client continues using
its local model and alerts the server about a potential issue with the global model. On
the server side, the server gathers these alerts and leverages them to identify suspicious
updates. By consolidating this feedback, the server can recognize patterns and determine
if the global model has been compromised. This enables the server to exclude dubious
updates and uphold the integrity of the FL process.

The defense strategy described in [114], called DeepSight, involves a multi-layered
approach to protect against dynamic backdoor attacks in FL. The first layer is a classification-
based filtering that assesses the homogeneity of a model’s training data using a metric
called “Threshold Exceedings”. This enables deep analysis of individual models to classify
them as benign or suspicious. The second layer employs clustering to group model updates
based on similar training data, separating malicious from benign updates. Techniques like
Division Differences and Normalized Energy Updates characterize the training data. The
third layer combines the classification and clustering results to identify clusters containing
poisoned models, deciding whether to exclude or accept each model update. The fourth
layer enforces constraints on model updates through weight clipping, mitigating attacks
by making any backdoor behavior negligible during aggregation. Finally, the aggregation
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layer minimizes the effect of any remaining weakly trained poisoned models, ensuring their
minimal impact on the overall model aggregation. This multi-layered approach provides
robustness such that, even if one component fails to detect poisoned models, others can
compensate to maintain integrity. By combining these techniques, DeepSight ensures the
integrity and performance of the aggregated model.

The Biscotti framework [115] uses a decentralized peer-to-peer approach with blockchain
technology to enhance the security and privacy of FL. It addresses key vulnerabilities
in FL, such as poisoning and information leakage attacks. Biscotti employs a Proof-of-
Federation consensus protocol where a peer’s contribution determines their role. Consistent
hashing and verifiable random functions prevent Sybil attacks and randomly select peers
for protocol stages. The Multi-Krum algorithm defends against poisoning attacks by
rejecting updates that deviate from the majority. Differential privacy and secure aggregation
protect against information leakage by adding noise to updates and obfuscating individual
updates. The blockchain provides transparency and auditability to verify the training
process integrity. Biscotti achieves decentralization, reducing the risk of a single point
of failure, and enhances robustness against attacks. It scales efficiently with participants
and handles peers joining and leaving. By integrating Multi-Krum, differential privacy,
and secure aggregation, Biscotti offers a multi-layered defense against poisoning and
information leakage attacks, empowering users to control their sensitive information and
enhancing privacy and trust.

The authors introduced FL-Defender [69], a framework designed to counteract tar-
geted poisoning attacks in FL. It engineers robust features by analyzing the last layer
gradients of local model updates and computed cosine similarities to identify gradient di-
rection differences indicative of attacks. Principal Component Analysis (PCA) compresses
the gradient similarity matrix, enhancing attack detection. FL-Defender aggregates these
features into a centroid and measures each worker’s deviation from it, using accumulated
similarities over training rounds to assign long-term trust scores. Updates from workers far
from the centroid receive lower weights during federated averaging. This method, which
focuses on the last layer gradients, was shown to be effective against label flipping and
backdoor attacks across various datasets.

6.7. Blockchain

Blockchain technology plays a crucial role in enhancing security within FL envi-
ronments [116–118]. It serves as a decentralized and immutable ledger that securely
records all the data exchanges and model updates between participating entities, ensuring
transparency and accountability [119]. Smart contracts, which automate tasks like model
aggregation and verification, operate without relying on a central authority [120]. This
decentralized approach mitigates the risk of single points of failure and deters malicious
actors from corrupting the system [49]. By leveraging blockchain, FL safeguards against
threats such as data tampering and adversarial attacks, ensuring the verifiability of contri-
butions and prompt identification of anomalies [121]. This integration significantly bolsters
the security and reliability of collaborative learning environments, addressing the inherent
challenges of transparency and trust in distributed settings. The schematic representation
of this process is shown in Figure 12.

For instance, in the paper by Mao et al. [122], a blockchain-based anomaly detection
framework for FL was proposed to safeguard against model poisoning attacks. Incorporat-
ing a blockchain network enables identification and filtration of malicious or low-quality
local model updates from compromised participants. Updates undergo validation using
datasets and an accuracy threshold before aggregation, ensuring only high-quality contri-
butions impact the model. Moreover, the framework employs incentives to deter malicious
behavior, enhancing anomaly detection and protecting against accuracy compromise.

Similarly, Batool et al. [123] introduced Block-FeST, a blockchain-based federated split
learning framework for anomaly detection. This framework integrates FL and split learn-
ing using Transformers to maintain data privacy and address client resource constraints.
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Blockchain orchestrates FL and split learning processes, ensuring model hash transparency
and immutability. A smart contract on the blockchain coordinates training, generates audit
trails, and prevents tampering, thereby enhancing the anomaly detection efficiency.

Figure 12. Visual representation of blockchain.

Furthermore, Zhang’s work [124] introduced a defense framework for IoT device failure
detection using blockchain-based FL. Blockchain anchors hashed client data, ensuring data
integrity and privacy. Smart contracts incentivize client participation and transparently record
contributions, effectively defending against data leakage and non-participation attacks.

Moreover, Sarhan et al. [125] proposed Hierarchical Blockchain-based Federated
Learning (HBFL) for cyber threat intelligence (CTI) sharing. HBFL employs blockchain to
host global model aggregation and monitor updates, ensuring security and privacy while
facilitating collaborative intrusion detection model training.

6.8. Incentivized Federated Learning (FL)

Incentivized FL is a methodology designed to promote active and constructive partic-
ipation among distributed clients in training machine learning models while upholding
data privacy and fairness standards [126,127]. Unlike traditional FL, where clients like
mobile devices or IoT sensors collaborate to enhance a global model without sharing raw
data, incentivization becomes crucial to motivate effective client contributions [128]. This
approach ensures that all the participants are invested in the collective learning process,
incentivized based on their contributions, which can include model updates, computa-
tional resources, or improvements in data quality [129]. These incentives not only boost
engagement but also cultivate a cooperative environment where the clients are encouraged
to adhere to protocols and perform tasks honestly [48,130]. The structure of the framework
is depicted in Figure 13.

Guo et al. [131] proposed an incentivized FL framework focused on defending against
and managing abnormal clients, essential for enhancing the accuracy and resilience of FL.
This framework typically comprises two critical elements: an abnormal client detection
module and client incentives. The detection module utilizes techniques such as outlier
identification to pinpoint clients exhibiting unusual behavior due to faults or attacks, ensur-
ing that their data updates do not disrupt the global model averages during aggregation.
However, outright rejection of updates from abnormal clients risks losing valuable data and
reducing their engagement. This is where client incentive mechanisms play a crucial role.
These mechanisms encourage continued participation from all clients, including those iden-
tified as abnormal, in the subsequent training rounds. By assigning “credit scores” based
on the client contributions and behaviors, these incentives motivate sustained involvement
and improvement over time, thereby discouraging client dropout and promoting overall
model integrity.
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Figure 13. Visual representation of Incentivized Federated Learning.

The paper by Bai et al. [132] introduced ISPPFL (Incentive Scheme based Privacy-
Preserving Federated Learning), an incentive-based defense framework for avatars in
the metaverse. ISPPFL comprises three key components: (1) a privacy risk auditor that
evaluates various privacy risks in the FL model; (2) a perturbation generation mechanism
that creates perturbed samples using adversarial algorithms to enhance robustness against
privacy attacks; and (3) an adaptive incentive mechanism that dynamically adjusts the
intensity of noise generation based on the privacy risk indicator, model accuracy, and
the accuracy difference between consecutive training epochs. This adaptive incentive
mechanism aims to balance privacy protection and model performance. By integrating
these components, ISPPFL effectively defends against privacy attacks such as Source
Inference Attacks (SIAs) in Horizontal FL and Label Inference Attacks (LIAs) in Vertical FL
while maintaining model accuracy. The framework is flexible and adaptable to different
types of privacy risks and defense mechanisms in the metaverse context.

6.9. Regularization

Regularization serves as a defensive strategy in FL, safeguarding both the server and
client sides against data and model poisoning attacks. On the server side, regularization
is applied during the aggregation of model updates to prevent overfitting and improve
model generalization. Techniques such as L1 and L2 regularization introduce penalty
terms in the loss function during training, which helps to control the complexity of the
shared model and ensures robust pattern learning from local data [133,134]. On the client
side, participants implement regularization methods like dropout, batch normalization, or
weight decay during their training processes [135,136]. These techniques help to prevent
overfitting on local data, enhancing the overall robustness and resilience of the FL system.
A diagrammatic overview of the process is provided in Figure 14.

Figure 14. Visual representation of regularization.

The work by Jiang et al. [137] introduced a defense framework named Local Self-
Regularization (LSR) to address the challenge of training on noisy labeled data in FL
while maintaining data privacy. LSR focuses on regularizing the local training process on
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each client through two main components. First, implicit regularization employs MixUp
prediction to boost the model’s discrimination confidence and prevent it from memorizing
noisy labels. Second, explicit regularization uses self-knowledge distillation to minimize the
discrepancy between the model outputs of original and augmented instances of the same
sample. This method leverages data augmentation to gain additional supervision without
needing an auxiliary clean dataset or compromising FL’s privacy principles. By applying
these regularization techniques locally, LSR aims to mitigate the performance degradation
caused by noisy labels in FL environments. The authors validate the effectiveness of their
approach with experiments on benchmark datasets and illustrate its potential to integrate
with existing state-of-the-art methods for further performance enhancements.

Similarly, Chen et al. [138] introduced Contractible Regularization (ConTre), a defense
framework for FL designed to address the challenges of non-IID data, especially in image
classification tasks. ConTre works by regularizing the latent space of local models to
prevent them from prematurely converging to suboptimal local optima. It achieves this
by projecting input images into a latent space and using a contrastive-learning-based
regularizer to differentiate between images of the same class while clustering images from
different classes. ConTre can be easily integrated into existing FL frameworks without
additional parameters and gradually reduces its influence during training to avoid potential
side effects as the process converges. The authors demonstrate that ConTre significantly
enhances the performance of various FL methods on both natural and medical image
datasets under non-IID conditions. It also accelerates convergence, allowing models to reach
the target accuracy in fewer communication rounds compared to methods without ConTre.

All the above-described defense frameworks are summarized in Table 2.

Table 2. Data and model defense frameworks for FL.

No. Defense Framework Definition Implementation Stage References

1 Detect and Remove
Identifies and eliminates malicious updates or com-
promised clients using anomaly detection or statistical
analysis to protect the global model’s integrity.

Pre-aggregation [61,82–89]

2 Adversarial Training Models are trained using adversarial examples to enhance
robustness against attacks on data and model updates. Pre-aggregation [91,93]

3 Model Pruning
Reduces model size by removing unnecessary param-
eters, making it harder for adversaries to inject mali-
cious updates while improving efficiency.

Pre-aggregation [102,103]

4 Byzantine/Reliable Aggregation Aggregates updates consistent with the majority to
filter out outliers from potentially compromised clients. In-aggregation [77,78,104–109]

5 Robust Client Selection Selects clients based on reliability, reducing the impact
of malicious or unreliable clients on the global model. Pre-aggregation [110–112]

6 Data and Update Analysis
Analyzes local data and model updates to detect incon-
sistencies or suspicious behavior indicative of adver-
sarial attacks.

Pre-aggregation/Post-
aggregation [69,113–115]

7 Blockchain
Adds transparency, immutability, and auditability to
FL using blockchain, preventing tampering and ensur-
ing trustworthy aggregation.

Post-aggregation [122–124]

8 Incentive Federated Learning Rewards client participation, encouraging honest con-
tributions and dissuading malicious actions. Pre-aggregation [131,132]

9 Regularization
Mitigates overfitting by adding constraints to model
updates, improving generalization and reducing vul-
nerabilities to attacks.

Pre-aggregation [137,138]

7. Defenses against Privacy Attacks

Privacy attacks in FL pose significant risks to the confidentiality of sensitive data. To
safeguard against these threats, a variety of defense mechanisms have been developed.
The upcoming subsections will evaluate these strategies, highlighting methods such as
differential privacy, Secure Multi-party Computation, and homomorphic encryption. We
will examine how these techniques protect individual data contributions from inference
and reconstruction attacks, ensuring that privacy is maintained throughout the FL process.
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Each approach offers unique advantages and challenges, contributing to a robust privacy
defense framework for FL systems.

7.1. Homomorphic Encryption

Homomorphic encryption is a cryptographic technique that enables computations
on encrypted data without decryption, crucial for preserving data privacy and security
in FL [139]. In FL systems, homomorphic encryption enables the aggregation of model
updates from multiple participants while keeping individual contributions encrypted [140].
This method ensures that sensitive data remain protected throughout the aggregation
process as computations are performed on ciphertexts rather than plaintexts. By sup-
porting operations like addition and multiplication on encrypted data, FL servers can
derive a global model without accessing raw, sensitive information from participating
clients [141]. This capability is essential for maintaining confidentiality and fostering trust
in FL environments, empowering data owners to collaborate on model training tasks while
retaining control over their information [142]. Figure 15 displays the block representation
of homomorphic encryption.

Figure 15. Visual representation of homomorphic encryption.

For instance, the authors in [143] introduced Vertical Federated Learning (VFL), where
data are partitioned among parties, each holding different features of the same samples. To
safeguard privacy, communications are protected using techniques such as homomorphic
encryption, ensuring that individual gradients or intermediate results remain inaccessible.
The framework addresses privacy threats from attackers attempting to infer private sample
labels from batch-averaged gradients, employing methods like differential privacy and
gradient sparsification. Additionally, a confusional autoencoder (CoAE) is utilized to obscure
true labels with “soft fake labels”, preserving accuracy while concealing sensitive information.

Similarly, the Privacy-Enhancing Federated Learning (PEFL) framework proposed
in [144] emphasizes data privacy and robustness against attacks in federated settings. PEFL
employs homomorphic encryption (HE) to maintain the confidentiality of training data and
local gradients throughout the FL process. Users encrypt their gradient vectors using the
cloud platform’s public key before transmission, ensuring that secure aggregation protocols
can operate within an encrypted domain without revealing individual user data. PEFL
also defends against adversarial poisoning attacks through adaptive federated aggregation
techniques, leveraging coordinate-wise medians to benchmark gradient similarity and miti-
gate the influence of outliers on model training. This approach enhances PEFL’s resilience
against data poisoning attempts, reinforcing the integrity and reliability of collaborative
learning in federated environments.

7.2. Knowledge Distillation

Knowledge distillation (KD) involves transferring knowledge from a large model (the
“teacher”) to a smaller model (the “student”) by training the student to mimic the teacher’s
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predictions [145]. This technique helps to create efficient yet accurate models suitable for
various applications [146]. A visual diagram of the approach is shown in Figure 16.

Figure 16. Visual representation of knowledge distillation.

In FL, KD plays a crucial role in enhancing the model performance by enabling the
creation of efficient student models directly on decentralized devices [147]. A powerful
teacher model, trained either centrally or collaboratively, distills its knowledge to student
models located on individual devices [148,149]. This approach alleviates the computa-
tional burden on edge devices while preserving high accuracy and generalization, thereby
optimizing the overall efficiency of FL systems [150].

FedKD (Federated Knowledge Distillation) [151] further advances privacy preserva-
tion by focusing on the exchange of updates from smaller “mentee” models instead of
transmitting full, large mentor models. This approach significantly reduces the volume of
information shared, thereby minimizing potential privacy risks. Moreover, FedKD employs
gradient encryption before uploading the local gradients to the server, ensuring that the
sensitive patterns within the gradients are obscured and protected. Gradient compression
using techniques like Singular Value Decomposition (SVD) also contributes to minimizing
sensitive information leakage. FedKD dynamically adjusts compression precision, prioritiz-
ing higher precision during convergence when gradients contain less private information.
This holistic approach in FedKD ensures robust privacy preservation while maintaining
effective model performance.

Additionally, the FEDGEN framework [152] emphasizes privacy by focusing on learn-
ing a generator model solely from the prediction layers of the local user models, thereby
avoiding direct access to private input data. By sharing only prediction layers rather than
entire models, FEDGEN reduces privacy risks as the prediction layers contain less informa-
tion about the underlying private training data. The generator model in FEDGEN operates
within a compact latent space, significantly less information-dense than high-dimensional
input spaces, further minimizing the information shared and lowering the privacy breach
risks. An extended version of FEDGEN retains the feature extraction layers locally while
sharing only prediction layers, reducing the communication overhead and enhancing the
privacy protection by keeping sensitive data securely on local devices.

Similarly, the FedFTG framework [153] innovatively enhances privacy through data-
free knowledge distillation. FedFTG uses pseudo-data generated by models instead of
real client data, ensuring that the actual data are never transmitted, thus preserving user
privacy. The pseudo-data capture only high-level patterns and cannot reconstruct the
original training samples, safeguarding the individual client data attributes. This method
effectively keeps real data local and private, mitigating privacy breach risks.

7.3. Secure Multi-Party Computation

Secure Multi-party Computation (SMPC) allows multiple parties to collaboratively
compute a function on their individual inputs while ensuring the confidentiality of personal
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information [154,155]. This technique plays a critical role in maintaining data privacy across
applications such as financial transactions, healthcare analytics, and decentralized decision-
making processes [156]. By enabling computations without disclosing sensitive data, SMPC
ensures that information remains protected throughout distributed networks. A graphical
representation of the process is illustrated in Figure 17.

Figure 17. Visual representation of Secure Multi-party Computation.

Augmented Multi-party Computation (AMPC), introduced by Zhang et al. [157],
enhances privacy in FL. AMPC aims to safeguard local training data and models from
other participants and the central server, assuming the server is “honest-but-curious”.
Utilizing MPC, AMPC distributes local models into secret shares, with public shares for the
server and private shares locally, thereby preventing gradient leakage and enhancing the
overall security.

Additionally, Mugunthan et al. [158] explored privacy in FL by combining secure MPC
with differential privacy. Their protocol allows clients to securely compute the weighted
averages of local model updates while keeping their data and model weights confidential
from the server. To counter collusion risks among clients, the protocol integrates differential
privacy mechanisms that mask the individual weights and maintain the privacy of the
aggregated results through noise addition.

Byrd et al. used a similar approach of combining differential privacy and MPC to
protect participant privacy in FL [159]. Differential privacy adds noise to model weights
to protect against information disclosure, while MPC encrypts weights using shared val-
ues between client pairs. This dual-layered defense ensures that even colluding clients
receive only noisy approximations, strengthening the privacy defenses in FL scenarios.
These methodologies collectively advance the privacy protections necessary for secure
collaborative computations in distributed environments.

7.4. Split Learning

Split learning divides the machine learning model between the client and server,
ensuring that sensitive data remain on the client side while enabling distributed model
updates [160,161]. This approach protects against attacks aiming to steal or analyze private
information by minimizing data exposure during model updates [162,163]. By keeping
data decentralized, split learning not only enhances privacy but also facilitates collaborative
model training across distributed networks [164]. Figure 18 presents the block schematic of
split learning.

For instance, SplitLearn [165] enhances model privacy through distributed training
mechanisms. It partitions the neural network model between clients and servers, ensuring
that no single entity can access the complete model. During training, only intermediate
representations such as activations and gradients are exchanged, preventing the reconstruc-
tion of the entire model from any single source. This decentralized approach supports
flexible deployment options based on trust levels among the participants, maintaining
robust privacy protections while enabling incremental training by new clients.
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Figure 18. Visual representation of split learning.

Additionally, Federated Split Learning (FSL) [166] addresses security concerns by
focusing on securing intermediate data exchanged during training. It applies privacy-
aware loss functions and integrates differential privacy techniques to add noise, preventing
attackers from reconstructing the original training data. FSL achieves strong accuracy–
privacy trade-offs compared to the traditional methods, underscoring its effectiveness in
protecting sensitive data and ensuring reliable FL processes.

Moreover, Splitfed Learning (SFL) [167] incorporates robust frameworks to safeguard
sensitive information. SFL divides the model between client and server, ensuring that
neither party has access to the complete model parameters, thereby bolstering privacy. It
integrates differential privacy techniques by perturbing the model gradients with calibrated
noise and incorporates PixelDP noise layers to enhance the privacy protections during data
transmission. Together, these approaches fortify the privacy of shared data in FL, providing
robust defense against privacy breaches.

7.5. Perturbing Gradients

Perturbing gradients involves adding random noise to gradients during model train-
ing to protect sensitive data from unauthorized access [168,169]. This technique disrupts
gradient-based attacks used by adversaries to reverse-engineer models or extract confi-
dential information [170,171]. By obscuring the original gradient structure and details,
perturbing gradients makes it challenging for attackers to infer sensitive data or manip-
ulate model parameters, thereby enhancing security in scenarios where data privacy is
paramount [172]. Figure 19 outlines the process block diagram of perturbing gradients.

Figure 19. Visual representation of perturbing gradients.

For example, Liao et al. [173] introduced a privacy framework for over-the-air Feder-
ated Learning (OtA FL) that utilizes spatially correlated additive perturbations to enhance
privacy during wireless transmission of model updates. These perturbations cancel out
at the central server, ensuring strong (ϵ, δ)-differential privacy against eavesdroppers
without compromising the learning accuracy. The framework optimizes the perturbation
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parameters to balance privacy and model convergence, offering robust privacy guarantees
supported by the theoretical analysis and simulations.

Similarly, Wang et al. [174] proposed a privacy framework to combat gradient leakage
attacks in FL. Their approach assesses the information leakage risk across the model layers
and applies local random perturbations to gradients before transmission to the server. This
strategy complicates attackers’ efforts to identify and exploit noisy gradients, bolstering
privacy protection. Global gradient compensation techniques ensure model convergence,
maintaining robust privacy while preserving the learning performance.

In another approach, Sun et al. [175] developed the Soteria framework to address the
privacy risks posed by data representations learned during FL. By perturbing these repre-
sentations before transmission, Soteria minimizes privacy leakage while preserving model
utility. It strategically adds noise to degrade the quality of reconstructed data, ensuring
analytical guarantees on privacy defense and algorithm convergence. The experimental
results demonstrate Soteria’s effectiveness in significantly improving privacy protection
without sacrificing model accuracy.

Additionally, Lee et al. [176] proposed a privacy-preserving framework for FL that inte-
grates a digestive neural network (DgstNN) to transform original data representations. This
transformation maximizes the disparity between the gradients of original and transformed
data, rendering gradients indecipherable to attackers while minimizing classification error.
The framework optimizes privacy–utility trade-offs using predefined parameters, enhanc-
ing the model privacy against inference attacks compared to the traditional differentially
private methods.

7.6. Differential Privacy

Differential privacy [177] provides a robust framework for safeguarding privacy in FL
by injecting random noise into model updates, such as gradients, before they are transmitted
to the central server [178]. This noise, calibrated to the sensitivity of the data, ensures
that individual data points cannot be discerned from the updates, effectively preventing
inference attacks [179]. By maintaining confidentiality regarding data contributions, even
in collaborative learning settings, differential privacy enables a controlled balance between
data privacy and model accuracy. A block illustration of this technique is provided in
Figure 20.

Figure 20. Visual representation of differential privacy.

For example, Wei et al. [177] introduced NbAFL (“noising before model aggregation
FL”), leveraging differential privacy to enhance privacy preservation in FL. Clients perturb
their locally trained model parameters with Gaussian noise before uploading to the server,
ensuring that sensitive information remains obfuscated during transmission. The server
aggregates these noisy parameters into a global model, potentially adding further noise
based on privacy budget constraints. Theoretical analyses validate NbAFL’s differential
privacy guarantees and demonstrate its utility in maintaining model performance across
varying privacy levels and client configurations.

Additionally, Lecuyer et al. [180] applied differential privacy to address adversarial
examples in deep neural networks through PixelDP. By treating each input example as
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a database protected by differential privacy, PixelDP adds noise based on sensitivity at
the neural network layer, thereby ensuring that differential privacy holds for the entire
network’s outputs. This approach provides certified robustness against adversarial attacks,
limiting the impact of minor input changes on the network predictions and bolstering
security in complex real-world datasets.

7.7. Trusted Execution Environments (TEEs)

In FL, Trusted Execution Environments (TEEs) provide secure enclaves within client
devices or servers, ensuring that sensitive model training processes are protected from
tampering or unauthorized access [168]. This security measure is vital in preventing privacy
breaches where adversaries might attempt to intercept or manipulate model updates
exchanged between clients and the central server. By securely executing computations
within TEEs, FL systems safeguard the confidentiality and integrity of participant data,
thereby fostering trust among clients and encouraging greater participation in collaborative
learning tasks [181]. TEEs in FL play a critical role in maintaining the privacy of individual
data contributions while enabling effective and secure collective model training across
distributed networks. The schematic representation of this process is shown in Figure 21.

Figure 21. Visual representation of Trusted Execution Environments (TEEs).

Further, ref. [182] introduces a privacy-preserving FL scheme to defend against causative
attacks using TEEs like Intel SGX. The participants and the aggregation server run their
algorithms within secure TEEs, ensuring the integrity of the local training and global
aggregation processes. The framework includes a training-integrity protocol, implementing
verified programs within TEEs, and employs remote attestation to verify the integrity of
the enclave execution. This setup detects and excludes manipulated gradients, preventing
tampering with the global model and ensuring secure, reliable FL.

Another paper [183] presents Privacy-preserving Federated Learning (PPFL), a defense
framework designed to protect against privacy attacks in FL systems. PPFL utilizes TEEs
on both server and client devices to conceal model and gradient updates, as well as trained
layers, from adversaries, thereby preventing attacks aimed at reconstructing private data
or inferring properties and membership from trained models or gradients. Training is
conducted in a greedy layer-wise manner, with each layer independently trained within
TEEs until convergence, overcoming the memory constraints of TEEs. To defend against
membership inference attacks on the final model, the last layer and its outputs remain
within the client’s TEE after training. Secure communication channels are established
between the server and client TEEs, with data transmission encrypted using keys known
only within the TEEs, ensuring data confidentiality and integrity. Evaluation shows that,
by maintaining the privacy of the training process within TEEs, PPFL effectively mitigates
known attacks like data reconstruction and property inference.

All the above-described privacy frameworks are summarized in Table 3.
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Table 3. Privacy techniques in FL.

No. Defense Framework Definition References

1 Homomorphic encryption A cryptographic technique that enables computation on encrypted data without decryption,
ensuring privacy in FL. [143,144]

2 Knowledge Distillation A method where a smaller “student” model learns from a larger “teacher” model, enabling
privacy-preserving model compression in FL. [151–153]

3 Secure Multi-party Computation A protocol that allows multiple parties to compute a function over their inputs while keeping
those inputs private. [157–159]

4 Split Learning A method where the model is split between client and server, ensuring data remain local
while only intermediate activations are shared. [165–167]

5 Perturbing Gradients A technique that adds noise to gradients before sharing, reducing the risk of exposing
private data in FL. [173–176]

6 Differential Privacy A method that adds calibrated noise to data or gradients to limit the risk of identifying
individuals in FL. [177,180]

7 Trusted Execution Environments Secure hardware components that process data in an isolated, tamper-proof environment,
ensuring confidentiality in FL. [182,183]

8. Discussion

Each of the defense methods discussed has its own advantages and disadvantages
based on the specific scenarios they address, such as data and model poisoning, privacy
attacks, or resource constraints. While some techniques offer robust security measures,
they may also introduce computational or performance trade-offs that require careful
consideration in Federated Learning systems. The advantages and disadvantages of these
techniques are summarized in Table 4.

Table 4. Advantages and disadvantages of defense techniques in Federated Learning.

No. Defense Technique Advantages Disadvantages

1 Detect and Remove Efficient detection of malicious updates using anomaly detection; prevents
poisoned updates from influencing the global model.

Relies on statistical methods, which may struggle with sophisti-
cated attacks.

2 Adversarial Training Enhances model robustness by training on adversarial examples; effective for
defending against data and model poisoning.

Performance degradation in non-IID data distributions, especially
in federated setups.

3 Model Pruning Improves computational efficiency and reduces model size, making it harder
for attackers to insert malicious updates. Potential loss in accuracy if essential parameters are pruned.

4 Byzantine Robust Aggregation Filters out malicious updates by identifying outliers and focusing on majority
consensus.

Computationally intensive, slowing down convergence in large-
scale FL systems.

5 Robust Client Selection Enhances the integrity of the aggregation process by selecting reliable clients,
reducing the impact of malicious ones. May exclude valuable data from legitimate but infrequent clients.

6 Data and Update Analysis Provides comprehensive defense by analyzing both client updates and local
data for consistency.

Requires significant computational resources, slowing the training
process.

7 Homomorphic Encryption Enables computations on encrypted data, protecting sensitive information
during aggregation.

Computationally expensive and slower; challenging for resource-
constrained clients.

8 Knowledge Distillation Reduces the computational load on edge devices while maintaining perfor-
mance by transferring knowledge from larger models. Can introduce information leakage; vulnerable to inference attacks.

9 Secure Multi-Party Computation Enables secure collaborative computation without revealing individual data,
ensuring high privacy. Complex to implement and resource-intensive.

10 Blockchain Integration Adds transparency and immutability to FL, preventing tampering and provid-
ing auditability.

High overhead in terms of computation and storage; not scalable
for large networks.

11 Incentivized Federated Learning Encourages active and honest participation by rewarding clients based on
contributions. Requires careful incentive design to avoid gaming.

12 Regularization Prevents overfitting and improves generalization, especially in environments
with noisy data. Over-regularization can reduce model accuracy.

13 Split Learning Enhances privacy by keeping sensitive data on client devices and only sharing
intermediate representations. Requires sophisticated coordination, which can introduce delays.

14 Perturbing Gradients Protects against gradient-based attacks by adding noise to gradients; ensures
differential privacy.

Too much noise can degrade model performance, requiring careful
tuning.

15 Differential Privacy Provides strong privacy guarantees by adding noise to model updates, protect-
ing individual contributions.

Trade-off between privacy and model utility; too much noise can
reduce accuracy.

16 Trusted Execution Environments
(TEEs)

Ensures integrity and privacy by isolating computation inside secure hardware
enclaves.

Limited memory and high overhead restrict scalability for large
models.
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9. Challenges

Data Privacy Regulations: Adhering to diverse and evolving data privacy regulations
across different regions adds complexity to the implementation of FL. Ensuring compliance
while maintaining the efficiency and effectiveness of FL systems requires continuous
monitoring and adaptation to new legal requirements.

Interoperability: Ensuring seamless interaction between different FL frameworks
and devices from various manufacturers is crucial. The diversity of the devices and
platforms involved in FL creates a complex ecosystem where interoperability can be a
significant challenge. Different devices may use varied hardware configurations, operating
systems, and network protocols, which can complicate the integration process. To achieve
interoperability, the development of standard protocols and interfaces is essential. These
standards should facilitate seamless communication and collaboration between devices and
frameworks regardless of their underlying technologies. For instance, standardized APIs
(Application Programming Interfaces) can enable different FL implementations to exchange
data and model updates efficiently. Additionally, the adoption of common communication
protocols can ensure that devices with varying capabilities can participate in the FL process
without compatibility issues.

Usability and Deployment: Enhancing the adoption of FL systems, particularly in
resource-constrained environments, requires simplifying the deployment and management
processes. The complexity of setting up FL frameworks often acts as a barrier, especially
in environments lacking technical expertise. User-friendly interfaces and automated con-
figuration tools are pivotal in overcoming these challenges. Interfaces like graphical user
interfaces (GUIs) offer intuitive controls and step-by-step guidance, simplifying FL setup
and management. Automated tools adjust the system parameters dynamically based on the
available resources, optimizing efficiency and reducing manual tasks. Comprehensive doc-
umentation and support further assist in troubleshooting, ensuring smoother integration
and wider adoption of FL, thereby maximizing its benefits across diverse environments.

Communication Overhead: The transmission of model updates between clients
and the central server in FL leads to significant communication overhead. This issue
is exacerbated in large-scale deployments where numerous devices participate, causing
delays and potential bottlenecks in the network. Efficient communication protocols and
compression techniques are needed to mitigate these challenges and ensure timely updates
without compromising model performance.

Heterogeneity of Devices: FL involves a variety of devices with different computa-
tional capabilities, network conditions, and data distributions. This heterogeneity can affect
the convergence of the global model and the overall system performance. Developing
adaptive algorithms that can handle such diversity is crucial to maintain the robustness
and effectiveness of FL systems.

Security of Edge Devices: Despite the inherent privacy-preserving nature of FL,
several security and privacy challenges persist. Attacks such as data poisoning, model
poisoning, and inference attacks can compromise the integrity and confidentiality of the
system. Robust defense mechanisms, including differential privacy, homomorphic encryp-
tion, and Secure Multi-party Computation, are essential to protect against these threats.
Additionally, the deployment of Trusted Execution Environments (TEEs) can enhance
security by ensuring that computations are performed in a secure and isolated manner.

Real-Time Adaptation: The dynamic nature of threats in FL necessitates the devel-
opment of real-time adaptive defense mechanisms. These systems should be capable of
detecting and responding to new and evolving attack vectors promptly. Machine learning
techniques can be employed to predict and counteract potential attacks, thereby enhancing
the resilience of FL systems.

Scalability of Defense Mechanisms: As the number of participating devices increases,
the scalability of the defense mechanisms becomes a critical concern. Techniques that
are computationally intensive or require significant communication overhead may not be
practical for large-scale FL systems. Research should focus on developing lightweight and
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scalable defense strategies that can efficiently handle a growing number of clients without
degrading performance.

10. Future Directions
10.1. Enhanced Privacy-Preserving Techniques

In light of the ongoing advancements and the challenges faced in the field of FL
defense techniques, several future directions can be explored to enhance the robustness
and efficiency of these systems.

Homomorphic Encryption: Future work should focus on making homomorphic
encryption more efficient and scalable for real-time applications in FL. Homomorphic
encryption enables computations on encrypted data without requiring decryption, thus
preserving data privacy. However, the computational cost is currently prohibitive for
large-scale applications. Optimizing this encryption method could significantly improve
privacy-preserving FL systems.

Differential Privacy: Integrating differential privacy into FL remains a significant
research area. There is a need to balance the trade-off between data utility and privacy.
Developing adaptive mechanisms that can dynamically adjust privacy parameters based
on the sensitivity of the data could lead to more effective privacy preservation without
compromising model performance.

10.2. Advanced Byzantine-Resilient Aggregation

Robust Aggregation Techniques: There is a need to develop more robust aggrega-
tion methods to withstand sophisticated byzantine attacks, where malicious clients might
send incorrect model updates. Research should aim at refining techniques such as ro-
bust weighted aggregation and adaptive outlier detection to be applicable in diverse FL
environments, ensuring the integrity of the global model.

Dynamic Defense Mechanisms: Implementing dynamic defense mechanisms that can
adapt to evolving attack patterns and client behaviors is essential. This includes utilizing
machine learning techniques to predict and counteract potential byzantine attacks in real
time, enhancing the resilience of FL systems.

10.3. Scalable and Efficient Secure Multi-Party Computation (SMPC)

Enhancing the scalability of SMPC protocols is crucial to support large-scale FL systems.
The current SMPC implementations often face high computational and communication over-
heads, limiting their practicality. Future research should focus on optimizing these protocols
to make them more efficient and scalable, enabling their use in extensive FL networks.

10.4. Trust and Incentive Mechanisms

Developing robust trust management systems is vital for evaluating and verifying the
credibility of participating clients. Trust mechanisms can help to maintain the integrity of
FL systems by ensuring that only trustworthy participants contribute to the model training.
Additionally, designing incentive mechanisms that encourage honest participation while
deterring malicious behavior could enhance the overall security framework of FL systems.

10.5. Federated Learning Protocol Standardization

As FL continues to grow, there is a need for standardized protocols and frameworks to
ensure interoperability between different systems and devices. Developing common stan-
dards can facilitate better collaboration and integration across various platforms, enhancing
the overall security and efficiency of FL implementations.

10.6. Explainable Federated Learning

Developing methods to make FL models more interpretable and explainable is another
important direction. By understanding the decision-making process of these models, it
becomes easier to detect and mitigate malicious behaviors. Explainability can also build
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trust among participants by providing transparency in how the aggregated model is being
trained and updated.

10.7. Federated Learning with Unreliable Participants

In real-world scenarios, not all the participants can be assumed to be reliable or
have stable connectivity. Research should explore mechanisms for FL that can handle
intermittent participation and varying levels of reliability among clients, ensuring that the
global model remains robust despite these challenges.

10.8. Energy-Efficient Federated Learning

Given the diverse range of devices involved in FL, energy efficiency is a critical con-
cern. Incorporating energy-efficient techniques into defense mechanisms can enhance
their practicality and adoption. For instance, lightweight cryptographic protocols can be
designed to provide robust security without imposing heavy computational loads on client
devices. Additionally, optimizing secure aggregation techniques to minimize communi-
cation overhead can conserve energy while maintaining the integrity and confidentiality
of model updates. Future research should focus on creating a balance between energy
efficiency and robust defense strategies. By doing so, FL systems can achieve high levels of
security and privacy without compromising on the sustainability and performance of the
participating devices. This holistic approach ensures that FL remains an effective and viable
solution for decentralized learning across diverse and resource-constrained environments.

11. Conclusions

The evolution of FL has brought forth substantial advancements in data privacy and
decentralized model training. However, these benefits come with heightened security
risks that necessitate robust defense mechanisms. This survey categorizes and reviews
the current defense strategies against various attacks on FL systems. Pre-aggregation,
in-aggregation, and post-aggregation defenses play critical roles in mitigating adversarial
threats at different stages of the learning process. Furthermore, advanced cryptographic
techniques like homomorphic encryption and differential privacy are essential for protect-
ing sensitive information. The integration of blockchain technology enhances the security
and transparency of FL, while incentive mechanisms ensure active and honest participation
from clients. Moving forward, continuous innovation and comprehensive strategies are
imperative to address the evolving threats in FL environments, ensuring the integrity and
reliability of decentralized machine learning.
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Abbreviations
The following abbreviations are used in this manuscript:

AT Adversarial Training
P Pruning
BRA Byzantine/Reliable Aggregation
R Regularization
D&R Detect and Remove
RCS Robust Client Selection
AUA Data and Update Analysis
Ho Homomorphic Encryption
KD Knowledge Distillation
SMP Secure Multi-Party Aggregation
TEE Trusted Execution Environment
SL Split Learning
PG Perturbing Gradients
DP Differential Privacy
BC Blockchain
In Incentive Federated Learning
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