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Abstract: This study highlights the necessity for efficient database management in continuous
authentication systems, which rely on large-scale behavioral biometric data such as keystroke patterns.
A benchmarking framework was developed to evaluate the PostgreSQL and MySQL databases,
minimizing repetitive coding through configurable functions and variables. The methodology
involved experiments assessing select and insert queries under primary and complex conditions,
simulating real-world scenarios. Our quantified results show PostgreSQL’s superior performance
in select operations. In primary tests, PostgreSQL’s execution time for 1 million records ranged
from 0.6 ms to 0.8 ms, while MySQL's ranged from 9 ms to 12 ms, indicating that PostgreSQL is
about 13 times faster. For select queries with a where clause, PostgreSQL required 0.09 ms to 0.13 ms
compared to MySQL’s 0.9 ms to 1 ms, making it roughly 9 times more efficient. Insert operations were
similar, with PostgreSQL at 0.0007 ms to 0.0014 ms and MySQL at 0.0010 ms to 0.0030 ms. In complex
experiments with simultaneous operations, PostgreSQL maintained stable performance (0.7 ms
to 0.9 ms for select queries during inserts), while MySQL’s performance degraded significantly
(7 ms to 13 ms). These findings underscore PostgreSQL’s suitability for environments requiring
low data latency and robust concurrent processing capabilities, making it ideal for continuous
authentication systems.
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1. Introduction

In the digital world, latency is the new outage. Simply put, latency means delay.
In technological terms, it is the time required to perform any action or operation. For ex-
ample, when a user searches on Google, the search engine takes time to display all related
results. The time difference between entering the query and obtaining the result is called
latency. It is essential to study the latency of a system, as it has a major impact on per-
formance. In the case of continuous user authentication, reducing latency is critical as
the users are authenticated on an ongoing basis; any latency can create an opportunity
for hackers. As a rule of thumb, lower latency equates to higher speed and performance.
Therefore, it is crucial to identify and reduce latency. One significant factor causing lag is
database performance, also called data latency, which is the time taken to store and retrieve
data from the database. In continuous authentication [1,2], users’ raw data are collected
and saved in the database (as shown in Figure 1). Here the insert operation is performed,
and later, these data are fetched for feature extraction.

Data latency is key, especially when large amounts of data are added or fetched, such
as in continuous user authentication, where around 50 new raw behavioral data records are
generated and stored in a database every second for each user. Considering there are a few
hundred users, this would generate millions of records every day, consequently impacting
database performance. Hence, it is essential to select the appropriate database using the
database benchmarking technique.
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Figure 1. Continuous authentication architecture.

Database benchmarking is a well-defined process of evaluating, measuring, and com-
paring the performance of different database systems to assess multiple aspects of a
database, including its scalability, speed, efficiency, and ability to handle transactions
or queries under various conditions [3-5]. Generally, database operations such as insert,
delete, read, and update have different workloads that affect database latency. There-
fore, it is significant to conduct benchmarking before installing a database system into
an application.

Database benchmarking is a critical tool to ensure that the chosen database meets
expectations regarding handling current and future loads efficiently [6,7]. The bench-
marking test provides a basis for comparing various databases and helps provide insights
for database professionals on the suitability of various database management systems.
As data grow, so does the workload handled by their database system; hence, conducting
benchmarking tests initially helps prevent future problems in long-term capacity plan-
ning. Benchmarking provides measurable metrics like query execution time and transaction
throughput, ensuring that the chosen database meets specific application needs and handles
real-world demands.

The relational database management system (RDBMS) is a broadly accepted system
that can create meaningful information by joining tables with SQL (Structural Query
language), which is most commercially used to access databases. The RDBMS platform
provides a dependable method of storing and retrieving large amounts of data and has
good performance, scalability, and reliability. It is foundational for applications across
industries like finance, healthcare, manufacturing, etc., due to its lifespan, forming a large
community around it that helps improve overall system needs.

PostgreSQL [8] and MySQL [9] are two prominent open-source RDBM systems known
for their performance robustness and adoption across industries: PostgreSQL for its ad-
vanced features supporting concurrent transactions, and MySQL for its high-speed trans-
actions—making benchmarking comparisons between them meaningful, as both serve
diverse application needs, allowing objective performance comparison under real-world
workloads. Studying execution times under varying conditions is crucial because databases
directly impact application performance, to ensure that databases are continuously tailored
to users’ authentication needs.

There are many research contributions on database benchmarking; however, research
gaps exist where they remain generic and not specifically tailored towards continuous user
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authentication scenarios. This study focuses on creating frameworks reflecting real-world
conditions of continuous user authentication before presenting a proposed solution and
research questions and providing recent literature summaries highlighting the importance
of addressing these gaps:

e  Continuous Authentication Challenges: Continuous authentication systems face
unique challenges such as fast data updates and efficient query processing, which
are critical for minimizing latency [2,10]. These challenges emphasize the need for
specialized benchmarking frameworks that can evaluate database performance under
such demanding conditions.

¢ Importance of Database Performance: Studies have shown that efficient database
management is crucial in scenarios involving large volumes of data, such as continuous
user authentication [11]. Our proposal’s focus on data latency aligns with findings
that highlight the impact of database performance on overall system efficiency.

¢ Innovative Approaches: New developments in continuous authentication technolo-
gies, like using behavioral biometrics and machine learning models, make it even
more important to have strong backend systems that can handle a lot of data coming
in quickly [12,13]. This further supports the necessity for a tailored benchmarking
approach such as that proposed in this study.

In this study, we propose a novel benchmarking database considering the following
key research questions:

*  What are the factors contributing to latency in continuous user authentication systems,
and how can they be minimized?
This study will highlight the importance of understanding latency, particularly data
latency, in systems where continuous user authentication is critical. This involves
identifying specific causes of latency in database operations and exploring methods to
mitigate them.

*  Which database engine is most suitable for continuous user authentication applica-
tions, considering the need for low latency?
This study proposes developing a universal benchmarking framework to evaluate
databases under practical conditions similar to those found in continuous user authen-
tication scenarios. This involves comparing PostgreSQL and MySQL to determine
which database engine better handles structured and tabular data efficiently.

*  How can a benchmarking framework be designed to evaluate database performance
in production-like scenarios for continuous authentication?
This research intends to create a Python-based framework that benchmarks databases
based on various operations typical in continuous user authentication environments.
This framework aims to identify the best database fit for such applications and can be
adapted to other databases with minimal code changes.

The remaining sections of this paper are arranged as follows: A summary of the
PostgreSQL and MySQL technologies will be given in Section 2, and a thorough explanation
of the suggested benchmarking framework and the experimental setup will be given in
Section 3. The framework experiments and their findings are covered in detail in Section 4,
and our concluding thoughts are provided in Section 5.

2. Overview of PostgreSQL and MySQL

PostgreSQL is derived from the POSTGRES package developed at the University of
California at Berkeley [14]. It was led by Professor Stockbroker and sponsored by the
Defense Advanced Research Projects Agency (DARPA). POSTGRES has undergone many
releases since 1987. In 1994 [15], Andrew Yu and Jolly Chen added the SQL language
to POSTGRES and released it as an open-source descendant of the original POSTGRES
Berkeley code. By 1996 [15], PostgreSQL was chosen to reflect the relationship between
SQL and the original POSTGRES. After around 35 years of its release, it has become one
of the most popular database choices for many large organizations like Apple, Reddit,
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and Instagram to store data. The latest version of PostgreSQL focuses on performance, par-
allelism, and cloud-native deployment support. It has a wide range of data types, including
standard SQL types, arrays, JSON/JSONB for semi-structured data, and geospatial data
through the PostGIS extension. PostgreSQL excels in its implementation of Multi-Version
Concurrency Control (MVCC) and advanced indexing techniques [16,17]. MVCC allows
concurrent transactions to access the same data without blocking each other, a feature that
is crucial for maintaining high performance in environments with many simultaneous
users. Transaction isolation ensures that transactions do not interfere with each other,
providing consistent and isolated views of the data. PostgreSQL also uses vacuuming to
manage storage overhead caused by multiple row versions. PostgreSQL offers various
indexing options to enhance its ability to perform complex queries efficiently. These include
B-tree [18], GiST (Generalized Search Tree) [19], GIN (Generalized Inverted Index) [20],
and BRIN [21], each optimized for different types of queries. Partial and expression indexes
allow for the creation of partial indexes that index a subset of rows based on a specified
condition, while concurrent index creation allows read and write operations to continue
during index creation, particularly beneficial in high-concurrency environments.

On the other hand, MySQL has established itself as one of the most popular and widely
used databases in the industry and is known for its speed and reliability. MySQL was
developed by Michael Widenius, David Axmark, and Allan Larsson in 1995 at the Swedish
company MYSQL AB [22]. In 2000, MySQL became open-source and gained popularity.
By 2001, it had over 2 million active users and was later acquired by Oracle Corporation.
MySQL is particularly popular for web applications and is the backbone of many online
platforms, including Facebook, Twitter, and YouTube. It supports standard SQL and
offers features like replication, partitioning, and full-text search. MySQL is known for its
performance in read-heavy environments and is widely used in LAMP (Linux, Apache,
MySQL, PHP) stacks, making it a top choice for developers and businesses globally.

In the past, multiple studies have been conducted on database benchmarking. In one
such study [4] the performance of key-value databases (Redis and Memcached) was com-
pared with that of relational databases (MySQL and PostgreSQL) using the Yahoo! Cloud
Serving Benchmark (YCSB). This benchmarking focuses on running time, throughput,
and latency under varying workloads (A, C, F) with different operations and thread counts.
Key-value databases like Redis excelled in performance, demonstrating lower run times,
higher throughput, and reduced latency, especially for workloads requiring high concur-
rency. Redis consistently outperformed the other databases, particularly in multi-thread
scenarios, while Memcached faced issues with larger update operations. In contrast, rela-
tional databases generally showed poorer performance compared to NoSQL alternatives,
despite improving with more threads. MySQL had the weakest results overall. The study
concluded that NoSQL databases are better suited to handling large datasets with higher
efficiency, while relational databases like MySQL and PostgreSQL still retain their relevance
in structured-data scenarios.

In another study conducted in 2021 [23], the performance of Redis, MongoDB, and Cas-
sandra is compared using the Yahoo Cloud Serving Benchmark (YCSB) across various
workloads, including read, write, scan, and update operations. Redis outperforms the other
databases in read-heavy tasks due to its use of volatile memory, making it the fastest for
read operations. MongoDB excels in write-heavy and scan-intensive workloads, showing
superior efficiency in data loading and short-range scans. In contrast, Cassandra lags in
both read and write tasks, with the slowest overall performance. Their study highlights Re-
dis as best suited for read-heavy workloads, while MongoDB is preferable for write-heavy
scenarios, with Cassandra being the least optimized of the three.

Filip P and Cegan L [24] conducted a study comparing the performance of MySQL
and MongoDB in web applications. Their study highlights the limitations of traditional
SQL databases, which struggle with scaling, and contrasts this with the flexibility of NoSQL
systems like MongoDB. Their experiments focus on common database operations (insert,
update, delete) in both transactional and non-transactional modes. MongoDB consistently
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outperforms MySQL, especially in transactional queries. MySQL’s indexing improves
search performance but significantly slows down data modification tasks. Their findings
suggest that MongoDB’s scalability and performance make it a strong choice for applica-
tions where speed is crucial.

The benchmarking study [25] conducted in 2016 compared the performance of two
popular open-source databases, MySQL and MariaDB [26], focusing on their efficiency
in handling workloads in a virtualized environment using Xen 4.4 [27]. The researchers
employed OLTP-Simple and OLTP-Seats [28], which simulate real-world online transaction
processing (OLTP) workloads, such as flight booking systems. They tested the databases
with varying levels of threads and workers to observe resource utilization in terms of
CPU and memory consumption. Their key findings showed that MySQL outperformed
MariaDB in high-thread environments, particularly with 1,000 threads in OLTP-Simple
and four workers in OLTP-Seats. Both databases showed similar CPU and memory usage,
but MySQL consistently demonstrated higher transaction throughput. Future research
aims to explore MariaDB’s performance in cluster environments.

3. Materials and Methods

A benchmarking framework was built to simplify the development environment and
avoid coding repetitive functions and libraries. This framework can be used to bench-
mark different databases with minimal modification to a few functions and configuration
variables. Figure 2 gives a brief overview of the framework.

Environment

variables
(.env file)
Control Unit Benchmarking Unit
Configuration e ; -
File (JSON) it il Database
Analysis Unit
Result Folder analysis.py Analysis Folder

Figure 2. Benchmarking framework block diagram.
A detailed description of each component is given below.

3.1. Control Unit

This unit has the configuration, environment, and stage file necessary to begin the
benchmarking experiments. Details of each file are described below.
*  Configuration file: This is a JSON file where different configuration variables can be

set based on the experiment. It has a total of 23 properties, which are of the String,
Array, and Boolean types. The file’s details are shown in Figure 3 below.
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run_postgres_test true

run_redis_test true

create_tables false

vaccume._database false

vaccume_between_cycle false

show_logs true

take_moving_avg true

result_archive_folder result_archive

analysis_archive_folder analysis_archive

plots_archive_folder plots_archive

test cycles 5

s L e s
methods . prefix
l suffix
template_table_name <TABLE>
template_pattern_name <PATTERN>
queries O— name raw_nosql
prefix
results_folder results
suffix

logging_folder logging

analysis_folder analysis

plots_folder plots raw_sql SELECT * FROM <TABLE>

e

raw_nosql keys <PATTERN>

db_folder setup_db

compare_folder compare_db_analysis

Figure 3. Configuration file variables.

The configuration file has more than 40 keys, but some important keys are explained below.

e runs: This is an array that determines how many times the query should run. For in-
stance, if the value of a run is an array of values 10 and 20, then the query would run
10 times and then 20 times.

e test_cycles: This key has an integer value that defines how many times the test should
be executed for the runs. For example, if the value of runs is 10 and test_cycles is 5,
then there will be five cycles with 10 runs in each cycle.

*  methods: This key has a nested array of an object that defines the name of the method,
suffix, and prefix.

The suffix and prefix can be used to build the query for the method.

e queries: This is a nested JSON object that has queries used for benchmarking the
database. Here, the method name is used to identify the query.

¢  Environmental variables (.env file): This file has environment variables required to
connect to the database, such as the database server IP address, port number, username,
and password. Each database has an individual environment file to store these data,
which is then used to make the database connection.

e  Stage file: This is a Python file that fetches all the configuration and environment
variables from respective files and stores them for use in the next phases. Then, based
on the configuration variable, all the required operations are performed by calling
functions from benchmarking and analysis units.

3.2. Benchmarking Unit

This unit has a main.py file, which contains all the Python operations required to
perform the benchmarking, including functions to connect to the database and obtain and
save the benchmarking results. In addition, system information such as RAM, processor,
database version, CPU threads, etc., is saved in a JSON file for future analysis. All these
functions are used by the stage.py file for benchmarking.



Future Internet 2024, 16, 382

7 of 22

3.3. Analysis Unit

This unit contains all the components required to perform an analysis of the results.
The analysis.py file fetches all the results to perform different statistical and graphical

analyses as well as compare the results from both databases.

3.4. Comparative Analysis and Benchmarking Process Flow

The activity diagram defines the dynamic behavior of the modeled system and assists
in understanding program flow at a high level. Figure 4 shows the behavior of the database
benchmarking framework.
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Figure 4. Database benchmarking activity diagram.

Initially, configuration variables are set based on the nature of the benchmarking test.
Along with configuration variables, environment variables are required for the database.
Once this information is provided, it is fetched and stored until the end of the test and used

‘ Save the comparision report into pdf file J

1 naming conventions

at different stages. Next, it creates a unique test ID to be used to identify the test.

Later, the configuration variables are scanned to determine if both PostgreSQL and
MySQL tests are required or not. If they are required, then the following steps must be

followed to run the test:



Future Internet 2024, 16, 382

8 of 22

e  First, a database connection is made and verified; failure to connect to the database
would terminate the test.

e If the connections succeed for both databases, the configuration variables are used to
build MySQL and PostgreSQL queries for benchmarking.

*  Queries are executed on the respective databases.

The number of times a query should be executed depends on the configuration vari-
ables ‘runs’ and ‘test_cycles’. For example, if ‘runs’ is 100 and “test_cycles’ is 5, then each
query will be executed 100 times across 5 cycles (a total of 500 executions). Adding cy-
cles helps determine performance patterns after executing queries. Simultaneously, the
following steps are followed:

*  Query time/latency (time between query trigger and completion) is calculated.
*  Results are saved in CSV files named according to experimental file naming conven-
tions (explained in Section 3.3).

These results undergo various analyses:

1. A statistical analysis is conducted to find the median, min, max, and percentiles
A graphical analysis is conducted to plot query time vs. runs for the complete
test/cycles.

The analyses are saved in JSON (statistical) and PDF (graphical) files per the naming
conventions. These analyses help identify patterns in the MySQL /PostgreSQL results;
comparing both reveals overall patterns throughout tests. The subsequent steps include
creating comparison PDFs showing the MySQL /PostgreSQL query times/moving averages
for smoother patterns before completing the tests. If neither PostgreSQL nor MySQL tests
are required, we check if a PostgreSQL test is needed:

e (Create/test connection; failure terminates test.

*  Build/execute queries using configuration variables; calculate/save query time/results
in CSV.

The results undergo statistical /graphical analyses and are saved as JSON/PDF files,
marking the end of the test. Similarly, MySQL tests are conducted if needed; otherwise, we
terminate the test if neither is required.

3.5. Experimental File Naming Conventions

Result file: The query time/latency results are saved in a CSV file with a name deter-
mined according to the experimental file naming conventions, i.e., database name_table
name_query type_number of runs_test Id.

For example, the name “postgresql_users_select_r_100_t_1666812060_1.csv” explains
that the database PostgreSQL was tested for the user table by running a select query
100 times. The format shown in Table 1 below is used to save the test results.

Table 1. Result format.

Column Name

Date Table Query Execution Time (s) Cycle No

Details/example

Unix time stamp users Select * from users; 0.005880188000446651 1

Statistical and graphical analysis files: The result data are used to find statistical
information like the median, max, min, etc. This information is then saved as a JSON
file with a name such as “analysis_postgresql_users_select_r_100_t_1666812060_1.json”,
which has a similar meaning to the result file, except that it has the word "analysis" at the
beginning to indicate that it is the analysis file. In the case of graphs, the plots are saved a a
pdf file with a name such as “plots_postgresql_users_select_r_100_t_1666812060_1.pdf".
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4. Experiments and Results

In continuous authentication, two important database operations are select and insert
queries. The system needs to insert new records from the user and fetch records from the
database for user authentication. Therefore, it is important to benchmark these operations
under different conditions to identify the database with the lowest latency in a production
environment. The data seed below is used for the experiment.

4.1. Data Seed for Experiment

For a faultless evaluation of databases in production-like cases, it is crucial to use a
dataset similar to production data for benchmarking. A database table with the columns
shown in Table 2 was created to replicate the production environment.

Table 2. Dataset details.

Field Type
SessionlD bigint
timestamp int
type tinyint(1)
X int
y int
Event int
userld varchar(255)

The table has nine columns: seven of type int or similar, and two of the varchar and
DateTime type. To create data similar to those obtained in production, an SQL procedure
was developed to insert records based on requirements. For example, if the input to the
procedure is 1000, it would add one thousand new records to the table.

4.2. Experimental Setup

To replicate the production scenario, select and insert queries are executed under
different conditions. The experiments are divided into two categories: primary experiments
and complex experiments. In primary experiments, simple production scenarios are
evaluated, whereas in complex experiments, more intricate scenarios are assessed.

4.2.1. Primary Experiments

In production, a query is not executed only once but multiple times. Therefore, in these
experiments, queries are executed multiple times for large datasets to analyze query latency.
For primary experiments, select and insert queries are assessed individually. Table 3
provides details of the experimental conditions, number of queries executed, and total
records in the table.

Table 3. Primary experiment details.

: ips Number of Times Query Number of Records
Experimental Condition Executed (Runs) in Table
Select query to fetch all records from table 100 1 million
Select query with condition to fetch record for one 100 1 million
user only
Insert new records in table 100 1 million

4.2.2. Complex Experiments

In production, databases do not perform only one operation like select or insert,
but handle multiple operations simultaneously, which can degrade their performance.
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It is critical to analyze each database under certain conditions while executing multiple
operations simultaneously. For instance, in continuous authentication, the database must
insert new records while responding to fetch requests. To study the database under these
conditions, the experiments described in Table 4 were performed.

Table 4. Complex experiment details.

Number of Times Query Number of Records

Experimental Condition Executed (Runs) in Table

Select query to fetch all records from table
evaluated while database performs insert 100 1 million
operations simultaneously

Select query with condition to fetch record for one

user only while database performs insert operation 100 1 million
parallelly
Insert new records in table while database 100 1 million

performs select operation simultaneously

In complex experiments, select and insert queries are evaluated while the database
performs other operations simultaneously. For example, in the first experiment, the data
latency for one hundred select queries was calculated while the database executed insert
operations simultaneously.

4.2.3. Hardware/Software Details

Table 5 shows the system configuration on which all experiments are performed.

Table 5. Detailed System Configuration.

Database Type MySQL and PostgreSQL
Database Kind SQL
Database Version MySQL 8.0.20
Database Version PostgreSQL PostgreSQL 14.6
Operating System Windows-10-10.0.19041-SP0
System Memory 11.650901794433594
CPU Type Intel64 Family 6 Model 140 Stepping 1, Genuine Intel
Total Cores 8
Total Threads 1
4.3. Results

A total of six different experiments (Tables 3 and 4) were performed to evaluate the
databases in various production-like scenarios. The results of both the primary and complex
experiments are discussed below.

4.3.1. Primary Experiments Results

1.  Select Query to Fetch All Records from the Table: A select query was executed
100 times to fetch all records from both the PostgreSQL and MySQL databases. Figure 5
shows that the execution time in MySQL varies between 9 ms and 12 ms, whereas
in PostgreSQL (Figure 6), it ranges from 0.6ms to 0.8 ms—significantly lower than
MySQL. Figure 7 compares the execution times for retrieving 1 million records from
PostgreSQL and MySQL, clearly showing PostgreSQL'’s superior performance. Table 6
shows the statistics for the execution times of both databases, including the median,
maximum, minimum, and percentile values. These statistics assist in evaluating
database performance. In this experiment, PostgreSQL outperforms MySQL in all
select query stats by a factor of 13.
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Execusion Time Vs Number of Runs
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Figure 5. Select query execution time of MySQL for primary experiment one.
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Figure 6. Select query execution time of PostgreSQL for primary experiment one.
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Figure 7. Select query comparison of MySQL and PostgreSQL for primary experiment one.
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2. Select Query with Condition for One User: The second experiment tested a select
statement with a where clause necessary for fetching data for specific users based on
criteria. Using a query like select * from data where uname = ’clair’, around ten thou-
sand records were fetched from 1 million total records for the username "clair’. MySQL
took between 0.9 ms and 1ms, Figure 8, while PostgreSQL required about 0.09 ms
to 0.13 ms, Figure 9—again outperforming MySQL. Figure 10 compares the results
for select queries with where clauses between MySQL and PostgreSQL; PostgreSQL
consistently outperforms MySQL. Table 7 shows that PostgreSQL beats MySQL at
every stage, with a median execution time of 0.0726 ms versus MySQL’s 0.8428 ms.

Execusion Time Vs Number of Runs

0.90 4 - DB
0.88 o
il
E
£ 0.86 4
W
E
=
0.84 4
0.82 1
20 40 60 80 100
Runs

Figure 8. Select operation with where condition query execution time of MySQL for primary
experiment two.
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Figure 9. Select operation with where condition query execution time of PostgreSQL for primary
experiment two.
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Figure 10. Select operation with where condition query comparison of MySQL and PostgreSQL for
primary experiment two.

Table 6. Statistics for MySQL and PostgreSQL for primary experiment one.

Execution Time Stats MySQL (ms) PostgreSQL (ms)
Median 9.610416149999999 0.6922907000000014
Max 14.653671499999971 0.9570205999999928
Min 6.749867999999992 0.4895766000000003
Percentile 25% 9.338115 0.644354
Percentile 50% 9.610416 0.692291
Percentile 75% 9.962929 0.743065

Table 7. Statistical comparison for primary experiment two.

Execution Time Stats MySQL (ms) PostgreSQL (ms)
Median 0.8438375000000011 0.07268409999999956
Max 1.3509363000000008 0.1564174999999998
Min 0.6974038000000036 0.0596166
Percentile 25% 0.80234 0.066272
Percentile 50% 0.843838 0.072684
Percentile 75% 0.869998 0.078394

3. Insert New Records: For continuous authentication scenarios where large amounts of
data are generated every second, an experiment was conducted with an insert query
executed 100 times on both databases. Figures 11 and 12 show similar performance
between MySQL and PostgreSQL, with execution times ranging from 0.0010 ms to
0.0030 ms for MySQL and from 0.0007 ms to 0.0014 ms for PostgreSQL. Figure 13 illus-
trates execution time graphs for both databases, showing comparable performance,
with PostgreSQL slightly better than MySQL. The statistics from Table 8 confirm
overlapping performance between MySQL and PostgreSQL, with a small differences
in their statistical values.
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Figure 11. Insert query execution time of MySQL for primary experiment three.
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Figure 12. Insert query execution time of PostgreSQL for primary experiment three.
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Figure 13. Insert query comparison of MySQL and PostgreSQL for primary experiment three.
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Table 8. Statistical comparison for primary experiment three.

Execution Time Stats MySOQL (ms) PostgreSQL (ms)
Median 0.0002600000000001 0.00012070000000005
Max 0.0030774 0.0005792
Min 0.0001705999999999 8.740000000018178 x 107
Percentile 25% 0.000224 0.000107
Percentile 50% 0.00026 0.000121
Percentile 75% 0.000305 0.000146

4.3.2. Complex Experimental Results

In production environments requiring handling multiple connections and requests
simultaneously, the following steps must be taken:

1. Select Query While Performing Insert Operations: In continuous authentication sce-
narios requiring simultaneous insert and select operations every few seconds, this
scenario evaluates select operation performance when inserts occur simultaneously.
Figure 14 shows MySQL'’s select operation performance while executing simultaneous
inserts; the execution time varies between 7 ms and 13 ms compared to PostgreSQL’s
range of 0.7 ms to 0.9 ms as shown in Figure 15. Figure 16 and Table 9 compare
MySQL'’s degraded performance due to increasing record numbers against Post-
greSQL'’s stable performance despite changes.

Table 9. Statistical comparison for complex experiment one.

Execution Time Stats MySQL (ms) PostgreSQL (ms)
Median 12.228753049999938 0.8172035000000051
Max 13.367786599999988 1.0093484000000004
Min 6.454262799999924 0.7369057999999953
Percentile 25% 8.864012 0.782431
Percentile 50% 12.228753 0.817204
Percentile 75% 12.642323 0.858551

Execusion Time Vs Number of Runs
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Figure 14. Select query execution time of MySQL with insert operation in parallel.
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Figure 15. Select query execution time of PostgreSQL with insert operation in parallel.

Time in ms

Execusion Time Vs Number of Runs

12 4

10

— PostgreSQL L
MySQL \A _//\\\7&\
20 40 60 80 100
Runs

Figure 16. Select query comparison of MySQL and PostgreSQL with insert operation in parallel.

2.

Table 10. Statistical comparison for complex experiment two.

Select Query with Condition While Performing Insert Operations: This case evaluates
a select operation with a where condition while executing parallel insert queries
without adding additional records for the username ’clair’. Figures 17-19 show
PostgreSQL outperforming MySQL again, with execution times ranging from 1 ms to
1.5 ms for MySQL compared to PostgreSQL’s range of 0.07 ms to 0.13 ms. Table 10
displays statistics confirming PostgreSQL’s superior performance by roughly nine
times over MySQL.

Execution Time Stats MySQL (ms) PostgreSQL (ms)
Median 1.253879149999996 0.0929318000000001
Max 1.7836954999999932 0.1886225999999999
Min 0.7546789999999994 0.0586152000000002
Percentile 25% 1.106501 0.086717
Percentile 50% 1.253879 0.092932
Percentile 75% 1.439175 0.10246
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Figure 17. Select operation with where query execution time of MySQL with insert operation
in parallel.
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Figure 18. Select operation with where query execution time of PostgreSQL with insert operation
in parallel.
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Figure 19. Select operation with where query comparison of MySQL and PostgreSQL with insert
operation in parallel.
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3. Insert New Records While Performing Select Operations: This scenario assesses insert
operation performance during simultaneous select query execution. Figures 20 and 21
show performances where MySQL varies between 0.00020 ms and 0.00043 ms com-
pared with PostgreSQL’s range of 0.00010 ms to 0.00017 ms—demonstrating better
performance by PostgreSQL during concurrent operations. Figure 22 compares the
execution time results, showing clear superiority of PostgreSQL over MySQL, as con-
firmed by Table 11, showing median values of MySQL at 0.00020 ms versus 0.00010 ms
for PostgreSQL.

Table 11. Statistical comparison for complex experiment three.

Execution Time Stats MySQL (ms) PostgreSQL (ms)
Median 0.00020265000000005 0.00010899999999995001
Max 0.001465 0.0005941999999999
Min 0.0001616000000002 9.090000000000488 x 1075
Percentile 25% 0.000187 9.9 x 107°
Percentile 50% 0.000203 0.000109
Percentile 75% 0.000238 0.000121

Execusion Time Vs Number of Runs
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Figure 20. Insert query execution time of MySQL with select operation in parallel.
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Figure 21. Insert query execution time of PostgreSQL with select operation in parallel.
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Figure 22. Insert query comparison of MySQL and PostgreSQL with select operation in parallel.

Also noteworthy is that these results can be attributed partly to PostgreSQL’s robust
support hierarchical data models, such as the adjacency list model, allowing efficient
management insertion of complex tree-like data structures through its capability to handle
recursive queries and optimize write-heavy operations, as evidenced by benchmark studies
demonstrating superior write operation performance compared with MySQL [29].

5. Conclusions

This study provides valuable insights into the performance dynamics of two widely
used relational database management systems (RDBMS), PostgreSQL and MySQL, un-
der production-like scenarios typical of continuous user authentication systems.

5.1. Theoretical Implications

¢ Database Performance Understanding: This study enhances the theoretical framework
for understanding database performance in high-demand environments. It provides a
detailed comparison between PostgreSQL and MySQL, emphasizing the importance
of low latency in continuous user authentication systems.

¢ Benchmarking Methodology: The development of a Python-based benchmarking
framework contributes to the theoretical tools available for database performance evalu-
ation, offering a reusable and adaptable method for other researchers and practitioners.

5.2. Practical Implications

¢ Database Selection: The findings of this study suggest that PostgreSQL is more suitable
for continuous authentication systems due to its superior performance in handling
select operations both with and without conditions. This can guide organizations in
choosing the right database system to optimize their application performance.

*  Benchmarking Framework: The development of a flexible benchmarking framework
allows database administrators and developers to assess different databases’ perfor-
mance efficiently. This framework can be customized for various operational needs,
facilitating better decision-making regarding database deployment.

*  Performance Optimization: Understanding the specific strengths and weaknesses of
PostgreSQL and MySQL in different operational scenarios can help optimize query
execution times and overall system responsiveness.
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5.3. Limitations

*  Scope of Databases: This study focuses only on PostgreSQL and MySQL, which
limits its applicability to other types of databases, such as NoSQL [30] or NewSQL
systems [31], which might perform differently under similar conditions.

*  Simulated Environment: Although these experiments simulate production-like sce-
narios, they may not capture all real-world variables, such as network latency or
concurrent user interactions, that could affect database performance.

*  Complexity of Operations: This study primarily evaluates basic operations like select
and insert queries. More complex queries or transactions involving multiple tables
and joins could yield different results.

*  Hardware Constraints: Our performance results are contingent on the specific hard-
ware and software configurations used during testing. Different setups might produce
varying outcomes.

*  Relating to Relevant Works: Relating this study to the existing literature is essential to
underscore its significance and contribution. However, this task presents challenges
due to this study’s specific focus on continuous user authentication needs. This niche
area means that while there is a substantial body of work on database benchmark-
ing in general, studies specifically addressing the unique demands of continuous
authentication systems are limited.

5.4. Future Research Directions

In the future, to improve benchmarking, it is crucial to focus on cloud-native and
containerized environmental benchmarks, as there is growing adoption of cloud-based
solutions like Google Cloud SQL [32], Azure databases for PostgreSQL/MySQL [33],
and Amazon RDS [34]. Therefore, it would be valuable to create a benchmarking tool
to evaluate performance under dynamic scaling, integration with cloud-native services,
and network latency. Moreover, containers like docker are becoming more popular for
database deployment, and benchmarking PostgreSQL and MySQL in containerized envi-
ronments could focus on performance with tools like Kubernetes [35], assessing resource
allocation efficiency, behavior under container restart or failure, and database performance
while scaling. These tailored benchmarks would provide a more accurate evaluation of the
real-world performance of databases across modern deployment platforms.
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