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Abstract: Replacing mechanical utility meters with digital ones is crucial due to the numerous
benefits they offer, including increased time resolution in measuring consumption, remote monitoring
capabilities for operational efficiency, real-time data for informed decision-making, support for time-
of-use billing, and integration with smart grids, leading to enhanced customer service, reduced
energy waste, and progress towards environmental sustainability goals. However, the cost associated
with replacing mechanical meters with their digital counterparts is a key factor contributing to the
relatively slow roll-out of such devices. In this paper, we present a low-cost and power-efficient
solution for retrofitting the existing metering infrastructure, based on state-of-the-art communication
and artificial intelligence technologies. The edge device we developed contains a camera for capturing
images of a dial meter, a 32-bit microcontroller capable of running the digit recognition algorithm,
and an NB-IoT module with (E)GPRS fallback, which enables nearly ubiquitous connectivity even
in difficult radio conditions. Our digit recognition methodology, based on the on-device training
and inference, augmented with federated learning, achieves a high level of accuracy (97.01%) while
minimizing the energy consumption and associated communication overhead (87 µWh per day
on average).

Keywords: NB-IoT; machine learning; smart metering; lightweight digit recognition; federated
learning

1. Introduction

Measuring household consumption (e.g., water, gas, etc.) is currently based on
two types of devices. The first type consists of various traditional mechanical meters
(TMs). TMs are dial meters and do not provide any smart metering or telemetry func-
tions. Employing this type of metering device requires a lot of expensive manual labor for
manual readings, often disturbing privacy. On the other hand, smart meters (SM) utilize
recent technologies to measure consumption more efficiently. They usually feature wireless
readings and low-power operation necessary for battery-powered devices.

To ensure stable wireless connectivity for metering devices placed in challenging
environments such as basements, shafts, holes, and closed objects, many power utilities
turn their attention to Narrowband IoT (NB-IoT) technology as a suitable low-cost solution.
NB-IoT is an addition to the 4G LTE standard that allows up to 50,000 low-power devices
(e.g., SMs) to connect to a single base station. NB-IoT will enable massive cellular IoT
and is a game-changer for the mobile industry and operators, who aim to use NB-IoT to
provide seamless connectivity for billions of new devices. The key features in favor of the
utilization of NB-IoT in the SM scenario are as follows [1]:

• Ultra low-power operation—When a small payload is sent a couple of times daily,
power saving mode (PSM) allows for a battery lifetime of up to 10 years.

• Deep indoor penetration—Coverage extension modes allow for up to 20 dB gain
compared to the GSM employing repeated transmissions.
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• High-Density Connectivity Solution—The ability to connect a large number of devices
without network congestion.

• Efficient Low-Data Transfer—Technology is optimized for small, infrequent data
transmissions.

The primary advantages of utilizing NB-IoT cellular technology stem from its reliance
on existing base station infrastructure, significantly reducing the labor demands associated
with system setup and data acquisition. Additionally, NB-IoT’s PSM is pivotal for extending
battery lifespan, allowing devices deployed in remote or hard-to-reach locations to function
for prolonged periods. This capability minimizes the need for maintenance interventions,
particularly regarding battery replacement, thereby enhancing operational efficiency and
reducing long-term upkeep costs.

Additionally, state-of-the-art modules provide several fallback options in case the
NB-IoT technology is not supported in the corresponding region, including GSM and
long-term evolution machine type communication (LTE-M). Consequently, these modules
will consistently remain operational whenever a mobile network signal is accessible, which
is the most widely available connectivity option.

This paper presents an innovative new solution that “smartifies” the TMs in a retrofitting
manner [2], as an alternative to the existing energy-inefficient (e.g. GSM/GPRS) products or
non-telemetry-based products. Our energy-efficient device using wireless NB-IoT technology
transforms the TM into an SM by applying an innovative, low-cost upgrade of the existing
TM (no need to replace TM). It consists of an embedded low-cost camera and a smart number
recognition system. The SM architecture is depicted in Figure 1.

Figure 1. Proposed SM architecture used for old TM retrofitting.

The system architecture (Figure 2), which is described in more detail in Section 3, has
been designed to provide end-to-end connectivity between SMs and cloud infrastructure
using NB-IoT provided by a mobile network operator (MNO) and cloud services. The
end-users can retrieve the data using RESTful-based interfaces and other application-layer
protocols such as MQTT or CoAP.

Figure 2. The system architecture consists of a collection of deployed SMs that communicate via
MNO with the cloud.
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The “smartification” of the TMs is based on the addition of a machine learning (ML)
algorithm. Based on deployment, the ML models can be divided into three groups: cloud-
based, mobile-based, and tiny. While cloud and mobile solutions feature high frequency
(GHz), high memory capacity (GBs), and high storage (G/T/PBs), they also have high
power consumption (W/kW) and a significant impact on the environment [3]. On the other
side, there are tiny, resource-restricted devices with small ML models (e.g., TinyML [4,5])
featuring much lower operating frequencies (MHz), memory capacity (KBs) [6], storage
(MBs), and power consumption (mW), being more environmental-friendly. Additionally,
such a small power consumption enables battery-powered tiny devices to foster the long-
term viability of such a solution.

In our case, the appropriate ML algorithm would enable retrofitting devices to detect
numbers displayed on the dial metering devices. Numbers and digit recognition are well-
known problems in computer science usually solved by neural networks. Digit recognition
tasks feature lower complexity than number recognition. Recurrent neural networks
(RNNs) are often used for image-based sequence recognition tasks. However, since the
RNNs are computationally more expensive in both training and inference, compared to
convolutional neural networks (CNNs), their application in resource-constrained systems
is limited [7]. As there are many different types of TMs, with various colors, sizes, and
fonts, it would be worth having a specifically trained model for each distinct device. In
order not to overwhelm the server, it would be beneficial to have CNN model training on
the device itself. As devices used in embedded environments are resource-constrained,
CNN models, trained and executed on them, should be minimal.

Finally, to spread the “knowledge” across all devices and increase their accuracy in
digit detection, we utilize federated learning (FL). FL is a novel ML concept particularly
suitable for applications in massive IoT employing low-capability nodes [8]. The power of FL
emerges from the massive engagement of nodes. Nodes are required to share a local model
update on the cloud. Their models are fusioned at the central cloud location and distributed
back to all nodes. Depending on the methods used, the performance of individual nodes
could be enhanced (Figure 3). Recently, there has been a lot of research conducted on the
intersection of the IoT and FL, as reported in several systematic reviews [9–12]. In metering
scenarios, FL is primarily used for consumption forecasting [13]. In our study, we employed
an averaging methodology grounded in the principle of weight averaging across models.
Furthermore, we adhered to the recommendations outlined in [14,15], which suggest that the
batch normalization layer in CNN models should remain unchanged during the averaging
process of the other layers for each device.

Figure 3. Distribution of ML models on edge devices, which provides the basis for FL.
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The main contributions of this work are the following. We present the design, imple-
mentation, and analysis of

• a new SM design for the retrofitting of TMs (a fabricated prototype);
• the custom CNN optimized for the usage with resource-constrained hardware;
• CNN model training on the edge device;
• a custom pre-processing of input images to reduce complexity;
• integration of FL in the proposed solution, which enhances the generalization of our

digit recognition models, thus improving overall accuracy;
• detailed energy consumption of the proposed system.

The organization of this paper is structured as follows: Section 2 provides a com-
prehensive analysis of the related work in this field. In Section 3, we present a detailed
description of the system architecture, including the design of the edge device, the overall
digit recognition scheme, and our experimental setup. Section 4 covers the methodology
used—digit image preprocessing, the proposed model architecture, and our approach to
FL. Section 5 analyzes the results from the two evaluated test cases and compares our
solution with the existing approaches. Here, we also elaborate on the long-term viability
of the solution based on power consumption analysis and compare our solution to others.
Finally, Section 6 concludes the paper with a summary and suggestions for future research.

2. Related Work

We are interested in studies related to retrofitting fabricated digit-recognition-based
SM prototypes optimized for edge, based on FL. Accordingly, the following section is
organized into subsections presenting the related work in the relevant areas.

2.1. Low Power Communications

The current state-of-the-art in the field of SMs is such that an increasing number of
solutions are utilizing NB-IoT (e.g., Shenzhen gas company in China). An example of an
early NB-IoT water metering system is given in [16]. Several commercial case studies in
China are reviewed in [17]. Such solutions in Europe were in the mature pilot testing phase
a few years ago (e.g., Kamstrup from Denmark [18]).

Other solutions are based on LoRaWAN technologies [19]. Although the design seems
to be low power and low cost (STM8 microcontroller unit), there are no data to support
such a claim in the paper. Additionally, it can be used only on pulse output water meters.
A hybrid water meter solution based on infrared and LoRaWAN is given in [20].

2.2. Dial Meters

Currently, many efforts are being made to retrofit water meters [21]. Similar solutions,
however, could be used for other household resources that are measured. In [22], authors
presented an analog water meter retrofitted to a SM. It is designed using Raspberry Pi,
which is not low-power. Another Raspberry Pi-based solution using LoRa and wireless
M-Bus is given in [23]. In [24], an interesting NB-IoT-based retrofitted water flow meter is
presented with an energy harvesting circuit. However, the measurements are not based
on digit recognition but are acquired by an induction emitter that detects metal rotating
on a mechanical water meter. It would be hard to apply this solution to other household
resources. Additionally, there is no information related to the MCU part of the SM. A
solution based on a water flow sensor and NodeMCU microcontroller using WiFi is de-
scribed in [25]. A similar solution based on flow meters using ESP8266 is given in [26].
In [27], authors presented a solution for a water meter that emits pulses as water flows.
Pulses are captured by the ESP8266 MCU and by WiFi connected to the home Raspberry Pi
gateway. A robust solution based on image capturing, number detection, and recognition
is given in [28]. However, the model is not usable with constrained devices (e.g. they
used NVIDIA Titan V GPU). Another image-capture-based solution is explored in [29].
OpenCV and TensorFlow2 library are explored with three different DL algorithms (R-CNN,
YOLOv3, and SSD). The solution is not suitable for edge usage since it takes around 100 MB
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for the model and requires high computational power. An interesting solution, using a
mobile phone, is given in [30] using YOLOv4, Darknet NN framework, and Tessaract OCR
engine. It is also not suitable for resource-constrained devices. Recently, in [31], the authors
proposed solar-based energy harvesting techniques to make a solution sustainable. They
used Raspberry Pi Zero W as an MCU and WiFi for wireless connection. In another recent
work [32], the retrofit solution is based on Raspberry Pi and OpenCV library, both not usable
on resource-limited edge devices. Another recent image-capturing-based solution featuring
high accuracy and a relatively small model is presented in [33]. A Raspberry-Pi-based
solution with solid field trials is presented in [34].

2.3. Smart Meters

A study [35] analyzes the roll-out of smart electricity meters in the European Union,
focusing on the cost–benefit analysis of smart metering. One of the early studies favoring
CNNs for counter recognition in automatic meter reading (AMR) used them for retrofitting
TMs to SMs [36]. The typical AMR system consists of three stages: counter detection, digit
segmentation, and digit recognition. The proposed system did not use the image segmenta-
tion stage, making it one of the earliest studies of its kind. However, the experiments were
conducted on high-end equipment (i.e., AMD Ryzen Threadripper 1920X CPU and NVIDIA
Titan Xp GPU). More recently, an offline AMR system based on YOLOv5 was proposed [37].
This solution is not intended for edge use, as it relies on PyTorch and Google Cloud GPU
and runs on a personal computer (Intel Core i5). Similar work, based on PyTorch and
YOLOv5, for automatic digit reading from dial meters for integration into the smart grid is
presented in [38].

Another popular approach for image classification problems is based on MobileNet
architecture [39]. To date, the MobileNet architecture has evolved up to version 3. Although
its architecture is designed for use on mobile phones, a recent study explored possibilities
for deployment on very resource-constrained devices such as microcontrollers (MCUs) [40].
The results are provided for all MobileNet versions and two ShuffleNet architectures [41]
using the CNN Analyzer optimizing tool [42]. The results showed that model sizes varied
from 167.3 to 293.8 KB and accuracy ranged from 83.3 to 88.8%. Additionally, TinyML frame-
works, such as TensorFlow Lite, equip IoT devices with efficient ML processing, making
them suitable for cost-effective deployment in environments with limited bandwidth [9].

2.4. Federated Learning

A significant amount of research has been conducted in the field of FL in the IoT [43].
There are systematic reviews on the implementation of FL on resource-constrained de-
vices [10,11]. A study elaborating on the rationale for adopting FL on MCUs and on-device
training is presented in [44]. However, in metering scenarios, FL is primarily used for
consumption forecasting [13,45]. Recently, authors reviewed an article focusing on TinyML,
a lightweight machine learning paradigm, and FL. The authors did not find any reviews
covering both fields [12]. Currently, the only study exploring lightweight machine learning
and FL on various constrained devices is [46]. However, this study applied these concepts
in ECG classification and driver well-being detection scenarios.

To the best of our knowledge, there is no custom retrofitting fabricated digit-recognition-
based SM prototype optimized for edge, based on FL.

3. System Architecture

This section focuses on the general concept of our proposed system, which is based on
our custom-made edge device. We describe the digit recognition strategy and the related
problems encountered in the embedded device environment. Finally, a detailed description
of our experimental setup and the methodology employed to create the dataset is provided.

3.1. General Concept

The system architecture presented in this study is outlined as follows. Initially, the
edge device utilizes an embedded camera module to capture images. In comparison to
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other published studies, which used standard modules or combined multiple existing
modules, our approach features a custom-fabricated prototype. The captured images,
which are in grayscale format, are cropped and resized to produce six 16 × 24 pixel images,
each representing a single digit. These images are then transmitted to a cloud server, where
an advanced high-level entity learning model performs inference to classify the images
and assign appropriate labels. The resulting labels are transmitted back to the edge device,
where they are matched with their corresponding digit images.

Communication between the edge device and the server side is facilitated through
NB-IoT technology. We try to optimize input size for our proposed model, as NB-IoT
technology has limitations for the number of bytes that can be transmitted per packet.
In our study, each grayscale digit image consists of only 16 × 24 pixels, corresponding
to 384 bytes. On the other hand, the maximum payload capacity for a single NB-IoT
packet is 1600 bytes. Therefore, six-digit images can be transmitted using just two NB-IoT
packets. This optimization is essential given the energy constraints characteristic of IoT
environments. After the labeling process, the digit images are organized into dedicated
labeled folders within the device’s memory storage.

Subsequently, preprocessing is performed on digit images to produce clean, artifact-
free black-and-white images. This preprocessing step is iteratively applied until 150 distinct
digit combinations are recorded. To facilitate this, we utilize a digit change detection
algorithm that enables the identification of new digits in subsequent images compared to
previous captures.

Finally, we designed two experimental test cases to evaluate the system’s performance
across 10 devices. The first test set consists of two scenarios, where the first scenario
contains two successive dataset generations and model training iterations. In the second
scenario, FL is used relying on an averaging methodology after each iteration to enhance
the average accuracy per device. The second test case represents a scenario in which the
system is split in two batches, each containing five devices. Initially, devices from the first
batch perform training and FL update. Afterwards, training is performed on the second
batch, which is set up using the global model generated by the first batch.

3.2. Edge Node Design

To retrofit the existing mechanical counters, we aimed to develop a low-cost edge node
with specific features that would work effectively under resource-constrained conditions.
As our approach is focused on environments where high-performance hardware is not
available, we designed the system to balance accuracy and efficiency. The developed node
contains the following features:

• A 5-megapixel camera to capture the mechanical counter image;
• A backlight LED that facilitates camera usage even in low-light conditions;
• A low-power MCU with sufficient storage and computing capabilities to capture

images, store them locally, and run the ML training + inference on-spot;
• A communication module enabling connectivity service in difficult places (closed

spaces, basements, etc.) without having to rely on the existence of the local communi-
cation infrastructure such as WiFi.

The existing off-the-shelf devices fail to satisfy all of the aforementioned requirements.
Therefore, we designed the edge node based on the ESP32-CAM module [47]. In addition
to WiFi and Bluetooth Classic/BLE interfaces embedded within the ESP32, we included
a cellular module supporting 4G services such as NB-IoT and LTE-M, as well as EGPRS
fallback for areas where such new services have still not been deployed. Relying on the
existing and widely deployed MNO infrastructure, we thereby strive to achieve a nearly
ubiquitous connectivity. The main components and the fabricated prototype are shown in
Figure 4.



Future Internet 2024, 16, 402 7 of 24

Figure 4. Design and components of edge device is depicted on the left, whereas right images display
fabricated devices.

3.3. Digit Recognition Scheme

The “one-size-fits-all” approach to digit recognition assumes that we are running the
inference with the same ML model on each of the edge nodes. Following the basic idea
that the edge nodes will be used in a variety of environments, with differing counter types,
lighting conditions, as well as relative positions between the camera and the counter, the
aforementioned approach turns out to be inappropriate. Thus, our strategy relies on the
capability of the edge nodes to adapt to the on-site environment by updating, re-training,
and improving their local ML models.

Digit recognition is a classification problem, which, by its nature, can be solved
utilizing a supervised learning paradigm: input instance is an image that is to be classified
into one of the 10 categories corresponding to decimal digits. A sufficiently large dataset
needs to be generated and labeled in advance to train an appropriate ML model. The easiest
way to do it is to take a series of images and upload them to the server to be labeled (either
manually or by using a highly accurate digit recognition model, which is beyond the scope
of this work). However, several key points need to be addressed to apply this strategy as
efficiently as possible:

• Full-size image produced by a 5-megapixel camera is by itself a cumbersome piece
of data, for two reasons. Uploading such an image to the server would be associated
with unacceptably high communication costs. On the other hand, to run an inference
on such a large input instance, the ML model would have to be too large to fit into a
resource-constrained edge device. Therefore, a considerable effort must be put into
reducing the size of the input image, without compromising the ability to extract
useful information from it.

• The nature of the problem is such that the rate by which the digits on the counter
are updated is extremely unbalanced, even between the digits belonging to the same
counter: starting from the rightmost (i.e., least significant) digit, every subsequent digit
is updated by a tenth of the rate of the previous one. Furthermore, some counters might
be used in households with people living inside, thereby changing state significantly
faster than others used in remote objects, where the same utility is used seasonally
and/or occasionally. This implies the necessity to implement a mechanism to reliably
detect when a change in the counter state actually occurred, which would make the
system robust and adaptive to the volatile nature of the measurement process.

3.4. Experimental Setup and Dataset Collection

For testing purposes, the digit image dataset was produced using the test setup shown
in Figure 5. The edge node with the camera was fixed in front of the mechanical counter.
As shown in Figure 5, only a part of the input image (ROI = region of interest) is used as the
input for the digit recognition scheme, which is described in the following Section. In a real-
life scenario, a mobile application communicates with the edge device via Bluetooth and
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enables the user to define the boundaries of the ROI during the setup phase. In addition,
after the device is deployed and operational, it will occasionally send a full image to the
cloud to allow redefinition of the ROI and/or the camera parameters, should such an action
be necessary. It will also be helpful in case of any misrecognition of digits. The digits on
the counter change most rapidly in the least significant places or after the decimal point. If
a digit is not recognized correctly, occasionally sending (e.g., once in a few days) the entire
image of the ROI will allow for easy correction.

The counter we used can be triggered to increment its state by generating an electrical
pulse from the same MCU that takes images. That way, by knowing the initial value and the
exact number of generated pulses, we created a labeled dataset on the spot. The procedure
for the creation of the dataset consisted of the following:

1. Successively incrementing meter values and taking photos
2. Cropping part of the image that contains digits
3. Dividing it into separate digit images (16 × 24 pixels)

The environmental conditions can significantly influence the recognition process [48].
Accordingly, the experiments were conducted, and the dataset was created in a dark setting
(to resemble a real-world scenario, e.g., a manhole), with each image capture made using a
flash LED. The captured images are preprocessed using the algorithms described in the
next section to standardize the inputs of the ML model. The preprocessing procedures are
designed to eliminate the potential effects of differences in the conditions under which the
data were collected. Additionally, the entire apparatus was kept in a fixed position, and the
validation of the results was carried out under the same laboratory conditions. The dataset
consists of 3500 successive meter values, divided into 21,000 digit images.

Figure 5. View of metering device through camera lens of the edge device used for creation of datasets.

4. Digit Image Processing

In the following sections, we present the detailed methodology for image prepro-
cessing, employing a coloring algorithm to extract digits effectively from the captured
images. Next, we describe a strategy for conserving energy by minimizing unnecessary
transmissions, utilizing our proposed algorithm to determine whether the counter’s state
has changed since the previous capture. Following this, we introduce our custom-designed,
lightweight CNN architecture optimized for on-device training. Lastly, we discuss our FL
approach, aimed at improving the generalization of digit recognition models deployed on
edge devices using a standard model averaging technique.

4.1. Image Preprocessing

As outlined in the Introduction, TMs exhibit significant variability in digit formats,
fonts, colors, and sizes. To address this diversity and ensure more uniform data input
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for our ML model, our system employs a series of preprocessing techniques designed to
standardize the captured images.

The first step in image preprocessing, taken by the camera, is to crop the image and
extract single digits, which, in this case, fit into a 16 × 24 frame, as shown in Figure 6. This
proves to be a huge reduction of the input instance size.

Next, a transformation is applied to convert the grayscale image to a black-and-
white image, which further decreases the image size by a factor of 8, as each pixel can be
represented by a single bit instead of a byte. The initial approach to this transformation was
to compare each pixel value to a fixed threshold and classify it as black or white accordingly.
However, due to variations in lighting conditions, it is impossible to establish a single
threshold value that would produce meaningful output in all cases.

Figure 6. Conversion to B/W image format using a fixed threshold: TH = 128 (left), TH = 192 (right).

A better way to transform images to black and white is by applying the K-means
clustering algorithm (k = 2). As shown in Figure 7 (middle part), the algorithm makes a
solid distinction between black and white areas in the image.

Figure 7. Initial image taken using camera on edge device, intermediate image after B/W conversion
and the final image without artifacts.
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The remaining issue to be solved is the removal of white artifacts, which are parts
of the figures above or below the one that needs to be detected. That is accomplished by
utilizing a coloring algorithm, which paints all the disjoint white areas in the picture in
different colors. In the example shown in Figure 7, the coloring algorithm will color the
white areas in three different colors, as there are three disjoint areas. However, as the lower
two areas are both parts of the figure that need to be detected, we apply an additional step,
which is to merge any two differently colored areas that have pixels touching in corners.
Then, we recognize the biggest colored area and eliminate all the smaller ones as artifacts.
What remains is the actual image of the figure centered both horizontally and vertically
(right-hand side of Figure 7), which concludes the preprocessing part.

The full sequence of preprocessing operations is described in Algorithm 1.

Algorithm 1 Image preprocessing algorithm

Require: Cropped 16 × 24 part of the grayscale image containing digit
Ensure: Clean B/W digit image without artifacts

Convert to B/W by running k-means clustering (k = 2) on grayscale image
Color disjoint white areas in different colors
Merge differently colored areas that have pixels touching in corners
Identify the dominant color
Paint all the dominant-colored pixels white
Paint all the rest black

4.2. Digit Change Detection

The inherent property of the utility metering scenario is that the least significant digit
on the meter can be updated with an extremely variable rate. In extreme cases, update rates
can vary between seconds and months. Our strategy is to preserve energy by avoiding
unnecessary transmissions as much as possible, as data transmission is a much more costly
operation compared to image collection and processing. Therefore, our next goal was to
establish the criterion that would allow us to determine whether the state of the counter has
changed since the last capture and subsequently transmit the data only if such a criterion
was met.

Table 1 depicts a matrix representing median differences between two images repre-
senting the same or different digits. It is calculated, as displayed in Figure 8, by comparing
each pair of images from the dataset and filling a three-dimensional matrix, in which
dimensions represent the first digit, second digit, and number of pixels that differ. Initially,
a 3D matrix is set to zero matrix. If the result of comparison between the pair of images
(Dm

i , Dj
n) is k, where i is the i-th image in set of images of digit n and j is the j-th image in a

set of images of digit m, then the 3D matrix is incremented on position (m, n, and k). Finally,
after all pairs of digits have been compared, the mean value per pair (m, n) is calculated.

Figure 8. Scheme used for detecting differences between two digit images.
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Table 1. Average digit pixel differences where each element represents average number of differ-
ing pixels.

Digit 0 1 2 3 4 5 6 7 8 9

0 19 90 62 55 79 56 43 81 47 46

1 90 14 56 60 54 64 71 43 78 72

2 62 56 28 46 77 73 65 48 57 55

3 55 60 46 24 76 50 50 52 43 49

4 70 54 77 76 16 63 64 68 69 75

5 56 64 73 50 63 24 38 68 48 50

6 43 71 65 50 64 38 25 78 38 53

7 81 43 48 53 68 68 78 18 72 64

8 47 78 57 43 69 48 38 72 29 47

9 46 72 55 49 75 50 53 64 47 31
Bold numbers indicate minimum for each column/raw that is used for calculation of general threshold.

The results align with our expectations as shown in Table 1. For instance, digit 0 differs
significantly from digits such as 1, 4, and 7 due to its distinct shape, as reflected by the
larger pixel difference between them. Conversely, digits with more rounded shapes, such
as 6 and 9, exhibit fewer pixel differences when compared to digit 0, suggesting a greater
similarity. This pattern is consistent across other digits as well. For instance, digits 8 and 3,
which share similar structural features, show a smaller pixel difference. Finally, as expected,
the values along the main diagonal are minimal, since they represent the comparison of
each digit with itself.

The next step involves determining the optimal threshold for distinguishing whether
a digit has been changed. In our paper, we relied on the empirical rule to calculate the
threshold value. It follows the steps given in Algorithm 2.

Algorithm 2 Calculation of optimal value for digit image differentiation threshold

Require: Digit pixel differences table
Ensure: Optimal value of the threshold

Extract diagonal (same digits) and non-diagonal values (different digits) of the Digit
pixel differences table.
Calculate the mean (µ) and standard deviation (σ) values for both diagonal and non-
diagonal values.
Apply the Empirical Rule:

• 68–68% of values lie within 1 standard deviation from the mean.
• 95–95% of values lie within 2 standard deviations from the mean.
• 99.7–99.7% of values lie within 3 standard deviations from the mean.

Based on the chosen rule, set the threshold where the ranges of the diagonal and non-
diagonal values start to overlap.

In our case, choosing empirical rule 95% gives a threshold of value of 32.5, which will
be used for distinguishing different digits.

With that being said, our approach involves analyzing the pixel differences among
each digit (0–9) and developing a predictive mechanism to detect when a digit has been
changed. Our algorithm proposed for this task is presented in Algorithm 3.
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Algorithm 3 Pixel difference algorithm

Require: Clean least significant B/W digit image without artifacts from the last taken
picture

Ensure: the least significant digit change detected
Take a new picture
Perform image preprocessing algorithm
Do the EX-OR operation between corresponding binary pixels of last and new image of
least significant digit image
Sum elements of the resulting pixel matrix
Compare it with the threshold defined by Table 1
Conclude if the least significant digit has been changed

4.3. Digit Recognition Model

This paper presents a lightweight variant of a CNN with seven layers designed for the
classification task of digit recognition. The architecture follows a common deep-learning
paradigm involving convolution, pooling, normalization, flattening, ReLu activation func-
tions, and a softmax output layer. This kind of architecture is well-proven for image
classification tasks, leveraging convolution for feature extraction, max pooling for dimen-
sionality reduction, batch normalization for training stability, and fully connected layers
for decision-making based on the learned features.

A short description of each network layer is given next and also depicted in Figure 9.
Given the resource constraints of the ESP32 relative to modern high-capacity CNN archi-
tectures, our objective was to design lightweight yet effective CNN leveraging standard
convolutional blocks. The initial section of our CNN comprises a conventional convolu-
tional block, which includes a convolutional layer, max pooling layer, and batch normal-
ization. This block produces a feature map with dimensions 3 × 4 × 32, beyond which
further convolutional blocks could not be employed due to the spatial limitations of the
feature map.

Figure 9. Proposed CNN architecture used for digit recognition.

To address this, we utilized a flatten layer to transform the 3D matrix into a 1D
array, serving as the input for subsequent fully connected (dense) layers. We incorporated
three fully connected layers, each with ReLU, ReLU, and softmax activation functions,
respectively, to progressively reduce the dimensionality of the intermediate feature maps.
Finally, the last fully connected layer employs a softmax function, yielding a prediction
corresponding to the specific digit value displayed on the metering device.

4.3.1. Convolution Layer

The input to the network is a tensor with dimensions 16 × 24 × 1, representing a
single-channel (grayscale) image with a spatial size of 16 × 24 pixels. This layer applies
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32 convolutional kernels, each of size 3 × 3 × 1, over the input. No padding is applied, and
the stride for the convolution is set to 3 in both the x and y directions. The convolution
operation outputs a feature map of dimensions 5 × 8 × 32, where 32 is the number of filters
(kernels) applied, and 5 × 8 is the spatial size of each feature map.

4.3.2. Max Pooling Layer

The max-pooling operation reduces the spatial dimensions of the feature maps while
retaining the most salient features. This layer uses a pooling window of 2 × 2 and reduces
the spatial dimensions from 5× 8 to 3× 4. The number of channels (32) remains unchanged.

4.3.3. Batch Normalization Layer

This layer normalizes the activations from the previous layer to accelerate and stabilize
the training process. It applies batch normalization across the three-dimensional output
with a momentum value of 0.900002.

4.3.4. Flatten Layer

The three-dimensional tensor from the previous layer is flattened into a one-dimensional
vector in order to prepare the data for the subsequent fully connected layers. The total number
of elements in this flattened layer is 3× 4× 32 = 384.

4.3.5. ReLU Layer (First Fully Connected Layer)

This fully connected layer receives the flattened input of size 384 and applies a rectified
linear unit (ReLU) activation function. The output dimension is 100, representing the first
hidden layer of the fully connected network.

4.3.6. ReLU Layer (Second Fully Connected Layer)

The second fully connected layer takes the output from the previous layer (of size 100)
and, again, applies a ReLU activation function. The output dimension is 32, representing a
second hidden layer.

4.3.7. Softmax Layer (Third Fully Connected Layer)

The final layer of the model is a fully connected layer with a softmax activation
function. This layer generates a probability distribution across ten output classes, which
are, in our case, the digits 0 through 9. The softmax function ensures that the output values
sum to 1, making them suitable for this classification task.

Furthermore, our approach facilitates not only edge inference but also comprehensive
model training. To achieve this, we implemented a standard gradient descent backpropa-
gation algorithm that processes each data batch during training. The calculated gradients
are employed to update the model weights in accordance with the designated batch size.
In our implementation, we optimized the training procedure by excluding dropout layers.
Additionally, the application is developed in a bare-metal environment, avoiding the use of
external frameworks or libraries to minimize overhead and memory footprint. This design
enhances the applicability of our approach across a wide range of edge devices.

4.4. Federated Learning Approach

FL is a decentralized approach that allows multiple devices to collaboratively train
ML models without sharing their raw data in order to increase the performance of each
model, as well as any new model that can be included in the system. This method ensures
data privacy by transmitting only models rather than sensitive information to a central
server for aggregation.

Having safety concerns in mind, in our study, FL is used to enhance the generalization
of our digit recognition models located on edge devices and to create a more robust model
capable of accurately predicting values under different environmental parameters.
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In our study, we utilize a standard averaging methodology to implement FL, which is
based on averaging the same parameters (weights or biases) across all participating models
to create a single global model. However, the batch normalization layer is treated as an
exception to this averaging process, as the layer should remain unchanged during the
average procedure. Consequently, if there are C devices, each with a CNN model, the FL
process will yield C distinct models, where all layers—except for the batch normalization
layer—are identical, and the batch normalization layer is customized for each device. This
means that the transmission of models between server and devices can be carried out with
or without batch normalization parameters. In our case, the model is transmitted in total.

5. Results

In this section, we describe two experimental test cases used in our study, along
with their corresponding results. Additionally, we measure and evaluate the energy
consumption to showcase the efficiency of the proposed architecture in real-life working
conditions. Finally, we provide a comparison of our solution with other similar approaches
found in the literature.

5.1. First Test Case

Our system integrates digit change detection and model training, as well as FL. To
evaluate its performance, we design the first test case with two experimental scenarios. The
first scenario serves as a baseline for comparison with the second, focusing exclusively on
model training using two datasets. The second scenario incorporates the benefits of FL.
Both scenarios are illustrated in Figure 10.

(a)

(b)
Figure 10. The first test case comprises two distinct scenarios representing different training method-
ologies, one incorporating federated learning (FL) and the other without its use. (a) Scenario 1, which
does not use FL. (b) Scenario 2, which utilizes averaging methodology for FL.

In Scenario 1, shown in Figure 10a, we implement a two-stage training process for the
model on individual devices. The first stage is started by gathering N images, which are
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sent to a global server for labeling. These labeled digit images are subsequently used for
model training on the device in the first iteration. In the second stage, a new batch of N
images is collected and labeled in the same manner, allowing for further model training.
The described procedure is repeated across all C devices, leading to C distinct models.

Scenario 2, depicted in Figure 10b, introduces FL following each training stage. Initially,
each device trains its model using the digit image dataset it collected. Afterward, the devices
share their model parameters through a federated averaging methodology as described in
Section 4.4. After parameter sharing, each device continues training its model on the next
batch of digit images, resulting in further refinement of all individual device models. The
first averaging process is more substantial, as the models originate from diverse random
seeds and datasets, leading to considerable variance among them. In contrast, the second
averaging is more conservative, since the models have become more similar despite the
additional training.

The described scenarios were evaluated using ten client devices (C = 10). Each de-
vice was assigned a combination of two datasets, each containing 150 images, leading to
two datasets of 900 digits, referred to as D1 and D2. These datasets are the same for both
scenarios. Furthermore, an additional testing dataset was created consisting of 500 images
(3000 digit images in total) and designated for testing both scenarios at each stage. Further-
more, all training sessions consist of 25 epochs. The results presented in Table 2 display the
accuracy calculated on this testing dataset.

The row labeled S = 0 and T = D1 in Table 2 report the accuracy of models trained
solely on dataset D1. The next row, marked with S = 1 and T = D2, presents the results
obtained after completing the first scenario. These results were derived from consecutive
training on D1 and D2 without utilizing FL.

Table 2. Results of the evaluation for both scenarios.

C
0 1 2 3 4 5 6 7 8 9

S T

0 D1 90.37 88.70 87.07 78.90 92.53 91.03 87.06 79.36 91.34 87.70

1 D2 92.07 97.43 87 85.10 91.34 23.33 89.63 93.13 95.8 91.23

2
Avr1 78.20 74.77 74.43 73.20 76.33 76.63 76.13 76.20 75.80 75.07
D2 94.33 93.56 91.77 95.23 95.4 94.64 90.63 94.07 94.03 92.33

Avr2 93.5 93.30 92.87 93.90 93.93 93.90 94.20 93.67 93.00 93.14
The bold values represent maximal values per column.

The improved performance observed in the second iteration of FL using the averag-
ing methodology can be attributed to the distinct initialization conditions of the models.
Initially, the models are configured with randomized weights and biases, resulting in
substantial heterogeneity across individual models. Following the first round of training,
these models diverge considerably in their weight and bias configurations. Consequently,
averaging these disparate models produces a global model that differs notably from any
individual local model, which can lead to a less effective aggregation in the first iteration
of FL.

In contrast, the second training iteration begins with a unified global model, meaning
that each local model in this round is derived from a common starting point. As a result,
the individual models exhibit variations of a shared structure, and differences between
them are significantly reduced compared to the first iteration. Thus, averaging in the
second iteration causes less disruption to the individual models, enabling a more cohesive
integration. This approach facilitates a more effective distribution of learned knowledge
across devices.

Rows designated as S = 2 indicate both intermediate and final model accuracy in Sce-
nario 2. It is noticeable that the initial federated averaging significantly diminishes model
accuracy as expected. However, additional training on dataset D2 leads to marked accuracy
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improvement in comparison to models trained without FL. Finally, the results suggest that
the second application of FL yields, on average, superior performance compared to models
trained without this methodology, as shown in Table 3.

Interestingly, the results indicate that Scenario 2 produces comparable outcomes before
and after the second federated averaging procedure. The ratio between the models labeled
S = 2, T = Avr2 and S = 2, T = D2 is 0.999, suggesting that “knowledge” is effectively shared
among the client devices without a significant loss of accuracy on average.

Table 3. Average accuracy for both scenarios.

Average S = 0, T = D1 S = 1, T = D2 S = 2, T = Avr1 S = 2, T = D2 S = 2, T = Avr2

Accuracy 87.40 91.41 * 75.67 93.60 93.54

*—Average does not include accuracy for device client 5. The bold values represent maximal values in row.

5.2. Second Test Case

The second test case is designed to simulate real-world scenarios in which devices are
deployed and trained in batches at different time intervals, as illustrated in Figure 11. In this
test case, ten clients are divided into two batches of five clients each. The first batch consists
of the initially deployed devices, following a training process similar to Scenario 2. These
devices collect an initial dataset of N images and train their initial, randomized models
on these data. The next step involves FL using a model averaging approach, followed by
another cycle of data collection, model training, and FL. As a result, the cloud stores a
second version of the global model, generated after two rounds of training.

Subsequently, the second batch of devices is introduced. Their initial model is set
to the global model available at that point. These devices follow the same process of
two rounds of dataset collection (each with N images), model training, and FL updates
using the averaging methodology. The key difference is that for these FL updates, the cloud
incorporates all the latest models produced during training. This includes models from the
first batch, which were generated after training on their second dataset.

Figure 11. Second test case displaying training scheme where second batch of devices is trained
based on results of training on first batch.
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The evaluation of the second test case is conducted using the same parameter settings
as in the first test case. The number of images per training dataset, N, is set to 150, while
the test set consists of 500 images. Each image is divided into six digit images, resulting
in 900 digit images per training dataset and 3000 digit images for the testing dataset.
Furthermore, each training session consists of 25 epochs. The accuracy evaluation results
on testing dataset are presented in Table 4.

Table 4. Results of the evaluation for second test case.

T
Batch 1

T
Batch 2

0 1 2 3 4 5 6 7 8 9

D1 90.37 88.70 87.07 78.90 92.53

F1 66.73 62.33 65.03 66.33 70.20

D2 95.50 93.80 90.93 95.53 95.27

F2 92.80 94.27 93.43 94.30 94.60

D2 * 95.50 93.80 90.93 95.53 95.27 D1 96.73 96.90 97.73 96.07 95.97

F3 96.33 96.77 96.60 97.50 97.27 F3 96.77 97.03 96.87 96.63 96.30

D2 * 95.50 93.80 90.93 95.53 95.27 D2 97.30 96.67 96.83 96.50 96.47

F4 96.33 96.57 96.77 97.53 97.57 F4 97.50 97.23 97.03 96.67 96.87
*—Results repeated without training for Batch 1. The bold values represent maximal values per column.

The columns labeled T in Table 4 indicate the point at which model accuracy was
evaluated. D1 refers to accuracy following training on the first dataset, while D2 represents
results after the second training session on the second dataset. Rows labeled as D2 * contain
repeated results for devices in Batch 1 after training on the second dataset. Finally, rows
beginning with F represent the results following FL updates.

As observed in the first test case, the initial FL update leads to a reduction in model
accuracy. As in the first test case, a similar trend is evident in the second FL update, where it
is shown that the second FL iteration did not significantly alter the overall average accuracy.

However, the inclusion of models from the second batch highlights the importance
of FL updates. As shown in the columns labeled Batch 2 in Table 4, the training results
after the first dataset are notably higher than those from Batch 1. This suggests that FL
plays a critical role in generating global models that serve as robust initial configurations
for newly deployed devices. Moreover, performing FL updates using the latest models
from all devices results in improved global models. This is evident in the final row, which
shows the accuracy of the final global model deployed to each device, with most columns
exhibiting their highest accuracy in this row.

This finding is significant for two reasons. First, even though training was stopped
for devices in Batch 1, the FL update considerably improved their accuracy. Second,
devices in Batch 2 also experienced an increase in accuracy, reaching their maximum values.
Furthermore, Table 4 demonstrates that all maximum accuracy values were achieved
following FL updates, underscoring the value of FL in enhancing model performance

Table 5 presents the average accuracy results for specific rows. Columns labeled B = 1
show the average accuracies for Batch 1 before and after the second iteration of the FL
update. The results indicate that the second FL iteration does not significantly affect the
overall average accuracy for Batch 1. In contrast, the columns B = 1, T = D2 and B = 1,2,
T = D2 represent the average accuracy for models after the final training session using the
second dataset for Batch 2 and for both batches combined, respectively. These columns
reveal that Batch 2, initialized with the global model generated from training on Batch 1,
slightly outperforms Batch 1.

The final column contains the average accuracy for the last row in Table 5, where
the value of 97.01 represents the overall maximum for both Table 4 and across both test
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cases. This indicates that the FL update not only improves the performance of newly added
devices but also enhances the accuracy of devices that were already deployed.

Table 5. Average accuracy for second test case.

Average B = 1, T = D2 B = 1, T = F2 B = 2, T = D2 B = 1,2, T = D2 B = 1,2, T = F4

Accuracy 94.21 93.88 96.75 95.48 97.01

The bold values represent maximal values in row.

5.3. Energy Consumption Analysis

With the lithium-ion battery we used for our test cases (3.6 V, 1000 mAh), the total
energy budget available is: Ebattery = 3.6 V × 1000 mAh = 3600 mWh.

ESP32 supports several power saving modes [49], enabling our device to achieve
current consumption as low as 10 µA in deep sleep mode. That way, the daily energy
consumption of a sleeping device is E0 = 3.6 V × 10 µA × 24 h = 864 µWh. We measured
the energy costs during two critical operations, using an Otii Arc Pro Power profiler device:

• Image collection and processing
• Data transmission over NB-IoT link

The typical values for the energy consumption during different operations are shown
in Table 6. The first measurement (Figure 12) was for the operation when the edge node
wakes up, captures the image from the camera, executes the preprocessing and infer-
ence, and goes back to sleep. In such a case, the total energy spent for the operation is
E1 = 64 µWh + 149 µWh + 36 µWh = 249 µWh.

Table 6. Energy consumption during different operations.

Operation Energy [µWh]

MCU init 64
Image capture 149
Preprocessing + inference 36

MCU init 123
Network connection 1360
Data transmission 570

The other operation (Figure 13), which serves for the estimation of the communication
costs, assumes that the edge node wakes up, connects to the network, transmits a data
packet, and goes back to sleep. The NB-IoT module that goes to power save mode (PSM)
upon each transmission skips the network registration phase on all subsequent transmis-
sions after the initial one [50]; therefore, the cost of the network registration is here omitted
from the calculation: E2 = 123 µWh + 570 µWh = 693 µWh.

As expected, the data transmission operation turns out to be more expensive than the
image capture + processing operation by the factor of E2/E1 = 2.78. This increases to a
factor of 8.24 when network registration is necessary, which must be carried out every time
when the NB-IoT service is not available. This clearly justifies our approach to try to detect
whether the digits were updated and to transmit data only if necessary.

In a hypothetical use case when measurements are taken once every hour, the data
are transmitted once a day, and the rest of the time is spent in deep sleep mode, the daily
energy consumption is Edaily = E0 + 24 E1 + E2 = 7533 µWh. The total battery lifetime can
be calculated as Ebattery/Edaily = 477 days. This is a fairly intensive usage scenario, while in
practice, the number of processing/transmission operations can be significantly reduced,
thereby prolonging the battery lifetime to several years.

To enable comparison with other solutions available in the literature, we calculated
the average current consumption as Iaverage = Edaily/24 h/3.6 V = 87 µA. This is by at least
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an order of magnitude more energy-efficient in comparison with other solutions, as shown
in the following subsection.

Figure 12. Power consumption profile of image capture + preprocessing + inference.

Figure 13. Power consumption profile of data packet transmission via NB-IoT.

5.4. Comparison with Other Solutions

Table 7 provides a comprehensive comparison of key attributes across several related
works in this field. Some key observations are the following.
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Table 7. Comparisons of related work.

Paper [34] [31] [30] [33] [40] OUR

Device type PE PE MA - MCU NP

Comp. device RPi3b+ RPi Z M - STM32 ESP32

Communication WiFi WiFi Mobile WiFi - NB-IoT

Framework OCV, TF - Darknet TF CNN A. -

Recognition AoI+D AoI I I I AoI+D

Power supply B BEH B N/A N/A B

ML model CNN RF CNN CNN CNN CNN

FL - - - - - +

Quantitative
comparison

Image size 28 × 28 - 224 × 224 60 × 200 96 × 96× 3 16 × 24

Model size N/A 30 MB N/A 4.3 MB [167:294] KB 172 KB

Battery [mAh] 9800 5000 High N/A - 1000

Consumption >420 mA >78 mA High N/A - 87 µA (avg.)

Battery lifetime 46 h 578.3 d - - - 477 d

Accuracy [%] 98.70 97.69 98.67 98.70 [83:88.8] 97.01

PE—prototype using existing modules; NP—new prototype; MA—mobile app.; OCV—OpenCV; RF—
random forest; TF—tensorflow; AoI—area of interest; I—image; D—digit; B—battery; BEH—battery with
energy harvesting.

As can be seen from the table, various platforms were used across the related works,
including Raspberry Pi models (RPi3b+ and RPi Zero W) and smartphone devices. Our
approach utilizes Espressif’s ESP32, a low-power MCU, which represents a significant
contribution in terms of energy efficiency compared to the other solutions that rely on more
power-demanding devices.

In contrast to previous systems that utilize different ML frameworks, such as Ten-
sorFlow (TF) or Darknet, our approach employs a lightweight, custom-made, barebone
CNN architecture, optimized for direct training on edge devices. Furthermore, our method
integrates CNNs with FL, which sets it apart from earlier works that do not leverage
this technique.

Power consumption is a critical factor in embedded systems, especially those de-
ployed in resource-constrained environments. As previously mentioned, in our approach,
constrained resources in terms of the hardware capabilities of the edge devices lead to
lower consumption (87 µA on average) than alternatives (420 mA and 78 mA on average).
We used the smallest battery (1000 mAh), compared to other solutions and achieved a
solid estimated battery lifetime of 477 days. Additionally, our approach utilizes NB-IoT
technology for data transfer, which is, in general terms, more power-efficient compared to
WiFi or mobile network solutions used by other systems.

Memory efficiency is also highlighted, where our model has a significantly smaller
footprint (172 KB) compared to the larger memory requirements of other systems (up
to 30 MB).

The accuracy comparison reflects that our solution presents results that are around
1.7% lower than those of competitors. However, we consider it a solid result, having in
mind the constrained hardware resources we used to achieve it. The only other work we
can compare our work with, but only in terms of lightweightness (using ESP32), is [46].
The authors used ML and FL on resource-constrained devices in different scenarios than
ours and achieved an accuracy of up to 86.5%.



Future Internet 2024, 16, 402 21 of 24

6. Conclusions

In this paper, we present a low-cost and power-efficient solution for retrofitting the
existing mechanical-based metering infrastructure. This solution is based on a low-power
MCU platform utilizing NB-IoT network technology for communication between edge
devices and the server. The device is fitted with a low-cost camera that produces images of
the metering device, resulting in datasets consisting of 3500 six-digit images. Batches of
150 images are labeled by the high-level entity learning model and preprocessed in order to
remove unwanted artifacts and convert them to black-and-white format. Reduction from
the original image size of 640 × 480 pixels to 16 × 24 format brings a reduction of input
instance size by 99.87%. Furthermore, conversion from 8-bit grayscale to black-and-white
bitmap brings an additional eight-fold reduction in size, totaling 48 bytes per image, as
opposed to the 300 KB provided by the camera. The resulting digit image datasets are used
to train models on each device using a custom-tailored CNN architecture optimized for
our system.

We devised two test cases for testing. The first test case consists of two scenarios, where
the first one performs two subsequent dataset generation and model training iterations. On
the other hand, the second scenario is enhanced by the introduction of FL based on model
averaging methodology after each training iteration on the device. The two scenarios
showed the advantage of using FL, where the model obtained by the combination of
two training iterations and intermediate FL averaging produces better average accuracy
than the model obtained by only two iterations of training. To conclude, the resulting
average accuracy of models generated using FL is 93.6%.

The second test case demonstrates the influence of FL on a system comprising two batches
of devices deployed at different times. The first batch undergoes training with FL, as de-
scribed in Scenario 2 of test case 1. However, the initialization of the second batch, which
is based on the global model generated from training on Batch 1, shows a notable im-
pact, with faster improvements in accuracy for Batch 2. Additionally, further training on
devices in Batch 2 significantly affects the models in Batch 1, as the FL update “shares”
new knowledge, leading to a substantial accuracy increase in Batch 1. Ultimately, the
highest accuracy of 97.01% is achieved following the final FL update, representing the best
overall performance.

The choice of low-end components and hardware is justified by the power-efficient
design of the edge device, making it capable of operating for more than a year in an
extensive use case and even more when the frequency of readings is reduced. This is
extremely important for the feasibility and scalability of the system in a real environment.
Usage of a power-hungry high-end device would impose a huge maintenance problem
associated with the need for daily recharging/replacement of batteries for thousands of
devices while not bringing any significant boost in the performance.

Current Limitations, Real-World Application, and Future Work

This paper presents the results achieved after completing the ”Proof of Concept”
project titled “Federated Learning-Based Number Recognition for Smart Metering Appli-
cations Using NB-IoT Wireless Technology”. The results demonstrate that the proposed
solution could be applied in real-world metering scenarios.

Currently, our solution works well if there is a signal from the MNO (either using
NB-IoT or falling back to GSM). If there is no MNO signal in the region, a possible and
viable solution would be to redesign our system to work with LoRa/LoRaWAN. However,
the cost of such a versatile solution would be significantly higher.

For a real-world application, it is necessary to consider several additional aspects.
Most mechanical meters are located underground (e.g., in manholes) or in cabinets behind
concrete walls, where radio conditions are poor. For this reason, we proposed NB-IoT
featuring coverage extension modes to boost the signal in such scenarios. Poor lighting
conditions can also have a significant impact [48]. To address this, we designed a prototype
with white LEDs. Another important aspect is the appropriate casing and placement of
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the prototype. It should be mounted in a secure plastic casing with suitable waterproof,
dustproof, and disruption-proof fittings and mounting points. To address the imperfect
digit recognition, we propose sending an occasional complete ROI image to the server to
verify the digit recognition process periodically. Finally, appropriate adjustments (e.g., ROI)
and model fine-tuning need to be performed during the installation and setup process for
the particular scenario and TM.

For the future work, the following should be considered to improve the efficiency of
the proposed system:

• test more sophisticated FL techniques to achieve even better performance on the edge;
• experiment with various CNNs and the other model architectures;
• subject the system to additional test cases;
• build an appropriate secure plastic 3D model with appropriate fittings, as a case for

the fabricated prototype;
• test performance under different real-world metering scenarios.
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The following abbreviations are used in this manuscript:

SM Smart meter
REST Representational state transfer
MQTT Message queuing telemetry transport
CoAP Constrained application protocol
TM Traditional meter
NB-IoT Narrowband Internet of Things
PSM Power saving mode
MNO Mobile network operator
ML Machine learning
MCU Microcontroller unit
CNN Convolutional neural network
FL Federated learning
ROI Region of interest
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