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Abstract: Traditional anomaly detection methods in time series data often struggle with inherent
uncertainties like noise and missing values. Indeed, current approaches mostly focus on quantifying
epistemic uncertainty and ignore data-dependent uncertainty. However, consideration of noise in
data is important as it may have the potential to lead to more robust detection of anomalies and a
better capability of distinguishing between real anomalies and anomalous patterns provoked by noise.
In this paper, we propose LSTMAE-UQ (Long Short-Term Memory Autoencoder with Aleatoric
and Epistemic Uncertainty Quantification), a novel approach that incorporates both aleatoric (data
noise) and epistemic (model uncertainty) uncertainties for more robust anomaly detection. The
model combines the strengths of LSTM networks for capturing complex time series relationships and
autoencoders for unsupervised anomaly detection and quantifies uncertainties based on the Bayesian
posterior approximation method Monte Carlo (MC) Dropout, enabling a deeper understanding of
noise recognition. Our experimental results across different real-world datasets show that considera-
tion of uncertainty effectively increases the robustness to noise and point outliers, making predictions
more reliable for longer periodic sequential data.

Keywords: anomaly detection; time series; uncertainty quantification; deep neural networks;
bayesian network

1. Introduction

Anomaly detection in time series [1] is a challenging task spreading over various
domains such as the Internet of Things (IoT), healthcare, logistics, etc. In connected envi-
ronments, for example, anomaly detection faces additional significant challenges due to
the inherent uncertainty surrounding data dynamics and system interactions. Indeed, time
series data collected from various IoT devices often exhibit complex patterns influenced by
interconnected factors, making it difficult to distinguish normal behavior from anomalies
with certainty. The presence of uncertainty further complicates the anomaly detection in
several ways [2], as it obscures the distinction between normal and anomalous behavior
and thus affects the reliability of model predictions. Indeed, uncertainty [3] encompasses
ambiguity or lack of information about the data, distinguishing it from anomalies, which
represent deviations from expected patterns. We can decompose uncertainty into two
different components: aleatoric and epistemic. Aleatoric uncertainty describes the inherent
randomness in data, while epistemic uncertainty reflects the model’s confidence in its
predictions. For example, consider temperature and humidity sensors in a smart building.
Aleatoric uncertainty may arise from natural fluctuations in temperature due to changes in
occupancy or weather conditions, leading to potential misclassification of these fluctua-
tions as anomalies. On the other hand, epistemic uncertainty could result from a lack of
comprehensive training data, making the model less confident in its ability to accurately
identify real anomalies, such as a sudden equipment malfunction. Considering both un-
certainties is important for enhancing model robustness. On the one hand, addressing
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aleatoric uncertainty helps the model handle noise, reducing the risk of false positives by
distinguishing random fluctuations from true anomalies. On the other hand, acknowledg-
ing epistemic uncertainty informs decision-makers about the model’s confidence levels,
which is particularly vital in critical domains such as healthcare and IoT, where precise
assessments of anomaly detection results are essential. By quantifying these uncertainties,
we can guide practitioners in determining whether additional data or model adjustments
are necessary to enhance the reliability of detections.

Addressing uncertainty in anomaly detection requires advanced approaches [3], such
as Bayesian methods [4] or ensemble learning [5], which offer promising avenues for
capturing and quantifying uncertainty in time series data. These techniques provide
probabilistic assessments of anomalies, enabling decision-makers to gauge the reliability of
detection results and prioritize response efforts accordingly. Traditional anomaly detection
techniques [6] struggle to adapt to these uncertainties, leading to either missed anomalies
or a high rate of false positives.

In this work, we explore a way to consider both aleatoric and epistemic uncertainties
for anomaly detection in time series data. Based on existing works [7,8], our approach
constructs an Autoencoder based on LSTM (Long Short-Term Memory) [9] for accurate time-
series modeling [10]. Autoencoders are a well-established architecture for unsupervised
anomaly detection. LSTMs foster an understanding of the complex relations in time series.
The combination aims to learn normal behavior in data to be able to distinguish it from
anomalous data. Further, we implement a solution for separate aleatoric and epistemic
uncertainty quantification. Using a multi-layer neural network structure, we approach
epistemic uncertainty quantification using the Bayesian posterior approximation method
Monte Carlo (MC) Dropout [11]. For aleatoric uncertainty, a split head of the autoencoder
architecture separately predicts per-point aleatoric uncertainty trained by a modified loss
function. By combining these approaches into one model, we want to evaluate uncertainty
quantification capabilities and its efficiency in univariate time series data. We argue that
involving uncertainty supports the anomaly detection process to achieve more precise
predictions. Consequently, we aim to have a closer look at uncertainty and how it behaves
in the presence of anomalies. It is particularly interesting to investigate the behavior of
aleatoric uncertainty compared to epistemic uncertainty in this context.

The rest of this paper is structured as follows. Section 2 describes several related
studies. Section 3 describes our approach to anomaly detection under uncertainty. Section 4
presents experimental results. Finally, we draw a conclusion in Section 5.

2. Related Work

This section describes different works on both anomaly detection methods as well as
anomaly detection under uncertainty.

2.1. Anomaly Detection Approaches

With the rise of deep neural networks, various methods have been developed to
approach anomaly detection [12,13]. Unlike traditional machine learning approaches, deep
neural networks excel in handling complexity and flexibility enabling them to scale to
high dimensional data. Recurrent Neural Networks (RNN) are a type of neural network
specifically designed for sequential data. Through a hidden state, they keep information
over past states. Nevertheless, RNNs have a small memory and forget long-range depen-
dencies. Moreover, they struggle with vanishing/exploding gradients. Long Short-Term
Memory (LSTM) [9] was developed to overcome these problems making it valuable for
anomaly detection in sequential data. LSTMs also found application in anomaly detection.
The study in [14] uses an LSTM network to predict healthy electrocardiogram signals. A
further variation of LSTMs has been developed by [15] where LSTM layers are stacked. It
is supposed to be trained on normal data and uses multiple predictions in the future to find
anomalies based on prediction error.
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Autoencoders [16] try to compress the information into a lower dimensional (latent)
space, to extract the most relevant features. In [17], the authors use this approach to detect
anomalies from satellite telemetry and artificial data, while in [18], the authors proposed
Donut, an unsupervised anomaly detection algorithm based on Variational Autoencoders
(VAE) [19] for anomaly detection. VAEs try to learn a distribution over the latent space
through variational inference. Since they model the latent space as a distribution instead
of point estimates, one can generate new data points through sampling. Finally, there are
approaches that combine several presented techniques. The work presented in [20] shows
a combination of an LSTM with an encoder and decoder for multi-sensor time series data.
OmniAnomaly [21] uses a combination of GRU and VAE with Planar Normalizing Flow.
Combinations of autoencoder and time series forecasting methods based on latent space
were also introduced and successfully applied. For example, [22] uses an autoencoder to
reconstruct data and additionally uses a feed-forward network to predict one value ahead
in terms of timesteps. Similar to that, [23] uses an autoencoder to predict one step ahead in
time, and one step in the past relative to the given input window.

2.2. Anomaly Detection Approaches with Uncertainty Quantification

Uncertainty is often modeled through probabilistic approaches. However, probabilistic
approaches alone fail to properly distinguish between aleatoric and epistemic uncertain-
ties [24]. Several strategies evolved to handle uncertainty in anomaly detection. Some
follow the idea of alleviating uncertainty in the input data before anomaly detection [25,26].
While this approach increases the robustness of the prediction model it fails to provide a
measure for uncertainty. Other approaches have proposed the application of conformal
methods, such as [27], which introduces a framework called cross-conformal anomaly
detection. This framework aims to strike a balance between statistical accuracy and compu-
tational efficiency for uncertainty-quantified anomaly detection. Bayesian deep learning
provides tools for uncertainty quantification of deep learning models [8]. It is a subset of
probabilistic machine learning approaches, where prior distribution is placed on the model
parameters and one needs to estimate the posterior distributions based on the observed
data. Since exact Bayesian methods for deep learning are still intractable, various meth-
ods have been proposed to approximate the posterior distribution, namely Monte Carlo
Dropout [11], Bayes by Backpropagation [28] or Ensembles [5]. The Bayesian approach [29]
was also applied to autoencoders. Reference [30] shows in an empirical study how the
integration of uncertainty in the score function is likely to improve anomaly detection for
general datasets. In [31], the authors take this one step further by changing the autoen-
coder to a VAE considering uncertainty as an anomaly score. The authors of [32] show
the applicability of those methods on time series data comparing multi-layer perceptron
networks to LSTM networks. In [33], the authors use an LSTM and turn it into a Bayesian
network to predict anomalies in satellite telemetry data by comparing various kinds of
posterior approximations. The study in [7] employs an LSMT autoencoder with point-wise
prediction including model uncertainty calculation.

Most approaches focus on quantifying epistemic uncertainty, neglecting the inherent
data uncertainty. In [8], the authors proposed to use an additional network output to
quantify aleatoric uncertainty in computer vision. A method for calculating the predictive
uncertainty, which can be separated into model and data uncertainties, is provided using
negative log likelihood (NLL) [5,34]. It relies on decoupling the NLL based on MC sampling
to achieve an anomaly probability as well as a split measure for model and data uncertainty.
Similarly, decomposition can be achieved by decoupling prediction uncertainty [22] derived
from the variance of the prediction distribution.

2.3. Take Away

Uncertainty quantification is crucial for making informed decisions based on time
series data. However, most existing anomaly detection approaches primarily focus on
epistemic uncertainty, which reflects model limitations, neglecting the inherent randomness
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or noise in the data themselves (aleatoric uncertainty). This work proposes a novel approach
that uses separate techniques to quantify both aleatoric and epistemic uncertainty in time
series data. Unlike existing works that solely aim for highly accurate anomaly detection,
our approach tackles noise in data by quantifying aleatoric uncertainty. This allows for
more robust anomaly detection and addresses model uncertainty to enhance the overall
reliability of predictions.

3. Proposed Approach

In this section, we describe the approach we developed, called LSTMAE-UQ (code
is available at https://github.com/p199671/LSTM-AE-UQ.git (accessed on 1 September
2024) ) (Long Short-Term Memory Autoencoder with Aleatoric and Epistemic Uncertainty
Quantification), to address the problem of detecting uncertain anomalies in univariate
time series data. LSTMAE-UQ integrates LSTM cells in the autoencoder architecture
and quantifies uncertainties in both data and model. We chose this combination for two
main reasons: Firstly, by using LSTM, we can capture the temporal structure of time
series data. Secondly, an autoencoder is an unsupervised learning approach that does not
require labels for learning. Additionally, it allows for univariate and multivariate time
series anomaly detection and sets the basis for epistemic uncertainty quantification by
its multi-layer neural network structure. The combination of LSTM and the autoencoder
can learn to capture relevant features of time series data and aims to reconstruct them
properly. Moreover, unlike previous works which focus mainly on epistemic uncertainty,
our approach considers both uncertainties separately. To this aim, we adapt the model
inspired by [8] to output an estimate of data uncertainty as well as epistemic uncertainty
using MC Dropout [11].

The architecture of LSTMAE-UQ is illustrated (to ease readability, we do not show the
averaging over the MC samples for reconstructions and uncertainty for the reconstruction
error) in Figure 1. The task of the described architecture is to learn representative features
of the input data given the window size and reconstruct it properly. The input data consists
of one observation for each timestep. We reconstruct these observations which should be
as close to the mean-normalized input as possible (see example in Table 1). Through a
separate head, apart from the reconstruction output, the model also returns the variance,
which corresponds to the respective data uncertainty.

Table 1. Example of desired reconstruction.

Original Input Window Normalized Input Window Desired Reconstruction(
1 4 4

) (
−2 1 1

) (
−2 1 1

)
An autoencoder consists of two parts: an encoder and a decoder. In our work, each

of the encoders and decoders is constructed of a two-layer LSTM network (Table 2). The
first layer of the encoder takes the time series as input. The second layer, smaller in size
than the first, encodes the output of the input layer to a lower dimensional representation.
The dimensions of the encoding is 0.8 times the input window size. The first layer of the
decoder uses the encoding as input. The output is passed to the second decoder layer
which aims to reconstruct the input dimensions. Additionally, we split the head of the
network and added a small fully connected network. This second output layer will be
trained to calculate an estimate of aleatoric uncertainty.

Table 2. Network Layers.

Encoder LSTM:in→ Drop→ LSTM:encoding

Decoder

{
LSTM:encoding→ Drop→ LSTM:reconstruction→ Drop→ FC:out
LSTM:encoding→ Drop→ LSTM:uncertainty→ Drop→ FC:out



Future Internet 2024, 16, 403 5 of 23

Loss Function

Input Data
{x1, x2, ..., xt}

Decoder
data

Encoding

Encoder

Decoder
uncertainty

(a) Model architecture during training.

Reconstruction ErrorPredictive Uncertainty
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(S times)

Decoder
uncertainty

(b) Model architecture during prediction. For better
readability, the averaging over the MC samples for re-
constructions and uncertainty for the reconstruction
error is not shown.

Figure 1. Model Architecture.

3.1. Loss Function

The model output consists of two values through two decoders: (1) the reconstruction
of the input data, and (2) the estimate of aleatoric uncertainty. We use these two values
in a modified version of the mean squared error (MSE) loss function, introduced by [8].
Reconstruction is used as usual in MSE loss. Special is the usage of the aleatoric uncertainty
estimate which attributes to the MSE a loss resulting in direct influence on algorithm
training. For an input vector X, we define the loss in Equation (1).

L(θ) = 1
T ∑

i

1
2

σ̂−2
i ||xi − x̂i||2 +

1
2

log σ̂2
i , (1)

where T is the number of Monte Carlo samples, x̂i is the reconstruction of the input value xi,
and σ2

i is the variance representing aleatoric uncertainty (the second output of the model).
The minimization objective consists of two parts: (1) the first regression part is obtained

through the stochastic sampling of model parameters (MC Dropout) which represents the
difference of reconstructed output and input (weighted by aleatoric uncertainty), and
(2) the second part is used as an uncertainty regularization term.

Labels to learn the uncertainty are not necessary. Through the main task of learning
the regression, the variance σ̂2

i is implicitly learned from the loss function.
In practice, the network is trained to predict the log variance vi := log σ̂2

i . The
minimization objective changes accordingly as exemplified in Equation (2):

L(θ) = 1
T ∑

i

1
2

exp (−vi)||xi − x̂i||2 +
1
2

vi. (2)

By predicting the log-variance instead of variance, the training process is more numer-
ically stable, as we avoid potential division by zero.

Additional prediction of uncertainty helps to improve the robustness of the network.
Please note that 1

2 σ̂−2 (the red curve in Figure 2) has a tempering effect on the residual



Future Internet 2024, 16, 403 6 of 23

discouraging to predict very high or very low uncertainties. On the contrary, for high
learned uncertainty, the residual gains lower importance. This serves as an automatic
mechanism to involve data uncertainty in the model training and makes it less prone to
noise. The model is also discouraged from either predicting only high or low uncertainty
for all data points. Figure 2 helps explain this interplay. Predicting high uncertainty will
cause the term 1

2 log σ̂2 to be large which, in turn, penalizes the model. On the other hand,
predicting low uncertainty leads to a higher value of the residual term σ̂−2. And again, it
would penalize the model by exaggerating the contribution of very low uncertainties.

0 2 4 6 8 10

0

2

4

σ̂

f(
σ̂
)

1
2 σ̂−2

1
2 log σ̂2

Figure 2. Visualiation of uncertainty terms in the loss function.

3.2. Reconstruction Error

The goal of an autoencoder is to reconstruct the input data sequence as well as possible.
After training on normal data, it is able to reconstruct normal data patterns properly. In
contrast, it will fail to properly reconstruct abnormal data patterns. In this work, we use the
error between input data and reconstructed data as anomaly score. For a given observation,
we define this in Definition 1.

Definition 1 (Anomaly Scores). We define any observation during prediction time by a 2-tuple:

s : (o, r)

where

• o is the observation,
• r is the reconstruction error.

Each observation of the time series data is assigned an anomaly score, resulting in a
point-wise scoring of the data points. We summarize this in Definition 2.

Definition 2 (Time Series Scoring). The result of a time series anomaly detection algorithm is a
time series scoring

S = {s1, s2, ..., sn}

with si ∈ R being assigned to its corresponding input di ∈ D and D corresponds to data.

A widely used metric for the reconstruction error is the MSE [10]. For this algorithm,
we again use the loss function described in Equation (2) As described, it is based on
MSE which is popular for autoencoders. MSE is a mathematically simple metric that
provides clear and easy interpretability. In comparison to L1 loss, it takes the square over
the difference between input and reconstruction. This makes it more sensitive to larger
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errors and such supporting the task of anomaly detection. In addition, the extension by
integration of aleatoric uncertainty allows the direct influence of data uncertainty on the
anomaly probability.

3.3. Uncertainty Calculation

In this work, we quantify aleatoric and epistemic uncertainty separately. Combining
them results in predictive uncertainty. Definition 3 defines this formally.

Definition 3 (Predictive uncertainty). The uncertainty resulting from inherent data uncertainty
and model uncertainty is defined as predictive uncertainty:

U predictive = U aleatoric + U epistemic

with

• U aleatoric as uncertainty in data and
• U epistemic as model uncertainty

Aleatoric uncertainty is learned by the network and serves as additional network out-
put. To additionally quantify epistemic uncertainty we use MC Dropout. Sampling multiple
times from the posterior distribution results in a set {x̂t, σ̂2

t }T
t=1 of T sampled outputs.

From that, we can derive epistemic uncertainty by calculating the variance over predictions:

x̂ =
1
T

T

∑
t=1

x̂2
t −

(
1
T

T

∑
t=1

x̂t

)2

. (3)

Calculating the mean of uncertainties over all MC samples gives the final aleatoric un-
certainty:

σ̂2 =
1
T

T

∑
t=1

σ̂2
t . (4)

Combined, we can summarize, with Equations (3) and (4) the predictive uncertainty
for a given input vector x as follows:

Var(x)︸ ︷︷ ︸
predictive

≈ x̂︸︷︷︸
epistemic

+ σ̂2︸︷︷︸
aleatoric

. (5)

Algorithm 1 summarizes the steps from input to anomaly and uncertainty metric
calculation in pseudocode.

3.4. Thresholding Mechanism

The final task for the algorithm to achieve is to translate the anomaly score, and if so
also additional scores, into binary anomaly labels. Therefore, we can define an anomaly as
in Definition 4.

Definition 4 (Anomaly). An anomaly is defined as a prediction that fulfills the following conditions:

s > s∗

where

• s is the anomaly score,
• s* is the anomaly score threshold.
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Algorithm 1 Algorithm to produce anomaly score.

Input: input sequence x = {x1, x2, . . . , xT}, MC dropout sample size S, encoder E(·),
decoder data Dd(·), decoder uncertainty Du(·)

Output: A, Up
x̂ ← {}
σ̂← {}

MC Dropout sampling
for s← 1 to S do

z← E(x) ▷ encode input sequence
x̂ ← x̂ ∪Dd(z) ▷ reconstruct encoding z
σ̂← σ̂ ∪Du(z) ▷ predict aleatoric uncertainty

end for

Bayesian Approximation over MC Dropout Samples
¯̂x ← 1

S ∑S
s=1 x̂2

s
¯̂σ← 1

S ∑S
s=1 σ̂2

s

Anomaly and Uncertainty Metrics
A← 1

T ∑S
s=1

1
2 σ̂−2

s ||xs − x̂s||2 + 1
2 log σ̂2

i ▷ anomaly score
Ua ← 1

S ∑S
s=1 σ̂2

s ▷ aleatoric uncertainty
Ue ← 1

S ∑S
s=1 x̂2

s − ( 1
S ∑S

s=1 x̂s)2 ▷ epistemic uncertainty
Up ← Ue + Ua ▷ predictive uncertainty

return A, Up

Thresholding is an orthogonal task to anomaly score calculation and an algorithm-
independent problem.

To choose an appropriate mechanism, we first set up two assumptions about anomalies
in the data:

• Assumption 1: Rare Events. We begin by assuming anomalies are rare events. This
means the proportion of anomalous labeled data points is vanishingly small compared
to the total number of data points.

• Assumption 2: Random Occurrence. Despite their rarity, we cannot predict when or
where an anomaly will appear within a time series. Anomalies are assumed to occur
at random times.

Since the threshold for anomaly detection is set based on the training data, Assumption
2 becomes crucial. Because anomalies are assumed to occur randomly (Assumption 1), the
training data themselves might contain some anomalies, even though they are rare. This
can affect the model’s ability to detect future anomalies effectively.

Consequently, we decided to adopt a thresholding mechanism that sets the threshold
at the 0.999th quartile based on the anomaly score of the training data. This means in
practice that 99.9% of the training data are seen as normal with 0.1% considered anomalous.
This is a hyperparameter that can be tuned, based on prior knowledge of the dataset. This
of course holds the risk of setting a threshold slightly lower than necessary and labeling
some data points as false positives. On the other side, when longer anomalies occur in the
training set, they can be labeled as false negatives. However, this approach tries to keep
both sides low while trying not to overcomplicate this task.

4. Experiments

This section describes the experiments that we have conducted in order to evaluate
our approach. We recall the following research questions:
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1. How do uncertainty quantification measures react when different levels of uncertainty
are introduced into the data?

2. How do the uncertainties react to different types of anomalies?
3. What is the impact of considering uncertainty on the performance of anomaly detec-

tion models?

4.1. Uncertainty Detection Capabilities

We built two uncertainty estimation techniques into the model—one to detect aleatoric
uncertainty—and the other one to detect epistemic uncertainty. In this experiment, we
want to test how they react to different levels of noise in the data.

4.1.1. Data

We prepare five different synthetic pairs of datasets, using the synthetic data generation
tool gutenTAG [35], each consisting of a train and a test set. All of them follow the same
basic data pattern of a sine function. Therefore, we introduce noise to the data by adding a
controlled deviation to the existent base data [36]. This may correspond to more imprecise
measurements often present in real-world data.

Five different levels of noise are introduced, one for each pair of training and testing data.
The different levels of noise are as follows: 0%, 1%, 10%, 30%, 50%. The two datasets of each
pair are generated separately and are not identical to avoid testing on a perfectly learned training
dataset (Table 3). We use a standard amplitude of 1 and 100 equally distributed points. A
visualization is depicted in Figure 3. The data are available at https://github.com/p199671/LSTM-
AE-UQ/tree/master/data (accessed on 1 September 2024).

2

0

2

va
lu

e

Train data (0% noise) Test data (0% noise)

2

0

2

va
lu

e

Train data (1% noise) Test data (1% noise)

2

0

2

va
lu

e

Train data (10% noise) Test data (10% noise)

2

0

2

va
lu

e

Train data (30% noise) Test data (30% noise)
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2

0

2
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e
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0 200 400 600 800 1000
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Test data (50% noise)

Figure 3. Sine data for training and testing with different levels of noise.
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Table 3. Base sine specifications with noise levels.

Attribute Value

Function sin(x)

Amplitude 1.0

Period 100 points

Length 1000 points

Noise 0%, 1%, 10%, 30%, 50%

The declaration in percent relates to the whole value range of the base function, mean-
ing 1% refers to an absolute value of 0.01 for a given value range of 1. These noise levels
can be seen as real-world emulation where noise increasingly obscures true observations.

4.1.2. Model Training

We train the model (Table 4) for 250 epochs with a test on validation data every 10th
epoch. This is a performance improvement regarding the computation it takes for MC
sampling. Additionally, we implement an early stopping mechanism to avoid overfitting.
This terminates the training procedure after the third increased validation loss in a row. In
the experiments, we refer to the small model as an architecture of 50-40-50 and to the big
model as 100-80-100 which corresponds to a compression rate of 0.2. Further, the model is
trained on a separate, clean training set, if not specified differently. We separate the training
set into training and validation sets with a ratio of 80 : 20. The learning rate is set to a
standard value of 0.001. For Bayesian posterior approximation, we set dropout between
layers to 0.3 throughout all test cases and MC sampling size to 100. We use a batch size
of 64 samples per batch to enhance performance. Additionally, the Adam optimizer is
employed, and we utilize a modified loss function, detailed in Section 3.1. The parameters
are based on the work of [7], whose similar model architecture makes these parameters a
suitable choice, also enhancing comparability.

Table 4. Parameters for model training.

Attribute Value

epochs 250

validation every 10th epoch

early stopping after 3rd validation

train/val ratio 80 : 20

learning rate 0.001

dropout rate 0.3

batch size 64

dropout sample size 100

optimizer Adam

loss modified mse

4.1.3. Results

Figures 4 and 5 show the results of the experiment for aleatoric and epistemic uncer-
tainty accordingly. In this experiment, we tested two different model sizes and two window
sizes. Each model is trained on data with a certain level of noise according to the legend,
and evaluated on varying noise levels, indicated on the X-axis. The Y-axis shows the value
of aleatoric/epistemic uncertainty taken as the median over the whole test results.
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Figure 5. Median epistemic uncertainty for models trained on a certain level of noise and evaluated
on several other levels of noise in data.

Firstly, our results show a general trend that a higher level of noise in the data leads to
a higher noise estimate. This relationship is indicative of the model’s capacity to effectively
learn and respond to varying noise levels. However, it is noteworthy that a model trained
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on data with low to no noise demonstrates limited sensitivity to different levels of noise. In
such cases, the model’s noise prediction appears less reliable. This observation underlines
the importance of training the model on data close to the one on which it is going to be
tested. A model that learned diverse levels of noise in training data will be able to better
differentiate these levels during the test and enhance its adaptability.

The influence of the input window on noise detection is also sufficiently visible. A
model’s ability to differentiate between noise levels in the test data is notably impacted by
the noise levels it was exposed to during training. Models trained on higher noise levels
tend to produce higher noise estimates, but they may lose the ability to distinguish between
levels of noise in the test data, possibly due to overfitting. Further, the model size does not
seem to have a significant effect on noise detection capabilities. This suggests that model
performance is not necessarily tied to the complexity or size of the architecture. Moreover,
the absence of a distinct absolute threshold for noise categorization implies that the model
relies more on relative changes in noise levels. This relative perspective allows the model to
adapt to the specific noise distribution it has been exposed to during training, underlining
the importance of training data diversity.

The effect of noise in data on epistemic uncertainty shows parallel behavior to that
observed for aleatoric uncertainty, providing several interesting insights (Figure 5).

In general, it becomes clear that epistemic uncertainty increases when the model is
subject to higher levels of noise in the test data. This finding seems to support the thesis that
the presence of noisy data has an influence on the model’s epistemic uncertainty. Models
trained on datasets with lower noise levels once again struggle with data with higher
noise. This phenomenon underscores the importance of incorporating diverse noise levels
in the training dataset, as models trained only on clean data may struggle to develop a
good understanding of uncertainty. Furthermore, a notable observation is that the absolute
values of epistemic uncertainty appear to be more consistent, especially when considering
the same size of the input window. This suggests that, compared to aleatoric uncertainty,
epistemic uncertainty may rely less on the specific model architecture and size and more
on the noise within the data. Interestingly, models trained on higher noise levels exhibit
an improved understanding of noise, expressed in the uncertainty of the model. This
indicates that models can adapt to and learn from varying noise levels during the training
process, enhancing their ability to interpret and quantify epistemic uncertainty in different
noise conditions.

4.1.4. Discussion

This experiment gave a couple of insights into the model’s proficiency in recognizing
noise in the data and its effect on aleatoric and epistemic uncertainty.

We saw that noise in the training data plays an important role. It enables the model, to
better recognize and assess noise it sees in test data. This is clearly visible in both aleatoric
and epistemic uncertainty. Further, it supports the common thesis that noise in data has an
influence on epistemic uncertainty. Higher noise leads to an increase in the model’s ability
to precisely reconstruct the input.

A takeaway from this experiment is the importance of training data. As with the
intended goal of prediction, the training data have to be balanced to guarantee proper
learning. This accounts also for noise. A model, that could learn noise from the training
data, will not be able to recognize noise in test data. On the contrary, a model trained on
high variance in data is more likely to recognize and categorize noise properly.

4.2. Uncertainty Quantification Evaluation

To investigate uncertainty behavior during anomalies, we generate different synthetic
datasets based on the sine function using the Time Series Generator (GutenTAG) [35], which
is an extensible tool to generate time series data with and without anomalies.
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4.2.1. Data

We create five different pairs of time series, one for each anomaly type we aim
(Figure 6). The datasets contain data points according to the mathematical function sin(x).
Each includes 100 points per period with an overall of 10 periods. The training set consists
of clean data with little background noise. To each test dataset, we inject one anomaly
which refers to a larger/smaller amplitude, an extremum, and a pattern anomaly as further
specified in Table 5.

2

0

2
Amplitude larger

2

0

2
Global extremum

400 500 600 700 800
2

0

2
Amplitude smaller

400 500 600 700 800
2

0

2
Pattern anomaly

Figure 6. Anomalies in test data.

Table 5. Specifications of anomalies in the test dataset.

Anomaly Length Description

Amplitude larger 200 Larger amplitude with factor 2.

Amplitude smaller 200 Smaller amplitude with factor 0.5.

Global extremum 1 Extremum outside the scope of normal values.

Pattern 50 Deviation from pattern with larger radius at one turning point of the sine curve.

4.2.2. Results

Starting with the anomaly of a larger amplitude than normal, observations presented
in Figure 7 show a general trend where larger amplitudes correspond to heightened
uncertainties. The established patterns mostly continue, with increased intensity and/or
elevated baseline levels during anomalies. Notably, the ability of the model to recognize
anomalies as uncertainty appears to be dependent on the input size. Some window sizes
show stronger reactions, especially smaller windows, while others seem to be unaffected
by the introduced anomalies. For instance, when considering an input size of 100 and its
associated aleatoric uncertainty, the impact of anomalies seems completely absent.

0 200 400 600 800 1000
timestamp

10 4

10 3

10 2

10 1

2

Aleatoric Uncertainty

0 200 400 600 800 1000
timestamp

2

Epistemic Uncertainty
input size

10
25
50
100

Figure 7. Results for experiments with anomalies of larger amplitude. The highlighted area in red is
the range where the anomaly takes place (see Figure 6).
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Having investigated the reaction of a larger amplitude, we now consider the opposite
situation with a smaller amplitude. Results are illustrated in Figure 8. In contrast to the
impact of larger amplitudes, a smaller amplitude is associated with reduced uncertainties.
However, the general pattern in the data continues with less intense amplitudes. Also,
certain input window sizes do not seem to influence the impact of smaller amplitude
anomalies. Notably, input sizes such as 100 for aleatoric uncertainty, seem to miss the
ability to capture the influence of reduced amplitudes.
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Figure 8. Results for experiments with anomaly of smaller amplitude. The highlighted area in red is
the range where the anomaly takes place (see Figure 6).

From amplitudes, we continue with the extremum anomaly with results in Figure 9.
The anomaly is visible in the smallest input window size for both aleatoric and epistemic
uncertainties. A distinct peak emerges in the uncertainty profiles, providing an indication
of the anomaly’s influence. In the second smallest input window size, deviations in the
uncertainty patterns become more subtle. These deviations show up as a short noisy range
or a dent in the uncertainty profiles. The distinct peaks observed in the smallest window
size no longer appear. Interestingly, the extremum anomaly appears to have a minimal
impact on uncertainties associated with larger input window sizes. For the majority of
cases, uncertainties remain unimpacted.
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Figure 9. Results for experiments with anomaly of global extremum. The highlighted area in red is
the range where the anomaly takes place (see Figure 6).

The results of introducing a pattern anomaly marked by a more rounded turning
point in the sine curve, are introduced in Figure 10. The pattern anomaly shows a more
intensive impact on uncertainties associated with smaller input window sizes (i.e., 10, 25).
The deviations in uncertainty profiles are more prominent in configurations with reduced
temporal context, indicating heightened sensitivity to anomalies in these scenarios. In
contrast, larger input window sizes exhibit either subtle changes or no discernible impact
on uncertainties. The observed deviations are notably stronger for epistemic uncertainty.
This implies a more nuanced response of the model to pattern anomalies, with epistemic
uncertainty capturing and reflecting the alterations in the learned patterns more intensively.
A distinctive observation emerges concerning the temporal sensitivity around the turning
point. The model shows a more intense reaction in uncertainties at locations close to the
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turning point, while during the turning point itself, the uncertainty profiles tend to revert to
roughly the normal pattern. This aligns with expected behavior, given the model’s capacity
to learn and adapt from the sine curve’s inherent turning points.
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Figure 10. Results for experiments with pattern anomaly. The highlighted area in red is the range
where the anomaly takes place (see Figure 6).

4.2.3. Discussion

In this experiment, we saw that the model is responsive to various anomalies in
its aleatoric and epistemic uncertainties. All uncertainty types exhibit patterns in reac-
tion to anomalies, providing insights into the model’s capacity to capture and quantify
uncertainties under multiple conditions.

A clear trend emerges, indicating that the duration of an anomaly temporally influ-
ences its effect on uncertainties. Longer-lasting anomalies, as deviations in amplitude, tend
to show a more visible impact on smaller as well as larger input window sizes, highlighting
the temporal sensitivity of the model. In contrast, short anomalies, such as point anomalies,
are predominantly captured by shorter input windows.

Epistemic uncertainty often demonstrates a more confident behavior during anoma-
lous regions. Despite the differences, both aleatoric and epistemic uncertainties frequently
exhibit similar patterns, providing confirmation that epistemic uncertainty is influenced by
aleatoric uncertainty.

A recurring observation is the occurrence of strong increases or decreases, or abnormal
patterns at the beginnings and endings of curves. This behavior may be attributed to
the influence of input windows, where limited information at the start and termination
contributes to uncertainty until sufficient context is available. To avoid this and achieve
more reliable curves, filters can be adapted. An observation that occurred not to any
pattern is that some input window sizes are unaffected by anomalies. While others react
heavily during anomalies, they continue normal patterns. An explanation could deliver
the overfitting problem. As validation is conducted only every 10th epoch and early
stopping after a third increase in loss, this leaves the possibility that overfitting is not
properly detected.

4.3. Model Performance

We evaluate the model performance on a variety of real-world univariate time series
datasets based on the TSB-UAD (https://github.com/TheDatumOrg/TSB-UAD) (accessed
on 1 September 2024). This benchmark holds a repository of 12686 time series with labeled
anomalies containing real-world, synthetic and artificial data. From those, we pick all
18 datasets from real-world applications, containing 1980 time series. They were recorded
from diverse domains, such as transportation, healthcare, web services or environmental
monitoring. The datasets are variable in size and differ in anomaly types, densities and
length. We specifically picked those as they are partly recorded by sensors in real envi-
ronments and thus prone to incorrect measurements which corresponds to our use case.
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Table 6 provides a deeper insight into the details of each dataset. For each count of time
series per dataset, the average length over time series is listed. Furthermore, it contains
information about the average number of contiguous anomalies, the average number of
abnormal points and the difficulty of the dataset according to relative contrast.

Table 6. Summary characteristics of the 18 benchmark datasets in TSB-UAD. The Rc value measures
the separability of a point to the other points.

Dataset Count Average Length Average # Anomalies Average # of Abnormal Points Rc

Daphnet [37] 45 21,760.0 7.6 2841.0 2.38

Dodgers [38] 1 50,400.0 133.0 5612.0 2.02

ECG [39] 52 230,351.9 195.6 15,634.0 8.33

Genesis [40] 6 16,220.0 3.0 50.0 2.28

GHL [41] 126 200,001.0 1.2 388.8 27.24

IOPS 58 102,119.2 46.5 2312.3 3.33

KDD21 [42] 250 77,415.06 1 196.5 10.67

MGAB [43] 10 100,000.0 10.0 200.0 27.64

MITDB [44] 32 650,000.0 210.1 72,334.3 7.19

NAB [45] 58 6301.7 2.0 575.5 2.67

NASA-MSL [46] 27 2730.7 1.33 286.3 1.97

NASA-SMAP [46] 54 8066.0 1.26 1032.4 4.18

Occupancy [47] 10 5725.8 18.3 1414.5 2.5

OPPORTUNITY [48] 465 31,616.9 2.0 1267.3 2.94

SensorScope [49] 23 27,038.4 11.2 6110.4 2.38

SMD [21] 281 25,562.3 10.4 900.2 3.39

SVDB [50] 115 230,400.0 208.0 27,144.5 7.14

YAHOO [51] 367 1561.2 5.9 10.7 3.25

4.3.1. Benchmark Algorithms

We compare our approach LSTMAE-UQ to a row of other algorithms: Isolation
Forest [52], Local Outlier Factor [53], HBOS [54], NormA [55], One-Class Support Vector
Machine [56], PCA [57], Convolutional Neural Network [58], LSTM-AD [15], AE, AE-UQ
and LSTMAE. All baseline algorithms are implemented and accessible via the TSB-UAD
(https://github.com/TheDatumOrg/TSB-UAD (accessed on 1 September 2024)).

4.3.2. Results

Figure 11 gives an overview of the results of the benchmark per algorithm for the
four selected metrics AUC , precision, recall and F-score. For this representation, the
performance results of all of the 1980 time series are taken into account. The proposed
algorithm is in each plot on the right, highlighted in blue.

The plots show that LOF or Isolation Forest generally outperform the proposed
LSTMAE-UQ method in terms of AUC, precision, recall, and F1-Score across multiple
datasets. However, there are certain use cases for the proposed method in specific scenarios.
Moreover, traditional anomaly detection algorithms, such as LOF (Local Outlier Factor)
and Isolation Forest, lack interpretability when explaining the reason behind anomalies
becomes crucial. Consequently, traditional methods may have difficulties adapting to the
inherent uncertainties in time series data, which can lead to missed anomalies or a higher
rate of false positives in certain scenarios. In contrast, LSTMAE-UQ is designed to address
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both aleatoric uncertainty, which captures noise in the data, and epistemic uncertainty,
which reflects model uncertainty.

Comparing the LSTMAE to its baselines LSTM and AE we note a couple of things.
First compared to LSTM, we notice a superior median AUC. Medians of precision, recall
and F-score are a bit lower, but the upper bound of the box is always higher. Secondly,
compared to AE, performance is mostly similar over all metrics.
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Figure 11. Performance evaluation per algorithm over all datasets. The proposed algorithm is
highlighted with a blue box.

Evaluating the performance of our LSTMAE-UQ, we can see that the model shows
rather well results for the AUC value. With a median of 0.60 it is comparable to OCSVM,
POLY, or the baseline LSTM with a higher variability of results. Compared to its direct
baseline, the LSTMAE, we notice a decrease in median AUC. Comparing AE and the
version with uncertainty quantification, we notice a similar decrease. Taking a look at the
other metrics, we receive relatively good precision compared to other values but rather
low recall and F-score with medians close to 0. While the upper box bound for precision
is generally comparably high, it is rather low for recall and precision. Also, compared to
its baselines, the versions of AE and LSTMAE with uncertainty quantification show lower
performance. Figure 12 compares the performance of the LSTMAE-UQ to the baseline
LSTMAE. In a direct comparison of performance metrics between the two algorithms, we
are able to mostly observe similar performance on most datasets. On the ECG dataset,
the proposed approach is clearly able to outperform its baseline in all metrics. Despite
achieving mostly similar results, it shows significant differences for the YAHOO dataset.
While the LSTMAE baseline shows the best results compared to all remaining datasets,
LSTMAE-UQ shows particularly low performance.

Further analysis of the anomaly types provides deeper insights. Table A1
(Appendix A) breaks down the datasets into four types of anomaly: point anomaly,
short/long sequence anomaly and mixed anomalies. Point anomaly refers to an anomaly
with length 1. Short sequence anomaly is defined as anomalies with an average duration of
up to and including 10 data points with long anomalies starting from an average duration
of more than 10. Mixed anomaly refers to a time series that contains point as well as
short/long sequence anomalies. From this breakdown, we clearly see what the YAHOO
dataset distinguishes. While the predominantly present anomaly type for most datasets is
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long sequences, the time series of YAHOO datasets mainly contain point and short sequence
anomalies. The only other dataset in this collection that contains point and short sequence
anomalies is KDD21. Retrospectively, comparing the performance between LSTMAE and
LSTMAE-UQ in Figure 12, we observe a similar decrease, yet not as severe as for YAHOO
since the proportion of point and short sequence anomalies to long sequence anomalies
is lower. To provide evidence about lower anomaly detection capabilities for point and
short sequence anomalies, we evaluate the results on the anomaly types. Figure 13 shows a
breakdown for the models LSTMAE and LSTMAE-UQ. We can observe stable behavior
between models for long sequence anomalies among all metrics. However, comparing
point and short sequence anomalies, LSTMAE-UQ shows a significant decrease in per-
formance. The same accounts for time series with mixed anomaly types. The reason for
that could be the consideration of uncertainty in the model. Consideration of uncertainty
makes the model count point anomalies as well as short sequences deviating from normal
patterns as noise and learns to ignore them. This hypothesis finds support in the findings
of the experiment about the behavior of uncertainty during anomalies, where the impact of
anomalies, especially for longer input windows, remains low for point anomalies.
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Figure 12. Performance evaluation of LSTM Autoencoder without and with aleatoric and epistemic
uncertainty quantification for the real-world datasets of the TSB-UAD.
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Figure 13. Performance evaluation of the LSTM Autoencoder with uncertainty quantification split up
according to anomaly type. Sequence (short) is defined as a sequence up to 10 data points, Sequence
(long) contains all sequences longer than 10 points.

4.3.3. Discussion

In this experiment, we evaluated the performance of the LSTMAE-UQ against its
baselines and to other algorithms on 18 real-world datasets. Assessing the performance of
the LSTMAE in comparison to both baseline models, LSTM and AE, it becomes clear that
performance is comparable. Despite the computational expense connected with LSTMs,
especially when compared to conventional neurons, their added value in univariate time
series anomaly detection is rather low. However, the versatility of LSTMs in handling both
univariate and multivariate time series renders them attractive across a broad spectrum
of applications.

Continuing with the evaluation of the LSTMAE-UQ model, notable observations
include a relatively robust AUC value. However, precision stands out as relatively stronger
in comparison to recall and F-score, although all metrics remain relatively low. This suggests
that the model possesses a comparably good understanding of classes, and if it identifies
an anomaly, the likelihood of it being a true anomaly is relatively high. Nevertheless, the
algorithm shows shortcomings in accurately identifying the anomaly.
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A comparison between LSTMAE-UQ and the baseline LSTMAE reveals a decrease
in performance across all metrics. Diving deeper into the details, this decline can be led
back to a particular anomaly type. While no significant difference is observed for longer
sequence anomalies, the model shows shortcomings in detecting short sequence and point
anomalies in comparison to its baseline. The reason for that could be consideration of
uncertainty in the model. Consideration of uncertainty makes the model count point
anomalies as well as short sequences deviating from normal patterns as noise and learns
to ignore them. This hypothesis finds support in the findings of the experiment about
the behavior of uncertainty during anomalies, where the impact of anomalies, especially
for longer input windows, remains low for point anomalies. Adjusting sensitivity and
window size could enhance the model’s robustness across all anomaly types. In the overall
picture, the presented algorithm is in the median to lower performance realm. Previously
discovered properties explained this result. However, it might find application in areas
where noise in data should be explicitly considered or where short and point anomalies are
intentionally disregarded.

5. Conclusions

This work introduces LSTMAE-UQ, a novel approach in this work, we developed
the LSTMAE-UQ approach to time series anomaly detection under uncertainty. Different
from previous approaches, this work takes into consideration both types of uncertainty,
aleatoric and epistemic based on the Bayesian posterior approximation method Monte
Carlo (MC) Dropout. Experiments conducted on synthetic and real datasets emphasize
the need for nuanced approaches in anomaly detection, taking into account the complex
interplay between noise, anomalies, and model uncertainty.

In future work, we plan to compare LSTMAE-UQ with other uncertainty quantification
methods. We are also particularly interested in investigating LSTMAE-UQ’s performance in
real-world data streams and exploring methods to quantify uncertainty specifically tailored
for the IoT environment, considering factors like sensor noise and data transmission errors.
Another key perspective for future work is to improve the interpretability of LSTMAE-UQ’s
uncertainty outputs. Currently, the model assigns uncertainty values to data points, but
we lack a clear understanding of why the model assigns higher uncertainty to specific
instances. By investigating methods to make these uncertainties more interpretable, we
could gain valuable insights into the model’s reasoning process. This interpretability would
be crucial for building trust in LSTMAE-UQ’s predictions. With a clearer understanding
of the uncertainties, users could not only rely on the anomaly detection results but also
understand the rationale behind the model’s decisions. This is particularly important in
safety-critical applications where justifying model outputs is essential.
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Appendix A

Table A1. Breakdown of anomaly types according to the dataset. Sequence (short) is defined as a
sequence up to and including 10 data points, Sequence (long) contains all sequences longer than
10 points.

Dataset Point Sequence (Short) Sequence (Long) Mixed

Daphnet 0 0 45 0

Dodgers 0 0 0 1

ECG 0 0 5 0

GHL 0 0 125 0

Genesis 0 0 6 0

IOPS 0 4 25 0

KDD21 17 7 223 0

MGAB 0 0 10 0

MITDB 0 0 32 0

NAB 0 0 52 0

NASA-MSL 0 0 27 0

NASA-SMAP 0 0 54 0

OPPORTUNITY 0 0 465 0

Occupancy 0 0 0 10

SMD 0 0 277 0

SVDB 0 0 115 0

SensorScope 0 0 23 0

YAHOO 232 82 14 36

Total 249 93 1498 47
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