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Abstract: The healthcare sector has changed dramatically in recent years due to depending more and
more on big data to improve patient care, enhance or improve operational effectiveness, and forward
medical research. Protecting patient privacy in the era of digital health records is a major challenge, as
there could be a chance of privacy leakage during the process of collecting patient data. To overcome
this issue, we propose a secure, privacy-preserving scheme for healthcare data to ensure maximum
privacy of an individual while also maintaining their utility and allowing for the performance of
queries based on sensitive attributes under differential privacy. We implemented differential privacy
on two publicly available healthcare datasets, the Breast Cancer Prediction Dataset and the Nursing
Home COVID-19 Dataset. Moreover, we examined the impact of varying privacy parameter (ε) values
on both the privacy and utility of the data. A significant part of this study involved the selection
of ε, which determines the degree of privacy protection. We also conducted a computational time
comparison by performing multiple complex queries on these datasets to analyse the computational
overhead introduced by differential privacy. The outcomes demonstrate that, despite a slight increase
in query processing time, it remains within reasonable bounds, ensuring the practicality of differential
privacy for real-time applications.

Keywords: differential privacy; healthcare data; data sharing; user privacy; data utility

1. Introduction

With the increasing integration of electronic healthcare records and other forms of
health data into the healthcare ecosystem, safeguarding patients’ sensitive or personal
data from breaches and unauthorised access has taken on paramount importance. One
of the main challenges for the protection of electronic healthcare record is the inherent
contradiction between data accuracy and privacy [1]. In order to facilitate progress in
epidemiological research and advance public health initiatives, health information needs
to be readily available and functional. Storing and sharing these data publicly, even in
anonymized forms, patient privacy can still be violated by disclosing such information [2].

It has been noticed that standard methods of de-identification and anonymization
are not adequate to fully protect patient privacy. Technological advances in data re-
identification have demonstrated that datasets that are apparently anonymized may often
be re-linked to individual users, given the correct auxiliary information. This vulnerability
necessitates the development of more sophisticated privacy-preserving techniques in order
to provide a stronger guarantee against re-identification while maintaining the useful use
of data.
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Differential privacy has emerged as a strong and provable privacy guarantee model to
address this paradox by safeguarding data privacy and preserving the analytical usefulness
of datasets [3]. Differential privacy preserves individual personal identifiable information
by proving mathematically that the output distribution of a query remains independent
of whether an individual record is present or not in the datasets. By adding calibrated
noise to the query output or data, a balance between data privacy and data accuracy
can be established without compromising the overall insights that can be derived from
the information.

The application of differential privacy in the healthcare sector is particularly appealing,
as the sector requires accurate and comprehensive data for research and industrial pur-
poses. In healthcare organizations, a trusting environment can be built among researchers,
patients, doctors, and other participants by implementing differential privacy to ensures
the protection of data shared publicly or with any third party for research purposes, policy
making, and collaborative initiatives.

Despite its potential, the implementation of differential privacy also faces challenges
in the healthcare industry [4]. These include the potential impact on the accuracy of clinical
and research findings, the challenges of precisely calibrating noise to preserve data utility,
and the need for robust legal and ethical frameworks to oversee its deployment [5]. To
solve these concerns, a multidisciplinary approach is required that considers moral dilem-
mas, robust policy development, and other advancements. In contrast to other differential
privacy implementations, we made an attempt to maintain patient data privacy in the
field of electronic healthcare data by answering the complicated, complex queries under
differential privacy. Additionally, we evaluate our approach against other differential
privacy frameworks by showing how well it performs across a range of privacy param-
eter values, highlighting its robustness and adaptability in preserving data utility while
guaranteeing strong privacy protections. We perform a detailed time complexity analysis,
showing how effective our approach is at handling complex queries in reasonable amounts
of computational time. Next, we implement our method on datasets of different sizes to
evaluate its scalability. Our results indicate that our approach performs consistently at
various scales, effectively handling both small and large datasets.

The proposed privacy-preserving scheme for healthcare data will contribute in the
following ways:

1. By employing differential privacy techniques on publicly available healthcare datasets
to demonstrate the practical feasibility and effectiveness of preserving patient privacy;

2. By demonstrating that differential privacy can effectively balance privacy and util-
ity, guaranteeing that converted results can still be used for insightful analysis
and research;

3. By examining the impact of varying values of the privacy budget (epsilon) on both
privacy protection and data utility;

4. By conducting a comparative analysis of the Gaussian and Laplace mechanisms within
the differential privacy framework and evaluating the performance and usefulness of
these mechanisms, emphasising the situations in which each mechanism operates at
its best;

5. By analysing the time complexity of applying differential privacy techniques, focusing
on computational efficiency as the parameters of user queries increase, and providing
insights into the scalability of differential privacy methods, offering guidance on their
practical implementation in real-world healthcare data systems.

The rest of this paper is organized as follows. Section 2 describes the theoretical
background of early privacy preservation techniques. A review of related work is presented
in Section 3, while Section 4 provides a comprehensive overview of the proposed method
for privacy preservation using differential privacy. Experimental results are reported and
discussed in Section 5. Concluding remarks and directions for future work are presented
in Section 6.
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2. Background

Privacy preservation encompasses various strategies and technologies aimed at pro-
tecting individuals’ personal data and information. The following privacy models have
been used for privacy preservation when releasing data publicly: anonymization, t-
closeness, K-anonymity, and I-diversity, among many others. These methods are summa-
rized in Table 1.

Table 1. Comparison of privacy preservation techniques.

Technique Strengths Weaknesses Attribute
Preservation

Damage to
Data Utility Complexity Accuracy of

Data Analytics

Anonymization
Simple, easy to
implement, and

widely used

Vulnerable to
reidentification

attacks if not
done properly

Low Medium Low Medium

K-Anonymity
Reduces risk of
identification,

simple concept

Does not
protect against

attribute
disclosure,

selection of k

Medium Medium Low Medium

L-Diversity

Protects against
homogeneity

and
background
knowledge

attacks

Complex to
achieve with
high l values

High Low Medium High

T-Closeness

Better
protection

against
attribute

disclosure

More complex
and computa-

tionally
intensive

High Low High High

Cryptographic
Techniques

Strong
protection,

widely
accepted, and

mathematically
rigorous

Computationally
intensive and
requires key
management

High Low High High

Multidimensional
Sensitivity-

Based
Anonymization

Nuanced
privacy

protection
considering

multiple factors

Complex to
implement and

requires
detailed

sensitivity
analysis

High Low High High

Differential
Privacy

Provides strong
privacy

guarantees and
resistant to

many types of
attacks

Can reduce
data utility and
requires careful

calibration of
noise

High Medium High High

2.1. Anonymization

Anonymization is a method of transforming information that can be uniquely iden-
tified (PII) into an unidentifiable form so that it cannot be to re-linked to an individual
without additional information [6]. The goal is to secure the personal identification of a
person while enabling the public sharing of data. The data collector removes the particular
uniquely identified information, such as name, phone number, or location. However,
there are still challenges in data anonymization, even if specific identifiers are removed.
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Sometimes, it is possible to re-identify anonymized data by data linkage attacks, especially
when combined with other datasets. Data masking techniques are used in data anonymiza-
tion, such as randomization, which replaces identifiable data with random values, and
pseudonymization, which substitutes identifiable information with pseudonyms or tokens
that can be reversed only with a specific key or method. Techniques for anonymization
must change to keep up with improvements in ways of re-identifying data.

2.2. K-Anonymity

Researchers have proposed multiple other methods for privacy preservation to over-
come the shortcomings of simple data anonymization. K-anonymity is considered a widely
used method for protecting privacy. It ensures that individuals cannot be reidentified from
anonymized datasets by making sure that every person in the record can be distinguished
from at least k − 1 other person [7,8]. Elements of data like age, sex, and occupation that
could potentially identify individuals are grouped into categories. Individuals who have
similar characteristics are grouped together. Instead of recording exact ages, age can be
grouped into ranges like (30–35 years). Each group should contain at least k individuals.
By organizing the data this way, it is much harder for someone to figure out who a specific
person is. However, this technique is still vulnerable to homogeneity and background
knowledge attacks.

2.3. I-Diversity

To deal with the above-mentioned drawbacks, this technique emphasises the variety
of sensitive attributes (such as ethnicity or medical conditions) within each group of people
who share the same quasi-identifiers (non-sensitive attributes) [9]. K-anonymity guarantees
that, using quasi-identifiers, every record can be be identified from at least k − 1 other
records. It does not take into consideration how sensitive characteristics are distributed
throughout these groupings. An attacker can still make inferences about an individual’s
sensitive information if there is no variability in the values of the sensitive characteristics
within a group. The goal of this method is to prevent attackers from linking specific sensitive
information to individuals based on their shared characteristics in the dataset. Similar
to K-anonymity, individuals are grouped together based on identical quasi-identifiers.
For example, all individuals in a group might be of the same age range and gender and
living in the same ZIP code. Within each group formed by identical quasi-identifiers, I-
diversity requires that the sensitive attributes be diverse. There should be at least ℓ different
conditions of sensitive attributes. This means that no single sensitive attribute should be
overly common within the group. Still, even with I-diversity, datasets can be vulnerable to
certain types of privacy attacks, like skewness and similarity attacks.

2.4. T-Closeness

T-closeness is a technique for maintaining privacy that aims to rectify the inadequacies
of k-anonymity and I-diversity, particularly vulnerabilities related to skewness and simi-
larity attacks [7]. T-closeness guarantees that each equivalency class’s sensitive attribute
distribution closely resembles the dataset’s general distribution of those attributes. In
addition to improving data privacy, this lowers the chance of attribute exposure. The
equivalency class is said to have T-closeness if there is a threshold (t) that distinguishes the
distribution of the sensitive attribute in the equivalency class from the distribution of the
attribute in the total dataset.

2.5. Cryptographic Techniques

Before making data available to the public, the data curator could encrypt them [10].
However, it is extremely difficult to encrypt vast amounts of data using standard encryption
techniques, and such methods must only be put into practice when gathering data. Homo-
morphic encryption allows calculations to be performed on encrypted data, producing an
encrypted output with final results equivalent to a plaintext operation after re-encryption.
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Similarly, secure multiparty computation permits several parties to work together to jointly
compute a function over their private inputs. Moreover, Blockchain technology is used
in privacy preservation of data, employing cryptographic hash functions to ensure data
integrity and immutability. Cryptographic hash functions like SHA-256 convert data into a
fixed-size hash, guaranteeing that tampering is readily identifiable by producing a totally
distinct hash for every alteration of the input data. It provides transparency and security
in data sharing and transactions. However, encryption decreases the utility of the data, in
addition to being difficult to execute.

2.6. Multidimensional Sensitivity-Based Anonymization

Multidimensional sensitivity-based anonymization is an improved kind of anonymiza-
tion that can be used to outperform more conventional anonymization methods [11]. It
identifies which attributes are sensitive in the datasets. It includes both quasi-identifiers
(which can identify individuals when combined) and direct identifier attributes. It evaluates
the sensitivity of each attribute. Some attributes may be more sensitive than others, and this
sensitivity can be quantified. Anonymization strategies such as generalization, suppression,
or noise addition are implemented to make sure the data cannot be traced back to individu-
als. The level of anonymization that is used can change depending on how sensitive each
attribute is. Interactions between multiple attributes are considered. Even if individual
attributes are anonymized, the aggregation of attributes prevents re-identification. This is
essential for defending against inference attacks, in which the attacker reidentifies a target
using multiple attributes. It provides enhanced privacy by considering the sensitivity of
multiple attributes and their interactions. It allows for different levels of anonymization
based on the sensitivity of each attribute and minimizes the risk of re-identification through
the use of combinations of attributes. This technique is better suited for large scales an
static data. Moreover, it is not applicable to streaming data.

2.7. Data Distribution Technique

This technique involves the splitting of data over multiple sites. There are two main
methods for distributing data. Both strategies—horizontal distribution and vertical distri-
bution [12]—decentralize data processing and storage in an effort to reduce the possibility
of privacy breaches. In horizontal distribution, a subset of a dataset’s records or rows is
stored at each site. Each subset contains the same attributes (columns) but for different
individuals or entities. This technique is frequently employed when different sites have
records for different sets of individuals. For instance, medical records for various patients
may be kept in multiple hospitals. By distributing records across different sites, a site can
implement its own privacy policies and controls according to their specific requirements,
with less chance of single-point failure. Only a single subset of data is compromised, regard-
less of whether a site is compromised. Queries of distributed data can be conducted using
secure multi-party computation, which protects individual records from being revealed
to unauthorized sites. Every site in a vertical distribution holds a portion of the dataset’s
properties (or columns). Each subset contains different attributes but for the same set of
individuals or entities. Multiple websites may need to maintain various kinds of data on
the same people, for instance, financial data may be stored on one website and personally
identifiable information on another. In the case of a breach, this method reduces the risk of
complete data exposure by separately storing sensitive attributes.

3. Related Works

This section reviews relevant research concerning privacy preservation in healthcare
data. Kumar et al. [13] focused on the necessity of large datasets for the training robust
deep learning models in healthcare while also acknowledging the privacy concerns and
regulatory constraints that restrict data sharing in this field. To address these challenges,
the authors highlighted the potential of federated learning to overcome these barriers by
allowing data to remain with the local party (such as a hospital), ensuring confidentiality
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and compliance with data protection regulations. The authors specifically focused on two
algorithms: Federated Averaging (FedAvg) and FedProx. Using federated learning in
healthcare highlights several limitations; for example, privacy risks still exist, as model
updates sent to a central server could be intercepted. Communication costs are also notable
due to frequency of data exchanges between clients and the server.

A hybrid strategy was presented by Joshi et al. [14] and combined with a number
of approaches to protect private patient data from breaches and unwanted access. This
research methodology minimizes the impact on data utility while protecting privacy by
integrating two key techniques: the FP-Growth algorithm for mining of frequent patterns
and anonymization processes to conceal sensitive information.

In order to solve privacy problems in healthcare big data, Suneetha et al. [15] offered
a novel system that combines Apache Spark with established anonymization approaches
like K-anonymization and L-diversity. A notable development in the field is the integration
of these techniques with Apache Spark, which offers excellent speed and efficiency for
handling massive datasets.

For the purpose of safeguarding local models in Internet of Things-based healthcare
systems, Zhang et al. [16] suggested integrating homomorphic encryption with federated
learning mechanisms. The model integrates data from many medical facilities, and each
participant trains local models independently using their own data. Before the local models
are aggregated, homomorphic encryption techniques are performed to safeguard the data.
This stops possible adversaries from using inversion or model reconstruction attacks to
deduce private information.

Seol et al. [17] thoroughly implemented an attribute-based access control model to
protect electronic healthcare records (EHRs) in an XML-based system. In their model,
sensitive data are partially encrypted by the system using XML encryption after access
control. Next, the data are secured against unauthorized changes and access by utilizing
XML digital signatures.

Research by Abdullah et al. [18] examined blockchain-based technology with the
goal of improving the security and privacy of medical data. The approach focuses on
decentralizing data storage through the use of blockchain technology, which lessens the
vulnerabilities connected to centralized databases. It uses peer-to-peer (P2P) networks,
where data are stored among numerous nodes. The massive volumes of data that are
common in healthcare settings may make it difficult for the blockchain framework to scale
effectively, which could result in longer transaction times and higher computational cost.

Aminifar, A., et al. [19] implemented a machine learning approach using Extremely
Randomized Trees (ERTs) that is specifically designed for health data with distributed
structures. This distributed ERT technique modifies the traditional approach to adapt
to a distributed setting, ensuring that data privacy is upheld by avoiding a direct data
environment. Instead, data insights are derived through secure multi-party computation
methods that allow entities to collaborate without exposing their private data.

Charles, V., et al. [20] used the improved ElGamal and ResNet classifiers to maintaining
privacy in a heart disease database. In their model, patients use wearable devices, and
sensors connected to these devices gather data and transfer them to a microprocessor; the
collected data are then sent to the cloud. The upgraded ElGamal encryption technique is
used by the trusted cloud to safely protect patient data from outside threats. To accurately
predict whether a patient is suffering with heart disease or not, a CNN Classifier with
ResNet-50 is employed for data categorization and refinement. However, key generation
and encryption add to the computational cost, and implementation depends on a Trusted
Authority (TA).

Research by Wang, K., et al. [21] outlined a novel searchable encryption (SE) scheme
designed for IoT-enabled healthcare systems, focusing on forward privacy and verifiability.
Searchable encryption allows encrypted data to be searched by authorized users without
first decrypting them. Forward privacy ensures that updates to the dataset do not reveal
any information about the contents of past search queries, thereby enhancing the security



Future Internet 2024, 16, 407 7 of 30

of dynamically changing databases like those found in healthcare systems. The solution
proposed by Wang et al. improves upon these by incorporating a trapdoor permutation
function, ensuring that newly inserted records do not compromise the privacy of previously
performed searches.

Furthermore Ahmed, J., et al. [22] described a methodology that combines Federated
Learning (FL) with Physical Layer Security (PLS) to enhance the privacy and efficiency in
medical records. FL is employed to train local models at various nodes without sharing the
unprocessed data among them. Only model parameters are shared with a central server or
amongst nodes, significantly reducing the risk of exposing sensitive health data.

Another approach that Singh, P., et al. [23] described uses cloud computing to facilitate
the distribution of a Hierarchical Long Short-Term Memory (HLSTM) architecture among
distributed dew servers. Before the data are utilized to train the model, they are pre-
processed to assure the quality of IoMT devices. The complex series of events in the IoMT
data flow is intended to be handled by the HLSTM architecture. In order to preserve
the integrity of hierarchical data structures, it makes use of a two-layered LSTM network
in which the first layer creates phrase vectors and the second layer collects these into a
document vector. Federated learning is used in the intrusion detection model, which forms
the basis of the methodology. Subsets of the data are used to train local models on dew
servers, which subsequently feed into the creation of a global model.

Shabbir, M., et al. [24] implemented a Modular Encryption Standard (MES) to secure
health data in Mobile Cloud Computing (MCC) environments. Health data are categorized
and recognized according to their sensitivity before encryption. Several encryption modules
are employed at different stages of the multi-layered encryption method used by the
MES technique. This approach ensures that data are treated in accordance with their
security classification at every stage, starting with the user’s mobile device and continuing
to the cloud.

Krall et al. [25] explored an innovative way to maintain privacy in predictive healthcare
analytics by utilizing Mosaic Gradient Perturbation (MGP) technology. Based on differential
privacy, the concept aims to preserve model correctness while reducing the danger of model
inversion attacks. The MGP method is intended to cause more of a perturbation for the
gradient parts of the objective function linked to sensitive characteristics than for non-
sensitive characteristics.

Furthermore, the difficulties of accomplishing searchable and privacy-preserving
data exchange in cloud-assisted electronic health environments were examined by Xu
et al. [26]. The suggested system makes use of modern cryptographic algorithms to
facilitate effective, private data sharing and searches. The system enables health service
providers (HSPs) to search encrypted PHI data using keyword ranges and multi-keyword
searches using dynamic searchable encryption techniques. By using this technique, patient
privacy is protected because, guaranteeing that the data are encrypted during all operations.
Numerical analysis queries of encrypted data are made possible by the Privacy-Preserving
Equality Test (PET) Protocol, which protects sensitive data. Message Authentication Codes
(MACs) are used to eliminate erroneous data and confirm the accuracy of PHI files.

A technique of attribute-focused anonymization for publishing healthcare data was
proposed by Onesimu, J. A., et al. [27]. The goal of the fixed-interval anonymization
technique is to safeguard numerical properties. To ensure generalization, the original
values are substituted by computed mean values within predetermined intervals. Sorting
the numerical characteristics, figuring out the interval width by comparing the highest and
lowest values, and substituting the computed mean for the original values within each
interval are the steps involved in the procedure. Sensitive attributes are protected using an
enhanced version of the l-diverse slicing approach.

Zala, K., et al. [28] focused on the integration of cryptographic and steganographic
methodologies to guarantee the confidentiality and integrity of medical records that are
kept on external cloud platforms. The architecture uses a data security method that consists
of five steps. It employs AES-128 encryption for authentication and authorization in order
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to protect user credentials. For steganography, it encrypts patient EHRs using AES-128 and
hides them within images using the LSB (Least Significant Bit) technique. For access control,
it allows patients to assign access rights to their EHRs for doctors and relatives. For data
hiding, it employs anonymization to protect sensitive EHR data from unauthorized access.
Table 2 presents a comparison of existing privacy preservation mechanisms in healthcare.

With smart phones becoming more common nowadays, authentication methods are
critical processes that require strong and secure authentication to maintain user privacy.
Existing behavioural biometrics for authentication in smart phones can be compromised.
To improve this, Cong Wu et al. has presented a new technique called the “BIOHOLD”
method for user authentication [29]. BIOHOLD uses natural gestures for authentication,
effectively mitigating behavioural variability. This proposed method records hand shape
and finger movements during regular phone use to authenticate users. Evaluation of this
approach on a dataset collected from 20 participants showed that BIOHOLD has a very
low error rate and is also protected against common security threats.

Table 2. Study of existing privacy preservation mechanisms in healthcare.

Ref. System Model Goals Limitations
Privacy-

Preserving
Technique(s)

Trust Model

Joshi et al., 2020 [2]

Hybrid method
using the

FP-Growth
algorithm and
anonymization

Hide sensitive
patient data in

healthcare datasets
using hybrid
approaches

Increased time and
memory

requirements for
large datasets

FP-Growth
algorithm

Anonymization
and association

rule-hiding
techniques

Suneetha et al.,
2020 [3]

Uses Apache Spark
for privacy

preservation in
healthcare big data

Use of
K-anonymity and
L-diversity for the

protection of
patient data in

healthcare

Potential data
segregation issues

for transfer to
HDFS

K-anonymity and
L-diversity

Handling of
healthcare big data
with Apache Spark

for faster
processing

Zhang et al.,
2022 [6]

Federated learning
in combination

with homomorphic
encryption

Ensure privacy
preservation of
patient data in

IoT-enabled
healthcare systems

Increased
computation and
communication
overhead and

dropout clients not
handled

Homomorphic
encryption, Shamir
secret sharing, and

Diffie–Hellman
key agreement

Honest but
curious;

semi-honest
participant

Seol et al., 2018 [7]

Attribute-Based
Access Control
(ABAC) using

XACML

Provide restricted
access and protect
patient privacy in

EHR systems

Increased
complexity and
computational

overhead due to
encryption and
access control
mechanisms

XML encryption
and digital
signatures

Assumes a
semi-trusted cloud
environment and

authorized users to
access EHR data

Abdullah et al.,
2017 [8]

Uses the
MediBchain

framework based
on Blockchain

Ensure privacy,
security, and
integrity of

healthcare data
using blockchain

Increased
complexity and
computational
overhead and

requires secure key
management

Blockchain and
public key

encryption (ECC)

Decentralized
patient-centric

model
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Table 2. Cont.

Ref. System Model Goals Limitations
Privacy-

Preserving
Technique(s)

Trust Model

Aminifar, A., et al.,
2022 [9]

Uses distributed
extremely

randomized trees
for privacy

preservation

Ensure privacy-
preserving

machine learning
for distributed

health data

Increased
complexity and
computational
overhead and
handling of

missing values

Secure Multi-Party
Computation

(SMC) and
encryption

Semi-honest model
that assumes no

collusion among k
parties

Wang, K., et al.,
2021 [13]

Uses
forward-privacy

searchable
encryption in

electronic
healthcare data

Ensures the
privacy and
security of

healthcare data
while enabling

efficient search and
data sharing

Potential exposure
of search patterns

and requires
efficient key
management

Searchable
Encryption (SE),
Pseudo-Random
Function (PRF),
and trapdoor
permutation

Semi-honest
adversaries; trust
in cloud service

provider to follow
protocol without

collusion

Ahmed, J., et al.,
2021 [14]

Federated learning
(FL) combined

with physical layer
security (PLS) in
IoMT networks

Enhance privacy
and security in

IoMT networks by
using FL and PLS

Increased
complexity and
computational
overhead and
potential for

localized
eavesdroppers

Homomorphic
encryption, PLS,
and blockchain

Assumes a
semi-trusted

central server and
devices in a
hierarchical

network

Singh, P., et al.,
2022 [15]

Dew–cloud-based
Hierarchical
Federated

Learning (HFL)
using hierarchical
LSTM (HLSTM)

for IoMT networks

Enhance data
privacy,

availability, and
intrusion detection
accuracy in IoMT
networks using

HFL and HLSTM

Complexity in
managing

hierarchical
models and

potential latency in
federated learning

updates

Homomorphic
encryption and

federated learning

Trust in
decentralized dew
and cloud servers;

assumes secure
communication

channels

Shabbir, M., et al.,
2021 [14]

Modular
encryption

standard (MES) in
mobile cloud

computing (MCC)

Secure health
information in
mobile cloud
computing

environments

Increased
complexity and

computational cost
and layered
modelling

performance issues

Modular
encryption

standard (MES)

Assumes trust in
cloud service
providers and
mobile devices

Krall et al.,
2020 [16]

Mosaic gradient
perturbation

(MGP) in
IoT-enabled

healthcare systems
using predictive

modelling

Preserve privacy
and reduce the
possibility of

model inversion
attacks with model

accuracy

Increased
complexity in

fine-tuning
trade-offs and

potential
computational

overhead in
large-scale

implementations

Differential
privacy and

gradient
perturbation

Semi-trusted
entities within a

decentralized
framework;

assumes honest
but curious
adversaries

Xu et al., 2019 [18]

E-healthcare
system with cloud

assistance that
includes wearables,
cloud servers, IoT

gateways, and
health service

providers (HSPs)

Enable secure and
efficient sharing of

patient health
information (PHI)
using searchable

encryption

The performance
and efficiency of

the system can be
affected by the
quantity of files

saved and
retrieved, as well
as the difficulty of
managing massive

datasets in a
dynamic manner

Searchable
encryption,

privacy-
preserving equality
test (PET) protocol,

Variant Bloom
Filter (VBF), and

Message
authentication
codes (MACs)

The trusted
authority (TA) is

fully trusted, cloud
servers are honest
but curious, and

IoT gateways and
health service

providers (HSPs)
are trusted
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Table 2. Cont.

Ref. System Model Goals Limitations
Privacy-

Preserving
Technique(s)

Trust Model

Onesimu, JA.,
et al., 2020 [22]

Publishing of
healthcare data
using l-diverse

slicing and a
fixed-interval
technique for

attribute-focused
anonymization

Privacy
preservation when

releasing EHR
data, providing
maximum data

utility while
ensuring privacy

Increased
computational

complexity with
large datasets and

vulnerability to
certain privacy

attacks with fixed
methods

Enhanced l-diverse
slicing for the
grouping of

attributes and
fixed-interval

anonymization for
numerical
attributes

Internal data
controllers are

trusted, and data
analysts are
considered
potential

adversaries

4. Differential Privacy

Differential privacy is a mathematical mechanism that offers a robust privacy guar-
antee throughout data analysis, enabling the public exchange of data. This idea was first
presented by Cynthia Dwork and associates in the early 2000s [30]. It protects an individ-
ual’s privacy by making sure the the presence or absence of an individual in the dataset
cannot impact the results of any search. It helps to make guarantee that private informa-
tion about an individual is kept hidden upon aggregated data analysis. The fundamental
concept of differential privacy is the introduction of controlled randomness into the data
analysis process. Differential privacy guarantees that no single data point’s privacy is
compromised in the output by carefully adding the noise to query results [31].

Definition 1. A randomized algorithm (R) is (ϵ, δ)-differentially private for any two adjacent
datasets (O1 and O2) for all subsets (Q) of the output space of R [32].

Pr[R(O1) ∈ Q] ≤ eϵ Pr[R(O2) ∈ Q] + δ (1)

Neighbouring datasets O1 and O2 are adjacent datasets that differ by no more than
one element. Here, a positive privacy parameter called epsilon (ϵ) is used to evaluate
the loss of privacy. A smaller value of epsilon indicates stronger privacy. While δ is a
positive parameter, which is usually close to zero, that permits a minor relaxation of the
strict privacy guarantee. It is pure differential privacy if the value of δ = 0; then, we obtain
a stricter definition of differential privacy.

Pr[R(O1) ∈ Q]

Pr[R(O2) ∈ Q]
≤ eϵ (2)

4.1. Mechanisms of Differential Privacy
4.1.1. Laplace Mechanism

This mechanism used in differential privacy to add a controlled amount of noise to the
output of computations [33]. The Laplace mechanism can be applied to achieve differential
privacy to make sure that the presence or absence of an individual will not significantly
alter the result of a calculation or analysis. The amount of noise added in computation’s
output is evaluated according to the Laplace distribution using the Laplace mechanism [34].

Definition 2. Given a function ( f : O→ R) that operates on a dataset (O), the Laplace mechanism
perturbs the output of f (O) to ensure ϵ-differential privacy. The perturbed output (P(O)) is
defined as follows:

P(O) = f (O) + Lap
(

∆ f
ϵ

)
(3)
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The likelihood density function of the Laplace distribution, which is employed in this
mechanism for differential privacy, is represented by this expression [35].

f (u) =
ϵ

2b
exp

(
− ϵ|u|

b

)
(4)

The privacy budget ϵ is a privacy parameter that is responsible obtaining differential
privacy [36]. A lesser value of ϵ provides higher privacy protection. In Figure 1, b is a scale
parameter used to determines the spread of the distribution (b > 0). The larger the value of
b, the greater the increase in the amount of added noise, leading to more fluctuations in the
final results. |u| defines the absolute value of u to ensure that the Laplace distribution is
symmetric around its mean. The value of |u| is often calculated as

|u| = b∆ f
ϵ

(5)

Here, privacy and utility are both trade-offs with values larger than |u|, providing
stronger privacy but reducing the utility of the output and vice versa. The change in
the output of a function applied to two adjacent datasets, i.e., neighbouring datasets that
vary in terms of the presence or absence of a single individual’s record, is known as the
sensitivity of the ∆ f function.

∆ f = max
d1,d2:|d1∆d2|=1

|| f (d1)− f (d2)||1 (6)

Figure 1. Laplace distribution.

4.1.2. Gaussian Mechanism

The Gaussian mechanism is an alternative to the Laplace mechanism used to inject
noise into the results of a function to ensuring privacy while preserving data utility in
differential privacy. Because of its bell-shaped distribution, the Gaussian mechanism [37]
smooths out noise and is frequently chosen when there is a need for more precise control
over noise distribution or when sensitivity (σ) is high.

Definition 3. Given a function ( f : O → R) that operates on a dataset (O), the Gaussian
mechanism perturbs the output of f (O) to achieve ϵ-differential privacy. The perturbed output
(P(O)) is defined as follows:

P(O) = f (O) +N (0, σ2) (7)

where f (O) is the exact result of the f function on dataset O. N (σ2) represents the noise
that is evaluated through a Gaussian distribution. σ refers to a parameter that is evaluated
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according to the sensitivity of the f function. It measures how much the output of f (O)
can change when one element of O is altered. Here, s is the sensitivity of the function, and
log represents the natural logarithm [38].

σ2 =
2s2 log

(
1.25

δ

)
ϵ2 (8)

The privacy parameter that regulates the quantity of generated noise is ϵ. This mech-
anism balances privacy and utility by controlling the ϵ and σ parameters. Larger ϵ and
smaller σ values provide weaker privacy guarantees, as they add less noise while providing
higher utility. In the same way, smaller ϵ and larger σ values add more noise, strengthening
privacy but potentially reducing utility.

4.1.3. Exponential Mechanism

It is well known that not all query functions are able to return numerical values
in their output. A more general approach to handling and responding to qualitative
queries was proposed by McSherry and Talwar [39]. This mechanism deals with non-
quantitative queries.

Definition 4. Given a set of N of acceptable outputs and a utility function (u : N ×O → R)
that quantifies the desirability of every outcome (n ∈ N), given a dataset (O), this mechanism [40]
probabilistically selects an output (y) to ensure ϵ-differential privacy:

P(O) = Pr[n | O] ∝ exp
(

ϵu(n, O)

2∆u

)
(9)

where u(n, O) is the utility of output n given dataset O [35]. ∆u is the maximum sensitivity,
which measures how much the utility function (u(n, O)) can change when one element of O
is changed. It determines the scale of possible changes in utility across datasets. Similarly,
the amount of noise added depends on the privacy parameter (ϵ).

4.2. Methods to Implement Differential Privacy

Both local and global DP approaches adhere to the core principle of differential privacy
by ensuring that an individual’s data remains protected, as shown in Figure 2 [32]. The
choice between local and global differential privacy depends on the specific application,
the level of trust in the central server, and the desired privacy guarantees.

Figure 2. Local vs. global differential privacy.
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4.2.1. Local Differential Privacy

In Local Differential Privacy (LDP), the data contributor is responsible for adding noise
to their data before sharing them with a central aggregator and data collector, so it does
not require any trusted party [41]. In LDP, noise is introduced to individual data points.
Suppose each user has a sensitive bit of information (bi ∈ {0, 1}). Each user perturbs their
data locally using a randomized response mechanism with a probability of 1+ϵ

2 to report bi
or with a probability of 1−ϵ

2 to report 1− bi.
This ensures the privacy of each individual’s preserved before aggregation or analysis

occurs. In LDP, noise addition occurs at the individual level. The main advantage of local
DP it does not require trust in the data aggregator, as it is unaware of the real values. But
problem is that every user will have to introduce noise in personal information, which will
increase the total amount of added noise. But this problem can be mitigated by using high
values of epsilon ϵ.

4.2.2. Global Differential Privacy

GDP generates noise to be added to the final results of a query by the central aggregator
before sharing them with any third party [42]. In this model, each user shares their actual
data with a central aggregator without adding noise. To add noise to the entire dataset,
the central aggregator uses a differential privacy method. Global differential privacy
makes sure that the presence or absence of an individual in the dataset does not alter the
probability distribution in the final output. Consider a function ( f ) that calculates a sum
over a dataset (O) defined as f (O) = ∑n

i=1 xi. The Laplace mechanism adds noise taken
from the Laplace distribution to achieve global differential privacy [43].

P(O) = f (O) + Lap
(

∆ f
ϵ

)
(10)

As the central aggregator has access to the real dataset, requires trust in the data
collector. This model’s primary benefit lies in the fact that low values of epsilon (ϵ) can
yield useful results without requiring a significant amount of noise. But before sharing
the data, the trust of users in the data collector is required. If the data aggregator is
compromised, the data can be leaked, increasing the risk of privacy failure.

4.3. Selection of Privacy Parameter ϵ

Setting the value for epsilon is a challenging task in effectively implementing differen-
tial privacy in any application [44]. The desirable balance between privacy and utility can
be controlled by adjusting the value of epsilon (ε). Typical values ranging from 0.01 to 1
are used for strong privacy, but higher values might be used depending on the application
or context.

Loss Function (L):

Consider a loss function (L(ϕ, D)) for a model with parameters ϕ on dataset O. For
example, the mean square error (MSE) is commonly used as the loss function in linear
regression:

L(ϕ, O) =
1
n

n

∑
i=1

(zi − ẑi)
2 (11)

where zi represents the actual values and ẑi represents the predicted values.

Privacy Loss (PL):

The privacy loss PL(ϵ) quantifies the risk of information leakage as ε changes. Gener-
ally, a lower ε value implies higher privacy.

PL(ε) =
K
ε

(12)

where K is a constant representing the baseline privacy risk when ϵ = 1.
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Utility Measure (U):

The utility measure (U(φ, O)) evaluates the model’s performance or effectiveness on
dataset O, typically measured by metrics such as accuracy or predictive performance.

U(φ, O) =
1

L(φ, O)
(13)

To achieve an optimal balance, we need to minimize the combined cost function (F(ϵ)),
which considers both the privacy loss and the loss function (inversely related to utility).

F(ε) = α · PL(ε) + β · L(φ, O) (14)

where α and β are weighting factors that balance the importance of privacy and utility,
respectively.

Combined Cost Function:

Substituting PL(ε) and L(φε, O) into the cost function yields

F(ε) = α · K
ε
+ β · L(φε, O) (15)

Selecting Optimal ϵ:

To find the optimal ϵ, we calculate the derivative of F(ϵ):

dF(ε)
dε

= −α · K
ε2 + β · ∂L(φε, O)

∂ε
= 0

Solving for ϵ yields:

−α · K
ε2 + β · ∂L(φε, O)

∂ε
= 0

α · K
ε2 = β · ∂L(φε, O)

∂ε

ε2 =
α · K

β · ∂L(φε ,O)
∂ε

ε =

√
α · K

β · ∂L(φε ,O)
∂ε

(16)

This provides a formula for selecting ε depending on constant K, weighting factors α
and β, and the sensitivity of the loss function to ε.

By using this formula, one can select ε in such a way that balances both privacy
(represented by α and K) and accuracy (represented by β and the sensitivity of the loss
function). A lower value of ε provides stronger privacy guarantees. Selecting a lower value
of ε requires increasing the value of α, which increases the emphasis on minimizing privacy
loss, and decreasing the value of β, which reduces the emphasis on preserving utility or
accuracy. By appropriately choosing α and β, one can control the emphasis on privacy
versus utility, ensuring an optimal balance tailored to specific application requirements.

5. Proposed Method for Privacy Preservation in Healthcare Data

This section describes the proposed method for practical implementation of DP in
electronic healthcare data as demonstrated in Figure 3. In this model, global differential
privacy is implemented on sensitive data to achieve privacy [45].

In this part of the framework, users or data analysts connect with the database through
a user interface. The user requests the desired data in the form of queries and obtains
differentially private results. The protected system receives queries made by data analysts
or the involved user; then, it pulls out the unprocessed information from the stored database.
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After this, it generates noise in the final outcome using DP in accordance with each query’s
global sensitivity. To achieve experimental results, Python was selected as the programming
language on the basis of the need to process large datasets within the minimum time period
and its ability to deal with computational tasks. Moreover, to handle large datasets, the
PyDP [46], Pandas, Numpy, and matplotlib libraries are used. PyDP is a differential privacy
project from Google in which all computation methods use Laplace noise only.

Figure 3. Architecture of the system.

5.1. System and Software Requirements
5.1.1. Programming Environment and Libraries

• Programming language: Python;
• Libraries used: PyDP (Version 1.1.1), Pandas (Version 1.4.2), NumPy (Version 1.22.4),

and Matplotlib (Version 3.5.1).
• IDE: Jupyter Notebook

5.1.2. Device Specifications

• Processor: Core i5 8th Generation;
• RAM: 16 GB;
• System type: x64-based processor

5.2. Algorithm Details

Two different primary methods, namely Laplace and Gaussian mechanisms, are used
for the purpose of introducing noise to implement differential privacy. As described below,
both Algorithms 1 and 2 [32] were applied in this research fro the implementation of DP in
healthcare data.
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Algorithm 1: Laplace Mechanism Algorithm
Input: O, Q, ϵ
Output: Noised output

1 ∆Q← GS(Q);
2 noise← [0]× k;
3 for a in range(k) do
4 noise[a]← Lap(∆Q/ϵ);

5 return Q(O) + noise[a];

Algorithm 2: Gaussian Mechanism Algorithm
Input: D, Q, ϵ, δ, lower_limit, upper_limit
Output: Noisy_count

1 Function GAUSSIAN_MECHANISM(D, Q, ϵ, δ, lower_limit, upper_limit ):
2 filtered_data← filter(D, lower_limit, upper_limit)
3 actual_count← count(filtered_data)

4 σ←
√

2 · ln
(

1.25
δ

)
/ϵ

5 noise← sample_normal(0, σ)
6 noisy_count← actual_count + noise

7 return Noisy_count

5.3. Dataset Description

In order to implement differential privacy in healthcare data, we performed experi-
ments on two different healthcare datasets. Both datasets are publicly available and further
described below.

5.3.1. Breast Cancer Prediction Dataset

The Breast Cancer Prediction Dataset used in this research is publicly available on
Kaggle [47]. The dataset contains information from 20,000 digital and 20,000 film-screen
mammograms collected from women in the age range of 60–89 years for breast cancer
prediction. It has almost 30,000 instances (patient records) with 13 attributes.

5.3.2. COVID-19 Home Nursing Dataset

Another dataset, the “COVID-19 Home Nursing Data”, was used to perform the
experiment by applying differential privacy in electronic healthcare data. This dataset is
also publicly available on the data.cms.gov and Kaggle [48] websites. It consists of around
510,000 records with 39 attributes.

5.4. Experimental Results on the Breast Cancer Prediction Dataset

In this implementation, we compared the difference between the actual count and
differential private outcome. First, we imported a CSV file of the Breast Cancer Prediction
Dataset into IPython Jupyter Notebook Version 6.4.8 (It is developed by the Project Jupyter
team, the project originated at Stanford University in the United States). After this, we
performed multiple queries on the data to extract the counts of patients in different age
groups during mammography with true values for history of breast biopsy. Figure 4 shows
the actual counts of patients in different age groups without applying differential privacy.

Figure 5 shows the counts of patients in different age groups during mammography
with true values of history of breast biopsy after applying differential privacy. Differential
privacy was implemented through PyDP using the Laplace mechanism. The experiment
was performed by selecting different values for epsilon; here, the selected value for epsilon
is ε = 0.2.
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Figure 4. Actual counts without DP.

Figure 5. Counts with DP.

Table 3 shows a comparison between actual results and differentially private results.
It can be seen that noise was introduced in the actual count to make data private while
maintaining the data’s utility and accuracy. Therefore, these data can be used by data
analysts for research purposes.

Table 3. Comparison of actual results and DP results.

No. of Patients Actual Results DP Results Bias

Patients between age 60 and 70 5088 5081 −7

Patients between age 70 and 80 3057 3035 −22

Patients between age 80 and 90 915 911 −4

Patients between age 90 and 100 0 3 3

Figure 6 displays a comparison between true values and differentially private values
by setting ϵ = 0.2. The Y axis shows the counts of patients in different age groups during
mammography with true value of history of breast biopsy, and the X axis shows patient age
groups. To provide a more intuitive idea of the precision of our estimations, we computed
the ratios between the actual and estimated values. For instance, for the 60–70 patient age
group, for which the actual value is 5088 and the estimated value is 5081, the ratio can be
calculated as follows:

Ratio =
Actual Value

Estimated Value
=

5088
5081

≈ 0.999

This shows that our estimate has a high degree of accuracy and is relatively close
to the actual values. The ratio of the 60–70 age group of approximately 0.999 shows that
the estimated value (5081) is nearly identical to the actual value (5088), suggesting that
our estimation method performs exceptionally well for this group. With a ratio of the
70–80 age group of about 0.992, the estimate (3035) is slightly lower than the actual value
(3057), indicating a minor discrepancy. This still reflects a strong performance, and the
ratio of the 80–90 group of approximately 0.996, again, indicates high accuracy, with the
estimated value (911) being very close to the actual value (915). Overall, the high ratios
across the majority of age groups show that our estimation method is robust and strong,
effectively capturing actual values with a small margin of error. The bias is calculated as
the difference between the actual value and the estimated value for each age group. A
positive bias indicates overestimation, while a negative bias indicates underestimation.

The mean squared error can be calculated using the following formula:

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2

Sum of Squared Errors:
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Sum of Squared Errors = 49 + 484 + 16 + 9 = 558

MSE Calculation:
MSE =

558
4

= 139.5

Figure 6. Comparison of results using the Breast Cancer Prediction Dataset.

5.4.1. Varying Privacy Budget Using Breast Cancer Prediction Dataset

Experiments were performed with different values of epsilon to examine the protection
level provided by the DP mechanism with identical attributes but setting different values
for privacy parameter. Results were evaluated by selecting different values for epsilon
(0.02, 0.01, 0.2, 0.4, 0.6, and 0.8). It can be seen in Figure 7 that decreasing ε value added
more noise and vice versa.

Figure 7. Varying epsilon values on the Breast Cancer Prediction Dataset.

For further demonstration, a graph was plotted between the privacy parameter (ep-
silon) and the results of queries to compare the exact results and data with introduced
noise. In the context of differential privacy, epsilon ϵ is a privacy parameter that balances
the trade-off between accuracy and privacy. The amount of noise introduced to the query
results grows significantly as the ϵ value decreases toward zero. This improves privacy but
may result in less accurate results (higher count variance). In Figure 8, it can be seen that
the actual count for the number of patients between ages 60 and 70 at the time of mam-
mography with true values of history of breast biopsy is 36. Data points such as (ϵ = 0.02,
count = 143) demonstrate that a smaller epsilon yields a higher count with increased noise.
After decreasing the value of the privacy parameter (epsilon) by applying DP, more noise
is added to the actual data. In contrast, the quantity of noise introduced into the results
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decreases as ϵ increases, enabling more precise query outputs (e.g., the points (ϵ = 0.40,
count = 38) and (ϵ = 0.60, count = 36) demonstrate that the count values get less noisy as ϵ
increases). This line chart illustrates the relationship whereby higher ϵ values are associated
with less distortion in the query results but at cost of less privacy.

Figure 8. Analysis of privacy parameter using the Breast Cancer Prediction Dataset.

5.4.2. Time Complexity Analysis with the Breast Cancer Prediction Dataset

The execution time of queries somewhat increases with an increase in the conditions
in the query, as seen in Figure 9. The first query filters the data to include only patients
whose age at the time of the mammogramwas between 60 and 70 years. It involves a simple
range filter on one attribute. The second query adds another condition to the previous
query by checking if the patient has a history of breast biopsy. It involves filtering based
on two attributes. The next query is the most complex, combining multiple conditions
across several attributes, including logical operations and comparisons. The time increases
from 0.01544 s to 0.01999 s, then to 0.03899 s with increasing conditions. A slight rise in
execution time observed with each additional attribute, but it is not drastic, suggesting that
the filtering operations scale reasonably well with the application of differential privacy
and an increase in the number of conditions. The time complexity in practice suggests that
the operations are manageable within the given execution times.

Large-scale healthcare systems, which frequently handle massive volumes of data like
patient records and clinical data, can benefit from the use of hierarchical models, which
arrange data in layers. Hospitals, for instance, might gather data locally, then aggregate
them throughout the region and apply DP to maintain patient privacy. DP algorithms are
designed to scale with the dataset. For example, methods such as the Gaussian or Laplace
mechanisms introduce controlled noise proportionate to the sensitivity of queries and the
quantity of the dataset. This guarantees that personal privacy remains protected, even as
data volumes increase. While DP is effective in maintaining privacy, it can introduce latency
due to the additional noise that needs to be calculated and added during data processing.
Systems can reduce the time taken to respond to user requests by pre-computing commonly
requested queries. For instance, if certain aggregate statistics that are frequently needed,
they can be computed and stored with the necessary DP adjustments made in advance.
Similarly, response times can be greatly decreased by putting in place a caching mechanism
for computed results. The system can quickly respond to repeated queries without having to
perform all calculations by storing previously computed results with their associated noise.
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Figure 9. Queries with time comparison using the Breast Cancer Prediction Dataset.

5.4.3. Comparison Analysis of Laplace vs. Gaussian Mechanism

The implementation of the Laplace mechanism using PYDP adds noise sampled from
the Laplace distribution based on the privacy budget to provide results with provable
privacy guarantees under differential privacy as shown in Figure 10. To generate noise, the
Gaussian mechanism uses a Gaussian distribution based on the privacy budget, which also
provides differentially private results but typically is used for scenarios where smoothness
and sensitivity are key considerations. The Laplace mechanism [49] is generally efficient
due to the simplicity of sampling from a Laplace distribution. The Laplace mechanism
often provides better accuracy for discrete counting queries. In conclusion, both Laplace
and Gaussian mechanisms offer differential privacy solutions with different trade-offs in
accuracy, ease of implementation, and computational complexity. The choice of between
them depends on the particular needs and conditions of the differential privacy application
and the nature of queries being performed on the datasets. A comparison between the
two mechanisms is presented the figures below.

Figure 10. Laplace mechanism.

The Laplace mechanism is ideal for situations with bounded sensitivity. The Laplace
mechanism provides noise proportionate to the function’s sensitivity; hence, it might be
useful when the query has a known, finite sensitivity (such as counting queries). In a
healthcare dataset, using the Laplace mechanism can effectively mask the exact count while
ensuring privacy; the query returns the number of patients within a specific condition
as shown in Figure 11. For queries with low sensitivity, the Laplace method can offer
more precise privacy guarantees, as the noise can be adjusted according to the sensitivity,
resulting in less distortion in the output.
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Figure 11. Laplace mechanism.

The Gaussian mechanism well-suited for scenarios with unbounded sensitivity or
when dealing with aggregate statistics over large datasets. For queries that involve averages
or continuous outcomes, the Gaussian mechanism might be preferable, as it can handle
the potential for large deviations more gracefully. The Gaussian mechanism can manage
higher sensitivity with less effort and does not require significant noise levels like the
Laplace mechanism; therefore, it is advantageous for guaranteeing privacy with higher-
dimensional queries.

It can be noticed that the Gaussian mechanism [50] is slightly more computationally
intensive due to the nature of sampling from a Gaussian distribution, which involves more
complex calculations. By performing time complexity analysis, it can be seen in Figure 12
and Figure 13 that the Gaussian mechanism takes slightly more time in processing queries
with differential privacy.

Figure 12. Gaussian mechanism.

Figure 13. Gaussian mechanism.



Future Internet 2024, 16, 407 22 of 30

5.5. Experimental Results on the COVID-19 Home Nursing Dataset

To implement differential privacy, we performed different queries on another dataset
to compare real outcomes and differential private outcomes of queries. The first query
shows the overall count of beds in use in facilities of the city of “RUSSELLVILLE”, with
zero weekly confirmed COVID-19 cases among staff and fewer than six weekly confirmed
COVID-19 cases among residents. Figure 14 shows the actual count for this query without
implementing differential privacy.

Figure 15 shows the overall actual count of beds in use in facilities of the city of
“RUSSELLVILLE”, with zero weekly confirmed COVID-19 cases among staff and fewer
than six weekly confirmed COVID-19 cases among residents after the implementation of
differential privacy. Here, differential privacy was implemented through PyDP using the
Laplace mechanism with a selected epsilon value of ϵ = 0.2.

Figure 14. Query 1 result without DP.

Figure 15. Query 1 result with DP.

The second query shown in Figures 16 and 17 shows the overall count of beds that
in use in facilities of the city of “ABILENE”, with zero weekly confirmed COVID-19 cases
among staff and fewer than six weekly confirmed COVID-19 cases among residents both
without and with implementing differential privacy.

Figure 16. Query 2 rResult without DP.
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Figure 17. Query 2 result with DP.

The third query shown in Figures 18 and 19 represents the overall count of beds in
use in facilities of the city of “YORK”, with zero weekly confirmed COVID-19 cases among
staff and fewer than six weekly confirmed COVID-19 cases among residents both with and
without implementing differential privacy.

Figure 18. Query 3 result without DP.

Figure 19. Query 3 result with DP.

The fourth query shown in Figures 20 and 21 shows the overall count of beds in use
in facilities of the city of “WYNNEWOOD”, with with zero weekly confirmed COVID-19
cases among staff and fewer than six weekly confirmed COVID-19 cases among residents
both with and without differential privacy.
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Figure 20. Query 4 result without DP.

Figure 21. Query 4 result with DP.

Table 4 shows a comparison between actual results and differentially private results
for multiple queries. It can be noticed that noise was added to the actual outcomes of
queries while maintaining data utility and data accuracy.

Table 4. Comparison of results using the COVID-19 Home Nursing Dataset.

City Overall Occupied Beds Overall Occupied Beds with DP Bias

RUSSELLVILLE 12,491 12,508 17

ABILENE 23,857 23,570 −287

YORK 41,712 40,800 −912

WYNNEWOOD 5130 5254 124

For comparison, we again plotted a graph comparing true values and differentially
private values by setting ϵ = 0.2, as shown in Figure 22. The Y axis shows the count
for the number of occupied beds with zero weekly confirmed COVID-19 cases among
staff and fewer than six weekly confirmed COVID-19 cases among residents in different
cities, while the X axis represents the statistics for different cities. We calculated the ratios
between the actual and estimated values to provide a more intuitive explanation for the
accuracy of our estimations. A ratio greater than 100% (e.g., RUSSELLVILLE (100.14%)
and WYNNEWOOD (102.42%)) means that the estimated value is marginally higher than
the actual value. This implies a slight overestimation of the given data. A ratio less than
100% (e.g., ABILENE (98.80%) and YORK (97.84%)) indicates that the estimated value
is lower than the actual value, reflecting an underestimation. Ratios near 100% (such as
RUSSELLVILLE and ABILENE) indicate that the estimated values are reasonably accurate
in comparison to the real values, demonstrating that the estimation process is effective in
maintaining utility while adhering to privacy requirements.
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Figure 22. Comparison of results using the COVID-19 Home Nursing Dataset.

5.5.1. Varying Privacy Budget Using the COVID-19 Home Nursing Dataset

In order to examine how noise affects the same query, we ran an experiment where we
varied the value of epsilon (0.8, 0.6, 0.4, 0.2, 0.01, and 0.02; Figure 23). In the given results,
we can notice that with a decrease in the epsilon value, the amount of added noise also
increases. Therefore, the smaller the value of epsilon, the greater the privacy required and
the more noise is added. A compromise between privacy and utility exists. Adding more
noise increases privacy but also reduces data utility. In differential privacy, the epsilon
parameter (ϵ) is used to control this trade-off between privacy and accuracy.

Figure 23. Varying epsilon values in the Nursing Home COVID-19 Dataset.

For further demonstration, a graph was plotted for different values of epsilon (ϵ), as
shown in Figure 24. The amount of noise introduced to the query results grows significantly
as the ε value decreases toward zero. This enhances privacy but may result in less accurate
results. Increasing the epsilon value results in less noise added to the output of query
results, which typically provides higher accuracy and utility, as data remain closer to their
true values. This helps data analysts to make informed decision to maintain the privacy
level while also considering the usability and reliability of the data.
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Figure 24. Analysis of the privacy parameter using the Nursing Home COVID-19 Dataset.

5.5.2. Time Complexity Analysis with the Nursing Home COVID-19 Dataset

In differential privacy, the time complexity primarily relates to the computational cost
of executing queries on potentially large datasets while ensuring privacy guarantees. The
first query involves filtering the dataset based on a single condition, while the second and
third queries involve complex filtering conditions including logical AND and OR operations
across multiple columns. It can be noticed that increasing the number of conditions in
queries also increases the execution time for queries, as shown in Figure 25. The time
increases from 0.06563 s to 0.35566 s, then to 7.34279 s due to the increase in conditions.
A slight rise in execution time is typically incremental with each additional condition.
However, the actual increase can also vary depending on the specific dataset characteristics
(size, distribution, etc.) and the efficiency of the data processing system.

For the previous “Breast Cancer Prediction”, with around 30,000 records and 13 at-
tributes, it can be noticed that even with more complex queries, the execution times remain
relatively low compared to larger datasets. For another dataset, the “Nursing Home
COVID-19 Dataset”, with around 510,000 records and 39 attributes, execution times are
slightly higher due to the sheer volume of data being processed.

Figure 25. Queries with time comparison using the Nursing Home COVID-19 Dataset.
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5.6. Limitations of Implementing Differential Privacy

• By implementing DP in real-time healthcare systems, computational delays can arises
due to the need to add noise and adjust parameters dynamically. This can be crucial
in scenarios where immediate data analysis is required, such as in any emergency
situation.

• Continuous streams of data are produced by dynamic systems (e.g., from monitoring
sensors). In this situation, maintaining differential privacy necessitates frequent
modifications to privacy guarantees, which can be difficult and resource-intensive.

• The parameters for differential privacy must be continuously adjusted due to the
continuous changes in patient data. This continual adjustment can make the system
architecture more difficult and raise the possibility of inconsistent privacy protections.

• The requirement for real-time privacy guarantees in EHRs may encourage the addition
of excessive noise, which could reduce the usefulness or accuracy of the data. This
distortion in data can negatively impact clinical insights and outcomes.

• Ensuring that DP approaches scale well without appreciable performance deterioration
can be challenging in dynamic systems with growing data volumes. When real-time
analysis is required, this becomes especially difficult.

• Systems for providing real-time healthcare frequently face severe resource limitations.
Maintaining DP comes with a computational cost that can strain system resources,
potentially impacting other critical functions.

6. Conclusions and Future Work

This study proposed a differential privacy-based method for protecting healthcare
data on the Internet of Medical Things. Initially, this study examined conventional ap-
proaches that were employed in the electronic healthcare data privacy process prior to the
application of differential privacy. Then, we performed an in-depth analysis of differential
privacy and its core characteristics. The practical implementation showcased promising
experimental results, demonstrating the application of differential privacy mechanisms
across multiple queries. Variations in the privacy parameter, i.e. the privacy budget, were
analysed to illustrate their impact on the preservation of privacy while maintaining data
utility. Comparative analyses involving Laplace and Gaussian mechanisms were conducted
by analysing both schemes in terms of their ability to meet privacy and security require-
ments with minimal computational overhead. Furthermore, we carried out a thorough
examination of time complexity through the application of differential privacy to complex
queries on datasets of various sizes.

Even the DP mechanism is sufficiently effective in providing the necessary data privacy
protection, but there exist still some limitations that need to be addressed to maintain
privacy. In adversarial scenarios, attackers can attempt to infer sensitive information by
analysing the outputs of multiple queries. Even with differential privacy, if they have prior
knowledge or can infer relationships within the data, they may extract sensitive insights.
To prevent such query inference attacks, robust logging and auditing mechanisms can be
implemented for queries. This can help identify suspicious patterns and flag potentially
adversarial queries. Restrictions can be put on how many queries a user can send in a
certain amount of time to reduce the possibility of inference attacks caused by excessive
querying. When complex queries are executed under differential privacy, SQL injection
attacks can compromise the privacy mechanism. Attackers can modify the behaviour of
queries by injecting SQL code to access raw data rather than the differentially private
output, effectively bypassing privacy protections. Strict input validation and sanitization
should be used to mitigate this by ensuring that only valid data types and formats are
accepted. However, differential privacy is not always adaptable enough to use in every
real-world situation, which could make it more difficult to achieve the required levels
of security and usability. As a result, it would be ideal to examine and customize other
mechanisms in the future. Applying data-dependent differential privacy to real-world
datasets, where databases comprising tuple correlations that signify relations between
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different tables in the database, may expose limitations in the underlying assumptions
of this privacy model. In such cases, inference attacks may exist under the differential
privacy mechanism. Thus, future research should take this into account to create a better
mechanism that enhances the current approach.
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