A Joint Survey in Decentralized Federated Learning and TinyML: A Brief Introduction to Swarm Learning
Abstract
:1. Introduction
Title | Year | Purpose |
---|---|---|
Distributed Machine Learning for Wireless Communication Networks: Techniques, Architectures, and Applications [15] | 2021 | it focuses on wireless networks |
An Overview of Machine Learning within Embedded and Mobile Devices—Optimizations and Applications [1] | 2021 | it emphasizes machine learning for embedded devices |
Demystifying Swarm Learning: A New Paradigm of Blockchain-based Decentralized Federated Learning [14] | 2022 | the main goal of this work was to tackle the imbalanced training dataset problem by leveraging a blockchain-based infrastructure |
Decentralized learning in federated deployment environments: A system-level survey [16] | 2021 | it focuses on distributed FL |
- The current advancements of the amalgamation of three wide areas, TinyML, decentralized federated learning, and Swarm Learning, for which their amalgamation revolutionize both the viability and autonomy of resource-starving decentralized environments;
- The incorporation of new up-to-date entries, published in the recent literature, focusing on cutting-edge cross-device decentralized federated learning methodologies, e.g., on-device reformable TinyML, peer-to-peer communication among tiny devices, blockchain contributions to communication safety, etc.;
- The exploration of current challenges that have yet to be fully addressed in the deployment of deep neural networks on resource-starving devices;
- The presentation of challenges concerning the ethical concerns that this rapidly increasing technological era (e.g., Generative AI models) faces.
2. The Rise of the Federated Learning Approach
2.1. Problem Formulation
2.2. Taxonomy of FL Models
2.2.1. Data Partitioning
2.2.2. Scale of Federation
2.2.3. Federated Learning Architectures
Centralized Federated Learning
Decentralized Federated Learning (Purely Distributed)
Hybrid FL
2.3. Delving into Decentralized Federated Learning (DFL)
- The direct communication among devices lessens the network latency; however, the throughput of the messages must be lessened too, in order to avoid network flooding.
- To address the resource limitations of edge devices, such as energy, one strategy is to minimize communication between nodes in the network, focusing only on those that contribute actively to the federation process.
- In real-time scenarios, we cannot guarantee that all cooperating devices follow the same specifications (e.g., flash memory, energy capacity, etc.) or equally contribute to the learning process. Thus, there is a need for stipulating methods that reinforce the lower-contribution nodes in order to ensure accuracy uniformity.
- Last but not least, wirelessly interconnected devices, used for, e.g., surveillance and wearability, are usually mobile devices that are not stably positioned in a specific place, impeding the configuration of a strong topology.
2.3.1. Communication Reduction
2.3.2. Privacy-Preserving Methodologies
2.3.3. Fairness
Framework/Platform | Architecture | Purpose | Capabilities |
---|---|---|---|
TensorFlow Federated (by Google) | CFL | smart-grid applications | open source |
FATE | CFL | finance | open source |
BrainTorrent [53] | DFL | healthcare application | not open source |
Scatterbrained [11] | DFL | academic usage | open source, developer-friendly API |
FedML [61] | CFL | academic usage, suitable for IoT networks, benchmarking | open source, scalability, reliability |
FedStellar [62] | CFL, Semi-Decentralized FL, DFL | addresses heterogeneous FL-based problems | easy customization, deployment of complex network topologies, secure communication, enough storage for FL models |
FL-SEC [11] | DFL, Blockchain | orientation of Artificial Internet of Things (AIoT) | not open source, defense in poisoning attacks, communication reduction |
3. On the Prospect of TinyML/DL
3.1. Problem Formulation
3.2. Taxonomy of TinyML/DL Models
3.2.1. Static Model Inference
Pruning
Quantization
Neural Architecture Search—NAS
Knowledge Distillation—KD
Conventional Transfer Learning
Inference-Based Applications
3.2.2. On-Device Real-Time Learning (Reformable TinyML)
Devices/Boards | Power | Instruction Set | SRAM | Flash Memory | CPU Clock |
---|---|---|---|---|---|
Raspberry Pi family ([106,107,108]) | |||||
Raspberry Pi 3B+ | Low | ARM (Cortex-A53) | 1 GB SDRAM | − | 1.4 GHz |
Raspberry Pi 4B | Low | ARM (Cortex-A72) | 256KB | − | 1.5 GHz |
Raspberry Pi Pico | Ultra low | ARM (Dual core Cortex-M0+) | 264 KB | 2 MB | 133 MHz |
Arduino family [74,108,109] | |||||
Arduino Nano 33 BLE Sense (nrF52840 SoC) | Ultra low | ARM (Cortex-M4) | 256 KB | 1 MB | 64 MHz |
Arduino Portenta | Low | ARM (Cortex-M7−M4) | 8 MB SDRAM | 16 MB | 240–480 MHz |
STM Microcontrollers (MCU) [70,106,110] | |||||
STM32F7 board | Ultra low (high-performance MCU) | ARM (Cortex-M7) | 512 KB | 2 MB | 216 MHz |
STM32H743 | Ultra low (high-performance MCU) | ARM (Cortex-M7) | 1 MB | 1–2 MB | 480 MHz |
STM32F401 | Ultra low (general-purpose MCU) | ARM (Cortex-M4) | 96 KB | 128 KB– 512 KB | 84 MHz |
STM NUCLEO L496ZG | Ultra low (general-purpose MCU) | ARM (Cortex-M4) | 320 KB | 1 MB | 80 MHz |
STM NUCLEO F767ZI | Ultra low (high-performance MCU) | ARM (Cortex-M7) | 512 KB | 2 MB | 216 MHz |
Adafruit Feather Family [108,111] | |||||
Bluefruit Sense board (nrF52840 SoC) | Ultra low | ARM (Cortex-M4F) | 256 KB | 1 MB | 64 MHz |
M4 express | Ultra low | ARM (Cortex -M7) | 192 KB | 2 MB | 120 MHz |
Microprocessors | |||||
GAP8 [98,112] | Parallel ultra-low-power processing platform (PULP) | RISC-V (FC) | 80 KB+ 8 MB SDRAM | 512 KB | 250MHz |
VEGA [98] (22 nm technology) | Parallel ultra-low-power processing platform (PULP) | RISC-V (FC) | L2 (interleaved) 1.5 MB + 64 KB | 64 MB | 250 MHz |
Mr.Wolf [113] (40 nm LP CMOS technology) | Parallel ultra-low-power processing platform (PULP) | RISC-V (RVC32IMF) | latch-based memory instead of SRAM (25 Gbit/s at 100 MHz) | − | 32 KHz – 450 MHz |
Tool | Capabilities | Where to Apply |
---|---|---|
TensorFlow Lite macro [114] | The most widespread method (inference library) for deploying ML models to resource-limited machines. The TensorFlow pipeline consists of a classic TensorFlow model that is converted into a compressed flat buffer using the TensorFlow Lite Converter. After that, a file with a .tflite extension is created, which can efficiently carry out an inference task on the aforementioned devices. | 32-bit platforms (e.g., Arduino nano 33 BLE, STM32F746 Discovery etc.) |
uTensor [115] | A free embedded learning environment, supporting neural network training using Keras. uTensor produces c code from the trained model in order to fit edge devices. | Mbed, K64, ST boards |
Edge Impulse [115] | A cloud service for deploying ML models on edge devices. | edge devices (e.g., smartphones) |
NanoEdge AI Studio [115] | A software that tests a library’s performance so that it can be cognizant of this library being the most suitable one, according to the learning process’ needs. | STM32 Nucleo−32, Arduino Nano 33 board |
Pytorch Mobile [115] | It is subjected to Pytorch software, and it advocates for both model training and deployment on edge devices. | smartphones (e.g., Android, iOS) |
Embedded Learning Library [115] | A library suitable for embedded learning, developed by Microsoft. There is no need for cloud access. | Raspberry Pi, Arduino |
STM32Cube.AI [115] | An optimization software that reinforces ML/DL tasks to be deployed in microcontrollers (MCUs). | STM32 ARM Cortex−M boards |
TVM (MicroTVM) [20,115] | Is an evolution of tensor virtual machines (TVMs) for deploying models on MCUs. This framework takes an already trained model and converts it so as it can be applicable to different hardware settings. | MCUs |
CMSIS−NN [3] | Optimization library that is compatible with ARM processors. | ARM Cortex−M processors |
CMix-NN [116] | A mixed low-precision CNN library for memory-constrained edge devices. | ARM Cortex−M processors |
Runes [20] | An ML package that provides containers to encapsulate and deploy edge ML pipelines and applications. | edge devices |
TinyCNN [117] | A framework introduced for accelerating CNNs in FPGAs. | FPGAs |
edX MOOC [118] | Educational platform created by the collaboration of academia (Harvard University) and industry (Google) with the aim of encouraging researchers to remotely develop complete applications using application-oriented instructions through TinyML and to find solutions regarding the fields of data gathering for application deployment. | all new ML/DL enthusiasts |
4. Current Advancements of FL and TinyML for Edge Devices
5. A Brief Introduction to Swarm Learning (SL)
6. Exploring Challenges in Tiny Decentralized Federated Learning Environments
6.1. Scalability
6.2. Imbalanced Dataset Classification Problems
6.3. Catastrophic Forgetting
6.4. Heterogeneity
6.5. Benchmarking
6.6. Attacks
6.7. Fairness in FL
6.8. Ever-Changing Topology
6.9. Ethical Concerns
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ajani, T.S.; Imoize, A.L.; Atayero, A.A. An Overview of Machine Learning within Embedded and Mobile Devices–Optimizations and Applications. Sensors 2021, 21, 4412. [Google Scholar] [CrossRef] [PubMed]
- Waldrop, M.M. The chips are down for Moore’s law. Nature 2016, 530, 144–147. [Google Scholar] [CrossRef] [PubMed]
- Lai, L.; Suda, N.; Chandra, V. CMSIS-NN: Efficient Neural Network Kernels for Arm Cortex-M CPUs. arXiv 2018, arXiv:1801.06601. [Google Scholar]
- Abadade, Y.; Temouden, A.; Bamoumen, H.; Benamar, N.; Chtouki, Y.; Hafid, A.S. A comprehensive survey on TinyML. IEEE Access 2023, 11, 96892–96922. [Google Scholar] [CrossRef]
- Rajapakse, V.; Karunanayake, I.; Ahmed, N. Intelligence at the Extreme Edge: A Survey on Reformable TinyML. ACM Comput. Surv. 2023, 55, 1–30. [Google Scholar] [CrossRef]
- Kirkpatrick, J.; Pascanu, R.; Rabinowitz, N.C.; Veness, J.; Desjardins, G.; Rusu, A.A.; Milan, K.; Quan, J.; Ramalho, T.; Grabska-Barwinska, A.; et al. Overcoming catastrophic forgetting in neural networks. Proc. Natl. Acad. Sci. USA 2016, 114, 3521–3526. [Google Scholar] [CrossRef]
- Mermillod, M.; Bugaiska, A.; Bonin, P. The stability-plasticity dilemma: Investigating the continuum from catastrophic forgetting to age-limited learning effects. Front. Psychol. 2013, 4, 504. [Google Scholar] [CrossRef]
- McMahan, B.; Moore, E.; Ramage, D.; Hampson, S.; Blaise Aguera y Arcas, B. Communication-efficient learning of deep networks from decentralized data. In Proceedings of the International Conference on Artificial Intelligence and Statistics (AISTATS), Fort Lauderdale, FL, USA, 20–22 April 2017; pp. 1273–1282. [Google Scholar]
- Ram, S.S.; Nedić, A.; Veeravalli, V.V. Distributed Stochastic Subgradient Projection Algorithms for Convex Optimization. J. Optim. Theory Appl. 2008, 147, 516–545. [Google Scholar]
- Giménez, N.L.; Solé, J.M.; Freitag, F. Embedded federated learning over a LoRa mesh network. Pervasive Mob. Comput. 2023, 93, 101819. [Google Scholar] [CrossRef]
- Lim, W.Y.B.; Luong, N.C.; Hoang, D.T.; Jiao, Y.; Liang, Y.C.; Yang, Q.; Niyato, D.; Miao, C. Federated Learning in Mobile Edge Networks: A Comprehensive Survey. IEEE Commun. Surv. Tutorials 2020, 22, 2031–2063. [Google Scholar] [CrossRef]
- Taya, A.; Nishio, T.; Morikura, M.; Yamamoto, K. Decentralized and model-free federated learning: Consensus-based distillation in function space. IEEE Trans. Signal Inf. Process. Over Netw. 2022, 8, 799–814. [Google Scholar] [CrossRef]
- Wang, J.; Sahu, A.K.; Yang, Z.; Joshi, G.; Kar, S. MATCHA: Speeding Up Decentralized SGD via Matching Decomposition Sampling. In Proceedings of the Indian Control Conference (ICC), New Delhi, India, 9–11 January 2019; pp. 299–300. [Google Scholar]
- Han, J.; Ma, Y.F.; Han, Y.; Zhang, Y.; Huang, G. Demystifying Swarm Learning: A New Paradigm of Blockchain-based Decentralized Federated Learning. arXiv 2022, arXiv:2201.05286. [Google Scholar]
- Hu, S.; Chen, X.; Ni, W.; Hossain, E.; Wang, X. Distributed Machine Learning for Wireless Communication Networks: Techniques, Architectures, and Applications. IEEE Commun. Surv. Tutorials 2021, 23, 1458–1493. [Google Scholar] [CrossRef]
- Bellavista, P.; Foschini, L.; Mora, A. Decentralised learning in federated deployment environments: A system-level survey. ACM Comput. Surv. 2021, 54, 1–38. [Google Scholar] [CrossRef]
- Haddaway, N.R.; Page, M.J.; Pritchard, C.C.; McGuinness, L.A. An R package and Shiny app for producing PRISMA 2020-compliant flow diagrams, with interactivity for optimised digital transparency and Open Synthesis. Campbell Syst. Rev. 2022, 18, e1230. [Google Scholar] [CrossRef]
- Beltr’an, E.T.M.; Pérez, M.Q.; S’anchez, P.M.S.; Bernal, S.L.; Bovet, G.; Pérez, M.G.; P’erez, G.M.; Celdr’an, A.H. Decentralized Federated Learning: Fundamentals, state-of-the-art, frameworks, trends, and challenges. IEEE Commun. Surv. Tutorials 2023, 25, 2983–3013. [Google Scholar] [CrossRef]
- Mori, J.; Teranishi, I.; Furukawa, R. Continual Horizontal Federated Learning for Heterogeneous Data. In Proceedings of the International Joint Conference on Neural Networks (IJCNN), Padua, Italy, 18–23 July 2022; pp. 1–8. [Google Scholar]
- Lootus, M.; Thakore, K.; Leroux, S.; Trooskens, G.; Sharma, A.; Ly, H. A VM/Containerized Approach for Scaling TinyML Applications. arXiv 2022, arXiv:2202.05057. [Google Scholar]
- Sun, Y.; Shen, L.; Tao, D. Which mode is better for federated learning? Centralized or decentralized. arXiv 2023, arXiv:2310.03461. [Google Scholar]
- Sánchez-García, R.J. Exploiting symmetry in network analysis. Commun. Phys. 2020, 3, 87. [Google Scholar] [CrossRef]
- Pan, Q.; Cao, H.; Zhu, Y.; Liu, J.; Li, B. Contextual Client Selection for Efficient Federated Learning over Edge Devices. IEEE Trans. Mob. Comput. 2024, 23, 6538–6548. [Google Scholar] [CrossRef]
- Liu, K.; Uplavikar, N.; Jiang, W.; Fu, Y. Privacy-Preserving Multi-task Learning. In Proceedings of the IEEE International Conference on Data Mining (ICDM), Singapore, 17–20 November 2018; pp. 1128–1133. [Google Scholar]
- Li, Q.; Zhang, M.; Yin, N.; Yin, Q.; Shen, L. Asymmetrically Decentralized Federated Learning. arXiv 2023, arXiv:2310.05093. [Google Scholar]
- Savazzi, S.; Nicoli, M.; Rampa, V. Federated Learning with Cooperating Devices: A Consensus Approach for Massive IoT Networks. IEEE Internet Things J. 2020, 7, 4641–4654. [Google Scholar] [CrossRef]
- Michelusi, N. Decentralized Federated Learning via Non-Coherent Over-the-Air Consensus. In Proceedings of the IEEE International Conference on Communications (ICC), Rome, Italy, 28 May–1 June 2023; pp. 3102–3107. [Google Scholar]
- Yang, P.; Jiang, Y.; Wen, D.; Wang, T.; Jones, C.N.; Shi, Y. Decentralized Over-the-Air Federated Learning by Second-Order Optimization Method. IEEE Trans. Wirel. Commun. 2024, 23, 5632–5647. [Google Scholar] [CrossRef]
- Shi, Y.; Zhou, Y.; Shi, Y. Over-the-Air Decentralized Federated Learning. In Proceedings of the IEEE International Symposium on Information Theory (ISIT), Melbourne, Australia, 12–20 July 2021; pp. 455–460. [Google Scholar]
- Jia, Y.; Fang, M.; Gong, N.Z. Competitive Advantage Attacks to Decentralized Federated Learning. arXiv 2023, arXiv:2310.13862. [Google Scholar]
- Lin, F.P.C.; Hosseinalipour, S.; Azam, S.S.; Brinton, C.G.; Michelusi, N. Semi-Decentralized Federated Learning With Cooperative D2D Local Model Aggregations. IEEE J. Sel. Areas Commun. 2021, 39, 3851–3869. [Google Scholar] [CrossRef]
- Tao, Y.; Zhou, J.; Yu, S. Efficient Parameter Aggregation in Federated Learning with Hybrid Convergecast. In Proceedings of the IEEE Consumer Communications & Networking Conference (CCNC), Las Vegas, NV, USA, 9–12 January 2021; pp. 1–6. [Google Scholar]
- Chou, L.; Liu, Z.; Wang, Z.; Shrivastava, A. Efficient and Less Centralized Federated Learning. In Proceedings of the Joint European Conference on Machine Learning and Knowledge Discovery in Databases (ECML/PKDD), Bilbao, Spain, 13–17 September 2021; pp. 772–787. [Google Scholar]
- Hosseinalipour, S.; Brinton, C.G.; Aggarwal, V.; Dai, H.; Chiang, M. From Federated to Fog Learning: Distributed Machine Learning over Heterogeneous Wireless Networks. IEEE Commun. Mag. 2020, 58, 41–47. [Google Scholar] [CrossRef]
- Lee, J.W.; Oh, J.; Lim, S.; Yun, S.Y.; Lee, J.G. TornadoAggregate: Accurate and Scalable Federated Learning via the Ring-Based Architecture. arXiv 2020, arXiv:2012.03214. [Google Scholar]
- Hosseinalipour, S.; Azam, S.S.; Brinton, C.G.; Michelusi, N.; Aggarwal, V.; Love, D.J.; Dai, H. Multi-Stage Hybrid Federated Learning Over Large-Scale D2D-Enabled Fog Networks. IEEE/ACM Trans. Netw. 2020, 30, 1569–1584. [Google Scholar] [CrossRef]
- Xing, H.; Simeone, O.; Bi, S. Decentralized Federated Learning via SGD over Wireless D2D Networks. In Proceedings of the IEEE International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Atlanta, GA, USA, 26–29 May 2020; pp. 1–5. [Google Scholar]
- Lalitha, A.; Kilinc, O.C.; Javidi, T.; Koushanfar, F. Peer-to-peer Federated Learning on Graphs. arXiv 2019, arXiv:1901.11173. [Google Scholar]
- Zhou, S.; Xu, K.; Li, G.Y. Communication-Efficient Decentralized Federated Learning via One-Bit Compressive Sensing. arXiv 2023, arXiv:2308.16671. [Google Scholar]
- Sun, T.; Li, D.; Wang, B. Decentralized Federated Averaging. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 45, 4289–4301. [Google Scholar] [CrossRef] [PubMed]
- Blot, M.; Picard, D.; Cord, M.; Thome, N. Gossip training for deep learning. arXiv 2016, arXiv:1611.09726. [Google Scholar]
- Hu, C.; Jiang, J.; Wang, Z. Decentralized Federated Learning: A Segmented Gossip Approach. arXiv 2019, arXiv:1908.07782. [Google Scholar]
- Krizhevsky, A.; Nair, V.; Hinton, G. Learning Multiple Layers of Features from Tiny Images; Technical Report; Computer Science Department, University of Toronto: Toronto, ON, USA, 2009. [Google Scholar]
- Ye, H.; Liang, L.; Li, G.Y. Decentralized Federated Learning with Unreliable Communications. IEEE J. Sel. Top. Signal Process. 2021, 16, 487–500. [Google Scholar] [CrossRef]
- Li, B.; Gao, W.; Xie, J.; Gong, M.; Wang, L.; Li, H. Prototype-based Decentralized Federated Learning for the Heterogeneous Time-varying IoT Systems. IEEE Internet Things J. 2024, 11, 6916–6927. [Google Scholar] [CrossRef]
- LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition Proceedings of the IEEE 1998, 86, 2278–2324. Proc. IEEE 1998, 86, 2278–2324. [Google Scholar] [CrossRef]
- Xiao, H.; Rasul, K.; Vollgraf, R. Fashion-MNIST: A novel image dataset for benchmarking machine learning algorithms. arXiv 2017, arXiv:1708.07747. [Google Scholar]
- Le, Y.; Yang, X. Tiny ImageNet visual recognition challenge. Comput. Sci. 2015; 7, 3. [Google Scholar]
- Lalitha, A.; Shekhar, S.; Javidi, T.; Koushanfar, F. Fully decentralized federated learning. In Proceedings of the Third Workshop on Bayesian Deep Learning (NeurIPS), Montréal, QC, Canada, 7 December 2018. [Google Scholar]
- Koloskova, A.; Loizou, N.; Boreiri, S.; Jaggi, M.; Stich, S.U. A Unified Theory of Decentralized SGD with Changing Topology and Local Updates. arXiv 2020, arXiv:2003.10422. [Google Scholar]
- Li, X.; Yang, W.; Wang, S.; Zhang, Z. Communication Efficient Decentralized Training with Multiple Local Updates. arXiv 2019, arXiv:1910.09126. [Google Scholar]
- Patel, K.K.; Dieuleveut, A. Communication Trade-Offs for Synchronized Distributed SGD with Large Step Size. arXiv 2019, arXiv:1904.11325. [Google Scholar]
- Roy, A.G.; Siddiqui, S.; Pölsterl, S.; Navab, N.; Wachinger, C. BrainTorrent: A Peer-to-Peer Environment for Decentralized Federated Learning. arXiv 2019, arXiv:1905.06731. [Google Scholar]
- Amiri, M.M.; Gündüz, D. Machine Learning at the Wireless Edge: Distributed Stochastic Gradient Descent Over-the-Air. In Proceedings of the IEEE International Symposium on Information Theory (ISIT), Paris, France, 7–12 July 2019; pp. 1432–1436. [Google Scholar]
- Liu, W.; Chen, L.; Zhang, W. Decentralized Federated Learning: Balancing Communication and Computing Costs. IEEE Trans. Signal Inf. Process. Over Netw. 2021, 8, 131–143. [Google Scholar] [CrossRef]
- Onoszko, N.; Karlsson, G.; Mogren, O.; Zec, E.L. Decentralized Federated Learning of Deep Neural Networks on Non-IID Data. arXiv 2021, arXiv:2107.08517. [Google Scholar]
- Fragkou, E.; Chini, E.; Papadopoulou, M.; Papakostas, D.; Katsaros, D.; Dustdar, S. Distributed Federated Deep Learning in Clustered Internet of Things Wireless Networks with Data Similarity-based Client Participation. IEEE Internet Comput. Mag. 2024. To appear. [Google Scholar]
- Kalra, S.; Wen, J.; Cresswell, J.C.; Volkovs, M.; Tizhoosh, H.R. Decentralized federated learning through proxy model sharing. Nat. Commun. 2021, 14, 2899. [Google Scholar] [CrossRef]
- Zhang, Y.; Xiang, T.; Hospedales, T.M.; Lu, H. Deep mutual learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 4320–4328. [Google Scholar]
- Li, T.; Sanjabi, M.; Smith, V. Fair Resource Allocation in Federated Learning. arXiv 2019, arXiv:1905.10497. [Google Scholar]
- He, C.; Li, S.; So, J.; Zhang, M.; Wang, H.; Wang, X.; Vepakomma, P.; Singh, A.; Qiu, H.; Shen, L.; et al. FedML: A Research Library and Benchmark for Federated Machine Learning. arXiv 2020, arXiv:2007.13518. [Google Scholar]
- Beltrán, E.T.M.; Gómez, Á.L.P.; Feng, C.; Sánchez, P.M.S.; Bernal, S.L.; Bovet, G.; Pérez, M.G.; Pérez, G.M.; Celdrán, A.H. Fedstellar: A platform for decentralized federated learning. Expert Syst. Appl. 2024, 242, 122861. [Google Scholar] [CrossRef]
- Zhu, H.; Xu, J.; Liu, S.; Jin, Y. Federated learning on non-IID data: A survey. Neurocomputing 2021, 465, 371–390. [Google Scholar] [CrossRef]
- Disabato, S.; Roveri, M. Tiny Machine Learning for Concept Drift. IEEE Trans. Neural Netw. Learn. Syst. 2022, 14, 11. [Google Scholar] [CrossRef]
- Chen, Y.; Chai, Z.; Cheng, Y.; Rangwala, H. Asynchronous Federated Learning for Sensor Data with Concept Drift. In Proceedings of the IEEE International Conference on Big Data (BigData), Orlando, FL, USA, 15–18 December 2021; pp. 4822–4831. [Google Scholar]
- Lu, J.; Liu, A.; Dong, F.; Gu, F.; Gama, J.; Zhang, G. Learning under Concept Drift: A Review. IEEE Trans. Knowl. Data Eng. 2019, 31, 2346–2363. [Google Scholar] [CrossRef]
- Hoefler, T.; Alistarh, D.; Ben-Nun, T.; Dryden, N.; Peste, A. Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 2021, 22, 1–124. [Google Scholar]
- Shafique, M.A.; Theocharides, T.; Reddy, V.J.; Murmann, B. TinyML: Current Progress, Research Challenges, and Future Roadmap. In Proceedings of the ACM/IEEE Design Automation Conference (DAC), San Francisco, CA, USA, 5–9 December 2021; pp. 1303–1306. [Google Scholar]
- Frankle, J.; Carbin, M. The Lottery Ticket Hypothesis: Finding sparse, trainable neural networks. In Proceedings of the International Conference on Learning Representations (ICLR), New Orleans, LA, USA, 6–9 May 2019. [Google Scholar]
- Leon, J.D.D.; Atienza, R. Depth Pruning with Auxiliary Networks for Tinyml. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Singapore, 7–13 May 2022; pp. 3963–3967. [Google Scholar]
- Liu, H.; Song, P.; Qie, Y.; Li, Y. Real-time Prediction Method of Remaining Useful Life Based on TinyML. In Proceedings of the IEEE International Conference on Real-Time Computing and Robotics (RCAR), Guiyang, China, 17–22 July 2022; pp. 693–698. [Google Scholar]
- Li, Y.; Li, Z.; Zhang, T.; Zhou, P.; Feng, S.; Yin, K. Design of a Novel Neural Network Compression Method for Tiny Machine Learning. In Proceedings of the International Conference on Electronic Information Technology and Computer Engineering, Xiamen, China, 22–24 October 2021. [Google Scholar]
- Ghamari, S.; Ozcan, K.; Dinh, T.; Melnikov, A.; Carvajal, J.; Ernst, J.; Chai, S.M. Quantization-Guided Training for Compact TinyML Models. arXiv 2021, arXiv:2103.06231. [Google Scholar]
- Heim, L.; Biri, A.; Qu, Z.; Thiele, L. Measuring what Really Matters: Optimizing Neural Networks for TinyML. arXiv 2021, arXiv:2104.10645. [Google Scholar]
- Zemlyanikin, M.; Smorkalov, A.; Khanova, T.; Petrovicheva, A.; Serebryakov, G. 512KiB RAM Is Enough! Live Camera Face Recognition DNN on MCU. In Proceedings of the IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), Seoul, Korea, 28 October 2019; pp. 2493–2500. [Google Scholar]
- Ren, P.; Xiao, Y.; Chang, X.; Huang, P.Y.; Li, Z.; Chen, X.; Wang, X. A comprehensive survey of neural architecture search: Challenges and solutions. ACM Comput. Surv. 2021, 54, 1–34. [Google Scholar] [CrossRef]
- Buciluǎ, C.; Caruana, R.; Niculescu-Mizil, A. Model Compression. In Proceedings of the ACM Conference on Knowledge Discovery and Data Mining (KDD), Philadelphia, PA, USA, 20–23 August 2006; pp. 535–541. [Google Scholar]
- Ba, J.; Caruana, R. Do Deep Nets Really Need to be Deep? In Proceedings of the Neural Information Processing Systems (NIPS), Lake Tahoe Nevada, 5–10 December 2013.
- Hinton, G.E.; Vinyals, O.; Dean, J. Distilling the Knowledge in a Neural Network. arXiv 2015, arXiv:1503.02531. [Google Scholar]
- Gou, J.; Yu, B.; Maybank, S.J.; Tao, D. Knowledge Distillation: A Survey. Int. J. Comput. Vis. 2020, 129, 1789–1819. [Google Scholar] [CrossRef]
- Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. Imagenet: A large-scale hierarchical image database. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Miami, FL, USA, 20–25 June 2009; pp. 248–255. [Google Scholar]
- Fragkou, E.; Lygnos, V.; Katsaros, D. Transfer Learning for Convolutional Neural Networks in Tiny Deep Learning Environments. In Proceedings of the Pan-Hellenic Conference on Informatics (PCI), Athens, Greece, 25–27 November 2022; pp. 145–150. [Google Scholar]
- Ahmed, K.; Hassan, M. tinyCare: A tinyML-based Low-Cost Continuous Blood Pressure Estimation on the Extreme Edge. In Proceedings of the IEEE International Conference on Healthcare Informatics (ICHI), Rochester, MN, USA, 11–14 June 2022; pp. 264–275. [Google Scholar]
- T’Jonck, K.; Kancharla, C.R.; Vankeirsbilck, J.; Hallez, H.; Boydens, J.; Pang, B. Real-Time Activity Tracking using TinyML to Support Elderly Care. In Proceedings of the International Scientific Conference on Electronics (ET), Sozopol, Bulgaria, 15–17 September 2021; pp. 1–6. [Google Scholar]
- Antonini, M.; Pincheira, M.; Vecchio, M.; Antonelli, F. A TinyML approach to non-repudiable anomaly detection in extreme industrial environments. In Proceedings of the EEE International Workshop on Metrology for Industry 4.0& IoT (MetroInd4.0 & IoT), Trento, Italy, 7–9 June 2022; pp. 397–402. [Google Scholar]
- Andrade, P.; Silva, I.; Signoretti, G.; Silva, M.; Dias, J.; Marques, L.; Costa, D.G. An Unsupervised TinyML Approach Applied for Pavement Anomalies Detection Under the Internet of Intelligent Vehicles. In Proceedings of the IEEE International Workshop on Metrology for Industry 4.0 & IoT (MetroInd4.0&IoT), Rome, Italy, 7–9 June 2021; pp. 642–647. [Google Scholar]
- MOCAST. A TinyML-based system for gas leakage detection. In Proceedings of the International Conference on Modern Circuits and Systems Technologies (MOCAST), Bremen, Germany, 8–10 June 2022; pp. 1–5. [Google Scholar]
- Rana, A.; Dhiman, Y.; Anand, R. Cough Detection System using TinyML. In Proceedings of the International Conference on Computing, Communication and Power Technology (IC3P), Visakhapatnam, India, 7–8 January 2022; pp. 119–122. [Google Scholar]
- Fang, K.; Xu, Z.; Li, Y.; Pan, J. A Fall Detection using Sound Technology Based on TinyML. In Proceedings of the International Conference on Information Technology in Medicine and Education (ITME), Wuyishan, China, 19–21 November 2021; pp. 222–225. [Google Scholar]
- Nicolas, C.; Naila, B.; Amar, R.C. TinyML Smart Sensor for Energy Saving in Internet of Things Precision Agriculture platform. In Proceedings of the International Conference on Ubiquitous and Future Networks (ICUFN), Barcelona, Spain, 5–8 July 2022; pp. 256–259. [Google Scholar]
- Giordano, M.; Baumann, N.; Crabolu, M.; Fischer, R.; Bellusci, G.; Magno, M. Design and Performance Evaluation of an Ultralow-Power Smart IoT Device with Embedded TinyML for Asset Activity Monitoring. IEEE Trans. Instrum. Meas. 2022, 71, 2510711. [Google Scholar] [CrossRef]
- Maltoni, D.; Lomonaco, V. Continuous Learning in Single-Incremental-Task Scenarios. Neural Netw. 2018, 116, 56–73. [Google Scholar] [CrossRef]
- Lesort, T.; Lomonaco, V.; Stoian, A.; Maltoni, D.; Filliat, D.; Díaz-Rodríguez, N. Continual learning for robotics: Definition, framework, learning strategies, opportunities and challenges. Inf. Fusion 2020, 58, 52–68. [Google Scholar] [CrossRef]
- Pellegrini, L.; Graffieti, G.; Lomonaco, V.; Maltoni, D. Latent Replay for Real-Time Continual Learning. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, 4–8 November 2019; pp. 10203–10209. [Google Scholar]
- Lopez-Paz, D.; Ranzato, M. Gradient Episodic Memory for Continual Learning. In Proceedings of the Neural Information Processing Systems (NIPS), Long Beach, CA, USA, 4–9 December 2017. [Google Scholar]
- Cha, H.; Lee, J.; Shin, J. Co2L: Contrastive continual learning. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, BC, Canada, 11–17 October 2021; pp. 9496–9505. [Google Scholar]
- Smith, J.; Tian, J.; Hsu, Y.C.; Kira, Z. A Closer Look at Rehearsal-Free Continual Learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), New Orleans, LA, USA, 19–20 June 2022; pp. 2410–2420. [Google Scholar]
- Ravaglia, L.; Rusci, M.; Nadalini, D.; Capotondi, A.; Conti, F.; Benini, L. A TinyML Platform for On-Device Continual Learning with Quantized Latent Replays. IEEE J. Emerg. Sel. Top. Circuits Syst. 2021, 11, 789–802. [Google Scholar] [CrossRef]
- Hinton, G.E. The Forward-Forward Algorithm: Some preliminary investigations. arXiv 2022, arXiv:2212.13345. [Google Scholar]
- Vita, F.D.; Nawaiseh, R.M.A.; Bruneo, D.; Tomaselli, V.; Lattuada, M.; Falchetto, M. μ-FF: On-Device Forward-Forward Training Algorithm for Microcontrollers. In Proceedings of the IEEE International Conference on Smart Computing (SMARTCOMP), Nashville, TN, USA, 26–30 June 2023; pp. 49–56. [Google Scholar]
- Mocanu, D.C.; Mocanu, E.; Stone, P.; Nguyen, P.H.; Gibescu, M.; Liotta, A. Scalable training of artificial neural networks with adaptive sparse connectivity inspired by network science. Nat. Commun. 2017, 9, 2383. [Google Scholar] [CrossRef]
- Chouliaras, A.; Fragkou, E.; Katsaros, D. Feed Forward Neural Network Sparsificationwith Dynamic Pruning. In Proceedings of the Pan-Hellenic Conference on Informatics (PCI), Volos, Greece, 26–28 November 2021; pp. 12–17. [Google Scholar]
- Fragkou, E.; Koultouki, M.; Katsaros, D. Model reduction of feed forward neural networks for resource-constrained devices. Appl. Intell. 2023, 53, 14102–14127. [Google Scholar] [CrossRef]
- Yosinski, J.; Clune, J.; Bengio, Y.; Lipson, H. How transferable are features in deep neural networks? In Proceedings of the Neural Information Processing Systems (NIPS), Montreal Canada, 8–13 December 2014.
- Ren, H.; Anicic, D.; Runkler, T.A. TinyOL: TinyML with Online-Learning on Microcontrollers. In Proceedings of the International Joint Conference on Neural Networks (IJCNN), Virtual, 18–22 July 2021; pp. 1–8. [Google Scholar]
- Disabato, S.; Roveri, M. Incremental On-Device Tiny Machine Learning. In Proceedings of the International Workshop on Challenges in Artificial Intelligence and Machine Learning for Internet of Things (AIChallengeIoT), Virtual (online), 16 November 2020. [Google Scholar]
- Aloufi, R.; Haddadi, H.; Boyle, D. Emotion Filtering at the Edge. In Proceedings of the Workshop on Machine Learning on Edge in Sensor Systems, New York, NY, USA, 10 November 2019. [Google Scholar]
- Sudharsan, B.; Breslin, J.G.; Tahir, M.; Ali, M.I.; Rana, O.F.; Dustdar, S.; Ranjan, R.; Dustdar, S. OTA-TinyML: Over the Air Deployment of TinyML Models and Execution on IoT Devices. IEEE Internet Comput. Mag. 2022, 26, 69–78. [Google Scholar] [CrossRef]
- Li, J.; Kuang, R. Split Federated Learning on Micro-controllers: A Keyword Spotting Showcase. arXiv 2022, arXiv:2210.01961. [Google Scholar]
- Banbury, C.R.; Zhou, C.; Fedorov, I.; Navarro, R.M.; Thakker, U.; Gope, D.; Reddi, V.J.; Mattina, M.; Whatmough, P.N. MicroNets: Neural Network Architectures for Deploying TinyML Applications on Commodity Microcontrollers. Proc. Mach. Learn. Syst. 2021, 3, 517–532. [Google Scholar]
- Sievers, B.; Hauschild, S.; Hellbrück, H. Inference and Performance Analysis of Convolutional Neural Networks used for Human Gesture Recognition on IoT-Devices. Computing 2021, 2, 3. [Google Scholar]
- de Prado, M.; Rusci, M.; Capotondi, A.; Donze, R.; Benini, L.; Pazos, N. Robustifying the Deployment of tinyML Models for Autonomous Mini-Vehicles. Sensors 2021, 21, 1339. [Google Scholar] [CrossRef]
- Pullini, A.; Rossi, D.; Loi, I.; Tagliavini, G.; Benini, L.M. Wolf: An Energy-Precision Scalable Parallel Ultra Low Power SoC for IoT Edge Processing. IEEE J. -Solid-State Circuits 2019, 54, 1970–1981. [Google Scholar] [CrossRef]
- David, R.; Duke, J.; Jain, A.; Janapa Reddi, V.; Jeffries, N.; Li, J.; Kreeger, N.; Nappier, I.; Natraj, M.; Wang, T.; et al. Tensorflow lite micro: Embedded machine learning for tinyml systems. Proc. Mach. Learn. Syst. 2021, 3, 800–811. [Google Scholar]
- Ray, P.P. A review on TinyML: State-of-the-art and prospects. J. King Saud Univ.-Comput. Inf. Sci. 2021, 34, 1595–1623. [Google Scholar] [CrossRef]
- Capotondi, A.; Rusci, M.; Fariselli, M.; Benini, L. CMix-NN: Mixed Low-Precision CNN Library for Memory-Constrained Edge Devices. IEEE Trans. Circuits Syst. Ii Express Briefs 2020, 67, 871–875. [Google Scholar] [CrossRef]
- Jahanshahi, A. TinyCNN: A Tiny Modular CNN Accelerator for Embedded FPGA. arXiv 2019, arXiv:1911.06777. [Google Scholar]
- Reddi, V.J.; Plancher, B.; Kennedy, S.; Moroney, L.; Warden, P.; Agarwal, A.; Banbury, C.R.; Banzi, M.; Bennett, M.; Brown, B.; et al. Widening Access to Applied Machine Learning with TinyML. arXiv 2021, arXiv:2106.04008. [Google Scholar]
- Kopparapu, K.; Lin, E. TinyFedTL: Federated Transfer Learning on Tiny Devices. arXiv 2021, arXiv:2110.01107. [Google Scholar]
- Zheng, J.; Xu, J.; Du, H.; Niyato, D.; Kang, J.; Nie, J.; Wang, Z. Trust Management of Tiny Federated Learning in Internet of Unmanned Aerial Vehicles. IEEE Internet Things J. 2024, 11, 21046–21060. [Google Scholar] [CrossRef]
- Huang, H.; Zhang, L.; Sun, C.; Fang, R.; Yuan, X.; Wu, D. Distributed pruning towards tiny neural networks in federated learning. In Proceedings of the IEEE International Conference on Distributed Computing Systems (ICDCS), Hong Kong, China, 18–21 July 2023; pp. 190–201. [Google Scholar]
- Zhu, J.; Cao, J.; Saxena, D.; Jiang, S.; Ferradi, H. Blockchain-empowered Federated Learning: Challenges, Solutions, and Future Directions. ACM Comput. Surv. 2022, 55, 1–31. [Google Scholar] [CrossRef]
- Ma, X.; Xu, D. TORR: A Lightweight Blockchain for Decentralized Federated Learning. IEEE Internet Things J. 2023, 11, 1028–1040. [Google Scholar] [CrossRef]
- Ghanem, M.C.; Dawoud, F.A.S.; Gamal, H.; Soliman, E.; Sharara, H.; El-Batt, T. FLoBC: A Decentralized Blockchain-Based Federated Learning Framework. In Proceedings of the Fourth International Conference on Blockchain Computing and Applications (BCCA), Tartu, Estonia, November 15–16 2021; pp. 85–92. [Google Scholar]
- Wang, H.; Mao, D.; Chen, Z.; Rao, H.; Li, Z. Blockchain-Based Decentralized Federated Learning Model. In Proceedings of the International Conference on Information Science, Parallel and Distributed Systems (ISPDS), Guangzhou, China, 14–16 July 2023; pp. 622–625. [Google Scholar]
- Li, J.; Shao, Y.; Wei, K.; Ding, M.; Ma, C.; Shi, L.; Han, Z.; Poor, V. Blockchain Assisted Decentralized Federated Learning (BLADE-FL): Performance Analysis and Resource Allocation. IEEE Trans. Parallel Distrib. Syst. 2022, 33, 2401–2415. [Google Scholar] [CrossRef]
- Wang, T.; Dong, Z.Y. Blockchain Based Clustered Federated Learning for Non-Intrusive Load Monitoring. IEEE Trans. Smart Grid 2024, 15, 2348–2361. [Google Scholar] [CrossRef]
- Ranathunga, T.; Mcgibney, A.; Rea, S.; Bharti, S. Blockchain-Based Decentralized Model Aggregation for Cross-Silo Federated Learning in Industry 4.0. IEEE Internet Things J. 2023, 10, 4449–4461. [Google Scholar] [CrossRef]
- Jin, Y.; Jiao, L.; Qian, Z.; Zhou, R.; Pu, L. Orchestrating Blockchain with Decentralized Federated Learning in Edge Networks. In Proceedings of the IEEE International Conference on Sensing, Communication, and Networking (SECON), Madrid, Spain, 11–14 September 2023; pp. 483–491. [Google Scholar]
- Yapp, A.Z.H.; Koh, H.S.N.; Lai, Y.T.; Kang, J.; Li, X.; Ng, J.S.; Jiang, H.; Lim, W.Y.B.; Xiong, Z.; Niyato, D.T. Communication-efficient and Scalable Decentralized Federated Edge Learning. In Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), Montreal, BC, Canada, 19–27 August 2021. [Google Scholar]
- Riahi, A.; Mohamed, A.; Erbad, A. BC-FL Location-Based Disease Detection in Healthcare IoT. In Proceedings of the International Wireless Communications and Mobile Computing (IWCMC), Marrakesh, Morocco, 19–23 June 2023; pp. 1684–1689. [Google Scholar]
- Liu, S.; Liu, Z.; Xu, Z.; Liu, W.; Trian, J. Hierarchical Decentralized Federated Learning Framework with Adaptive Clustering: Bloom-Filter-Based Companions Choice for Learning non-IID Data in IoV. Electronics 2023, 12, 3811. [Google Scholar] [CrossRef]
- Banbury, C.; Reddi, V.J.; Torelli, P.; Holleman, J.; Jeffries, N.; Kiraly, C.; Montino, P.; Kanter, D.; Ahmed, S.; Pau, D.; et al. MLPerf Tiny Benchmark. arXiv 2021, arXiv:2106.07597. [Google Scholar]
- Xiao, C.; Zhong, P.; Zheng, C. Enhancing Adversarial Defense by k-Winners-Take-All. arXiv 2019, arXiv:1905.10510. [Google Scholar]
- Marias, G.F.; Georgiadis, P.; Flitzanis, D.; Mandalas, K. Cooperation enforcement schemes for MANETs: A survey. Wirel. Commun. Mob. Comput. 2006, 6, 319–332. [Google Scholar] [CrossRef]
- Zhang, P.; Kamel Boulos, M.N. Generative AI in medicine and healthcare: Promises, opportunities and challenges. Future Internet 2023, 15, 286. [Google Scholar] [CrossRef]
- Kenthapadi, K.; Lakkaraju, H.; Rajani, N. Generative AI meets Responsible AI: Practical Challenges and Opportunities. In Proceedings of the ACM Conference on Knowledge Discovery and Data Mining (KDD), Long Beach, CA, USA, 6–10 August 2023; pp. 5805–5806. [Google Scholar]
- Thakur, D.; Guzzo, A.; Fortino, G.; Piccialli, F. Green Federated Learning: A new era of Green Aware AI. arXiv 2024, arXiv:2409.12626. [Google Scholar]
- Bandi, A.; Adapa, P.; Kuchi, Y.E. The Power of Generative AI: A Review of Requirements, Models, Input–Output Formats, Evaluation Metrics, and Challenges. Future Internet 2023, 15, 260. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fragkou, E.; Katsaros, D. A Joint Survey in Decentralized Federated Learning and TinyML: A Brief Introduction to Swarm Learning. Future Internet 2024, 16, 413. https://doi.org/10.3390/fi16110413
Fragkou E, Katsaros D. A Joint Survey in Decentralized Federated Learning and TinyML: A Brief Introduction to Swarm Learning. Future Internet. 2024; 16(11):413. https://doi.org/10.3390/fi16110413
Chicago/Turabian StyleFragkou, Evangelia, and Dimitrios Katsaros. 2024. "A Joint Survey in Decentralized Federated Learning and TinyML: A Brief Introduction to Swarm Learning" Future Internet 16, no. 11: 413. https://doi.org/10.3390/fi16110413
APA StyleFragkou, E., & Katsaros, D. (2024). A Joint Survey in Decentralized Federated Learning and TinyML: A Brief Introduction to Swarm Learning. Future Internet, 16(11), 413. https://doi.org/10.3390/fi16110413