
Citation: Fragkou, E.; Katsaros, D. A

Joint Survey in Decentralized

Federated Learning and TinyML: A

Brief Introduction to Swarm Learning.

Future Internet 2024, 16, 413. https://

doi.org/10.3390/fi16110413

Academic Editor: Paolo Bellavista

Received: 31 August 2024

Revised: 11 October 2024

Accepted: 21 October 2024

Published: 8 November 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

future internet

Article

A Joint Survey in Decentralized Federated Learning and TinyML:
A Brief Introduction to Swarm Learning
Evangelia Fragkou * and Dimitrios Katsaros *

Department of Electrical and Computer Engineering, University of Thessaly, 38334 Volos, Greece
* Correspondence: efragkou@uth.gr (E.F.); dkatsar@inf.uth.gr (D.K.)

Abstract: TinyML/DL is a new subfield of ML that allows for the deployment of ML algorithms
on low-power devices to process their own data. The lack of resources restricts the aforementioned
devices to running only inference tasks (static TinyML), while training is handled by a more compu-
tationally efficient system, such as the cloud. In recent literature, the focus has been on conducting
real-time on-device training tasks (Reformable TinyML) while being wirelessly connected. With data
processing being shift to edge devices, the development of decentralized federated learning (DFL)
schemes becomes justified. Within these setups, nodes work together to train a neural network model,
eliminating the necessity of a central coordinator. Ensuring secure communication among nodes is of
utmost importance for protecting data privacy during edge device training. Swarm Learning (SL)
emerges as a DFL paradigm that promotes collaborative learning through peer-to-peer interaction,
utilizing edge computing and blockchain technology. While SL provides a robust defense against
adversarial attacks, it comes at a high computational expense. In this survey, we emphasize the
current literature regarding both DFL and TinyML/DL fields. We explore the obstacles encountered
by resource-starved devices in this collaboration and provide a brief overview of the potential of
transitioning to Swarm Learning.

Keywords: TinyML; decentralized federated learning; swarm learning

1. Introduction

Nowadays, the burgeoning paradigm of using machine/deep learning algorithms to
enhance not only sectors of every day life, such as healthcare and smart devices for home
automation but also security and surveillance, industrial monitoring, smart agriculture,
etc. [1], necessitates shifting the training process and the deployment of machine/deep
learning algorithms toward the edge, where the data are gathered. The ability of an edge
device to process its own raw data locally is of a great importance since it can make
decisions in real time whilst data privacy and independence are retained. However, the
hardware resources are limited, making the deployment of conventional deep learning
algorithms impossible. In taking into consideration Moore’s controversial law [2], which
first appeared in 1965 (stating that the density of transistors per circuit system is doubled
every two years, meaning that the hardware becomes not only smaller and faster but also
its cost is ever decreasing) and has existed over the last 50 years, the aforementioned edge
devices will probably become powerful enough to support computationally expensive on-
device training. Although Cortex-M-based devices have achieved unprecedented success
in performance [3] as both on-chip SRAM and embedded Flash are available on MCUs,
this kind of device has yet to meet the requirements to support the running of traditional
machine/deep learning algorithms hitherto. For instance, ultra-low-power devices/boards
(see Section 3), such as microcontrollers (MCUs) with limited RAM (some MB or even KB of
RAM) and computational power cannot handle the GB of data necessary for the successful
training of ML/DL models or support energy-intensive and complex algorithms. In the
literature, there is a lot of work conducted toward the optimization of the inference phase

Future Internet 2024, 16, 413. https://doi.org/10.3390/fi16110413 https://www.mdpi.com/journal/futureinternet

https://doi.org/10.3390/fi16110413
https://doi.org/10.3390/fi16110413
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://orcid.org/0000-0001-6827-2262
https://doi.org/10.3390/fi16110413
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/article/10.3390/fi16110413?type=check_update&version=1

Future Internet 2024, 16, 413 2 of 28

in these devices. The training phase of a model that is going to be deployed on an edge
device takes place on a server, where both the required energy and a plethora of necessary
data are abundant. Then, one uses suitable tools (e.g., TensorFlow lite) so that the model’s
size is then increased to some KB of RAM. The converted compact model can be applied to
resource-limited target devices, and this is what TinyML is called [1,4]. There are a lot of
works (see the section on pruning) in which a DL model undergoes processing with the
aim of minimizing its size, like pruning, quantization, or both of them, in order to meet the
memory capacity requirements of edge devices.

Adversely, the inference phase is a static procedure since its main purpose is to make
predictions, based on the learned task, on new unseen data that the model is exposed to. The
neural network model remains unchanged at its core during the inference phase, which limits
its ability to learn new patterns and improve generalizations, or else it lacks interpretability.

In order to alleviate the problem of model adaptability to new tasks, reformable [5] and
on-device TinyML were developed. Of course, reformable or otherwise dynamic TinyML has
to be conducted under conditions that will not make the model “forget” about its previous
acquired tasks; otherwise, it will cause the “catastrophic forgetting“ effect [6] while trying
to expand its possibilities. Although it has been proven that there is a trade-off between the
precision of saved information and non-harmful forgetting, known as the stability/plasticity
dilemma [7], it is of great importance to minimize this phenomenon as much as possible.
A lot of nascent techniques have been introduced, such as Continual Learning (CL) (see
Section 3.2.2); however, the real question is how could we enable real-time energy-and-
storage-efficient training (without inference) on resource-starving devices? This is how
federated learning (FL) [8] came to light.

In FL, many node devices cooperatively train a model either by sharing their parameters
(not data themselves) with a server—centralized federated learning (CFL)—which makes
the global aggregations and forwards the new updated weights back to the nodes in order
to continue training, or by exchanging their parameters with one another—decentralized [9]
or distributed federated learning (DFL)—in order to perform training without a central
coordinator. There is also a hybrid form of both of them (see the section on Hybrid FL).
In CFL, nodes usually form a star-shaped network, with the server being in the center of
the network, so all nodes have access to it. In DFL, although nodes usually connect only
with their one-hop neighbors, so that they form a ring-shaped network (ad hoc or peer-to-
peer networks), there are also works that have implemented d-ring or mesh [10] topology
under DFL settings. FL has also been proven to mitigate the lack of data availability
of these devices during training, since they do not have to own all of the data required
for training in order to reach convergence. Although there are a lot of approaches [11]
regarding CFL, they do not actually meet the needs of TinyML environments, like IoTs,
due to their requirement of a coordinator server. The energy required by the edge nodes to
send their parameters to the server when embarking on the learning process may cause the
depletion of their total energy, and/or communication overhead/flooding, since every node
is obliged to communicate with the server. Moreover, the fact that the training process still
takes place outside of the end devices hinders the ability of the devices to be independent.
Despite the fact that FL was first introduced in order to handle the problem of privacy
concerns, since nodes do not have to send their collected data over the network, only some
of their parameters, as shown in [12], there is a possibility of reconstructing the initial data
sent to the server by aggregating their total gradients. Thus, the literature has focused
on DFL, which is a scheme a) that operates without a central orchestration; b) in which
every node shares information with its neighbor nodes, which are wirelessly connected;
c) that has unsolved problems like the broadcast storm problem [13] in ad hoc networks;
and d) that lacks trustworthiness, since in ad hoc networks, there are often attacks that
resource-starving devices cannot recognize/handle (due to their lack of energy/memory
needed to always authenticate their collaborators).

Moreover, Swarm Learning (SL) [14] has emerged, which successfully combines DFL
methodology in wireless networks with blockchain-based protocols for retaining trustwor-

Future Internet 2024, 16, 413 3 of 28

thiness in the network. SL practices are not amenable to being deployed to end devices,
since they are also computationally expensive.

The emergence of the aforementioned distributed deep learning technologies and the
progress in the development of products running over distributed environments create the
pressing need to describe the most significant advances in this research landscape. In light of
this need, the main question that our survey aspires to answer is the following: What are the
most recent and important solutions for addressing deep learning challenges in resource-
starving environments that can be encountered in (a) highly distributed architectures
running either over wireless ad hoc networks or over conventional peer-to-peer networks
and (b) miniaturized devices, e.g., microcontrollers and sensors? Since security is always
an important issue in distributed architectures, a second question that this survey will
adequately cover is about What has been proposed for guaranteeing privacy and security
in distributed deep learning?

The anatomy of this survey is the following: we aimed to provide answers to the
aforementioned questions by drawing on academic papers, published in well-respected
academic databases and digital libraries of publishers, e.g., Google Scholar, IEEEXplore,
ACM DL, Scopus, and MDPI (see Figure 1), and whose publication age is no larger than
five years. We ensured that the surveyed articles appeared in ACM/IEEE Transactions
and Journals, and/or in journals with a significantly large impact factor, or in premium
quality conferences such as NeurIPS, IJCNN, ICDM, and so on. We also included some yet
unpublished articles (e.g., from arxiv.org), but only very recent articles for which (some
of) the authors are prominent scientists or when we felt that the article is going to be a
significant one. We refrained from setting hard “performance” thresholds such as number
of citations or h-index as paper selection criteria, because we are well aware of how citation
inflation efforts distort the scientific value of an article.

Our survey overlaps to a small extent with some earlier surveys; the kind/extent
of overlap and our discrepancy is described in the rest of this paragraph. Table 1 lists
published surveys most relevant to our work: Hu et al. [15] comprehensively presented
the possibilities of deploying distributed deep learning and deep reinforcement learning in
wireless networks, emphasizing distributed computing, e.g., Hadoop. In this survey, the
model was mainly split, and every device trains on a part of the whole model, instead of col-
laboratively training the same model by sharing model parameters (the case we focus on).
In parallel, Ajani et al. [1] presented a detailed review about machine learning optimization
in order to fit in low-power devices (e.g., embedded systems, MCUs, etc.); nevertheless,
they mainly focused on machine learning instead of deep learning approaches. Bellavista
et al. [16] pointed out the necessity of shifting toward decentralized learning techniques
and the need to construct suitable learning models for edge devices; however,they solem-
nified the network infrastructural perspective without referring to model optimization.
Despite the benefits of working on edge devices, there are pivotal concerns about both
communication safety and data adequacy among the participating entities, as analyzed by
Han et al. in [14]. In this work, they address trust issues, regarding node cooperation in
fully distributed environments, using blockchain-based methods; however, swarm nodes
need more than enough computational power in order to meet both the high-energy and
memory expectations of blockchain methodology.

Future Internet 2024, 16, 413 4 of 28

Table 1. Reporting the most relative existing surveys.

Title Year Purpose

Distributed Machine Learning
for Wireless Communication

Networks: Techniques, Architectures,
and Applications [15]

2021 it focuses on wireless networks

An Overview of Machine
Learning within Embedded

and Mobile Devices—Optimizations
and Applications [1]

2021 it emphasizes machine learning
for embedded devices

Demystifying Swarm Learning:
A New Paradigm of Blockchain-based
Decentralized Federated Learning [14]

2022
the main goal of this work

was to tackle the imbalanced
training dataset problem by

leveraging a blockchain-based
infrastructure

Decentralized learning
in federated deployment environments:

A system-level survey [16]

2021 it focuses on distributed FL

Id
e
n
tif

ic
a
tio

n
S

cr
e
e
n
in

g
In

cl
u
d
e
d

Identification of new studies via databases and registers

Records identified from:
Databases (n = 4):

Google Scholar (n = 1,000)
ACM (n = 30)

IEEE xplore (n = 100)
Scopus (n = 15)

Records removed before screening:
Duplicate records (n = 500)

Records screened
(n = 645)

Records excluded
(n = 400)

Reports sought for retrieval
(n = 245)

Reports not retrieved
(n = 111)

Reports assessed for eligibility
(n = 134)

Reports excluded:
overlapping topics (n = 90)

dates before 2000 year (n = 21)

New studies included in review
(n = 41)

Figure 1. Screening process [17] of relevant academic works.

Future Internet 2024, 16, 413 5 of 28

The present survey aimed to contribute the following:

• The current advancements of the amalgamation of three wide areas, TinyML,
decentralized federated learning, and Swarm Learning, for which their
amalgamation revolutionize both the viability and autonomy of resource-starving
decentralized environments;

• The incorporation of new up-to-date entries, published in the recent literature, fo-
cusing on cutting-edge cross-device decentralized federated learning methodologies,
e.g., on-device reformable TinyML, peer-to-peer communication among tiny devices,
blockchain contributions to communication safety, etc.;

• The exploration of current challenges that have yet to be fully addressed in the deploy-
ment of deep neural networks on resource-starving devices;

• The presentation of challenges concerning the ethical concerns that this rapidly increas-
ing technological era (e.g., Generative AI models) faces.

The organization of this paper is as follows: The introduction of decentralized fed-
erated learning and TinyML/DL is covered in Sections 2 and 3, respectively. The current
progress of tiny federated learning is discussed in Section 4, followed by a brief introduction
to Swarm Learning in Section 5. Lastly, the potential challenges in the realm of Tiny DFL
are analyzed in Section 6.

2. The Rise of the Federated Learning Approach

The federated learning technique was first introduced by McMahan, from Google, in
2017 [8] and was the alternative of a privacy-preserving machine/deep learning paradigm.
In the original form of FL, there are three basic steps to performing FL: selection, configuration,
and reporting. First of all, the selection process takes place when we select the participating
node devices. After this, the aggregation technique adopted by the server is declared and
the server sends the model to all participants (configuration process). After that, the nodes
collaboratively train the defined neural network model by sharing their gradients/weights
but not their exact data with the server. Finally, in the reporting phase, the server is
informed about the nodes’ updates (about sending gradients/weights), and through a
specific algorithm, namely FedAvg, it sends the renewed model to the participating nodes.

Every node runs its own local training procedure for some epochs, before the reporting
stage, and then it sends its produced parameters, either periodically or after a specific
number of local training rounds, to the server in order for the server to make the global
aggregations. After that, the newly updated weights are sent back to the devices, which
incorporate the newly updated weights and continue their local training. The global
aggregations continue until the model reaches its optimal solution, or until it reaches
convergence [11].

2.1. Problem Formulation

To explain further, let us assume that every node i produces a dataset Di with |Di| data
points. Each data point (x, y) ∈ Di consists of a multi-dimensional feature vector x ∈ Rm

and a label y ∈ R space. We also assume that the f (x, y, w) declares the loss function,
regarding the data point (x, y), based on the learning model parameter vector w ∈ Rm.
Then, the local loss function at node i is defined:

Fi(w) =
1

|Di| ∑
(x,y)∈Di

f (x, y, w). (1)

And the total loss function is then defined as the average loss of the aforementioned
local losses as follows:

F(w∗) =
1
|D| ∑

(x,y)∈D
f (x, y, w). (2)

Future Internet 2024, 16, 413 6 of 28

where the goal is to find the optimal learning parameters w⋆ for F so that the total loss
function is minimized.

w⋆ = argminw∈Rm F(w). (3)

2.2. Taxonomy of FL Models

In federated learning, we have the following categories: scale of federation, data
partitioning, and federated learning architecture.

2.2.1. Data Partitioning

In this case, we have three categories: horizontal, vertical and transfer federated
learning [18]. Horizontal federated learning refers to the process of distributing the same
resources to many node devices (parallelism). On the perspective of data, in horizontal FL
(or sample-based FL), the feature space (a vector space that includes all the possible feature
vectors from a population of a specific domain) of the training data is the same for all used
samples but may differ in the sample space. In contrast, in vertical federated learning,
the resources of a powerful device, e.g., a server, are bisected in order for more nodes to
leverage its capability (concurrency). In vertical or feature-based FL, the datasets share the
same sample ID space but are different in respect to the feature space. Furthermore, we
also have the terminology homogeneous or heterogeneous federated learning, which stipulates
whether there is harmonization or not, respectively, regarding device specifications and
model architecture. For example, if all node devices have the same architecture and learn
the same task, we have homogeneity. If either the task or the model differs, it is called
heterogeneity. Horizontal FL tends to coincide with homogeneous FL, while vertical FL is
commonly associated with heterogeneous FL. Nevertheless, in [19], Mori et al. addressed
the challenge of heterogeneous data in a horizontal federated learning scenario. In FL, the
workload accomplishment can realize, either from multiple cores of a single device (vertical
setting) or from multiple devices, communication with each other (horizontal setting) [20].
The third category, namely transfer federated learning, combines data either with common
feature, or a common sample space, with the aims of alleviating the problem of limited
resources among the nodes and, hence, building an efficient neural model.

2.2.2. Scale of Federation

The federation scale can be classified into two types: cross-device or cross-silo. In the
case of cross-device federation, nodes are typically mobile devices with imperceptible
computational power, and their number can reach up to a scale of millions (there is a wide
range of connectivity). Furthermore, in this case, node devices are more susceptible to
possible attacks due to their lack of resources (less reliable). On the contrary, in cross-silo
setting, nodes are organizations or companies, e.g., banks, hospitals, etc. (meaning that
they do not lack computational power), but in this case, we have a small range of connected
nodes (e.g., within a hundred). In this situation, the main goal is to retain privacy among
the cooperative nodes, since they exchange sensitive personal data. Either in cross-device
or cross-silo scaling, the training procedure may or may not involve a central server as a
neutral party, and this depends on the type of the training algorithm and the type of the
data it uses, the network topology architecture, and how trusted the communication is for
the nodes to exchange model parameters among one another in order to assist the global
model’s gradient calculations.

2.2.3. Federated Learning Architectures
Centralized Federated Learning

Centralized federated learning[8] with the FedAvg algorithm was first introduced in
order to address the problem of data privacy. The FedAvg algorithm is the reference point in
the evolution of centralized federated learning algorithms, since it has been already proven
that it converges and achieves a sub-optimal convergence range of O(1/T) when training
the model using the stochastic gradient decent algorithm under settings where the convexity

Future Internet 2024, 16, 413 7 of 28

of the loss function holds. After FedAvg, a lot of variants were introduced with remarkable
convergence rates and high statistical accuracy levels, e.g., DFedSGD, FedProx, SCAFFOLD,
VanillaSGD, etc. [21]. However, CFL was also a great solution motivating resource-scarce
devices to run DL models on their own. The devices run their own local training for a
few epochs and then send their parameters to the server for further calculations, which
in turn forwards back the updated weights to the participating entities. However, even
if the server mitigates the computational cost of running the collaborative learning, the
communication overhead remains at high levels. In taking into consideration that in FL the
bandwidth of uploading/downloading data is very small (about 1 MB/s) and we often
deal with “asymmetric” networks [22], which probably means that not all devices have the
same capabilities in the network and specifically the velocity of uploading or downloading
differs from device to device, the continual communication among node devices and the
server conducted in order for the model to be trained may cause cross-device overflow in
communication links. Also, when the energy of these devices is also constrained, this data
exchange may deplete all their energy. There are a lot works in the literature that justify the
advancements of this technique to small and tiny devices, for instance, the edge stochastic
gradient descent (eSGD) [11] algorithm for updating weights, based on the importance of
parameter values. The eSGD algorithm takes into account a few significant gradients,
which are further forwarded to the server in order to update the global model. The eSGD
algorithm compares the loss values of two consecutive iterations of the algorithm, and
if the present value is smaller than the previous one, it means that these gradients are
important for the model training, and thus, these weights are kept. There are a lot works
in the literature that justify the advancements of this technique to small and tiny devices,
for instance, the edge stochastic gradient descent (eSGD) [11] algorithm for updating weights,
based on the importance of parameter values. The eSGD algorithm takes into account a
few significant gradients, which are further forwarded to the server in order to update the
global model. The eSGD algorithm compares the loss values of two consecutive iterations
of the algorithm, and if the present value is smaller than the previous one, it means that
these gradients are important for the model training, and thus, these weights are kept.

Another selective communication protocol is introduced in [23]. Pan et al. present a
centralized federated learning paradigm in which not all nodes participate in the learning
process but only the nodes that achieve high rewards. The authors propose a Neural
Contextual Combinatorial Bandit (NCCB) algorithm for rewarding nodes not only for their
contribution, extracted from system experience, but also for their data cross-device similarity,
while using the K-means clustering algorithm to fit nodes into groups. There is a lot
of remarkable work in centralized federated learning [11]; however, the existence of a
central server that takes over the orchestration of the training procedure is still considered
a disadvantage in recent environments. Liu et al. [24], for instance, proposed a method of
encrypted message transmission between the server and the participating nodes in order
to enhance data security, with imperceptible client-side overhead for message encryption.
However, the existence of a central coordinator remains a “bottleneck” in contemporary
environments, due to retaining data sovereignty over the devices. In bearing in mind the
work in [12], a malicious node may intrude the network and manage to reconstruct the
produced-by-devices data that are sent to the server by knowing only their gradients. Also,
in cases with cross-silo settings, the organization and storage of all the sensitive parameters,
e.g., medical tests, may cause severe problems in the case of an attack to the server.

Decentralized Federated Learning (Purely Distributed)

Decentralized federated learning [18] is a form of federated learning in which there
is no server to coordinate the communication among the cooperative nodes and thus the
training procedure. Every participating device communicates with its one-hop neighbor
node (peer-to-peer or device-to-device networks), and all nodes are usually connected,
forming a symmetric topology (see Figure 2), e.g., a ring, d-ring, or grid network topology
and more rarely, a fully connected mesh [10] network. It is of a great importance to

Future Internet 2024, 16, 413 8 of 28

have symmetric topologies in DFL, meaning that the node resources are balanced, and
communication among the nodes is uniform, since these factors impact both the scalability
and fault-tolerance of the network directly. However, in [25], Li et al. investigated the
case when non-symmetric topologies (e.g., star topologies in which the central node has
a more crucial role than the rest of the connected nodes) are used and proposed the push-
sum protocol in order to address this imbalance. The training procedure continues to
be executed until the devices reach a consensus [26], meaning that the global model has
converged, e.g., as described in over-the-air approaches [27–29]. This mechanism bridges
the gap between data safety and communication overhead, since every device exchanges
information and communicates only with its one-hop neighbor. However, due to a lack of
memory storage, devices also lack complex algorithms that determine if a node is trusted
or provide defense from a contingent attack of a malicious node, e.g., byzantine faults
(adversarial learning [30]). The objectives in DFL are summarized in Figure 3.

Figure 2. Different topologies in FL: (a) star-shaped topology, (b) ring-shaped topology, and (c) the
topology of a mesh network.

Future Internet 2024, 16, 413 9 of 28

Figure 3. Objectives in DFL.

Hybrid FL

Although a server-less mechanism is ideal, especially in IoT networks, since device
independence is preserved, it is not fully scalable for large-scale networks due to the
unreliable connection of D2D communication [31]. Some recent works [32–35] tried to
deploy a hybrid model, or else a semi-decentralized federated learning setting, in order to
exploit advantages from both the aforementioned categories. In Semi-DFL, the connection
of the entities with the coordinator server is configured with clustering algorithms, e.g., max-
min d clustering, k-means, etc., which go beyond the idea of flat networks, and as a
result, the central server communicates only with the nodes that represent the respective
cluster (the clusterheads). For instance, Hosseinalipour et al. introduced a tree-shaped
hierarchy of layers between devices on the edge and the server, namely, multi-stage hybrid
federated learning (MH-FL) [36], and later, Lin et al. [31] advanced this idea by introducing
two-timescale hybrid federated learning (TT-HF), in which the model reaches consensus
irregularly. To facilitate training, the network of devices is organized into smaller groups
(clusters), with devices sending their model to their sub-clusterhead aperiodically, and the
sub-clusterhead also intermittently broadcasting the updated local model to the server.
It is worth highlighting that TT-HF converges at a rate of O(1/t), which is similar to the
centralized stochastic gradient decent (SGD) algorithm.

2.3. Delving into Decentralized Federated Learning (DFL)

In this section, we focus on purely distributed or otherwise decentralized federated
learning (DFL) [26,37,38]. For all the works that follow, the major competitor is the efficient
FedAVG [8] and its proven convergence rate. Unfortunately, in DFL, it is more difficult
to reach convergence, either due to the heterogeneity of data distribution or the model
deployed on the participating devices, which delays the learning process, or due to the
difficulties that wireless network topologies cause in communication integrity. The main
objectives in DFL, in order to become a viable learning scheme, as depicted in Figure 3, are
the following:

• The direct communication among devices lessens the network latency; however, the
throughput of the messages must be lessened too, in order to avoid network flooding.

• To address the resource limitations of edge devices, such as energy, one strategy is to
minimize communication between nodes in the network, focusing only on those that
contribute actively to the federation process.

• In real-time scenarios, we cannot guarantee that all cooperating devices follow the
same specifications (e.g., flash memory, energy capacity, etc.) or equally contribute to
the learning process. Thus, there is a need for stipulating methods that reinforce the
lower-contribution nodes in order to ensure accuracy uniformity.

• Last but not least, wirelessly interconnected devices, used for, e.g., surveillance and
wearability, are usually mobile devices that are not stably positioned in a specific place,
impeding the configuration of a strong topology.

Future Internet 2024, 16, 413 10 of 28

2.3.1. Communication Reduction

In order to achieve communication reduction, Zhou et al., in [39], proposed a heuristic
(CEDFed) in which a one-bit signal is transmitted among selected neighbors in order to
reduce the communication requirements of the network. Parameters (which are about
to be sent) are firstly encoded to the node i in which they were trained, and this node i
takes advantage of an encoding matrix Φ, is accessed by specific nodes belonging to a
neighborhood Mi. Accordingly, node i, after receiving the one-bit message, decodes it using
the 1BCS algorithm. Authors also claim that if the Φ matrix follows a Gaussian distribution,
the dimension di of the transmitted dense vector of node i is upper bounded (di < n), and
the message is sparsified, then the decoded message has fewer chances to be corrupted.
The algorithm was tested, using a linear regression task in a randomly generated decentral-
ized topology, while the competitor was the same algorithm under ideal communication
conditions, and the results verified that there are negligible losses in message conversion
under the aforementioned assumptions. Furthermore, Decentralized Federated Averaging
(DFedAvgM) [40] is based on the DSGD algorithm. In particular, DFedAvgM proposes a
scheme in which participating neighbor nodes communicate with each other after multiple
local updates, while DSGD requires communication among the neighbors after each local
iteration. In taking into account that the communication cost is the main bottleneck in
peer-to-peer communication schemes, DFedAvgM is introduced as more communication-
efficient than DSGD, since fewer communication rounds are taking place. Moreover, a
quantized version of the proposed algorithm has been introduced, alleviating communica-
tion flow and thus time. It is worth highlighting that authors have demonstrated theoretical
proofs regarding both convex (for which the worst-case convergence rate coincides with
the DSGD one) and non-convex cases, in which the Polyak–Lojasiewicz (PL) condition is
used, and under this assumption, quantized DFedAvgM converges faster than the simple
DFedAvgM, which mainly depends on both the network topology and the computational
resources of the participating nodes. Regarding the experimental evaluation, a CNN deep
neural network was trained in both image classification and language modeling tasks,
executing the quantized DFedAvgM algorithm, and the results proved the sufficiency of
this method, independently of the number of bits transmitted and the data distribution
used (either in cases where IID or non-IID data). Finally, the algorithm was also tested for
its privacy-preserving capabilities as it is exposed to a membership inference attack (MIA)
either in ring-based or d-regular-based network infrastructures. The results verified the
efficiency of the algorithm in facing membership attacks, while the lower the AUC, the
safer the deployed model (the ideal value of the AUC was proven to be 0.5). Consequently,
DFedAvgM demonstrates higher performance than FedAvg in terms of communication
costs, paving the way for secure D2D large-scale implementations.

In distributed systems, the gossip protocol is an appealing choice for dealing with
large-scale networks. In the machine/deep learning field, the gossip learning protocol
technique was first introduced in [41], in which a portion of the participating nodes share
the sum of the weights of the global model (GoSGD) in both a fully decentralized and
asynchronous manner. In [42], a gossip-based protocol scheme, namely Combo, was
proposed in conjunction with a split learning approach. To elaborate, in every participating
node i, the model i is divided into a specific amount of pieces, in which the trainable
parameters are distributed equally and they do not coincide. During training, the node i
undertakes to aggregate only one segment of its own with the respective segment of k out of
the total participant nodes. In order for the algorithm to reach convergence, it is suggested
that the k value be less than the value of the total participants (workers). The gossip-based
heuristic (Combo) was tested using a CNN model and the CIFAR-10 dataset [43] against
both the conventional FedAvg algorithm and classic gossip approach (without model
segmentation). The results showed that Combo outperforms the aforementioned baselines
in regard to convergence speed (about 3× faster) with a negligible drop (from 1% to 2%) in
validation accuracy.

Future Internet 2024, 16, 413 11 of 28

Moreover, in [42], a decentralized federated learning scheme is proposed, in which the
model, whose updates are propagated toward the nodes participating in training, is split
and every worker transmits a part of the update that it is responsible for in a peer-to-peer
way. Based on the gossip protocol, this approach decreases transmission bandwidth and
acquired training time with a little trade-off regarding accuracy by splitting the model and
using the gossip strategy in worker communication, while it also replicates the data from
different non-overlapping nodes so that it can ensure that enough information is gathered
for better convergence during aggregation.

Another algorithm in [44], namely Soft-DSGD, was proposed in order to alleviate com-
munication unreliability regarding UDP protocol end-device use in order to communicate
in peer-to-peer networks. Soft-DSGD updates model parameters during training using a
part of the weights successfully received, while it also strengthens the weights originating
from devices with reliable links (e.g., a coordinator’s link), taking into consideration a
reliability matrix to achieve brisker convergence (reaching consensus). In order to deal with
the package transmission failures (which the UDP protocol is susceptible to due to the fact
that packets are forwarded to all the possible receivers and there is no validation if the
message reached its destination) and thus normalize the training procedure, every device
replaces lost packet information with a part of its local parameters. Not only numerical
results but also convergence analysis proofs (treating it as a convex optimization problem)
have shown both similar behaviours and asymptotic convergence rates between banilla
decentralized SGD (in its ideal communication conditions) [21] and Soft-DSGD.

Prototype learning is also an interesting way of alleviating overflow in communication
links. A prototype is a data value that represents the values of a class. So, prototype learning
in decentralized networks is a technique that exploits this feature in order to further reduce
the communication load by sending only prototype representations of the gradients and not
the exact ones in order for the nodes to perform training. A prototype, namely DeProFL, was
introduced by Li et al. [45] in order to deal with both the heterogeneity, caused by the time-
dependable shifting (dynamic) communication infrastructure (a feature that characterizes
wireless networks), and communication overhead. In every round, a different network
topology is randomly defined, while every node performs some local updates and then
propagates only the prototypes to its neighbors. Practically, according to the authors, nodes
send the vector generated after the first layer, which is responsible for understanding the
given data features and not the vector, produced as a prediction of the supervised model
(as usual) across their neighbors. Regarding data heterogeneity, authors have set the degree
of heterogeneity to 0.1 while they conducted experiments with the Dirichlet Non-IID dataset.
As far as model heterogeneity is concerned, all nodes have different deep learning model
structures, making centralized (SOTA) FL approaches like Ditto or FedAVG fail to keep up
with these requirements. Plenty of experiments have been conducted, using well-known
datasets (Mnist [46], FMnist [47], Cifar-10 and Cifar-100 [43], Tiny-Imagenet [48]) and both
DeProFL and centralized SOTA algorithms, and the proposed method achieves comparable
results regarding accuracy (accuracy degradation approximately from 0.4% to 5%), while it
was proved to converge faster under non-convex loss function assumptions.

After McMahan et al.’s work [8], Lalitha et al. in [49] introduced a federated learning
approach based on collaborative learning among one-hop connected devices (fully decen-
tralized federated learning—DFL), taking advantage of their own localized personal data.
The proposed scheme is completely server-aware, since no centralized control is required
in order for the training procedure to be performed. While the collaboratively learned
model functions as a Bayesian-like model, the authors explored the potential for extending
it to deep neural networks (DNNs). The efficiency of the aforementioned algorithm was
tested in [38], in which the results of a linear regression task, being performed on both
Bayesian-like and DNNs models, showed that DFL provides better results compared to the
cases in which nodes learn only from their own data.

In [50], the authors provide up-to-date information about the evolution of the decen-
tralized federated learning algorithm (DSGD), taking stochastic gradient descent (SGD)

Future Internet 2024, 16, 413 12 of 28

for granted in the proposed implementations. They provide theoretical analysis and con-
vergence rates in both convex and non-convex [51], fashion [52], taking network topology
adaptivity and data heterogeneity into consideration. For example, they offer an improved
version of theoretical proofs regarding the cases of parameters-abundant models, Local
SGD [52] and cooperative SGD.

It is worth highlighting that DSGD paves the way for large-scale machine learning
implementations in a D2D topology fashion. Plenty of variations, presented in this section,
have been introduced in order to cope with the challenges that a peer-to-peer topology
brings, e.g., communication cost, convergence speed (reaching consensus), etc. However,
DSGD has been proved to converge to the optimal level when assumptions regarding
convexity are applied.

Roy et al. [53] proposed a server-less dynamic peer-to-peer environment, namely
BrainTorrent (see Table 2 for more frameworks) with the aim of alleviating data privacy
concerns while decentralized topology approaches are used on training deep neural net-
works with medical images (which are very sensitive personal data). It is one of the first
frameworks to implement server-less approaches in collaborative learning. The results
of the experimental evaluation showed that this server-less peer-to-peer framework with
a range of 5 to 7 participating clients performs about 1–2% better than centralized feder-
ated learning approaches, while it reaches almost the same accuracy (86.3%) as the pooled
model (86.6%).

In [37], the authors were the first to implement the DSGD algorithm to edge networks.
They used a D2D network topology in order for the nodes to collaboratively train a shared
ML model. In order to meet the transmission standards of the network, each device prunes
the trainable model to align with the device’s lowest data rate (limited bandwidth). Experi-
ments were conducted, using both digital (D-DSGD) and analog (A-DSGD) schemes. In
the latter one, Over-The-Air (OTA) SGD-based approaches are used like the one mentioned
in [54], which seemed to have a better performance than DSGD only in cases where a
conventional star-like topology is used, given the Fashion-Mnist dataset as a training set in
a classification task.

In their work [55], Liu et al. present a DFL framework that involves both local updates
and inter-node communication. They also propose a compressed algorithm, C-DFL, to
address communication overhead and facilitate cross-device convergence. Nodes, after
completing local training, send information to all the nodes they are connected to and
hence compute the local average of the received data. This process is based on the C-SGD
algorithm, which adopts compute-then-communicate (or else computes the local average
and then broadcasts it to the whole network) rather than communicate-and-compute that the
D-SGD algorithm employs. Transmitted information in cross-device communication via the
C-DFL algorithm is compressed either by taking advantage of sparsification (using random
k values out of the total ones or k values with the higher-magnitude values) methods or
randomized gossip protocols (like the one reported by Onoszko et al. [56] for addressing
non-IID data heterogeneity in a random gossip communication protocol), achieving a linear
convergence rate, indicating strong theoretical proofs without taking convexity for granted.

As described in the Hybrid FL section, the hierarchical network topology is a step
forward in the transition of the decentralization of the learning process in FL. However, in the
aforementioned section (see the Hybrid FL section), there is a central coordinator. Here, there
are also works that take advantage of non-flat networks in a fully decentralized spectrum.

Fragkou et al. [57] introduced a two-tier hierarchical fully distributed learning scheme,
with the aim of reducing communication rounds among the entities, using similarity-based
criteria. The max-min d clustering algorithm is used in order to create clusters and carry
out betweenness centrality measures so that they place the clusterhead of every cluster at
the center, and hence, it is easily accessible by all cluster members. In calculating small
summaries (using Fourier transformation), the process identifies similarities in data from
nodes in the same cluster. Extracting the Fourier coefficients requires a computational com-
plexity of O(mlog2m), where m denotes the size of the data. Since the Fourier coefficients

Future Internet 2024, 16, 413 13 of 28

sent to clusterheads are much smaller than the exchanged weights and can be packed in
beacon messages, we do not consider it as communication overhead. Based on the presence
of “diverse data”, the clusterhead chooses which cluster members to incorporate into the
federation. In comparison to the conventional all-to-all method, the proposed heuristic
reduces communication overhead by up to 42%, with a preserved accuracy of up to 96%.
The proposed method significantly reduces the computational complexity of the algorithm,
making it feasible for implementation in decentralized environments.

2.3.2. Privacy-Preserving Methodologies

Although FL is a method introduced to securely enable devices to take advantage of the
collaborative learning effect without divulging their data, attackers (adversarial networks)
can still find ways to take control of the device’s data. The methods used in order to ensure
the privacy in the federated learning process are categorized as follows: Differential Privacy
(DP) methods, secure multi-party computation, and Homomorphic Encryption [15].

In DP methods, noise is added to the training data whilst the algorithm remains capa-
ble of learning and hence makes precise predictions. The purpose is to impede the malicious
nodes from distinguishing whether a user’s data point or dataset was incorporated into
the training phase. For instance, Kalra et al. [58] introduced a method for secure cross-silo
decentralized federated learning. Each client (which represents an institution, like finance
or healthcare) trains two models concurrently, the local one and the exchangeable one (Prox-
yFL model). The ProxyFL model is trained using Differential Privacy guarantees (DP-SGD,
based on Gaussian mechanisms) and deployed to decentralized environments, while these
two conditions justify the reason that ProxyFL is diversified by conventional Deep Mutual
Learning (DML) [59]. While training, each client communicates solely with its peers, ex-
changing one proxy model per round. The method was tested on the Camelyon-17 dataset,
containing medical images (images of lymph nodes) from different medical centers (the
distribution of which was skewed in some cases for the approach to be tested on non-IID
data) and using CNN networks (Res-Net), while some of the competitors were centralized
FedAvg, AvgPush, CWT, and FML. ProxyFL outperformed every other aforementioned
approach and continued to upgrade its performance until the end of the training.

Although there is a lot of successful work regarding securing privacy in DFL, this case
will be further analyzed in Section 5.

2.3.3. Fairness

It is worth highlighting that not all nodes participating in the global training have
the same resources (asymmetry), and hence, the produced outcome cannot be of the same
importance regarding all nodes. In their paper [60], Li et al. promoted fairness in decentral-
ized federated machine learning by maintaining uniformity in accuracy distribution across
cooperating devices. The algorithm called q-FFL is an alternative algorithm to FedAvg that
incorporates a parameter q in the loss function to achieve balanced weight updates. For
example, the higher the loss value, the larger the weights, with the aim of rewarding the
most contributing nodes and thus reach a consensus. Compared to FedAvg, q-FFL reduces
approximately 45% of the average accuracy fluctuations among devices, while q-FedAvg
performs better regarding accuracy metrics on different types of data (synthetic non-IID,
synthetic IID, hybrid–synthetic). The authors also ran experiments with parameterized
FedSGD (q-FedSGD) and concluded that its performance behaviour was proven to be
superior to q-FedAvg when dealing with heterogeneous data (non-IID) and is even better,
unlike the FedSGD variant that tunes the step size of the algorithm.

Future Internet 2024, 16, 413 14 of 28

Table 2. Frameworks used in federated learning.

Framework/Platform Architecture Purpose Capabilities

TensorFlow Federated
(by Google)

CFL smart-grid applications open source

FATE CFL finance open source

BrainTorrent [53] DFL healthcare application not open source

Scatterbrained [11] DFL academic usage open source,
developer-friendly API

FedML [61] CFL
academic usage,

suitable for IoT networks,
benchmarking

open source,
scalability,
reliability

FedStellar [62]
CFL,

Semi-Decentralized FL,
DFL

addresses heterogeneous
FL-based problems

easy customization,
deployment of complex network

topologies,
secure communication,

enough storage for
FL models

FL-SEC [11] DFL,
Blockchain

orientation of
Artificial Internet
of Things (AIoT)

not open source,
defense in

poisoning attacks,
communication reduction

3. On the Prospect of TinyML/DL
3.1. Problem Formulation

TinyML/DL is a subset of machine/deep learning that is specified for deployment in
resource-limited devices (lack of memory capacity, energy, etc.) such as MCUs, IoT end-
devices, etc. (see Table 3). In the literature (see Section 3.2.1), the only way of implementing
deep learning algorithms on the aforementioned devices is to pre-train the ML/DL model
on a server, which requires both resources and a plethora of data, and then the ML/DL
model has to be compiled through suitable software, e.g., micro TVM (see Table 4), to run
on MCUs. After that, the model runs on devices without updating its weights; it only
runs inference tasks. However, this creates static models, which are unable to adapt to
new scenarios, e.g., different distributions of streaming data—Independent and Identically
Distributed (non-IID) data [63]—triggering severe problems, e.g., concept drift [64–66],
which decreases neural network accuracy. Nonetheless, this inference is efficient. It forms
static models that are unable to adapt to new tasks. The main challenge regarding TinyML is
to manage to run training with resource-starving devices, without sacrificing performance,
e.g., prediction accuracy.

3.2. Taxonomy of TinyML/DL Models
3.2.1. Static Model Inference

Low-powered devices, such as sensors and MCUs, have been utilized in the literature
to perform efficient machine learning tasks. They have wide-ranging applications in
areas like everyday life, security, surveillance, industrial monitoring, smart agriculture,
etc. [1]. The field of on-edge data processing using ML algorithms (TinyML) is a new
and emerging area. With its fast and real-time performance, it also enhances devices’
capabilities and privacy and reduces communication costs between them and a server. Of
course, conventional ML techniques cannot be deployed on the aforementioned devices
because these devices lack the computational and memory resources required for an
ML/DL algorithm to run efficiently. Consequently, multiple methods are recommended to
optimize the inference phase of an ML model by developing compact models, as outlined
in the following sections.

Pruning

In this section, pruning aims to reduce the memory requirements of the model by
reducing its trainable parameters—hyperparameters. Thus, pruning is bisected into
two main categories: static, in which the model completes training and is then pruned,

Future Internet 2024, 16, 413 15 of 28

and dynamic—dynamic sparsity during training—in which the model is both pruned and
regrown iteratively (the latter one will be further analyzed in Section 3.2.2.

Despite the phase in which the pruning is conducted (static or dynamic), we can
define other categorizations of pruning as follows [67]: structured pruning (like channel
pruning), which can easily be used in conjunction with any other optimization method,
and unstructured pruning, which provides the network with the largest size reduction
possible but makes it more vulnerable to performance decrease [68]. According to the work
in [69], there is a smaller sub-network whose randomly initialized parameters make it
capable of replacing the initial fully connected network and therefore undergoes effective
training while the redundant information of the network can be ignored. This technique
is called Lottery Ticket Hypothesis, and the chosen sub-networks are called winning tickets.
This pruning technique effectively reduces the trainable parameters of feedforward neural
networks (such as MLPs and CNNs) by up to 90%. As a result, memory requirements are
reduced, enabling deployment on resource-limited devices for inference tasks without any
loss in accuracy. In fact, in some cases, it can even improve the initial results. Similarly, the
technique of Depth Pruning, described in [70], involves discarding layers after training to
create a sub-network. An auxiliary network is then used as the head of the pruned network,
resulting in a marginal decrease in accuracy for an already pre-trained model.

Of course, there are plenty of pruning techniques described in the literature, like
the one presented in [71], which is based on the L1 regularization technique and a light-
weighted network.

Quantization

The quantization technique refers to the process of reducing the precision of the model
parameters, e.g., weights or gradients, from floating-point (e.g., 32-bit or 64-bit) to lower-
bit-width representations (e.g., 8-bit integers). For instance, Li et al. [72] proposed a novel
compression method; they combined both pruning and quantization methods and achieved
a conversion from the 64-bit floating-point representation to almost 8 bits, while in [73], a
2-bit precision representation was proposed, when running a person detection task, losing
approximately only 3% of its accuracy. A new software accelerator library, running on
Arm Cortex – M processors, in which kernels are implemented in a way that supports both
8-bit and 16-bit data precision, is presented in [3] and used in [74] in order to smooth out
the differences among data representations, which is a hard task for a CPU to run. An
interesting quantization pipeline is proposed in [75], in which the weights are saved to an
external L3 memory, and in every epoch, only the weights being used are downloaded to
an L2 cache with a capacity of 512 KB.

Neural Architecture Search—NAS

NAS summarizes a category of techniques that aim to automatically find better deep
learning models for each case [76] regarding the available resources. It is possible to find
not only the type of model needed, e.g., a convolutional neural network in the case of
image processing, but also the number of filters, parameters, activation functions, etc.

Knowledge Distillation—KD

The approach known as knowledge distillation was first introduced by Buciluǎ et al. [77]
and further generalized by Ba et al. [78,79], and it is a method that aims to compress
neural network models. Knowledge distillation involves training a smaller neural network,
known as the “student”, to imitate a larger network, the “teacher”, by minimizing a loss
function shared by both models. Despite the large model being trained already, the smaller
one can utilize the larger one’s knowledge to learn raw data online, correcting itself with a
loss function when it makes misleading predictions. This approach allows for the real-time
training of small and energy-efficient models [80], but it necessitates the student model to
depend on a pre-trained model, referred to as the teacher.

Future Internet 2024, 16, 413 16 of 28

Conventional Transfer Learning

The biggest challenge in static TinyML is adapting the model to a new task. For
example, if a model is well trained on recognizing images of cats and suddenly captures an
image of a dog, it will probably misclassify the dog as a cat, since it does not have much
knowledge to understand patterns out of the learned category (concept drift [66]). In order
to address the problem, techniques such as transfer learning (TL) are introduced. The TL
technique uses a pre-trained model on a large dataset, e.g., Imagenet [81], and fine-tunes
some of its last layers while freezing the earlier ones, when deployed to a tiny device, with
the aim of learning new tasks. However, fine-tuning the last layers (mainly the last fully
connected layers since the cost of retraining more layers is prohibitive in tiny devices) may
cause imperceptible improvement or no improvement at all, since in this way, we affect
only the weights of the classifier and we do not enter the main core of the network. For
instance, inspired by the way a convolution neural network (CNN) works, in which every
layer has a specific task to learn, retraining only the last fully connected layer will probably
be ineffective, since we modify the results of the training procedure and not the procedure
itself in order to embody the weights of the new task before the classification outcome. There
are works, like [82], that try to retrain more than the last layer but it has a trade-off regarding
energy consumption. We further describe transfer learning techniques in Section 3.2.2.

Inference-Based Applications

Inference-based TinyML/DL has paved the way for ML/DL applications in healthcare,
industry, everyday life, etc. For instance, Khaled et al. designed a prototype system to
deploy ML inference tasks on microcontroller-powered edge devices for predicting blood
pressure-related metrics [83], while T’Jonck et al. developed a real-time application on
low-powered devices to support nurses’ work with elderly individuals [84]. Regarding
industry, an efficient TinyML model [85] is also used in industries, in order to detect
anomalies through IoT devices related to production process. Furthermore, the use of
TinyML models in detecting pavement anomalies through intelligent vehicles [86], gas
leakage [87], coughs [88], falls [89] and smart agriculture [90] are explored. There are
also hardware-based implementations, like the one in [91], in which an ultra-low-power
IoT monitoring device is presented, showcasing the integration of Bluetooth and NFC
connectivity for monitoring asset activity and so on.

3.2.2. On-Device Real-Time Learning (Reformable TinyML)

The majority of the existing literature focuses on TinyML solutions that are based
on offline settings and only support neural network inference on low-powered and ultra-
low-powered devices like MCUs (see Table 3). On the contrary, the training phase of a
network is very costly in terms of both energy and storage. In this section, we introduce
methods/techniques that pave the way for online on-device training.

Continual (or lifelong) learning (CL), unlike conventional transfer learning, allows for
real-time online training using raw data. In this way, the model can learn new tasks without
forgetting the knowledge gained from the original task. In the literature, CL methodologies
are divided into three main categories [92]: architecture-, regularization-, and rehearsal-
based methodologies [19]. Architecture-based approaches adapt layers and activation
functions to prevent forgetting, depending on the deployed device, while regularization-
based approaches reinforce existing knowledge through penalties in the loss function or
(knowledge distillation) [93]. With the term rehearsal or native rehearsal [94–96], we refer to a
learning technique in which for every training batch, a randomly chosen subset of training
data is saved to an external storage and re-forwarded for training, replacing another
random subset of the incoming batch patterns, mainly aiming at handling catastrophic
forgetting (a phenomenon in which acquired knowledge tends to vanish, due to repeatedly
learning new incoming data). Despite being the most suitable solution for combating
catastrophic forgetting, this method raises data privacy concerns as sensitive raw data
must be stored externally from the edge device. The key is to identify the optimal solution

Future Internet 2024, 16, 413 17 of 28

by considering the memory requirements and the specific data that need to be stored for
accurate outcomes. We can say that there is a trade-off between the precision of saved
information and non-harmful forgetting, known as the stability/plasticity dilemma [7]. Thus,
the sub-category of the rehearsal-based approaches which alleviates this trade-off is the one
called latent replay [97]. Latent replay-based approaches store activation outputs of past data
at some random intermediate layer, instead of the data themselves, reducing the storage
requirements compared to those of conventional rehearsal-based approaches. One of the
first latent replay- and gradient-based approaches, designed for MCUs in the literature, is
the one described in [98]. Combining fully 32-bit precision continual learning, the multi-
core parallelization capability of a 22nn Risc-v-based microprocessor, namely VEGA, and
a quantization strategy, Ravaglia et al. provided a platform (QLR-CL) that outperformed
a low-power STM32 L4 microcontroller, and specifically, it is 65x faster and 37x more
energy-efficient than the aforementioned microcontroller. Additionally, experiments were
carried out using both 8-bit and 7-bit quantized memory, resulting in a small decrease of
at least 0.26% and 5% in accuracy, respectively, compared to the 32-bit implementations.
Generally, tested on Core50 dataset, this method achieves up to 77% accuracy, while it
reduces the memory footprint (about 64 MB), paving the way for more online adaptive
strategies for TinyML to emerge.

Hinton et al., in [99], questioned the efficacy of the backpropagation algorithm on
online on-device training in MCUs due to the fact that there is a need of gradient compu-
tation, which further means that both enough computation power and memory storage
are required. Instead, they proposed the Forward-Forward (FF) algorithm, in which the
forward pass and the backward pass procedures are replaced by two forward ones that
contain dissenting type of data (positive and negative ones, respectively). The goal is
to either increase (FF on positive data) or decrease (FF on negative data) the sum of the
squares of the activities in every layer, namely goodness, and based on this metric, to recon-
figure the weights of the aforementioned layers. In [100], Vita et al. present an improved
variation of FF, called µ-FF, with the aim of further reducing the memory and computation
requirements of the above heuristic by separating the method into two blocks: the first one
functions as a feature extractor, for the better understanding of non-linear data, while in
the second phase of the algorithm, the training procedure is executed, using Mean Square
Error (MSE) as the loss function along with a ridge regularization term. Experiments
were conducting in an STM32 MCU, using the X-cube-AI tool for quantization and the
Fashion-Mnist dataset, and it was shown that the MCU performance when running µ-FF
online on-device is comparable with the corresponding one when the backpropagation
algorithm is deployed in the same MCU in an offline setting. Although this heuristic is an
attractive means for resource-starving devices, it has a low-speed convergence rate, and in
general, its performance is inferior to the conventional back-propagation algorithm.

However, dynamic pruning ([67]), as firstly introduced in Section 3.2.1, can enhance
online training as it is based on the “iterate and regrow” technique. Elements (weights
or neurons) are dynamically removed and re-added in order for the model to keep its
composition (otherwise, it is going to progressively lose all of its connections after a few
epochs). The main idea behind this method is that in a fully connected network, the
connections of neurons that are going to be removed in a layer are close to zero in weight,
and hence, they are of less importance. For example, Mocanu et al. [101], inspired by
network science, proposed a scheme of random close-to-zero weight connection removal,
and in following a preferential attachment, the retrieval of the connection completes after
every epoch, following a power law distribution. The basic idea using the power law
distribution is to create scale-free networks, which are constructed to reinforce the high-
influence connections/nodes in the network and hence retain the high performance of
the network. Furthermore, the works outlined in [102,103] take this idea a step further by
sparsifying a fully connected neural network, e.g., an MLP, dynamically either by creating
an original scale-free network or modifying the number of removable connections following

Future Internet 2024, 16, 413 18 of 28

dynamic functions during training, focusing on lessening the training time of the network
while achieving better accuracy than the initial network in some cases.

In this section, the papers that follow are based on the fact that the knowledge being
transmitted, or the weights of a pre-trained network, is information that contributes to the
model generalization [104], but the models have to be able to adapt to new circumstances
in order to retain high performance. For instance, in the work presented in [105], a transfer
learning (TL) kind of scheme is proposed. In contrast with conventional TL, TinyOL does
not retrain the last fully connected layerm but it functions as an extra layer connected to the
last layer of the already pre-trained model. The weights in TinyOL are adapted to new data
through online stochastic gradient descent (SGD), while it runs in RAM, with pre-trained
weights frozen once TinyOL starts being fine-tuned. Furthermore, [106] presents a scheme
that combines transfer learning with K-nearest neighbors, enabling training on embedded
systems and IoT units using minimal data. In this way, networks can evolve over time,
enhancing their performance by implementing independent local training.

Table 3. Devices/boards used for the experiments.

Devices/Boards Power Instruction
Set

SRAM Flash
Memory

CPU
Clock

Raspberry Pi family
([106–108])
Raspberry Pi 3B+ Low ARM (Cortex-A53) 1 GB SDRAM – 1.4 GHz

Raspberry Pi 4B Low ARM (Cortex-A72) 256 KB – 1.5 GHz

Raspberry Pi Pico Ultra low ARM
(Dual core

Cortex-M0+)
264 KB 2 MB 133 MHz

Arduino family
[74,108,109]
Arduino Nano
33 BLE Sense
(nrF52840 SoC)

Ultra low ARM (Cortex-M4) 256 KB 1 MB 64 MHz

Arduino Portenta Low ARM
(Cortex-M7−M4)

8 MB SDRAM 16 MB 240–480 MHz

STM Microcontrollers
(MCU) [70,106,110]

STM32F7 board Ultra low
(high-performance MCU) ARM (Cortex-M7) 512 KB 2 MB 216 MHz

STM32H743 Ultra low
(high-performance MCU) ARM (Cortex-M7) 1 MB 1–2 MB 480 MHz

STM32F401 Ultra low
(general-purpose MCU) ARM (Cortex-M4) 96 KB 128 KB–

512 KB
84 MHz

STM NUCLEO
L496ZG

Ultra low
(general-purpose MCU) ARM (Cortex-M4) 320 KB 1 MB 80 MHz

STM NUCLEO
F767ZI

Ultra low
(high-performance MCU) ARM (Cortex-M7) 512 KB 2 MB 216 MHz

Adafruit Feather
Family [108,111]
Bluefruit Sense board
(nrF52840 SoC)

Ultra low ARM (Cortex-M4F) 256 KB 1 MB 64 MHz

M4 express Ultra low ARM (Cortex -M7) 192 KB 2 MB 120 MHz

Microprocessors

GAP8 [98,112] Parallel ultra-low-power
processing platform (PULP) RISC-V (FC) 80 KB+

8 MB SDRAM
512 KB 250 MHz

VEGA [98]
(22 nm technology)

Parallel ultra-low-power
processing platform (PULP) RISC-V (FC) L2 (interleaved)

1.5 MB + 64 KB
64 MB 250 MHz

Mr.Wolf [113]
(40 nm LP CMOS

technology)

Parallel ultra-low-power
processing platform (PULP)

RISC-V
(RVC32IMF)

latch-based
memory instead

of SRAM
(25 Gbit/s

at 100 MHz)

− 32 KHz–
450 MHz

Future Internet 2024, 16, 413 19 of 28

Table 4. Most-used tools for implementing TinyML.

Tool Capabilities Where to Apply

TensorFlow
Lite macro [114]

The most widespread method (inference library) for deploying
ML models to resource-limited machines. The TensorFlow

pipeline consists of a classic TensorFlow model
that is converted into a compressed flat buffer

using the TensorFlow Lite Converter. After that,
a file with a .tflite extension is created, which can

efficiently carry out an inference task on the aforementioned devices.

32-bit platforms
(e.g., Arduino nano
33 BLE, STM32F746

Discovery etc.)

uTensor [115]
A free embedded learning environment, supporting

neural network training using Keras. uTensor produces
c++ code from the trained model in order to fit edge devices.

Mbed, K64, ST boards

Edge Impulse [115] A cloud service for deploying ML models on edge devices. edge devices
(e.g., smartphones)

NanoEdge
AI Studio [115]

A software that tests a library’s performance so that
it can be cognizant of this library being the most suitable one,

according to the learning process’ needs.
STM32 Nucleo−32,

Arduino Nano 33 board

Pytorch Mobile [115] It is subjected to Pytorch software, and
it advocates for both model training and deployment on edge devices.

smartphones
(e.g., Android, iOS)

Embedded Learning
Library [115]

A library suitable for embedded learning, developed
by Microsoft. There is no need for cloud access.

Raspberry Pi,
Arduino

STM32Cube.AI [115] An optimization software that reinforces
ML/DL tasks to be deployed in microcontrollers (MCUs).

STM32 ARM Cortex−M
boards

µTVM
(MicroTVM) [20,115]

Is an evolution of tensor virtual machines (TVMs)
for deploying models on MCUs. This framework

takes an already trained model and converts it
so as it can be applicable to different hardware settings.

MCUs

CMSIS−NN [3] Optimization library that is compatible with
ARM processors.

ARM Cortex−M
processors

CMix-NN [116] A mixed low-precision CNN library for
memory-constrained edge devices.

ARM Cortex−M
processors

Runes [20]
An ML package that provides containers to

encapsulate and deploy
edge ML pipelines and applications.

edge devices

TinyCNN [117] A framework introduced for accelerating
CNNs in FPGAs. FPGAs

edX MOOC [118]

Educational platform created by the collaboration
of academia (Harvard University) and industry (Google)

with the aim of encouraging researchers to remotely
develop complete applications using application-oriented

instructions through TinyML and to find solutions regarding
the fields of data gathering for application deployment.

all new ML/DL
enthusiasts

4. Current Advancements of FL and TinyML for Edge Devices

The first work implementing TinyML training in an exact resource-constrained MCU
in a federated learning setting was by Kopparapu et al. [119]. The authors took advantage
of the benefits that the transfer learning (see the Conventional Transfer Learning section)
technique offers, by pre-training a model for a computationally efficient system, e.g., a
server, and then deploying the model to the specific device. Then, fine-tuning only the
last fully connected layer, with raw data, completes the training process, enabling a kind
of on-device training in devices with less than 1 MB of memory. In this work, the global
averaging of the model parameters took place in the server (centralized federated learning).

As it is elaborately described in Section 5, blockchain techniques are preferred in
order for data privacy and secure communication to be ensured. However, the cost of
implementing these kinds of techniques is high and when implemented in real-time sce-
narios, they tend to be prohibitive due to the fact that convergence is delayed. In order to
address this drawback, Zheng et al. [120] proposed a semi-decentralized blockchain-based
FL scheme that accelerates model convergence, using resource allocation for balancing
computation/communication time, energy consumption, etc.

Trying to alleviating the problem of memory constrains in edge devices, Huang
et al. [121] introduced a distributed framework for efficient on-device pruning, namely
TinyFed. This framework generates unbiased models that are efficient, capable of local

Future Internet 2024, 16, 413 20 of 28

training, and adaptable to various task scenarios. The experimental evaluation showed
that FedTiny outperforms conventional small sparse models regarding not only accuracy
levels but also memory footprint, aiming to take the decentralization of TinyML devices a
step further in future research.

5. A Brief Introduction to Swarm Learning (SL)

The Swarm Learning [14] methodology is a decentralized federated learning paradigm
that advocates peer-to-peer collaborative learning by combining edge computing method-
ologies and blockchain technology. It offers strong guarantees regarding data privacy and
secure communication among the nodes, using Blockchain-empowered techniques [122],
and hence, it is an appealing means in decentralized networks.

For instance, Ma et al. [123] presented a consensus lightweight blockchain protocol,
namely TORR, which lessens the latency that conventional blockchain-empowered FL may
incur due to its functionality. TORR provides latency reduction since it “categorizes” the
users as reliable (if they are active and interact with other nodes) or not which means that
the former devices are assigned a larger probability, and hence, they are more likely to be
randomly chosen to participate in the collaborative learning. Therefore, “straggling” nodes
affect the training procedure less. In order to protect the system from a sybil attack (in which
a node creates non-existing nodes in order to persuade the network that it is interacting
with many nodes, hence being reliable, or when a model is asked to be retrieved from a
node via hashing decoding and then the “malicious” node returns an incorrect model),
each node verifies the rest of the nodes in the blockchain. Whenever a node is delayed in
answering, the node is excluded of the process as a suspected malicious node.

A typical attack in decentralized networks is the Byzantine fault, where malicious
nodes aim to infiltrate the network to manipulate or corrupt exchangeable information.
Ghanem et al. [124] presented a decentralized framework that consists of both trainer and
validator nodes to deal with the Byzantine fault at the level of trust. A validator node
receives the updates from its trainers, amalgamates the gradients, and then computes the
validation score. The better the score, the more trustworthy the validator node. Another
proposed consensus protocol, emphasizing fault tolerance against Byzantine attacks, was
described by Wang et al. [125]. In the proposed algorithm, the nodes are considered to be
trusted if their accuracy is the same or higher than a specific accuracy threshold, based on
both the number of participant nodes and a specific ratio.

In Ref. [126], Li et al. presented a mechanism called Blade-FL based on the PoW consensus
protocol in order to succeed secure decentralized federated learning without the need of a
central aggregator. Furthermore, they proved that the loss function bound of the global learned
model is characterized as convex and depends on the number of the total training rounds.
Finally, they analyzed the effect of the lazy nodes (clients) on the general learning process.

In Ref. [127], Wang et al. dealt with the privacy concerns of conventional FL by
providing a blockchain-based mechanism with differential privacy guarantees (adding
Laplace noise). Either the Proof-of-Stake mechanism was used or a block was received
from another client (miner) in order to reach a consensus. Finally, the miners with similar
gradient values create clusters and build trust among them while they cooperate to learn
their cluster’s global model. It is also worth highlighting that both quantization and
pruning techniques are used in order to alleviate communication among edge devices.

There are also published works regarding blockchain architecture implemented in in-
dustry 4.0 [128] and in IoT networks [129–131]. However, SL is a computationally expensive
methodology, making its real-time implementation an unfeasible task. Blockchain-based
practices in DFL incur high latency and thus more time to reach consensus, compared to
centralized federated learning. In real-time applications, there is not much time for check-
ing for malicious nodes/data in the very secure way blockchain-based techniques entail.
Moreover, ML models demand enough storage capacity, something that blockchain nodes
are not capable of. This is why most common works store the model in a decentralized

Future Internet 2024, 16, 413 21 of 28

manneer (eg. IPFS) and save only hashed information to the blockchain, but this demands
extra effort in order to guarantee the reliability of the saved model.

6. Exploring Challenges in Tiny Decentralized Federated Learning Environments
6.1. Scalability

The scalability of communication reliability in ad hoc large-scale networks entails dif-
ficulty to a great extent. The direct communication among nodes in decentralized networks
is beneficial regarding reduced latency, bandwidth rates, etc.; however, it requires strong
network infrastructure, when nodes are geographically expanded. The major question
is if we need all the devices to participate in the federation process? In Section 2.3, there
are many works that paved the way for implementing communication reduction using
clustering algorithms. For instance, in [57], it was demonstrated that devices in close prox-
imity generate similar data, and thus, redundant ones can be excluded from the federation
process, leading to a decrease in information circulation within the network. However,
taking into consideration that the size of the messages transmitted is also significant is of
great importance to find ways not only to lessen the size but also to secure that the message
will be received. In this case, edge devices have to ensure that the connection between
them will be stable. In addition, due to close proximity, nodes in distributed networks are
encouraged to communicate with their one-hop neighbors. However, this does not ensure
that the neighbor nodes are also the most trustworthy ones.

6.2. Imbalanced Dataset Classification Problems

Class imbalance is a classification predictive modeling problem, in which every class of
the dataset, during the training phase, has an unequal amount of samples or not every class
is equally significant. Consequently, this class distribution is biased or skewed. In taking
into consideration that we want to achieve on-device training in TinyML environments,
the use of online raw data is likely to face this problem and hence cause our mdoel to
overfit the data. Han et al. solemnified Swarm Learning [14] as a possible alternative to this
case; however, swarm nodes demand ample computational power in order to operate in
cross-device decentralized settings. Another approach to mitigate the occurrence of this
phenomenon was described by Liu et al. [132]. They proposed a clustering algorithm based
on bloom filter methodology in order for distributed connected devices to be grouped by
their contribution in balancing data classes in their cluster, paving the way for even more
efficient solutions to this problem.

6.3. Catastrophic Forgetting

This is a phenomenon caused due to model adaptations made to prevent concept drift
(which occurs when we have data belonging to different feature spaces) [5,6]. Inspired by
biological definitions, the replacement of data in order for our model to fit more cases may
destroy some already important features for the main problem this model was constructed for.

6.4. Heterogeneity

Dealing with data or model heterogeneity, or the problem of “worker drift” or “data
distribution shift”, is a very common phenomenon in training with real-time (raw) data.
Real incoming data are often shifted regarding their statistical properties or they are
amalgamated with noisy data, which impedes the learning efficiency of the model, leading
to its accuracy degradation [98].

6.5. Benchmarking

Having tools and datasets that can ensure the testing of tinyML algorithms in order
to evaluate its efficacy is of great importance. There has been some progress in this field,
e.g., TinyMLPerf [133], which extends the MLPerf benchmark in order to fit the needs of
tinyML, and Tiny-Imagenet [48], which originates from the well-known Imagenet dataset
and consists of 100,000 images, shrinked and downsized to 64x64 pixels in order to fit

Future Internet 2024, 16, 413 22 of 28

TinyML devices. However, there is a lot of research and experiments that have to be
performed in order to come up with specific comparative details adjusted to tiny federated
learning settings.

6.6. Attacks

Due to a lack of memory resources, there is not enough capacity for taking security
measures for end-devices (or frugal devices) in order to cope with attacks, e.g., Jamming–
Backhaul–white-box attacks (adversarial ML). For example, in [134], a new non-continuous
activation function (a different variation of ReLU) was proposed in order for a neural
network to be less susceptible to gradient-associated adversarial attacks (specifically in
white-box attacks) during training. In the case of a federated learning setting, data privacy
is almost ensured, since every node participating in the learning procedure shares only
gradients not the data themselves, in order to train the model. However, in this case, the
corruption of the network is the main goal of attacker/malicious nodes, e.g., free-riding
attacks, Byzantine faults [11], sybil attacks, or Competitive Advantage Attacks [30] in
blockchain-based settings. It is worth highlighting that there is much research regarding
detecting and/or counteracting against the possible attacks; however, the increase in the
percentage of attacks will always be proportional to the advancements in ML/DL and
significance of these advancements.

6.7. Fairness in FL

The implementation of federated learning does not entail the assurance of a sym-
metric end-node topology. In other words, it is not taken for granted that all devices
contribute equally to the performance of the network and have both the same capabili-
ties (e.g., machine specifications) and responsibilities, regarding the training procedure.
Finding non-computationally expensive ways for end-nodes to identify the supportive
nodes and rewarding them is of great importance. For instance, Li et al. [60] developed an
algorithm in which devices with higher values in their local loss functions are given an also
higher contributing factor in order to guarantee the generalization of the global model or
else to ensure a more uniform accuracy distribution. However, it is of great importance to find
even more efficient methodologies in which tiny devices can run.

6.8. Ever-Changing Topology

In real-time DFL settings, cooperative nodes may not be geographical stable—a node
can depart or join the network any time (mobility of devices). Hence, the network topol-
ogy is ever-changing through time [135]. This necessitates the implementation of the
used clustering algorithms multiple times alongside the training process, meaning higher
energy consumption.

6.9. Ethical Concerns

The widely known Generative AI models, e.g., GPT models, are designed to enhance
many aspects including healthcare, industry, education, etc. [136]. GPT models can
undoubtedly analyze large medical datasets, and given access to patient clinical records,
they can detect types of disease and/or make estimations about patient treatments faster,
enhancing the work of scientists. GPT models are also included in industries in the
field of human resources, enabling faster screening and hence faster recruiting of new
potential employees. A Suitable AI tool conducts the first round of the candidate selection
process: only candidates that meet the job requirements are promoted to the interview
stage. Contrarily, the ascent of Generative AI bears risk, and we have to place restrictions.
For instance, these models [137] can also produce tampered models to some extent, such
that we cannot discern whether the result is illusory or not. For example, these tools can
easily generate images that depict fake content, leading to misleading information that is
difficult to verify [137]. Regarding fairness, it is of great importance that the data given to
this type of AI model for training be unbiased. For example, if the training dataset includes

Future Internet 2024, 16, 413 23 of 28

more men instead of women in chief positions, the model will automatically interpret it as
a crucial detail for deciding to whom the job is assigned. It will behave similarly in cases
where the applicants have disabilities or racial differences, leading to the discrimination
and hence marginalization of a large portion of people. There is need for society to put
stringent legal limitations in order to ensure auditability and accountability for AI systems
not only during the training phase of the model but also during deployment, stipulating
the impact it can have on the progress of society, environment [138], etc. Ultimately, the
rates of growth of both ML/DL algorithms and people’s critical ability have to coincide in
order for these tools to be advantageous to humanity [139].

7. Conclusions

The necessity of performing real-time data processing on edge devices in IoT networks
has brought deep learning to the forefront of research. In this survey, we analyzed the
possibilities of deploying reformable TinyML/DL algorithms in low-powered wirelessly
connected devices in purely distributed (Decentralized) environments, using federated
learning (FL) techniques. As secure parameter exchange is of major importance in DFL, the
introduced blockchain-based paradigm, namely Swarm Learning, guarantees the effective
and secure distribution of a significant amount of information, which is exchanged among
edge devices, with a trade-off regarding the energy cost. The combination and the further
advancement of the aforementioned fields pave the way for effective, secure, and energy-
efficient algorithms.

Despite the advancement of the aforementioned technological areas, there are some is-
sues that hinder the full exploration of their potential. For example, in cooperative learning,
lessening communication overhead among participating devices is of great importance. A
proposed way of doing so is to exclude several nodes from the training procedure; however,
we have to define sophisticated ways of implementing this in order not to sacrifice the
model’s performance. The problem of data class imbalance is also a great challenge. The
raw data of the participating entities may be skewed or biased, harming the training models’
generalization by causing the overfitting effect. In taking into consideration the lack of
resources, it is of great importance to introduce ways that autonomous devices (without a
server coordination) can deal with this phenomenon in real-time scenarios. Last but not
least, the introduction of nascent deep large language models spur the need of establishing
stringent rules in order to ensure that this technological advancement is aligned with the
core tenets of human life and nature (resource sustainability) in the long run.

Author Contributions: All authors contributed to the study conception and design. The first draft of
the manuscript was written by E.F.; D.K. revised it substantially. All authors have read and agreed to
the published version of the manuscript.

Funding: The research work is supported by the Hellenic Foundation for Research and Innovation
(HFRI) under the 3rd Call for HFRI PhD Fellowships (Fellowship Number: 5631).

Data Availability Statement: No data were generated or processed during this study.

Conflicts of Interest: The authors declare that they have no known conflicting and/or competing
financial or non-financial interests or personal relationships that could have appeared to influence
the work reported in this paper.

References
1. Ajani, T.S.; Imoize, A.L.; Atayero, A.A. An Overview of Machine Learning within Embedded and Mobile Devices–Optimizations

and Applications. Sensors 2021, 21, 4412. [CrossRef] [PubMed]
2. Waldrop, M.M. The chips are down for Moore’s law. Nature 2016, 530, 144–147. [CrossRef] [PubMed]
3. Lai, L.; Suda, N.; Chandra, V. CMSIS-NN: Efficient Neural Network Kernels for Arm Cortex-M CPUs. arXiv 2018, arXiv:1801.06601.
4. Abadade, Y.; Temouden, A.; Bamoumen, H.; Benamar, N.; Chtouki, Y.; Hafid, A.S. A comprehensive survey on TinyML. IEEE

Access 2023, 11, 96892–96922. [CrossRef]
5. Rajapakse, V.; Karunanayake, I.; Ahmed, N. Intelligence at the Extreme Edge: A Survey on Reformable TinyML. ACM Comput.

Surv. 2023, 55, 1–30. [CrossRef]

http://doi.org/10.3390/s21134412
http://www.ncbi.nlm.nih.gov/pubmed/34203119
http://dx.doi.org/10.1038/530144a
http://www.ncbi.nlm.nih.gov/pubmed/26863965
http://dx.doi.org/10.1109/ACCESS.2023.3294111
http://dx.doi.org/10.1145/3583683

Future Internet 2024, 16, 413 24 of 28

6. Kirkpatrick, J.; Pascanu, R.; Rabinowitz, N.C.; Veness, J.; Desjardins, G.; Rusu, A.A.; Milan, K.; Quan, J.; Ramalho, T.; Grabska-
Barwinska, A.; et al. Overcoming catastrophic forgetting in neural networks. Proc. Natl. Acad. Sci. USA 2016, 114, 3521–3526.
[CrossRef]

7. Mermillod, M.; Bugaiska, A.; Bonin, P. The stability-plasticity dilemma: Investigating the continuum from catastrophic forgetting
to age-limited learning effects. Front. Psychol. 2013, 4, 504. [CrossRef]

8. McMahan, B.; Moore, E.; Ramage, D.; Hampson, S.; Blaise Aguera y Arcas, B. Communication-efficient learning of deep networks
from decentralized data. In Proceedings of the International Conference on Artificial Intelligence and Statistics (AISTATS), Fort
Lauderdale, FL, USA, 20–22 April 2017; pp. 1273–1282.

9. Ram, S.S.; Nedić, A.; Veeravalli, V.V. Distributed Stochastic Subgradient Projection Algorithms for Convex Optimization. J. Optim.
Theory Appl. 2008, 147, 516–545.

10. Giménez, N.L.; Solé, J.M.; Freitag, F. Embedded federated learning over a LoRa mesh network. Pervasive Mob. Comput. 2023, 93, 101819.
[CrossRef]

11. Lim, W.Y.B.; Luong, N.C.; Hoang, D.T.; Jiao, Y.; Liang, Y.C.; Yang, Q.; Niyato, D.; Miao, C. Federated Learning in Mobile Edge
Networks: A Comprehensive Survey. IEEE Commun. Surv. Tutorials 2020, 22, 2031–2063. [CrossRef]

12. Taya, A.; Nishio, T.; Morikura, M.; Yamamoto, K. Decentralized and model-free federated learning: Consensus-based distillation
in function space. IEEE Trans. Signal Inf. Process. Over Netw. 2022, 8, 799–814. [CrossRef]

13. Wang, J.; Sahu, A.K.; Yang, Z.; Joshi, G.; Kar, S. MATCHA: Speeding Up Decentralized SGD via Matching Decomposition
Sampling. In Proceedings of the Indian Control Conference (ICC), New Delhi, India, 9–11 January 2019; pp. 299–300.

14. Han, J.; Ma, Y.F.; Han, Y.; Zhang, Y.; Huang, G. Demystifying Swarm Learning: A New Paradigm of Blockchain-based
Decentralized Federated Learning. arXiv 2022, arXiv:2201.05286.

15. Hu, S.; Chen, X.; Ni, W.; Hossain, E.; Wang, X. Distributed Machine Learning for Wireless Communication Networks: Techniques,
Architectures, and Applications. IEEE Commun. Surv. Tutorials 2021, 23, 1458–1493. [CrossRef]

16. Bellavista, P.; Foschini, L.; Mora, A. Decentralised learning in federated deployment environments: A system-level survey. ACM
Comput. Surv. 2021, 54, 1–38. [CrossRef]

17. Haddaway, N.R.; Page, M.J.; Pritchard, C.C.; McGuinness, L.A. An R package and Shiny app for producing PRISMA 2020-
compliant flow diagrams, with interactivity for optimised digital transparency and Open Synthesis. Campbell Syst. Rev. 2022,
18, e1230. [CrossRef]

18. Beltr’an, E.T.M.; Pérez, M.Q.; S’anchez, P.M.S.; Bernal, S.L.; Bovet, G.; Pérez, M.G.; P’erez, G.M.; Celdr’an, A.H. Decentralized
Federated Learning: Fundamentals, state-of-the-art, frameworks, trends, and challenges. IEEE Commun. Surv. Tutorials 2023,
25, 2983–3013. [CrossRef]

19. Mori, J.; Teranishi, I.; Furukawa, R. Continual Horizontal Federated Learning for Heterogeneous Data. In Proceedings of the
International Joint Conference on Neural Networks (IJCNN), Padua, Italy, 18–23 July 2022; pp. 1–8.

20. Lootus, M.; Thakore, K.; Leroux, S.; Trooskens, G.; Sharma, A.; Ly, H. A VM/Containerized Approach for Scaling TinyML
Applications. arXiv 2022, arXiv:2202.05057

21. Sun, Y.; Shen, L.; Tao, D. Which mode is better for federated learning? Centralized or decentralized. arXiv 2023, arXiv:2310.03461.
22. Sánchez-García, R.J. Exploiting symmetry in network analysis. Commun. Phys. 2020, 3, 87. [CrossRef]
23. Pan, Q.; Cao, H.; Zhu, Y.; Liu, J.; Li, B. Contextual Client Selection for Efficient Federated Learning over Edge Devices. IEEE

Trans. Mob. Comput. 2024, 23, 6538–6548. [CrossRef]
24. Liu, K.; Uplavikar, N.; Jiang, W.; Fu, Y. Privacy-Preserving Multi-task Learning. In Proceedings of the IEEE International

Conference on Data Mining (ICDM), Singapore, 17–20 November 2018; pp. 1128–1133.
25. Li, Q.; Zhang, M.; Yin, N.; Yin, Q.; Shen, L. Asymmetrically Decentralized Federated Learning. arXiv 2023, arXiv:2310.05093.
26. Savazzi, S.; Nicoli, M.; Rampa, V. Federated Learning with Cooperating Devices: A Consensus Approach for Massive IoT

Networks. IEEE Internet Things J. 2020, 7, 4641–4654. [CrossRef]
27. Michelusi, N. Decentralized Federated Learning via Non-Coherent Over-the-Air Consensus. In Proceedings of the IEEE

International Conference on Communications (ICC), Rome, Italy, 28 May–1 June 2023; pp. 3102–3107.
28. Yang, P.; Jiang, Y.; Wen, D.; Wang, T.; Jones, C.N.; Shi, Y. Decentralized Over-the-Air Federated Learning by Second-Order

Optimization Method. IEEE Trans. Wirel. Commun. 2024, 23, 5632–5647. [CrossRef]
29. Shi, Y.; Zhou, Y.; Shi, Y. Over-the-Air Decentralized Federated Learning. In Proceedings of the IEEE International Symposium on

Information Theory (ISIT), Melbourne, Australia, 12–20 July 2021; pp. 455–460.
30. Jia, Y.; Fang, M.; Gong, N.Z. Competitive Advantage Attacks to Decentralized Federated Learning. arXiv 2023, arXiv:2310.13862.
31. Lin, F.P.C.; Hosseinalipour, S.; Azam, S.S.; Brinton, C.G.; Michelusi, N. Semi-Decentralized Federated Learning With Cooperative

D2D Local Model Aggregations. IEEE J. Sel. Areas Commun. 2021, 39, 3851–3869. [CrossRef]
32. Tao, Y.; Zhou, J.; Yu, S. Efficient Parameter Aggregation in Federated Learning with Hybrid Convergecast. In Proceedings of the

IEEE Consumer Communications & Networking Conference (CCNC), Las Vegas, NV, USA, 9–12 January 2021; pp. 1–6.
33. Chou, L.; Liu, Z.; Wang, Z.; Shrivastava, A. Efficient and Less Centralized Federated Learning. In Proceedings of the

Joint European Conference on Machine Learning and Knowledge Discovery in Databases (ECML/PKDD), Bilbao, Spain,
13–17 September 2021; pp. 772–787.

34. Hosseinalipour, S.; Brinton, C.G.; Aggarwal, V.; Dai, H.; Chiang, M. From Federated to Fog Learning: Distributed Machine
Learning over Heterogeneous Wireless Networks. IEEE Commun. Mag. 2020, 58, 41–47. [CrossRef]

http://dx.doi.org/10.1073/pnas.1611835114
http://dx.doi.org/10.3389/fpsyg.2013.00504
http://dx.doi.org/10.1016/j.pmcj.2023.101819
http://dx.doi.org/10.1109/COMST.2020.2986024
http://dx.doi.org/10.1109/TSIPN.2022.3205549
http://dx.doi.org/10.1109/COMST.2021.3086014
http://dx.doi.org/10.1145/3429252
http://dx.doi.org/10.1002/cl2.1230
http://dx.doi.org/10.1109/COMST.2023.3315746
http://dx.doi.org/10.1038/s42005-020-0345-z
http://dx.doi.org/10.1109/TMC.2023.3323645
http://dx.doi.org/10.1109/JIOT.2020.2964162
http://dx.doi.org/10.1109/TWC.2023.3327610
http://dx.doi.org/10.1109/JSAC.2021.3118344
http://dx.doi.org/10.1109/MCOM.001.2000410

Future Internet 2024, 16, 413 25 of 28

35. Lee, J.W.; Oh, J.; Lim, S.; Yun, S.Y.; Lee, J.G. TornadoAggregate: Accurate and Scalable Federated Learning via the Ring-Based
Architecture. arXiv 2020, arXiv:2012.03214

36. Hosseinalipour, S.; Azam, S.S.; Brinton, C.G.; Michelusi, N.; Aggarwal, V.; Love, D.J.; Dai, H. Multi-Stage Hybrid Federated
Learning Over Large-Scale D2D-Enabled Fog Networks. IEEE/ACM Trans. Netw. 2020, 30, 1569–1584. [CrossRef]

37. Xing, H.; Simeone, O.; Bi, S. Decentralized Federated Learning via SGD over Wireless D2D Networks. In Proceedings of the IEEE
International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Atlanta, GA, USA, 26–29 May
2020; pp. 1–5.

38. Lalitha, A.; Kilinc, O.C.; Javidi, T.; Koushanfar, F. Peer-to-peer Federated Learning on Graphs. arXiv 2019, arXiv:1901.11173
39. Zhou, S.; Xu, K.; Li, G.Y. Communication-Efficient Decentralized Federated Learning via One-Bit Compressive Sensing. arXiv

2023, arXiv:2308.16671.
40. Sun, T.; Li, D.; Wang, B. Decentralized Federated Averaging. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 45, 4289–4301. [CrossRef]

[PubMed]
41. Blot, M.; Picard, D.; Cord, M.; Thome, N. Gossip training for deep learning. arXiv 2016, arXiv:1611.09726
42. Hu, C.; Jiang, J.; Wang, Z. Decentralized Federated Learning: A Segmented Gossip Approach. arXiv 2019, arXiv:1908.07782
43. Krizhevsky, A.; Nair, V.; Hinton, G. Learning Multiple Layers of Features from Tiny Images; Technical Report; Computer Science

Department, University of Toronto: Toronto, ON, USA, 2009.
44. Ye, H.; Liang, L.; Li, G.Y. Decentralized Federated Learning with Unreliable Communications. IEEE J. Sel. Top. Signal Process.

2021, 16, 487–500. [CrossRef]
45. Li, B.; Gao, W.; Xie, J.; Gong, M.; Wang, L.; Li, H. Prototype-based Decentralized Federated Learning for the Heterogeneous

Time-varying IoT Systems. IEEE Internet Things J. 2024, 11, 6916–6927. [CrossRef]
46. LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition Proc. IEEE 1998, 86,

2278–2324. [CrossRef]
47. Xiao, H.; Rasul, K.; Vollgraf, R. Fashion-MNIST: A novel image dataset for benchmarking machine learning algorithms. arXiv

2017, arXiv:1708.07747.
48. Le, Y.; Yang, X. Tiny ImageNet visual recognition challenge. Comput. Sci. 2015, 7, 3.
49. Lalitha, A.; Shekhar, S.; Javidi, T.; Koushanfar, F. Fully decentralized federated learning. In Proceedings of the Third Workshop

on Bayesian Deep Learning (NeurIPS), Montréal, QC, Canada, 7 December 2018.
50. Koloskova, A.; Loizou, N.; Boreiri, S.; Jaggi, M.; Stich, S.U. A Unified Theory of Decentralized SGD with Changing Topology and

Local Updates. arXiv 2020, arXiv:2003.10422.
51. Li, X.; Yang, W.; Wang, S.; Zhang, Z. Communication Efficient Decentralized Training with Multiple Local Updates. arXiv 2019,

arXiv:1910.09126.
52. Patel, K.K.; Dieuleveut, A. Communication Trade-Offs for Synchronized Distributed SGD with Large Step Size. arXiv 2019,

arXiv:1904.11325.
53. Roy, A.G.; Siddiqui, S.; Pölsterl, S.; Navab, N.; Wachinger, C. BrainTorrent: A Peer-to-Peer Environment for Decentralized

Federated Learning. arXiv 2019, arXiv:1905.06731.
54. Amiri, M.M.; Gündüz, D. Machine Learning at the Wireless Edge: Distributed Stochastic Gradient Descent Over-the-Air. In

Proceedings of the IEEE International Symposium on Information Theory (ISIT), Paris, France, 7–12 July 2019; pp. 1432–1436.
55. Liu, W.; Chen, L.; Zhang, W. Decentralized Federated Learning: Balancing Communication and Computing Costs. IEEE Trans.

Signal Inf. Process. Over Netw. 2021, 8, 131–143. [CrossRef]
56. Onoszko, N.; Karlsson, G.; Mogren, O.; Zec, E.L. Decentralized Federated Learning of Deep Neural Networks on Non-IID Data.

arXiv 2021, arXiv:2107.08517.
57. Fragkou, E.; Chini, E.; Papadopoulou, M.; Papakostas, D.; Katsaros, D.; Dustdar, S. Distributed Federated Deep Learning in

Clustered Internet of Things Wireless Networks with Data Similarity-based Client Participation. IEEE Internet Comput. Mag. 2024,
To appear.

58. Kalra, S.; Wen, J.; Cresswell, J.C.; Volkovs, M.; Tizhoosh, H.R. Decentralized federated learning through proxy model sharing.
Nat. Commun. 2021, 14, 2899. [CrossRef]

59. Zhang, Y.; Xiang, T.; Hospedales, T.M.; Lu, H. Deep mutual learning. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 4320–4328.

60. Li, T.; Sanjabi, M.; Smith, V. Fair Resource Allocation in Federated Learning. arXiv 2019, arXiv:1905.10497.
61. He, C.; Li, S.; So, J.; Zhang, M.; Wang, H.; Wang, X.; Vepakomma, P.; Singh, A.; Qiu, H.; Shen, L.; et al. FedML: A Research Library

and Benchmark for Federated Machine Learning. arXiv 2020, arXiv:2007.13518.
62. Beltrán, E.T.M.; Gómez, Á.L.P.; Feng, C.; Sánchez, P.M.S.; Bernal, S.L.; Bovet, G.; Pérez, M.G.; Pérez, G.M.; Celdrán, A.H. Fedstellar:

A platform for decentralized federated learning. Expert Syst. Appl. 2024, 242, 122861. [CrossRef]
63. Zhu, H.; Xu, J.; Liu, S.; Jin, Y. Federated learning on non-IID data: A survey. Neurocomputing 2021, 465, 371–390. [CrossRef]
64. Disabato, S.; Roveri, M. Tiny Machine Learning for Concept Drift. IEEE Trans. Neural Netw. Learn. Syst. 2022, 14, 11. [CrossRef]
65. Chen, Y.; Chai, Z.; Cheng, Y.; Rangwala, H. Asynchronous Federated Learning for Sensor Data with Concept Drift. In Proceedings

of the IEEE International Conference on Big Data (BigData), Orlando, FL, USA, 15–18 December 2021; pp. 4822–4831.
66. Lu, J.; Liu, A.; Dong, F.; Gu, F.; Gama, J.; Zhang, G. Learning under Concept Drift: A Review. IEEE Trans. Knowl. Data Eng. 2019,

31, 2346–2363. [CrossRef]

http://dx.doi.org/10.1109/TNET.2022.3143495
http://dx.doi.org/10.1109/TPAMI.2022.3196503
http://www.ncbi.nlm.nih.gov/pubmed/35925850
http://dx.doi.org/10.1109/JSTSP.2022.3152445
http://dx.doi.org/10.1109/JIOT.2023.3313118
http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.1109/TSIPN.2022.3151242
http://dx.doi.org/10.1038/s41467-023-38569-4
http://dx.doi.org/10.1016/j.eswa.2023.122861
http://dx.doi.org/10.1016/j.neucom.2021.07.098
http://dx.doi.org/10.1109/TNNLS.2022.3229897
http://dx.doi.org/10.1109/TKDE.2018.2876857

Future Internet 2024, 16, 413 26 of 28

67. Hoefler, T.; Alistarh, D.; Ben-Nun, T.; Dryden, N.; Peste, A. Sparsity in deep learning: Pruning and growth for efficient inference
and training in neural networks. J. Mach. Learn. Res. 2021, 22, 1–124.

68. Shafique, M.A.; Theocharides, T.; Reddy, V.J.; Murmann, B. TinyML: Current Progress, Research Challenges, and Future
Roadmap. In Proceedings of the ACM/IEEE Design Automation Conference (DAC), San Francisco, CA, USA, 5–9 December
2021; pp. 1303–1306.

69. Frankle, J.; Carbin, M. The Lottery Ticket Hypothesis: Finding sparse, trainable neural networks. In Proceedings of the
International Conference on Learning Representations (ICLR), New Orleans, LA, USA, 6–9 May 2019.

70. Leon, J.D.D.; Atienza, R. Depth Pruning with Auxiliary Networks for Tinyml. In Proceedings of the IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), Singapore, 7–13 May 2022; pp. 3963–3967.

71. Liu, H.; Song, P.; Qie, Y.; Li, Y. Real-time Prediction Method of Remaining Useful Life Based on TinyML. In Proceedings of the
IEEE International Conference on Real-Time Computing and Robotics (RCAR), Guiyang, China, 17–22 July 2022; pp. 693–698.

72. Li, Y.; Li, Z.; Zhang, T.; Zhou, P.; Feng, S.; Yin, K. Design of a Novel Neural Network Compression Method for Tiny Machine
Learning. In Proceedings of the International Conference on Electronic Information Technology and Computer Engineering,
Xiamen, China, 22–24 October 2021.

73. Ghamari, S.; Ozcan, K.; Dinh, T.; Melnikov, A.; Carvajal, J.; Ernst, J.; Chai, S.M. Quantization-Guided Training for Compact
TinyML Models. arXiv 2021, arXiv:2103.06231.

74. Heim, L.; Biri, A.; Qu, Z.; Thiele, L. Measuring what Really Matters: Optimizing Neural Networks for TinyML. arXiv 2021,
arXiv:2104.10645

75. Zemlyanikin, M.; Smorkalov, A.; Khanova, T.; Petrovicheva, A.; Serebryakov, G. 512KiB RAM Is Enough! Live Camera Face
Recognition DNN on MCU. In Proceedings of the IEEE/CVF International Conference on Computer Vision Workshop (ICCVW),
Seoul, Korea, 28 October 2019; pp. 2493–2500.

76. Ren, P.; Xiao, Y.; Chang, X.; Huang, P.Y.; Li, Z.; Chen, X.; Wang, X. A comprehensive survey of neural architecture search:
Challenges and solutions. ACM Comput. Surv. 2021, 54, 1–34. [CrossRef]

77. Buciluǎ, C.; Caruana, R.; Niculescu-Mizil, A. Model Compression. In Proceedings of the ACM Conference on Knowledge
Discovery and Data Mining (KDD), Philadelphia, PA, USA, 20–23 August 2006; pp. 535–541.

78. Ba, J.; Caruana, R. Do Deep Nets Really Need to be Deep? In Proceedings of the Neural Information Processing Systems (NIPS),
Lake Tahoe Nevada, 5–10 December 2013.

79. Hinton, G.E.; Vinyals, O.; Dean, J. Distilling the Knowledge in a Neural Network. arXiv 2015, arXiv:1503.02531
80. Gou, J.; Yu, B.; Maybank, S.J.; Tao, D. Knowledge Distillation: A Survey. Int. J. Comput. Vis. 2020, 129, 1789–1819. [CrossRef]
81. Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. Imagenet: A large-scale hierarchical image database. In Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Miami, FL, USA, 20–25 June 2009; pp. 248–255.
82. Fragkou, E.; Lygnos, V.; Katsaros, D. Transfer Learning for Convolutional Neural Networks in Tiny Deep Learning Environments.

In Proceedings of the Pan-Hellenic Conference on Informatics (PCI), Athens, Greece, 25–27 November 2022; pp. 145–150.
83. Ahmed, K.; Hassan, M. tinyCare: A tinyML-based Low-Cost Continuous Blood Pressure Estimation on the Extreme Edge. In

Proceedings of the IEEE International Conference on Healthcare Informatics (ICHI), Rochester, MN, USA, 11–14 June 2022;
pp. 264–275.

84. T’Jonck, K.; Kancharla, C.R.; Vankeirsbilck, J.; Hallez, H.; Boydens, J.; Pang, B. Real-Time Activity Tracking using TinyML
to Support Elderly Care. In Proceedings of the International Scientific Conference on Electronics (ET), Sozopol, Bulgaria,
15–17 September 2021; pp. 1–6.

85. Antonini, M.; Pincheira, M.; Vecchio, M.; Antonelli, F. A TinyML approach to non-repudiable anomaly detection in extreme
industrial environments. In Proceedings of the EEE International Workshop on Metrology for Industry 4.0& IoT (MetroInd4.0 &
IoT), Trento, Italy, 7–9 June 2022; pp. 397–402.

86. Andrade, P.; Silva, I.; Signoretti, G.; Silva, M.; Dias, J.; Marques, L.; Costa, D.G. An Unsupervised TinyML Approach Applied for
Pavement Anomalies Detection Under the Internet of Intelligent Vehicles. In Proceedings of the IEEE International Workshop on
Metrology for Industry 4.0 & IoT (MetroInd4.0&IoT), Rome, Italy, 7–9 June 2021; pp. 642–647.

87. A TinyML-based system for gas leakage detection. In Proceedings of the International Conference on Modern Circuits and
Systems Technologies (MOCAST), Bremen, Germany, 8–10 June 2022; pp. 1–5.

88. Rana, A.; Dhiman, Y.; Anand, R. Cough Detection System using TinyML. In Proceedings of the International Conference on
Computing, Communication and Power Technology (IC3P), Visakhapatnam, India, 7–8 January 2022; pp. 119–122.

89. Fang, K.; Xu, Z.; Li, Y.; Pan, J. A Fall Detection using Sound Technology Based on TinyML. In Proceedings of the International
Conference on Information Technology in Medicine and Education (ITME), Wuyishan, China, 19–21 November 2021; pp. 222–225.

90. Nicolas, C.; Naila, B.; Amar, R.C. TinyML Smart Sensor for Energy Saving in Internet of Things Precision Agriculture platform.
In Proceedings of the International Conference on Ubiquitous and Future Networks (ICUFN), Barcelona, Spain, 5–8 July 2022;
pp. 256–259.

91. Giordano, M.; Baumann, N.; Crabolu, M.; Fischer, R.; Bellusci, G.; Magno, M. Design and Performance Evaluation of an
Ultralow-Power Smart IoT Device with Embedded TinyML for Asset Activity Monitoring. IEEE Trans. Instrum. Meas. 2022,
71, 2510711. [CrossRef]

92. Maltoni, D.; Lomonaco, V. Continuous Learning in Single-Incremental-Task Scenarios. Neural Netw. 2018, 116, 56–73. [CrossRef]

http://dx.doi.org/10.1145/3447582
http://dx.doi.org/10.1007/s11263-021-01453-z
http://dx.doi.org/10.1109/TIM.2022.3165816
http://dx.doi.org/10.1016/j.neunet.2019.03.010

Future Internet 2024, 16, 413 27 of 28

93. Lesort, T.; Lomonaco, V.; Stoian, A.; Maltoni, D.; Filliat, D.; Díaz-Rodríguez, N. Continual learning for robotics: Definition,
framework, learning strategies, opportunities and challenges. Inf. Fusion 2020, 58, 52–68. [CrossRef]

94. Pellegrini, L.; Graffieti, G.; Lomonaco, V.; Maltoni, D. Latent Replay for Real-Time Continual Learning. In Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, 4–8 November 2019; pp. 10203–10209.

95. Lopez-Paz, D.; Ranzato, M. Gradient Episodic Memory for Continual Learning. In Proceedings of the Neural Information
Processing Systems (NIPS), Long Beach, CA, USA, 4–9 December 2017.

96. Cha, H.; Lee, J.; Shin, J. Co2L: Contrastive continual learning. In Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), Montreal, BC, Canada, 11–17 October 2021; pp. 9496–9505.

97. Smith, J.; Tian, J.; Hsu, Y.C.; Kira, Z. A Closer Look at Rehearsal-Free Continual Learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), New Orleans, LA, USA, 19–20 June 2022;
pp. 2410–2420.

98. Ravaglia, L.; Rusci, M.; Nadalini, D.; Capotondi, A.; Conti, F.; Benini, L. A TinyML Platform for On-Device Continual Learning
with Quantized Latent Replays. IEEE J. Emerg. Sel. Top. Circuits Syst. 2021, 11, 789–802. [CrossRef]

99. Hinton, G.E. The Forward-Forward Algorithm: Some preliminary investigations. arXiv 2022, arXiv:2212.13345.
100. Vita, F.D.; Nawaiseh, R.M.A.; Bruneo, D.; Tomaselli, V.; Lattuada, M.; Falchetto, M. µ-FF: On-Device Forward-Forward Training

Algorithm for Microcontrollers. In Proceedings of the IEEE International Conference on Smart Computing (SMARTCOMP),
Nashville, TN, USA, 26–30 June 2023; pp. 49–56.

101. Mocanu, D.C.; Mocanu, E.; Stone, P.; Nguyen, P.H.; Gibescu, M.; Liotta, A. Scalable training of artificial neural networks with
adaptive sparse connectivity inspired by network science. Nat. Commun. 2017, 9, 2383. [CrossRef]

102. Chouliaras, A.; Fragkou, E.; Katsaros, D. Feed Forward Neural Network Sparsificationwith Dynamic Pruning. In Proceedings of
the Pan-Hellenic Conference on Informatics (PCI), Volos, Greece, 26–28 November 2021; pp. 12–17.

103. Fragkou, E.; Koultouki, M.; Katsaros, D. Model reduction of feed forward neural networks for resource-constrained devices.
Appl. Intell. 2023, 53, 14102–14127. [CrossRef]

104. Yosinski, J.; Clune, J.; Bengio, Y.; Lipson, H. How transferable are features in deep neural networks? In Proceedings of the Neural
Information Processing Systems (NIPS), Montreal Canada, 8–13 December 2014.

105. Ren, H.; Anicic, D.; Runkler, T.A. TinyOL: TinyML with Online-Learning on Microcontrollers. In Proceedings of the International
Joint Conference on Neural Networks (IJCNN), Virtual, 18–22 July 2021; pp. 1–8.

106. Disabato, S.; Roveri, M. Incremental On-Device Tiny Machine Learning. In Proceedings of the International Workshop on Challenges
in Artificial Intelligence and Machine Learning for Internet of Things (AIChallengeIoT), Virtual (online), 16 November 2020.

107. Aloufi, R.; Haddadi, H.; Boyle, D. Emotion Filtering at the Edge. In Proceedings of the Workshop on Machine Learning on Edge
in Sensor Systems, New York, NY, USA, 10 November 2019.

108. Sudharsan, B.; Breslin, J.G.; Tahir, M.; Ali, M.I.; Rana, O.F.; Dustdar, S.; Ranjan, R.; Dustdar, S. OTA-TinyML: Over the Air
Deployment of TinyML Models and Execution on IoT Devices. IEEE Internet Comput. Mag. 2022, 26, 69–78. [CrossRef]

109. Li, J.; Kuang, R. Split Federated Learning on Micro-controllers: A Keyword Spotting Showcase. arXiv 2022, arXiv:2210.01961.
110. Banbury, C.R.; Zhou, C.; Fedorov, I.; Navarro, R.M.; Thakker, U.; Gope, D.; Reddi, V.J.; Mattina, M.; Whatmough, P.N. MicroNets:

Neural Network Architectures for Deploying TinyML Applications on Commodity Microcontrollers. Proc. Mach. Learn. Syst.
2021, 3, 517–532.

111. Sievers, B.; Hauschild, S.; Hellbrück, H. Inference and Performance Analysis of Convolutional Neural Networks used for Human
Gesture Recognition on IoT-Devices. Computing 2021, 2, 3.

112. de Prado, M.; Rusci, M.; Capotondi, A.; Donze, R.; Benini, L.; Pazos, N. Robustifying the Deployment of tinyML Models for
Autonomous Mini-Vehicles. Sensors 2021, 21, 1339. [CrossRef]

113. Pullini, A.; Rossi, D.; Loi, I.; Tagliavini, G.; Benini, L.M. Wolf: An Energy-Precision Scalable Parallel Ultra Low Power SoC for IoT
Edge Processing. IEEE J. -Solid-State Circuits 2019, 54, 1970–1981. [CrossRef]

114. David, R.; Duke, J.; Jain, A.; Janapa Reddi, V.; Jeffries, N.; Li, J.; Kreeger, N.; Nappier, I.; Natraj, M.; Wang, T.; et al. Tensorflow lite
micro: Embedded machine learning for tinyml systems. Proc. Mach. Learn. Syst. 2021, 3, 800–811.

115. Ray, P.P. A review on TinyML: State-of-the-art and prospects. J. King Saud Univ.-Comput. Inf. Sci. 2021, 34, 1595–1623. [CrossRef]
116. Capotondi, A.; Rusci, M.; Fariselli, M.; Benini, L. CMix-NN: Mixed Low-Precision CNN Library for Memory-Constrained Edge

Devices. IEEE Trans. Circuits Syst. Ii Express Briefs 2020, 67, 871–875. [CrossRef]
117. Jahanshahi, A. TinyCNN: A Tiny Modular CNN Accelerator for Embedded FPGA. arXiv 2019, arXiv:1911.06777
118. Reddi, V.J.; Plancher, B.; Kennedy, S.; Moroney, L.; Warden, P.; Agarwal, A.; Banbury, C.R.; Banzi, M.; Bennett, M.; Brown, B.; et al.

Widening Access to Applied Machine Learning with TinyML. arXiv 2021, arXiv:2106.04008.
119. Kopparapu, K.; Lin, E. TinyFedTL: Federated Transfer Learning on Tiny Devices. arXiv 2021, arXiv:2110.01107.
120. Zheng, J.; Xu, J.; Du, H.; Niyato, D.; Kang, J.; Nie, J.; Wang, Z. Trust Management of Tiny Federated Learning in Internet of

Unmanned Aerial Vehicles. IEEE Internet Things J. 2024, 11, 21046–21060. [CrossRef]
121. Huang, H.; Zhang, L.; Sun, C.; Fang, R.; Yuan, X.; Wu, D. Distributed pruning towards tiny neural networks in federated learning.

In Proceedings of the IEEE International Conference on Distributed Computing Systems (ICDCS), Hong Kong, China, 18–21 July
2023; pp. 190–201.

122. Zhu, J.; Cao, J.; Saxena, D.; Jiang, S.; Ferradi, H. Blockchain-empowered Federated Learning: Challenges, Solutions, and Future
Directions. ACM Comput. Surv. 2022, 55, 1–31. [CrossRef]

http://dx.doi.org/10.1016/j.inffus.2019.12.004
http://dx.doi.org/10.1109/JETCAS.2021.3121554
http://dx.doi.org/10.1038/s41467-018-04316-3
http://dx.doi.org/10.1007/s10489-022-04195-8
http://dx.doi.org/10.1109/MIC.2021.3133552
http://dx.doi.org/10.3390/s21041339
http://dx.doi.org/10.1109/JSSC.2019.2912307
http://dx.doi.org/10.1016/j.jksuci.2021.11.019
http://dx.doi.org/10.1109/TCSII.2020.2983648
http://dx.doi.org/10.1109/JIOT.2024.3363443
http://dx.doi.org/10.1145/3570953

Future Internet 2024, 16, 413 28 of 28

123. Ma, X.; Xu, D. TORR: A Lightweight Blockchain for Decentralized Federated Learning. IEEE Internet Things J. 2023, 11, 1028–1040.
[CrossRef]

124. Ghanem, M.C.; Dawoud, F.A.S.; Gamal, H.; Soliman, E.; Sharara, H.; El-Batt, T. FLoBC: A Decentralized Blockchain-Based Feder-
ated Learning Framework. In Proceedings of the Fourth International Conference on Blockchain Computing and Applications
(BCCA), Tartu, Estonia, 15–16 November 2021; pp. 85–92.

125. Wang, H.; Mao, D.; Chen, Z.; Rao, H.; Li, Z. Blockchain-Based Decentralized Federated Learning Model. In Proceedings of the
International Conference on Information Science, Parallel and Distributed Systems (ISPDS), Guangzhou, China, 14–16 July 2023;
pp. 622–625.

126. Li, J.; Shao, Y.; Wei, K.; Ding, M.; Ma, C.; Shi, L.; Han, Z.; Poor, V. Blockchain Assisted Decentralized Federated Learning
(BLADE-FL): Performance Analysis and Resource Allocation. IEEE Trans. Parallel Distrib. Syst. 2022, 33, 2401–2415. [CrossRef]

127. Wang, T.; Dong, Z.Y. Blockchain Based Clustered Federated Learning for Non-Intrusive Load Monitoring. IEEE Trans. Smart Grid
2024, 15, 2348–2361. [CrossRef]

128. Ranathunga, T.; Mcgibney, A.; Rea, S.; Bharti, S. Blockchain-Based Decentralized Model Aggregation for Cross-Silo Federated
Learning in Industry 4.0. IEEE Internet Things J. 2023, 10, 4449–4461. [CrossRef]

129. Jin, Y.; Jiao, L.; Qian, Z.; Zhou, R.; Pu, L. Orchestrating Blockchain with Decentralized Federated Learning in Edge Networks. In
Proceedings of the IEEE International Conference on Sensing, Communication, and Networking (SECON), Madrid, Spain, 11–14
September 2023; pp. 483–491.

130. Yapp, A.Z.H.; Koh, H.S.N.; Lai, Y.T.; Kang, J.; Li, X.; Ng, J.S.; Jiang, H.; Lim, W.Y.B.; Xiong, Z.; Niyato, D.T. Communication-
efficient and Scalable Decentralized Federated Edge Learning. In Proceedings of the International Joint Conference on Artificial
Intelligence (IJCAI), Montreal, BC, Canada, 19–27 August 2021.

131. Riahi, A.; Mohamed, A.; Erbad, A. BC-FL Location-Based Disease Detection in Healthcare IoT. In Proceedings of the International
Wireless Communications and Mobile Computing (IWCMC), Marrakesh, Morocco, 19–23 June 2023; pp. 1684–1689.

132. Liu, S.; Liu, Z.; Xu, Z.; Liu, W.; Trian, J. Hierarchical Decentralized Federated Learning Framework with Adaptive Clustering:
Bloom-Filter-Based Companions Choice for Learning non-IID Data in IoV. Electronics 2023, 12, 3811. [CrossRef]

133. Banbury, C.; Reddi, V.J.; Torelli, P.; Holleman, J.; Jeffries, N.; Kiraly, C.; Montino, P.; Kanter, D.; Ahmed, S.; Pau, D.; et al. MLPerf
Tiny Benchmark. arXiv 2021, arXiv:2106.07597.

134. Xiao, C.; Zhong, P.; Zheng, C. Enhancing Adversarial Defense by k-Winners-Take-All. arXiv 2019, arXiv:1905.10510.
135. Marias, G.F.; Georgiadis, P.; Flitzanis, D.; Mandalas, K. Cooperation enforcement schemes for MANETs: A survey. Wirel. Commun.

Mob. Comput. 2006, 6, 319–332. [CrossRef]
136. Zhang, P.; Kamel Boulos, M.N. Generative AI in medicine and healthcare: Promises, opportunities and challenges. Future Internet

2023, 15, 286. [CrossRef]
137. Kenthapadi, K.; Lakkaraju, H.; Rajani, N. Generative AI meets Responsible AI: Practical Challenges and Opportunities. In

Proceedings of the ACM Conference on Knowledge Discovery and Data Mining (KDD), Long Beach, CA, USA, 6–10 August 2023;
pp. 5805–5806.

138. Thakur, D.; Guzzo, A.; Fortino, G.; Piccialli, F. Green Federated Learning: A new era of Green Aware AI, arXiv 2024,
arXiv:2409.12626.

139. Bandi, A.; Adapa, P.; Kuchi, Y.E. The Power of Generative AI: A Review of Requirements, Models, Input–Output Formats,
Evaluation Metrics, and Challenges. Future Internet 2023, 15, 260. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/JIOT.2023.3288078
http://dx.doi.org/10.1109/TPDS.2021.3138848
http://dx.doi.org/10.1109/TSG.2023.3326194
http://dx.doi.org/10.1109/JIOT.2022.3218704
http://dx.doi.org/10.3390/electronics12183811
http://dx.doi.org/10.1002/wcm.398
http://dx.doi.org/10.3390/fi15090286
http://dx.doi.org/10.3390/fi15080260

	Introduction
	The Rise of the Federated Learning Approach
	Problem Formulation
	Taxonomy of FL Models
	Data Partitioning
	Scale of Federation
	Federated Learning Architectures

	Delving into Decentralized Federated Learning (DFL)
	Communication Reduction
	Privacy-Preserving Methodologies
	Fairness

	On the Prospect of TinyML/DL
	Problem Formulation
	Taxonomy of TinyML/DL Models
	Static Model Inference
	On-Device Real-Time Learning (Reformable TinyML)

	Current Advancements of FL and TinyML for Edge Devices
	A Brief Introduction to Swarm Learning (SL)
	Exploring Challenges in Tiny Decentralized Federated Learning Environments
	Scalability
	Imbalanced Dataset Classification Problems
	Catastrophic Forgetting
	Heterogeneity
	Benchmarking
	Attacks
	Fairness in FL
	Ever-Changing Topology
	Ethical Concerns

	Conclusions
	References

