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Abstract: When developing a distributed application, several issues need to be handled, and software
components should include some mechanisms to make their execution resilient when network faults,
delays, or tampering occur. For example, synchronous calls represent a too-tight connection between
a client requesting a service and the service itself, whereby potential network delays or temporary
server overloads would keep the client side hanging, exposing it to a domino effect. The proposed
approach assists developers in dealing with such issues by providing an automatic tool that enhances
a distributed application using simple blocking calls and makes it robust in the face of adverse events.
The proposed devised solution consists in automatically identifying the parts of the application that
connect to remote services using simple synchronous calls and substituting them with a generated
customized snippet of code that handles potential network delays or faults. To accurately perform the
proposed transformation, the devised tool finds application code statements that are data-dependent
on the results of the original synchronous calls. Then, for the dependent statements, a solution
involving guarding code, proper synchronization, and timeouts is injected. We experimented with
the analysis and transformation of several applications and report a meaningful example, together
with the analysis of the results achieved.

Keywords: resilience; refactoring; static code analysis; RMI; network faults; parallelism

1. Introduction

Distributed applications are crucial in many commercial, scientific, medical, and
engineering fields; however, their development presents many more challenges than
centralized ones, mainly due to network delays, faults, potential attacks, performance,
etc. [1]. Distributed applications often use a mechanism such as Java Remote Method
Invocation (RMI), or similar ones in other programming languages, i.e., a blocking call, to
simplify the code that calls a service on a remote server.

In a distributed system, components spread across the network can be affected by
communication delays, which deteriorates performance [2,3]. Additionally, the potential
inadequate management of exceptions and failures during client–server communication
can severely compromise the resilience and robustness of distributed applications, creating
critical failure points [4]. The blocking of remote method calls cannot handle delays or
disruption on the distributed service on its own. Moreover, some solutions based on simple
RMI expose further vulnerabilities [5–7].

Sure, advanced solutions have been suggested to better face possible communication
delays and service unavailability, such as the design of pattern timeouts, circuit breakers,
etc. [8]. Moreover, it could be that the developer knows that some service execution is
long enough to require an asynchronous call; then, e.g., messaging solutions are used [9],
or ad hoc integration is required due to its characteristics, e.g., with a blockchain [10].
Nevertheless, blocking calls and RMIs are widely used and recent studies show the useful-
ness of RMIs, e.g., in cloud systems like Amazon Web Services in other cloud computing
environments, in enterprise solutions, in legacy systems, etc. [11–13].
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As an example, in a cloud-based e-commerce platform, services like inventory man-
agement and payment processing use RMIs. Then, due to network delays, responses
can be slow, causing performance issues and order confirmation delays. Moreover, poor
exception handling may result in critical errors, affecting the way users can interact with
the distributed system. Overall, the persistent use of blocking calls, like RMIs, underscores
the need for improved resilience in distributed applications, as these calls struggle with the
management of delays and failure scenarios, ultimately compromising system robustness.

To address these limitations, this paper aims to provide an approach and a support tool
that analyzes distributed applications to find the use of simple remote calls (such as RMIs)
and substitute them with a more advanced fragment of code that, while handling the remote
call, additionally takes into account delays, faults, service disruption, etc. Simple remote
calls have been found by tracking all calls to methods that were in classes implementing
the Java Remote interface. While the initial remote call is a blocking one, we introduce an
asynchronous call to manage network delays and faults. This has the benefit of making the
application parallel, hence making it better equipped to be reactive. Of course, the necessary
code for synchronization and guarding will be inserted to have the correct execution of data
dependent statements. Distributed systems can significantly take advantage of parallel
execution to optimize their performance [14].

While libraries for supporting the development of distributed and parallel applications
exist for many languages, including both Java and C++ [15,16], they typically require
developers to manually identify which remote calls should be parallel and use appropriate
APIs to initialize, launch, and synchronize other execution threads. Our approach, instead,
while avoiding blocking calls, generates parallel versions of the source code for such calls,
freeing developers of such issues, while also providing them with the source code of the
accurate transformation. Relevant related work has aimed to automatically parallelize
executable code, achieving significant performance enhancements [17–19]. However, these
approaches conceal the parallelized code from developers and were not aimed at distributed
applications.

Our approach, along with the corresponding tool, employs data dependence analysis
(following Bernstein’s conditions [20]) to determine the appropriate code transformations
and synchronization necessary for a reliable distributed and parallel execution. First, the
source code is analyzed using the Javaparser library to detect blocking remote calls. Next,
data dependence analysis is performed to find instructions depending on the result of the
remote calls. Specifically, two statements have a data flow dependence when the output set
(i.e., the set of variables written) of the first instruction overlaps with the input set (i.e., the
set of variables read) of the second instruction [20–22]. Finally, the program’s dependencies
are updated according to the concurrency and failure handling library used, ensuring the
integrity of the application. All of the above steps are executed automatically in a given
source code. We performed several experiments to evaluate the benefits of our approach
and analysis. An application was selected to apply the correspondent refactoring, and
its performances were assessed using specific benchmarks, demonstrating an effective
reduction in execution time.

The main contribution of this paper is a comprehensive approach that automatically
transforms a Java source code with blocking remote calls into a parallel and fail-safe code.
By leveraging advanced static analysis techniques and data dependence analysis based
on Bernstein’s conditions, our method identifies and refactors specific fragments of code.
This transformation not only improves performance but also enhances the resilience of
distributed systems by incorporating robust concurrency and failure-handling mechanisms.

The remainder of this paper is structured as follows. Section 2 reviews the state-of-the-
art approaches and compares existing approaches with our proposed method. Section 3
introduces our general approach and presents a high-level architecture for analyzing and
transforming the code. Section 4 describes the methodology for automatically transforming
blocking calls into asynchronous calls and checking data dependencies among instructions.
Section 5 presents the analysis and transformation performed on a sample application,
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along with the execution results. Section 6 discusses the obtained results and the limitations
of our approach. Finally, conclusions are drawn in Section 7.

2. Related Works

The Java RMI mechanism is frequently used in distributed systems to enable commu-
nication between client components and a server side. The state of the art encompasses
numerous approaches that analyze the Java RMI supporting library, focusing on aspects
such as security, cryptography, asynchronous computing, and cloud computing.

A tool that encrypts and decrypts data, subsequently transmitting the data via the in-
ternet using Socket and RMI technology, was developed and proposed in [5]. The proposed
approach employed the Cipher Block Chaining (CBC) mode of Advanced Encryption
Standard (AES) algorithms to encrypt data after clients partition the data from a large
file. The encrypted data are then sent to a daemon for parallel map-reduce processing.
Moreover, RMIs are used in a cloud environment, and to facilitate development, language
translators were used to convert design concepts to Java RMIs and provide the way for
deployment on Amazon Web Services (AWS) Elastic Cloud Computing (EC2) [12].

A comprehensive assessment of RMI vulnerabilities using the Metasploit framework
was presented in [6]. Encryption algorithms were investigated to ensure the security of
transmitted data or objects using RMI [7]. Specifically, the authors applied AES and Data
Encryption Standard (DES) algorithms, comparing their efficacy in conjunction with the
RMI APIs. Such approaches focused on various applications of the Java RMI library; how-
ever, none of them aimed at enhancing the robustness and efficiency of RMIs. To the best of
our knowledge, our proposed approach is novel in that it automatically transforms RMIs
used in an application into code, handling the calls in a dedicated thread (asynchronous)
and adding actions for recovery in case of potential faults or relevant delays.

Concurrent computing has gained significant popularity with the advent of multicore
hardware. Numerous studies have proposed the design of automatic tools to efficiently
refactor sequential code into its parallel equivalent. Asynchronous programming is preva-
lent in Android applications due to UI access and I/O operations [23]. Lin et al. [24]
proposed a tool to automatically detect long-running operations and refactor them into
asynchronous ones. Additionally, Ozkan et al. [25] described a tool for identifying the
improper use of asynchronous constructs and making necessary changes. Unlike our
approach, these methods are apt for analyzing parallel code to find defects. JavaScript
ecosystems also provide synchronous and asynchronous calls for handling various I/O
operations. Gokhale et al. [26] presented a refactoring approach to assist developers in
transforming synchronous operations into asynchronous ones. Arteca et al. [27] proposed
an approach to reorder asynchronous calls for earlier execution, yielding significant per-
formance benefits. This method requires the input code to be parallel, with developers
choosing the parts to parallelize. In another approach, Schäfer et al. [28] proposed lock
refactoring to automatically convert built-in monitor locks in Java’s synchronized blocks
to the locks provided by the java.util.concurrent.locks library, such as ReentrantLock and
ReadWriteLock. Various analyses ensured that the transformations preserved application
behavior and enhanced performance. Several approaches focus on refactoring for loops to
make them suitable for parallel executions [29,30]. In contrast to the previous approaches,
our proposal provides (i) automation in the identification of the method calls that can be
executed in parallel (which are RMI calls), and (ii) the automatic injection of statements
that make the execution of identified calls both parallel and robust. This frees developers
from manually identifying the suitable parts of code and implementing more robust code.

Zhang et al. [31] presented an automated approach to convert synchronized locks
into StampedLock. Later, Zhang et al. [32] proposed a prototype for automatically con-
verting coarse-grained locks into fine-grained locks to reduce lock contention and improve
performance and scalability. These approaches focused on modernizing and optimizing
existing parallel code, letting the developer determine which code segments to parallelize.
Our approach, on the contrary, takes as input a sequential software system and identifies
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where parallel constructs could be used for improving performance and scalability while
preserving correctness.

Kaminsky and Haidl [15,16] introduced two libraries for Java and C++, respectively.
These APIs support multicore parallel programming, cluster parallel programming, GPU
acceleration, and big data parallel programming. Developers are asked to manually inte-
grate these features to convert sequential code to parallel. However, identifying suitable
code fragments for parallel execution and selecting the appropriate concurrent APIs pose
significant challenges for developers [33,34]. Our proposal addresses these issues automat-
ically by selecting necessary instructions by means of a detailed analysis and generates
refactored parallel versions using appropriate libraries.

In [34,35], the authors presented two approaches for applying atomic refactoring
and collection refactoring [36] to refactor synchronized statements. They proposed sev-
eral transformations: converting Int to AtomicInteger, Long to AtomicLong, HashMap to
ConcurrentHashMap, WeakHashMap to ConcurrentWeakHashMap, and HashSet to Con-
currentHashSet. The focus was on modernizing existing parallel code using the libraries
introduced since Java 5. The effectiveness of these modifications was tested for correctness.
Additionally, Dig et al. [34] suggested refactoring sequential recursive algorithms to parallel
versions using ForkJoinTask, demonstrating performance benefits through the evaluations
of popular recursive algorithms. Conversely, our approach transforms sequential code
to parallel by adding new threads, unlike other methods that merely update class types.
It is also less invasive than ForkJoinTask, requiring only the use of CompletableFuture
and get() calls. Additionally, it applies to all method calls meeting certain preconditions,
whereas other methods are limited to specific cases like recursive algorithms and Java
synchronized blocks.

Several approaches focus on optimizing compiled code to achieve parallelism [17–19].
These methods analyze executable code to identify coarse-grained tasks, such as the itera-
tions of large loops, and execute them in parallel. Although these approaches demonstrate
considerable performance gains, the optimization process remains opaque to the developer.

3. Proposed Approach for Improving Remote Calls
3.1. Overview

When executing remote calls, the called services run on a different host, which can
lead to delays due to relatively slower network communication, necessary security checks,
data retrieval processes, and the potential workload of the remote server. To address these
issues and improve performance and robustness, one effective strategy is to execute remote
operations in a newly dedicated thread. Through offloading these operations to a separate
thread, it becomes possible to handle them asynchronously, hence allowing the caller to
execute other tasks, hence avoiding a blocking call, and then improving overall robustness,
efficiency and responsiveness.

To facilitate the development of a distributed application that includes such an ad-
vanced handling of remote calls, the overall strategy of the proposed approach entails
analyzing the source code of a distributed Java application to identify remote calls, and
then transforming them into new code fragments that preserve the application’s intended
behavior while enhancing performance, such as through asynchronous execution and
improved resilience to network faults.

Implementing asynchronous calls requires careful consideration of concurrency issues,
such as race conditions and data consistency. Proper synchronization mechanisms must be
employed to ensure that concurrent threads do not interfere with each other, leading to
unpredictable behavior or data corruption. Conducting a data dependency analysis can
help mitigate these risks by examining the instructions following the calls that are changed
into asynchronous and inserting the necessary synchronization measures.

Figure 1 illustrates the three main phases of the proposed approach: (i) remote call
identification, which parses the Java code to locate all instances of remote calls (including,
e.g., RMIs); (ii) data dependency analysis and code transformation, which replaces remote
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calls with new fragments of code that enhance the application’s functionalities; (iii) project
document update, which involves verifying and updating the application dependencies.

Figure 1. Overview of the three main phases of the proposed approach: in the first phase, the source
code is parsed to locate remote calls (Section 3.2). Next, the identified calls are analyzed to ensure data
consistency, and the code is transformed to support parallel execution and fault tolerance (Section 3.3).
The final phase involves updating the application’s dependencies (Section 3.4).

Firstly, to identify remote calls in a Java source file, the code needs to be parsed.
We used the JavaParser library (https://javaparser.org, accessed on 18 September 2024),
which simplifies this task. A custom Visitor class was developed to examine the code
and find classes implementing the Remote interface (defined in the standard Java library
under java.rmi) and the track method calls on such classes. Secondly, the found method
calls are then further analyzed to address potential synchronization, allowing for data
consistency, and refactored to ensure asynchronous behavior and fault tolerance. Finally,
application dependencies are updated using Apache Maven. The pom.xml file is mod-
ified to include all necessary dependencies for the transformed code, ensuring that the
application’s functionality is maintained.

The final output of this process is represented by the transformed source code that,
upon compilation and execution, offers enhanced functionalities. The following sections
detail the three phases of the proposed approach, respectively.

3.2. Remote Call Identification

To identify remote calls within Java source files, the code is parsed and analyzed
using the JavaParser library. This library constructs an Abstract Syntax Tree (AST) [37], a
hierarchical structure that represents the code, with the root node representing the entire file
and all other elements as child nodes. This approach provides a comprehensive overview
of the source code’s structure.

To facilitate code inspection, the VoidVisitorAdapter class from JavaParser was em-
ployed, which enables the definition of a custom Visitor class designed to search for specific
properties within the source code. The visit() method implemented in the Visitor class
accepts two parameters: the type of object being examined (e.g., interface declaration,
method declaration) and a container for storing the retrieved data.

The remote call identification phase comprises three steps: (i) extracting all classes
implementing an extension of the Remote interface; (ii) analyzing the variable declarations
and finding all instances of the types identified in the previous step; (iii) examining method
calls to identify all invocations that correspond to remote calls. The Remote interface acts
as a marker for interfaces whose methods can be invoked from a different JVM. Any object
identified as remote must directly or indirectly implement this interface. Consequently,
only methods declared within a remote interface (i.e., one that extends java.rmi.Remote)
can be invoked remotely.

For the first step that identifies classes implementing at least one remote interface,
a Javaparser visitor VoidVisitorAdapter<HashSet<ClassOrInterfaceDeclaration>> is used.
This visitor traverses the source code AST, and retrieves the list of implemented interfaces
by invoking the getImplementedTypes() method on the AST nodes. Subsequently, all
interfaces extending Remote are filtered and added to the HashSet.

https://javaparser.org
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In the second step, a visitor VoidVisitorAdapter<HashSet<VariableDeclaration>> tra-
verses the AST and inspects all variable declaration statements. If the declared type is
found within the HashSet from the previous step, the corresponding instance is tracked by
adding it to the visitor’s HashSet.

In the final step, all method invocations on tracked instances are assessed by evaluat-
ing the MethodCallExpr expressions associated with such instances. For each identified
MethodCallExpr, a series of operations are performed to determine the type associated
with the method call. This aims at tracing the call’s origin and identifying the invoked
method. If the invocation corresponds to a method of a remote interface, it is then classified
as a remote method call. Once identified, it serves as the input for the data dependency
analysis and code transformation phase, as described in the following Section 3.3.

3.3. Data Dependency Analysis and Code Transformation

Transforming calls into asynchronous execution requires careful analysis to ensure
program correctness. A key aspect of this process is managing shared data across threads,
which is essential for preventing concurrency issues such as race conditions and data
inconsistency. Data dependency analysis reveals the relationships among instructions
that are subsequent to the asynchronous call. This analysis uncovers potential conflicts
that may arise when multiple threads simultaneously access or modify shared variables.
Hence, appropriate synchronization mechanisms are introduced to ensure safe execution
and maintain data integrity.

According to the results of the data dependency analysis, the automatic transformation
of remote calls can be safely performed, and to improve application robustness, the modifi-
cation relied on the Failsafe library (https://failsafe.dev, accessed on 18 September 2024).
Failsafe provides a comprehensive set of flexible, composable policies specifically designed
for failure detection, handling, and recovery. Moreover, these resilience policies seamlessly
integrate with CompletableFuture, a feature in Java’s standard library (java.util.concurrent),
to enable asynchronous operations. By combining Failsafe’s resilience mechanisms with
the asynchronous capabilities of CompletableFuture, applications can achieve not only
enhanced fault tolerance but also improved overall performance. The analysis and the
transformation are further discussed in Section 4, where a comprehensive examination is
provided, including detailed analysis and significant examples.

3.4. Project Document Update

In the final phase of the proposed approach, application dependencies are updated.
Numerous tools and systems exist to manage dependencies, automate tasks such as fetch-
ing correct versions, resolving conflicts, and ensure that all necessary dependencies are
available.

For Java language, Apache Maven (https://maven.apache.org/, accessed on 18
September 2024) has emerged as a prominent software project management tool, specif-
ically designed to facilitate the management of project dependencies and streamline the
build process. Maven relies on a Project Object Model (POM), an XML file that contains
project information and configuration details. The <dependencies> section of the POM file
lists all external libraries required by the project.

For our goal, the pom.xml inspection and update were based on the MavenXpp3Reader
class, which, like JavaParser, provides means for parsing and building a corresponding tree
model. Once the tree representation was generated, the group, artifact, and version nodes
required for Failsafe were inserted. This was achieved by creating a new node of type
Dependency. After modifying the tree, the updated pom.xml file was written, ensuring
that the application had all the dependencies needed to execute the transformed code.

https://failsafe.dev
https://maven.apache.org/
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4. Dependency Analysis and Code Transformation
4.1. Data Dependency Analysis

When aiming at transforming the code to introduce in it asynchronous calls, threads
have be appropriately guarded to ensure safety and prevent issues due to the access of
shared data. Our proposed transformation approach performs a thorough inspection of
RMIs and the following instructions to identify potential dependencies. The analysis relies
on Bernstein’s Conditions [20], a set of criteria used to determine the independence of
instructions in concurrent processing. Bernstein’s Conditions involve examining two sets
of variables for each instruction: the input set and the output set. The input set comprises
all variables that the instruction reads, while the output set includes all variables that the
instruction writes. The not empty intersection of the output set for the RMI with the input
set of the subsequent instructions indicates that the subsequent instructions are dependent
on the output of the RMI [38].

Algorithm 1 outlines the steps for performing the data dependence analysis. Firstly,
it retrieves the input set (variables read by the statement) and the output set (variables
written by the statement) for the identified RMI. Secondly, for each statement following
the RMI statement, it computes the intersection between these sets. If the intersection
contains at least one element, the current instruction is identified as data-dependent,
and synchronization has to be inserted at this point to ensure correctness. Otherwise, if
no intersection was found, the next instruction will be analyzed. If no data-dependent
statements were identified, then the last instruction of the method will be the point of code
where synchronization will be handled.

Algorithm 1 The operations performed to identify the data-dependent instructions.

function DATADEPENDENCEANALYSIS(m, rmi)
inputSetS1 ← getInputSet(m, rmi)
outputSetS1 ← getOutputSet(m, rmi)
for in← m.getFollowingInstructions(rmi) do

inputSetS2 ← getInputSet(m, in)
outputSetS2 ← getOutputSet(m, in)
if checkIntersections(inputSetS1, outputSetS1, inputSetS2, outputSetS2) then

return in
end if

end for
lastInstruction← getLastInstruction(m)
return lastInstruction

end function

Listing 1 provides an example of code for which data dependence analysis was per-
formed. Firstly, line 5 was identified as an RMI suitable for the asynchronous execution
transformation, as the method service.getAuthors() is invoked on a type declared as a sub-
type of Remote. From line 6 onward, the analysis seeks to detect data-dependent statements,
identifying such a statement in line 8 due to the use of the variable authors for subsequent
Java Stream operations. This data-dependent statement marks the synchronization point,
i.e., the original thread has to wait for the completion of the forked thread.

Additionally, line 6 contains another RMI, a call to another method of a subtype
of Remote. The analysis determined that the variable book is in the output set of the
instruction. Then, a subsequent data-dependent statement was found in line 8 (book
appears in line 10; however, it is in the same statement starting in line 6). Given that no
statements are present between the remote call (line 6) and the dependent statement (line 8),
then no parallelism can be achieved for the two said lines.
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Listing 1. An example of data-dependent instructions within a method declaration. The method calls
at line 5 and 6 are remote method calls; line 8 is data-dependent on line 5 and 6.

1 public class Client {
2 private static DataInterface service = new ServiceProxy ();
3
4 public static Optional <Author > extractMostReviewedAuthor () {
5 HashMap <String , Author > authors = service.getAuthors ();
6 Book book = service.getMostReviewedBook ();
7
8 return authors.values ().stream ()
9 .filter(auth -> auth.getBooks ().stream ()

10 .anyMatch(b -> b.getTitle ().equals(book.get().getTitle ())))
11 .findFirst ();
12 }
13 }

4.2. Code Transformation

After performing the data dependency analysis described above, the found RMIs can
be automatically refactored to ensure failure handling and asynchronous execution. The
transformation employs the Failsafe library, which has been available since Java 8. Failsafe
is instrumental in managing failure cases with various patterns and policies, as it offers
multiple policies handling specific exceptions encountered during network communication.
The appropriate response to exceptions depends on the selected policy.

To enhance the client application, we implemented a Wait and Retry policy with
exponential backoff. This approach entails that when an exception occurs during commu-
nication, the RMI call is retried after an exponentially increasing interval. As the number
of consecutive exceptions grows, the waiting period before each retry increases. This
strategy significantly enhances the robustness of the application by allowing it to overcome
intermittent communication issues.

Moreover, Failsafe enables the asynchronous execution of RMI by integrating the Com-
pletableFuture library. CompletableFuture represents a future result of an asynchronous
computation and provides a rich set of methods for creating, chaining, and combining asyn-
chronous tasks. This integration can result in significant performance enhancements in Java
applications [39]. By leveraging CompletableFuture within Failsafe, we notably improve
the robustness and efficiency of applications, ensuring the proper handling of RMIs.

The code shown in Listing 1 has been automatically transformed into the one shown
in Listing 2. For the latter code, lines 7 and 8 are the refactored version of the RMI (in
line 5 of the former code) using the CompletableFuture and the FailSafe libraries. The data
dependency analysis has identified the instruction at line 13 as data-dependent; hence, the
synchronization was inserted just before, at line 11, using the f.get() method, which returns
the result obtained by the previous call to getAuthors() method once it is available, hence
blocking execution when needed. The instructions were encapsulated within a try/catch
statement (lines 6 and 18) to enhance the robustness and guarantee that a missed answer of
the server will be handled properly.

Similarly to the previous remote call at line 5 in the original code, line 6 of the original
code has been refactored using the Failsafe library and is in line 9 of the transformed
code. This refactoring aims at achieving robustness but without introducing asynchronous
execution, given the subsequent data dependency. The integration of the Failsafe library
enhances the RMI’s resilience against failures, particularly network instability or transient
errors, thereby maintaining operational integrity.
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Listing 2. An example of the transformed code for the origin code shown in Listing 1. The getAu-
thors() RMI (lines 7 and 8) now uses CompletableFuture to achieve asynchronous execution and
FailSafe to achieve robustness, whereas the getMostReviewedBook() RMI only uses FailSafe to achieve
robustness. The synchronization instruction is inserted at line 11.

1 public class Client {
2 private static DataInterface service = new ServiceProxy ();
3 ....
4
5 public static Optional <Author > extractMostReviewedAuthorParallel (){
6 try {
7 CompletableFuture <HashMap <String , Author >> f =
8 Failsafe.with(retryPolicy).getAsync (() -> service.getAuthors ());
9 Book book = Failsafe.with(retryPolicy)

10 .get (() -> service.getMostReviewedBook ());
11 HashMap <String , Author > authors = f.get();
12
13 return authors.values ().stream ()
14 .filter(auth -> auth.getBooks ().stream ()
15 .anyMatch(b -> b.getTitle ().equals(book.get().getTitle ())))
16 .findFirst ();
17 }
18 catch(Exception e){
19 e.printStackTrace ();
20 return Optional.empty();
21 }
22 }
23 }

The Failsafe class accepts a RetryPolicy object as input, which determines the policy to
be followed for retry operations. The RetryPolicy is shown in Listing 3. Each method on
the RetryPolicy builder ensures that a specific property is set: (i) handle(Exception.class)
specifies that the policy should handle all exceptions of type Exception; (ii) withBackoff(1,
30, ChronoUnit.SECONDS) establishes the backoff strategy for retries, beginning with a 1 s
wait time and increasing exponentially up to 30 s; (iii) withMaxRetries(20) limits the number
of retry attempts to twenty; and finally, (iv) onRetriesExceeded(e -> failsSafeCallback(e))
defines an action to be executed when the maximum number of retries is reached, where a
callback function failsSafeCallback(e) is automatically created to ensure the safe handling
of the failure mechanism. The developer can customize the body of the callback function
to handle exceptions in a manner that aligns with the underlying software requirements.
Finally, build() finalizes and constructs the RetryPolicy object.

In our transformed code, a RetryPolicy object is inserted as an attribute into the class
containing the analyzed method. This approach ensures that the specified retry policy
is applied to all RMIs within the class, thereby avoiding code repetitions and promoting
consistency in handling retry logic.

Listing 3. The configuration of the retry policy used for all RMIs transformed using the FailSafe library.

1 RetryPolicy <Object > retryPolicy = RetryPolicy.builder ()
2 .handle(Exception.class)
3 .withBackoff (1, 30, ChronoUnit.SECONDS)
4 .withMaxRetries (20)
5 .onRetriesExceeded(e -> failSafeCallback(e))
6 .build();

5. Results

To evaluate the gains of our proposed code transformations, we performed experi-
ments on a sample distributed application designed to extract data from the Amazon Books
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Reviews dataset [40], enabling the inference of characteristics related to books, authors, and
reviews. The dataset consists of around 3 million book reviews authored by a large user
base, and covers a diverse corpus of 212,404 distinct books.

To ensure a manageable execution time during testing for transformation correctness
and performance evaluation, a subset of around 200,000 reviews were selected. The appli-
cation’s source code is publicly accessible via a dedicated repository [41]. Figures 2 and 3
show the UML class diagrams outlining the application’s components.

Figure 2. The UML class diagram of the server-side architecture.

Figure 3. The UML class diagram of the client-side architecture.

The DataService remote interface defines five methods: getAuthors(), getMostRe-
viewedBook(), getLeastReviewedBook(), getAverageReviewedBook(), and getAverageRe-
viewedBook(). The Server class creates and configures an instance of Service, which imple-
ments the DataService interface and uses the methods of the ExtractDataset class to retrieve
information from the book dataset.

On the client side, the ServiceProxy class implements DataService and manages net-
work communication, performing RMIs on the methods exposed by Service. The Client
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class creates a ServiceProxy object to connect to the service and receive the results of remote
method executions.

An analysis of the Client class identified four methods suitable for transformation, each
involving two distinct RMI calls to extract some data from the dataset. As seen previously,
Listing 1 shows a method of the origin Client class that was automatically converted into
the robust and parallel version shown in Listing 2.

To evaluate the performance of the refactored version, we used the Java Microbench-
mark Harness (JMH), a standardized tool for conducting rigorous performance tests. Our
setup included warming up the execution environment to ensure reliable performance
metrics: each benchmark consisted of five warm-up iterations followed by ten normal
iterations. JMH tests are particularly suited for assessing performance improvements as
they isolate the evaluated subject from external influences.

We performed four benchmarks for each refactored method. Each benchmark table
shown below follows a consistent structure: the “ith-run” column indicates the iteration
number; “sequential time (ms)”, and “parallel time (ms)” display the execution time in mil-
liseconds per iteration for the two versions; and “speed-up” denotes the performance gain
achieved by the parallel version (computed as ((runtimeold − runtimenew)/runtimeold)×
100). This allows for a detailed comparison of performance improvements achieved in the
refactored version, validating its effectiveness in enhancing application robustness and
efficiency under controlled testing conditions.

Tables 1, 2, 3 and 4 show, respectively, the resulting benchmarks for the following meth-
ods: extractAverageReviewedAuthor(), extractLeastReviewedAuthor(), extractMostRe-
viewedAuthor(), and getUserForAuthor().

Table 1. Execution times for ten runs of the extractAverageReviewedAuthor() method.

ith Run Sequential Time (ms) Parallel Time (ms) Speed-Up

1 6540 6321 3.35
2 6045 6111 −1.09
3 6418 5723 10.83
4 5869 5930 −1.04
5 6084 5027 17.37
6 7034 5603 20.34
7 6118 4663 23.78
8 5877 5563 5.34
9 6186 4944 20.08
10 6785 4995 26.38

avg 6295 5488 12.82

Table 2. Execution times for ten runs of the extractLeastReviewedAuthor() method.

ith Run Sequential Time (ms) Parallel Time (ms) Speed-Up

1 7821 6950 11.14
2 8311 5454 34.38
3 7138 7272 −1.88
4 7445 5642 24.22
5 7051 7512 −6.54
6 7958 7505 5.69
7 7525 5921 21.32
8 7777 6721 13.58
9 7578 7187 5.16
10 7615 6928 9.02

avg 7621 6709 11.97
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Table 3. Execution times for ten runs of the extractMostReviewedAuthor() method.

ith Run Sequential Time (ms) Parallel Time (ms) Speed-Up

1 6721 5732 14.72
2 5967 5023 15.82
3 5846 5503 5.87
4 6221 4429 28.81
5 5847 5343 8.62
6 6153 5830 5.25
7 6661 6003 9.88
8 5713 5943 −4.03
9 5821 4872 16.30
10 6188 5685 8.13

avg 6113 5436 11.08

Table 4. Execution times for ten runs of the getUserForAuthor() method.

ith Run Sequential Time (ms) Parallel Time (ms) Speed-Up

1 12,231 7979 34.76
2 11,499 9518 17.19
3 11,524 9212 20.08
4 11,748 9149 22.14
5 11,580 7667 33.78
6 12,110 9634 20.43
7 11,956 10,232 14.40
8 11,683 9582 17.96
9 10,458 9222 11.82
10 10,417 7853 24.60

avg 11,520 9004 21.83

An additional benchmark was executed to assess the resilience of the distributed
system both before and after our transformation. Table 5 presents the benchmark results
for the getUserForAuthor() method, which was executed while simulating communication
failures during the RMI calls. The “ith run” column indicates the iteration number, while
the “delay (ms)” column displays the network delay in milliseconds occurring during
the RMI call. The columns labeled “rmi-time (ms)” and “mod-time (ms)” represent the
execution times for the original RMI version and the modified RMI version proposed by
our approach, respectively. Additionally, the “# of retries” column shows the number of
retries (additional calls after some faults was notified) performed in the modified version
by the FailSafe library, according to the code shown in Listing 3.

Table 5. Execution times for ten runs of the getUserForAuthor() method.

ith Run Delay (ms) rmi-Time (ms) mod-Time (ms) # of Retry

1 50 10,485 7799 0
2 75 10,535 7850 0
3 150 10,656 7981 0
4 300 10,926 8255 0
5 600 11,426 8778 0
6 1200 12,126 9488 2
7 2400 - 10,883 3
8 4800 - 13,478 5
9 9600 - 18,493 10
10 19,200 - 38,523 20
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6. Discussion

To evaluate the effectiveness of our approach, the transformed version was compiled
and executed successfully. While the refactored version is robust against network de-
lays and intermittent malfunctioning, it also performs better in terms of execution time.
Across all four benchmarked methods, the average speed-up was 14.42%. The method
getUserForAuthor() showed the highest improvement at 21.83%, while extractMostRe-
viewedAuthor() exhibited the lowest at 11.08%. The performance of the parallel version
and the resulting speed-up are primarily influenced by the workload balance between
the parallel paths. Maximum gain occurs when both paths execute with minimal time
discrepancy, enabling concurrent execution without idle time.

The benchmarks revealed varying speed-up results. The method getUserForAuthor()
demonstrated high performance gain as the parallel threads exhibited similar execution
times. Conversely, methods yielding 11.08%, 11.97%, and 12.82% speed-ups showed greater
execution time discrepancies between parallel paths. Nonetheless, our transformations
effectively enhanced performance across these benchmarks. Notably, getUserForAuthor()
required longer execution times compared to other benchmarks due to its handling of
larger datasets, necessitating greater computational effort, which in turn led to higher
performance gains. The first three benchmarks (see Tables 1–3) exhibited some negative
speed-ups, indicating that sequential execution achieved lower overall times. This may be
attributed to factors such as thread scheduling, cache effects, and load balancing in parallel
execution environments. In particular, the management of multiple threads can introduce
synchronization delays, while frequent cache misses and the imbalanced distribution of
tasks across threads can degrade performance, offsetting the benefits of parallelism.

When occasional network delays or failures occur, while the original version simply
hangs or terminates abruptly, our transformed version of the application recovers from the
faults, given that the network communication will be restored within the interval set in the
proper RetryPolicy object.

Table 5 shows the significant impact of a communication delay. By default, if a Java
RMI call fails, it does not automatically initiate a retry; rather, it throws a RemoteException
(or a related exception depending on the issue), causing the operation to terminate unless
properly handled. When the underlying socket timeout was set to 2 s, the RMI call would
experience a crash each time the network communication delay exceeds 2 s. In contrast, our
proposed transformation enhances the robustness and resilience by employing a retry policy,
which make the running application recover from the timeout and remain operational
despite increasing communication delays. As shown in Listing 3, this policy employs an
exponential backoff mechanism with a maximum timeout of 30 s and allows up to 20 retries,
thereby ensuring a robust and effective failure management.

Our approach was designed to enhance both the robustness of network communication
and correct execution, while also aiming at achieving some performance gains. However,
there are inherent limitations, particularly when relying solely on static code analysis.

Static analysis cannot reliably predict the specific method executed at runtime, espe-
cially in cases involving polymorphism. In these scenarios, we adopt a cautious approach
for safety reasons then assume maximum data dependencies among the methods and
potentially miss opportunities for parallel execution. Moreover, when code contains multi-
ple references to objects of the same type, static analysis struggles to distinguish between
instances, particularly when variables conditionally assign different references. This can
lead to missed opportunities for parallel execution on distinct objects.

7. Conclusions

This paper presented a novel and effective methodology for the automatic identifi-
cation and transformation of remote calls within Java source files, enhancing the overall
functionality of applications. This enhancement includes enabling asynchronous execution
and increasing resilience to network faults. Our methodology begins by processing sequen-
tial code to identify remote calls, followed by a comprehensive data dependency analysis to
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ensure that the transformations preserve the intended behavior of the application and main-
tain execution correctness. Selected remote calls are then refactored using suitable libraries
to optimize the code. The transformed code leverages the benefits of parallel execution,
which significantly reduces the execution time. Additionally, the enhanced resilience to
network faults ensures that the application can handle disruptions more gracefully, thereby
improving overall reliability.

The effectiveness of our approach was validated through empirical testing on a dis-
tributed application that makes multiple remote calls to request and retrieve data from
a real-world dataset. The results demonstrate a significant reduction in execution time
while maintaining the application’s correctness, showcasing the efficacy of our transforma-
tions. To the best of our knowledge, this approach marks the first attempt to automatically
transform remote calls with the dual objective of adding support for asynchronous and
fail-safe execution.

In conclusion, our approach offers a powerful tool for automatically refactoring and
improving the performance and robustness of code in distributed applications.
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