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Abstract: In the fourth industrial revolution, artificial intelligence and machine learning (ML) have
increasingly been applied to manufacturing, particularly additive manufacturing (AM), to enhance
processes and production. This study provides a comprehensive review of the state-of-the-art
achievements in this domain, highlighting not only the widely discussed supervised learning but also
the emerging applications of semi-supervised learning and reinforcement learning. These advanced
ML techniques have recently gained significant attention for their potential to further optimize and
automate AM processes. The review aims to offer insights into various ML technologies employed in
current research projects and to promote the diverse applications of ML in AM. By exploring the latest
advancements and trends, this study seeks to foster a deeper understanding of ML’s transformative
role in AM, paving the way for future innovations and improvements in manufacturing practices.

Keywords: additive manufacturing; supervised learning; semi-supervised learning; reinforcement
learning

1. Introduction

Intelligent manufacturing, or smart manufacturing, leverages advanced technologies,
such as artificial intelligence (AI), machine learning (ML), the Internet of Things (IoT),
robotics, automation, and big data analytics, to revolutionize production processes [1–6].
In additive manufacturing (AM), ML has transformative applications that enhance pro-
ductivity, efficiency, and flexibility in production [7]. ML algorithms can drive predictive
maintenance by analyzing large datasets generated at every production stage, ensuring
equipment reliability and reducing downtime. ML is also pivotal in quality control, de-
tecting defects, and ensuring consistent output in AM processes. Demand forecasting and
process optimization further benefit from ML by accurately predicting material require-
ments, optimizing energy usage, and improving production speed. Integrating IoT devices
and sensors across AM setups allows real-time monitoring, enabling ML models to adapt
quickly to variations in the process or material properties, thus maintaining product qual-
ity [8,9]. Advanced robotics powered by ML can adjust to complex AM tasks, collaborating
with human operators for efficient, precise assembly [10–12]. Automation in AM, coupled
with ML, streamlines workflows, enhances consistency, and minimizes waste, ultimately
reducing production costs [13]. These technologies enable intelligent manufacturing en-
vironments that promote agility, customization, and sustainability, reshaping traditional
manufacturing into a responsive, data-driven ecosystem [14–16].

Traditional manufacturing methods like milling and turning rely on subtracting mate-
rials from a solid bulk to shape a final product [17]. In contrast, AM, often known as 3D
printing, builds objects layer by layer by adding materials precisely as needed from digital
designs [18,19]. This layer-by-layer approach enables AM to create complex geometries
that are difficult or impossible to achieve with conventional methods, minimizes material
waste, and reduces production time, allowing for faster prototyping and customization.
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Key AM technologies include fused deposition modeling, stereolithography, and selective
laser sintering, each offering unique advantages. For instance, fused deposition modeling,
one of the most accessible techniques, uses thermoplastic filament to build layers, making
it affordable and user-friendly [20]. Stereolithography, on the other hand, utilizes a UV
laser to solidify photopolymer resin, yielding highly detailed parts with smooth surface
finishes [21]. Selective laser sintering employs a laser to fuse powdered materials, ideal for
producing durable, intricate parts from metals and ceramics [22]. Beyond these, advanced
methods like direct metal laser sintering, electron beam melting, and binder jetting extend
AM’s potential to even more demanding applications [23–27].

AM represents a paradigm shift, promoting resource efficiency and encouraging
innovation across various industries, from aerospace and automotive to healthcare and
consumer goods. Enabling the synthesis of bio-inspired materials and structures opens
avenues for engineering resilient, lightweight designs [28,29]. However, the scalability of
AM, material constraints, and quality control present ongoing challenges that call for further
research and development. Nevertheless, the technology’s capacity for customization,
reduced waste, and rapid production cycles signal a transformative impact on the future of
manufacturing. In our view, AM has the potential to redefine sustainable manufacturing
practices, aligning with both industrial needs and environmental goals in a way that
traditional methods cannot fully achieve. This optimism, tempered by awareness of
current limitations, underscores our belief in AM as a catalyst for future-oriented, efficient
manufacturing solutions.

AI and ML stand at the crossroads of computer science, statistics, mathematics, and
cognitive psychology. AI endeavors to engineer systems capable of tasks, typically re-
quiring human intelligence, such as problem-solving, reasoning, and natural language
comprehension. ML, a subset of AI, focuses on developing algorithms that enable comput-
ers to learn from data without being explicitly programmed. Within ML, supervised and
unsupervised learning are prominent paradigms for processing existing data. Supervised
ML, encompassing classification and regression, operates on labeled data featuring input
features alongside corresponding outputs or targets.

Conversely, unsupervised ML tackles unlabeled data, exploring data structure for
clustering and dimensionality reduction. Deep learning (DL), a subset of ML, harnesses
neural networks with multiple layers to represent transformations and handle complex
tasks, such as image recognition, natural language processing, and speech synthesis [30–33].
This methodology, characterized by its depth, has significantly advanced the field. The ML
process entails identifying patterns, correlations, and statistical structures within datasets,
empowering the development of intelligent systems for predictive fidelity, decision-making,
and task automation. The continuous advancement of AI and ML has catalyzed break-
throughs across diverse domains, including materials science, hydrology, finance, and
healthcare [34–38]. Through a combination of rigorous mathematical modeling, algorithm
development, and empirical validation, scientists and engineers persistently expand the
frontiers of AI and ML, unlocking new capabilities and potentials for intelligent systems.

Reinforcement learning (RL) [39], another vital subset of ML, stands as a fundamental
pillar in AI, mirroring how humans learn to navigate and make decisions in a dynamic
environment. Unlike supervised and unsupervised learning, RL does not rely on pre-
collected datasets. Instead, the RL agent operates within an environment, iteratively
exploring and learning from its experiences to achieve a specific goal through trial and
error. Central to RL is the concept of reward, which provides positive or negative feedback
from the environment after the agent takes action. The RL agent’s objective is to learn
optimal policies or strategies, guiding its decision-making process to maximize cumulative
rewards over time. Reinforcement learning has diverse applications across domains like
healthcare and recommendation systems [40,41]. For example, it has excelled in game-
playing tasks, often surpassing human performance in chess, Go, and video games. In
robotics, RL algorithms train robots to efficiently perform complex tasks, while in self-
driving cars and drones, RL aids in navigation, path-finding, and decision-making [42–44].
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Moreover, RL finds utility in algorithmic trading and portfolio optimization, enhancing
risk management and investment decisions [45]. Smart grid systems optimize energy
consumption, facilitate demand response, and integrate renewable energy resources [46].
In summary, RL presents promising solutions for addressing complex real-world challenges
where explicit instruction or exhaustive search methods are impractical. Reinforcement
learning’s adaptability and learning capabilities make it a versatile tool for tackling diverse
problems across multiple domains.

Several reviews have examined the applications of ML in the AM domain [47]. Meng
and co-workers provided a thorough overview of supervised and unsupervised ML tasks
in AM, focusing on parameter optimization and anomaly detection [48]. They explored
regression, classification, and clustering techniques, delving into their roles in enhancing
AM processes. In their analysis of regression models, the authors highlighted neural net-
works and Gaussian process regression as significant tools for parameter optimization,
property prediction, and geometric deviation control [49–51]. Notably, with its probabilistic
characteristics, Gaussian process regression offers the ability to quantify uncertainty—an
essential feature in AM applications [52]. The authors discussed popular ML methods
like decision trees, support vector machines (SVM), and convolutional neural networks
(CNN) for classification tasks related to quality assessment, quality prediction, and defect
detection [53–55]. They also addressed challenges such as model overfitting and pro-
posed solutions to ensure robust performance. Moreover, the authors tackled the issue
of dataset size limitations in AM by exploring clustering analysis methods such as the
self-organizing map (SOM) model and the least absolute shrinkage and selection operator
(LASSO) model. These techniques can effectively handle datasets with constrained sizes,
a common challenge in AM research. Overall, this work offered valuable guidance for
ideating ML applications, understanding different ML tasks, and selecting appropriate ML
models in the AM domain. By synthesizing insights from various ML approaches, their
review contributes to advancing the integration of ML techniques in AM processes.

In another comprehensive review, Kuman et al. focused on the applications of ML
and data mining techniques in AM design, processes, and production control [56]. They
initially summarized the digitization in manufacturing within the framework of Industry
4.0, which encompasses smart factories, cyber-physical systems, IoT, and AI [57,58]. Then,
the authors provided an overview of supervised learning, including Bayesian networks,
artificial neural networks (ANN), ensemble methods, and CNN. Additionally, they high-
lighted the role of generative adversarial networks (GAN) alongside CNN in assisting
topology design with optimal structures [59]. Modern ML approaches have been employed
for synthesizing metamaterials for material design in AM [60]. For AM processes, they
reviewed various works utilizing SVM in process parameter optimization, long short-term
memory (LSTM) in process monitoring, CNN in geometric deviation control, and LASSO
in cost estimation, as well as other works in quality prediction, defects assessment, and
closed-loop control [61–63]. They also outlined the applications of ML in AM planning,
quality control, and printability and dimensional deviation management [64–66]. Addi-
tionally, the authors addressed the unique challenge of data security in AM production.
They discussed uncertainty in AM through experiment-based uncertainty quantification
(UQ) of the AM process, melting pool, and solidification [67,68]. In their conclusion, the
authors emphasized the integration of AM and ML as a pivotal innovation in the context of
the fourth industrial revolution.

The reviews mentioned above primarily concentrated on one subset of ML, supervised
learning, and its applications to advance AM processes and production. However, they
overlooked semi-supervised learning and RL, other crucial ML subsets known for their
advantages in data mining and optimizing and controlling autonomous systems. Further-
more, the rapid accumulation of literature publications in the AM domain warrants an
exploration of more recent pioneering studies. Hence, this study will present a state-of-the-
art review of ML in the AM domain, emphasizing recent groundbreaking research and the
applications of semi-supervised learning and RL. The structure of this paper is outlined



Future Internet 2024, 16, 419 4 of 30

below: Section 2 describes ML techniques. Subsequently, recent pioneering applications of
ML and RL in AM are individually reviewed, culminating in the conclusion.

2. Machine Learning

Table 1 provides a general comparison of supervised learning, semi-supervised learning,
and reinforcement learning, while Table 2 outlines their respective pros and cons. The
subsequent subsections will provide more detailed explanations of these three ML approaches.

Table 1. A general comparison of supervised learning, semi-supervised learning, and reinforce-
ment learning.

Aspect Supervised Learning Semi-Supervised Learning Reinforcement Learning

Definition
Learning from a labeled
dataset, where each input has
a corresponding output.

Combines a small amount of
labeled data with a large
amount of unlabeled data to
improve learning.

Learning through interactions
with an environment, using
feedback in the form
of rewards.

Training data Requires large amounts of
labeled data.

Uses a combination of labeled
and unlabeled data.

Uses labeled data collected
from sequential actions
and rewards.

Type of problem Regression and
classification problems

Scenarios where labeling all
data is expensive

Decision-making tasks for
optimization and control

Learning process
Learns from input-output
pairs to minimize the
loss function.

Utilizes labeled data for
learning and unlabeled data
for structure discovery

Learns optimal policies
through trial and error,
maximizing
cumulative rewards

Output A model that maps inputs
to outputs

A model that
improves predictions

A policy that dictates the best
action to take in a given state
of the environment

Applications

Image recognition, sentiment
analysis, predictive
maintenance, medical
diagnosis, etc.

Web content classification,
speech recognition, natural
language processing, image
labeling, etc.

Robotics, self-driving cars,
autonomous control systems,
stock market trading, etc.

Table 2. Pros and cons of supervised learning, semi-supervised learning, and reinforcement learning.

Supervised Learning Semi-Supervised Learning Reinforcement Learning

Pros

(a) Highly accurate with
large, labeled data.

(b) Well-suited for clear,
static problems.

(a) Requires fewer labeled
samples, reducing
labeling costs.

(b) Leverages the structure
of unlabeled data to
improve model
performance.

(a) Good for dynamic,
complex
decision-making.

(b) Continuously improves
policies by interacting
with the environment.

(c) Suitable for learning in
uncertain environments.

Cons

(a) Requires large amounts
of labeled data, which
can be expensive and
time-consuming.

(b) Struggles in scenarios
where the data are noisy
or ambiguous.

(a) Still requires some
labeled data.

(b) Performance may
degrade if the model
relies too heavily on
unlabeled data.

(c) Balancing labeled and
unlabeled data
is challenging.

(a) High computational cost
due to the need for
exploration.

(b) Training can be unstable
and slow.

(c) Difficult to apply to
tasks where rewards are
sparse or delayed.
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2.1. Supervised Learning

Supervise learning requires a pre-collected dataset to train predictive ML models, with
the data labeled with output variables. It can be categorized into two types: regression
and classification, depending on the nature of the output targets. Various ML models are
available for supervised learning. For regression problems, options include linear and
polynomial regression, while logistic regression is commonly used for classification tasks.
Other methods, such as SVMs, multi-layer perceptron (MLP), decision trees, and k-nearest
neighbors, have variations tailored for handling both regression and classification tasks [69].
These ML algorithms are often referred to as “shallow” because they typically involve
only one layer of non-linear transformation to map input features to outputs. For instance,
Aoyagi et al. proposed a framework for constructing a process map for AM [61]. They
integrated a decision function, representing the porosity density of parts fabricated by AM,
into SVM to predict process conditions (good or bad) based on the observations from the
parts’ surface. This method was shown to be effective in customizing optimized process
conditions with a reduced number of experiments. However, shallow ML algorithms
generally have a limited capacity to capture complex patterns in data and are often used
for simple tasks.

In contrast, DL models or neural networks with multiple layers of transformations
on input features become necessary when dealing with large or complex datasets [70].
One commonly used DL model is the artificial neural network (ANN) or fully connected
neural network, which comprises an input layer, one or more hidden layers, and an
output layer, as shown in Figure 1. The input data are fed into the input layer, where
each node represents an input feature. Subsequently, the data passes through the hidden
layers successively. Each layer applies weighted connections and activation functions to
transform the input data into a more abstract representation. Notably, each neuron in a
hidden layer is connected to all neurons in the previous and subsequent layers, rendering
the neural network fully connected. Commonly used activation functions include the
sigmoid function, rectified linear unit (ReLU), radial basis function (RBF), and the tangent
hyperbolic function [71,72]. The final layer of the network is the output layer, which is
responsible for predicting the output targets. The number of nodes in this layer depends
on the dimension of the output. No activation functions are typically applied in the output
layer for regression tasks, whereas the sigmoid function is used for binary classifications
and the softmax function for multiclass classifications. Discrepancies between predictions
based on the aforementioned feedforward process and actual outputs result in a so-called
loss function. Network training aims to determine proper neuron weights to minimize this
loss function. This optimization process involves backpropagation to iteratively update
network weights using the gradient descent method or its variations. It is worth mentioning
that physics-informed neural networks have recently garnered attention by incorporating
physical laws into neural network training [73]. Consequently, the loss function comprises
data loss and physics loss calculated from differential equations.
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CNNs constitute a unique class of DL algorithms specifically tailored to process and
analyze data with a grid-like topology [31]. Their most prevalent application lies in image
processing for computer vision tasks, where images are typically represented as grids of
pixels. However, CNNs are versatile and capable of handling various other data types,
including videos, two-dimensional grid geological data, three-dimensional volumetric
data, and text structured as a one-dimensional grid. A typical CNN architecture (shown
in Figure 2) comprises convolutional, max-pooling, and fully connected layers, collec-
tively processing input data to make predictions for either regression or classification.
Convolutional layers utilize sets of learnable filers or kernels that traverse the input data,
performing element-wise multiplication and summation operations, followed by non-linear
activation functions. These operations yield feature maps that capture intricate patterns
and feature presentations within the input data. Max-pooling layers are often employed
after convolutional layers to downsample the feature maps, effectively reducing the spatial
dimensions of the data. Subsequently, the flattened feature maps, as a one-dimensional ar-
ray, are passed through fully connected layers whose architecture mirrors that of ANNs, for
prediction. During training, the weights and biases of a CNN are iteratively adjusted using
optimization algorithms such as gradient descent and backpropagation. This adjustment
process minimizes the disparity between predicted outputs and actual targets, enhancing
the models’ performance.

Future Internet 2024, 16, x FOR PEER REVIEW  7  of  32 
 

 

 

Figure 2. The architecture of a CNN. 

Recurrent neural networks  (RNNs) constitute another vital class of DL algorithms 

tailored for handling sequential data, such as text [74]. Unlike standard ANNs, which pro-

cess a sequence of inputs independently, RNNs maintain an internal state to retain the 

memory  of  past  inputs.  This  dynamic  temporal  behavior  allows  them  to manage  se-

quences of varying lengths effectively. By sharing network weights across different time 

steps, RNNs excel at learning patterns within sequential data, making them particularly 

useful in Natural Language Processing (NLP) tasks like speech recognition and text gen-

eration. Furthermore, when combined with CNNs, RNNs can even process video data 

from  time-series  images.  However,  traditional  RNNs  encounter  a  significant  hurdle 

known as the vanishing gradient problem, where gradients diminish exponentially over 

long sequences, making it challenging to learn long-term dependencies [75]. To mitigate 

this issue, innovative architectures like long short-term memory (LSTM) and gated recur-

rent units (GRUs) have been developed [76,77]. LSTMs employ specialized gates—input, 

forget, and output gates—to regulate the flow of information into and out of the memory 

cells,  facilitating  selective  retention or discard of  information over  time. On  the other 

hand, GRUs, while similar to LSTMs, feature a simplified structure with only two gates: 

an update gate and a reset gate. Recently, the transformer architecture has emerged as a 

groundbreaking solution to the limitations of RNNs and CNNs in processing sequential 

data  [78]. Transformers rely exclusively on self-attention mechanisms  to weigh  the  im-

portance of different  input  elements when generating outputs. This  approach  enables 

transformers to capture long-range dependencies in data more effectively than RNNs and 

CNNs. Transformers have achieved remarkable success across various NLP tasks, includ-

ing machine translation and question-answering. 

2.2. Semi‐Supervised Learning 

Semi-supervised  learning occupies a middle ground between two well-established 

paradigms: supervised learning, which operates on labeled data samples to establish in-

put-output mappings; and unsupervised learning, which discerns patterns or structures 

within unlabeled data [79]. In semi-supervised learning, a model is trained using a dataset 

comprising labeled and unlabeled samples. The labeled data aids in refining predictions, 

while the unlabeled data assists in developing more robust representations of the under-

lying data structure, thereby enhancing the model’s ability to generalize to new, unseen 

data. Consequently, the overall performance of the model can be significantly improved. 

Semi-supervised  learning  has  employed  various  techniques,  such  as  self-training,  co-

training, consistency regularization, and pseudo-labeling. These methods harness the la-

beled data to initialize the model and then utilize it to make predictions on unlabeled data, 

iteratively refining the model for enhanced performance. Table 3 compares different semi-

supervised learning methods based on their primary applications, strengths, and limita-

tions. 

Table 3. Comparison of different semi-supervised learning methods. 

Figure 2. The architecture of a CNN.

Recurrent neural networks (RNNs) constitute another vital class of DL algorithms
tailored for handling sequential data, such as text [74]. Unlike standard ANNs, which
process a sequence of inputs independently, RNNs maintain an internal state to retain the
memory of past inputs. This dynamic temporal behavior allows them to manage sequences
of varying lengths effectively. By sharing network weights across different time steps,
RNNs excel at learning patterns within sequential data, making them particularly useful
in Natural Language Processing (NLP) tasks like speech recognition and text generation.
Furthermore, when combined with CNNs, RNNs can even process video data from time-
series images. However, traditional RNNs encounter a significant hurdle known as the
vanishing gradient problem, where gradients diminish exponentially over long sequences,
making it challenging to learn long-term dependencies [75]. To mitigate this issue, innova-
tive architectures like long short-term memory (LSTM) and gated recurrent units (GRUs)
have been developed [76,77]. LSTMs employ specialized gates—input, forget, and output
gates—to regulate the flow of information into and out of the memory cells, facilitating
selective retention or discard of information over time. On the other hand, GRUs, while
similar to LSTMs, feature a simplified structure with only two gates: an update gate and a
reset gate. Recently, the transformer architecture has emerged as a groundbreaking solution
to the limitations of RNNs and CNNs in processing sequential data [78]. Transformers
rely exclusively on self-attention mechanisms to weigh the importance of different input
elements when generating outputs. This approach enables transformers to capture long-
range dependencies in data more effectively than RNNs and CNNs. Transformers have
achieved remarkable success across various NLP tasks, including machine translation and
question-answering.
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2.2. Semi-Supervised Learning

Semi-supervised learning occupies a middle ground between two well-established
paradigms: supervised learning, which operates on labeled data samples to establish input-
output mappings; and unsupervised learning, which discerns patterns or structures within
unlabeled data [79]. In semi-supervised learning, a model is trained using a dataset com-
prising labeled and unlabeled samples. The labeled data aids in refining predictions, while
the unlabeled data assists in developing more robust representations of the underlying
data structure, thereby enhancing the model’s ability to generalize to new, unseen data.
Consequently, the overall performance of the model can be significantly improved. Semi-
supervised learning has employed various techniques, such as self-training, co-training,
consistency regularization, and pseudo-labeling. These methods harness the labeled data
to initialize the model and then utilize it to make predictions on unlabeled data, iteratively
refining the model for enhanced performance. Table 3 compares different semi-supervised
learning methods based on their primary applications, strengths, and limitations.

Table 3. Comparison of different semi-supervised learning methods.

Methods Description Primary Applications Strengths Weaknesses

Self-
training

Trains a model on labeled
data and then iteratively
uses its won
high-confidence
predictions on unlabeled
data as pseudo-labels
to retrain.

When labeled data are
limited but large amounts
of unlabeled data
are available.

Simple to implement;
leverages model
confidence in
predictions.

Can propagate errors
if pseudo-labels
are incorrect.

Co-
training

Trains two models on
different, conditionally
independent views of the
data and uses one model’s
predictions to label data for
the other model.

When data have multiple
independent views
(e.g., text and images).

Reduces overfitting;
handles multi-view
data well.

Requires conditionally
independent views,
which may not
always exist.

Consistency
regularization

Enforces the model to
output consistent
predictions for augmented
versions of unlabeled data.

When data augmentations
are possible and reliable.

Robust and
more generalized.

Relies on effective
augmentation
strategies.

Pseudo-
labeling

Assigns pseudo-labels to
unlabeled data based on a
threshold confidence score
from the model.

When model confidence
indicates label quality.

Simple thresholding
can improve
data quality.

Needs a good
confidence threshold.

Self-training, a popular semi-supervised learning method, capitalizes on unlabeled
data to enhance model performance [80]. Traditionally, this technique involves using an
initially trained model on labeled data to generate pseudo-labels for unlabeled samples,
which are then incorporated into the training set to update the model. However, this
process can be time-consuming and prone to error accumulation due to incorrect pseudo-
labels. Researchers have proposed several alternative solutions to address these challenges,
especially mitigating error accumulation during self-training. Berthelot et al. introduced a
method that averages the results of various augmentation techniques to label unlabeled
data samples [81]. Other approaches have utilized confidence thresholds to control the
quality of label assignments, ensuring that only strongly augmented data samples receive
labels [82–84]. Additionally, curriculum labeling has been suggested as another strategy to
refine the quality of pseudo-labels during model iterations [85]. Recently, an incremental
self-training technique has been developed to discern the positivity of unlabeled data
through clustering [86]. This method processes the model in sequential batches to enhance
performance. Moreover, a sequential query list has been introduced to streamline the
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process by reducing the time consumption associated with multiple clustering and queries
in iterative learning. These advancements aim to make self-training more efficient and
effective in leveraging unlabeled data for model improvement.

Co-training, which originated from self-training, serves as the foundation for the
bifurcated method in semi-supervised learning and is readily implementable with most ML
algorithms [87–89]. Initially, co-training algorithms primarily focused on multi-view learn-
ing, which involves training multiple models (referred to as learners) on distinct subsets of
features or data samples [90,91]. Each model learns from labeled data and subsequently
collaborates with the other models to label the unlabeled data, leveraging inter-model
agreements to reduce uncertainty. Consequently, co-training enhances model general-
ization by fostering cooperation among multiple learners. The key steps in co-training
involve view acquisition, learner differentiation, and label confidence estimation. View
acquisition necessitates a delicate balance between the independence and sufficiency of split
views. Learner differentiation arises from employing basic models, selecting optimization
algorithms, and configuring learner parameters (i.e., model parameters). Estimating label
confidence is crucial for avoiding incorrect labeling scenarios. In contrast, single-view
learning in co-training does not mandate feature splitting, aiming to prevent individual
models from converging into similar hypotheses. Single-view learning capitalizes on view
redundancy and conditional independence, thereby providing initial models or learners
with richer information from the data [92–94].

Notably, pseudo-labeling, another popular semi-supervised learning technique, com-
bines the principles of self-training with traditional supervised learning [95]. Pseudo-
labeling is effective when the model’s predictions on the unlabeled data are reliable, typi-
cally when the model’s confidence in its predictions is high. However, setting a confidence
threshold is essential to avoid including unreliable pseudo-labels, which could degrade
performance. Additionally, pseudo-labeling may not be suitable for datasets where the
distribution of the labeled and unlabeled data significantly differs. By implementing these
advanced techniques, self-training and pseudo-labeling can substantially improve the
performance and robustness of ML models, particularly in scenarios where labeled data are
scarce or expensive to obtain. Moreover, co-training has been successfully applied across
various domains, demonstrating its flexibility and effectiveness in leveraging unlabeled
data to improve model performance. By utilizing multiple learners and ensuring high con-
fidence in pseudo-labels, co-training can significantly reduce the reliance on large labeled
datasets, making it a valuable technique in semi-supervised learning.

2.3. Reinforcement Learning

Unlike supervised learning, RL, another subset of ML, does not rely on pre-existing
datasets [39]. Instead, an RL agent (typically a computer program) learns from its ex-
periences by interacting with its surroundings or environment, as depicted in Figure 3.
A fundamental assumption in RL is that the environment is fully observable, meaning
the agent can determine its environment’s configuration or state through observations.
Consequently, the agent can choose an action based on the current state. Upon executing
the selected action, the environment transitions to another state, and the agent receives a
reward as feedback. This learning process is iterative. A mathematical framework known
as the Markov decision process is commonly used to describe the interaction between the
agent and its environment during learning [96,97]. The key components of this framework
include a state space, an action space, a transition function, and a reward function. The
transition function denotes the probability of the agent moving from the current state to
the next state after taking an action, while the reward function determines the feedback
the agent receives during this transition. The objective of RL for an agent is to accumulate
rewards, often referred to as the expected return or utility, to the maximum extent possible.
The output of RL corresponds to the agent’s optimal behavior function, or the optimal
policy, which maps a state to the action the agent should take.
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There are two primary classes of methods for solving RL problems: model-based and
model-free, as compared in Table 4. Model-based RL methods, such as policy iteration and
value interaction, aim to determine optimal value functions using dynamic programming
techniques [98]. These value functions quantify the expected return an agent can achieve
from specific states or state-action pairs. The state value function represents the total
reward an agent can attain starting from a particular state. Conversely, the state-action
value function, also known as the action value function, indicates the expected return an
agent can obtain by starting from a state and taking a specific action. Once the optimal
value functions are derived, determining the optimal policy becomes feasible, as the agent
tends to select actions associated with the highest values.

Table 4. Comparison between model-based and model-free RL approaches.

Model-Based Model-Free

Definition
Uses a model to simulate the
environment’s dynamics to predict
the outcomes of actions.

Learns directly from interactions
with the environment, without an
internal model.

Advantages

Can plan ahead by simulating
multiple steps, often requiring
fewer interactions with the
real environment.

Avoids the complexity of building a
model, often making it more
adaptable to unknown or
complex environments.

Disadvantages

Requires an accurate model, which
can be challenging to obtain,
especially in
complex environments.

Typically needs a large number of
interactions with the environment,
which may be costly or impractical.

Another type of RL method is model-free, which assumes that agents have no knowl-
edge of transition probabilities and reward functions, reflecting most practical applications.
Early model-free RL methods include the Monte Carlo and temporal difference methods,
which are value-based RL methods. Q-learning is another widely used value-based RL
method [99]. During the learning process, the agent selects the best action according to the
current knowledge of the action value function at each step, receives a reward as feedback,
and updates the action values through the Bellman equation [39]. It should be noted that
the epsilon-greedy action selection technique is usually adopted to balance exploration and
exploitation. Over many episodes, the action values converge to their optimal values, from
which the optimal policy can be derived. Conventional Q-learning is a tabular method
where a table stores action values with respect to the finite state and action spaces. If the
state and action spaces are extremely large or continuous, an ANN can be employed to
approximate action values. This method is called deep Q-Network (DQN) and is one of
the methods in deep reinforcement learning (DRL) [100]. In addition to value-based RL
methods, another type of model-free RL method is policy-based, as explained in Table 5.
These methods directly update and converge to the optimal policy rather than the optimal
value function. Policy gradient methods are a typical family of policy-based RL methods,
with proximal policy optimization (PPO) being a notable example [101,102].
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Table 5. Comparison between value-based and policy-based RL approaches.

Value-Based Policy-Based

Definition

Focuses on learning a value
function (e.g., state value or action
value) to estimate the expected
return of actions of states.

Directly learns a policy (a mapping
from states to actions) to maximize
cumulative rewards.

Advantages
Often more stable and sample
efficient, as it uses value functions
to guide action indirectly.

Can handle continuous action
spaces well and learn stochastic
policies, which is beneficial in
uncertain environments.

Disadvantages
May struggle with continuous
action spaces and often rely on an
exploration strategy.

Can be less sample efficient and
prone to instability, especially in
high-dimensional spaces.

3. Applications of Supervised Learning in Additive Manufacturing

Akbari et al. generated an extensive dataset and introduced a benchmark ML model
for predicting mechanical properties in metal AM [103]. The dataset was sourced from over
90 metal AM articles and 140 different data sheets. The mechanical properties, including
yield strength, ultimate tensile strength, elastic modulus, elongation, hardness, and surface
roughness, were predicted based on processing parameters and material properties. Addi-
tionally, recent applications of supervised learning in AM include predicting the fatigue
life of AM materials such as metal alloys and quality detection of AM-manufactured parts.
Various ML methods, particularly DL methods, have been utilized. These methods include
SVMs, ANNs, CNNs, and RNNs.

3.1. Fatigue Life Prediction

Wang et al. conducted a literature review focusing on ML-assisted fatigue life pre-
diction of AM metallic materials [104]. They found that most studies on the fatigue life of
AM parts utilized ANN models, while random forest (RF) and SVR models were applied
less frequently. Additionally, most of the reviewed literature focused on stainless steel,
aluminum alloy, and titanium alloy. The authors also discussed challenges and future
perspectives, including difficulties in data collection, labeling, and feature engineering.
Another review can be found in [105].

Table 6 presents a summary of the reviewed papers focusing on the application of
supervised learning techniques for fatigue life prediction. It includes concise descriptions
of the AM techniques employed in each study, the ML algorithms utilized for prediction,
and the methods of data collection. These summaries aim to provide a clear understanding
of the diverse approaches found in the literature. The rest of this section will explore these
aspects in greater detail.

Dang et al. addressed fatigue and service life prediction in AM products using
Support Vector Regression (SVR) [106]. Their study focused on thirty specimens of titanium
alloy produced via the laser-directed energy deposition (LDED) method, followed by
double-annealing heat treatment. Subsequently, constant-amplitude fatigue tests were
conducted across three different stress levels to measure the fatigue lives, which served
as labels or outputs. Microstructural analysis, facilitated by an optical microscope and
scanning electron microscope (SEM), enabled the examination of the specimens for defects,
particularly pores [107]. The input features in their study included the range of stress
intensity near pores, pore type, the distance-size ratio (the ratio of the distance from a pore
to the free surface to the equivalent diameter of the pore), pore area, and the peak stress
applied on the specimen. The range of stress intensity was calculated using Murakami’s
approach [108], which was instrumental in evaluating stress distribution around pores.
Pore type, a categorical feature, categorized pores into four types based on SEM images,
considering pore size and facet visibility. Various SVR models were trained using different
combinations of input features. It was found that a model incorporating two features, the
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range of stress intensity and pore type, demonstrated superior performance in terms of
errors and correlation coefficients. Additionally, alternative ML models, including ANNs,
random forests, and Gaussian process regression, were evaluated. The comparative analysis
underscored the effectiveness of the SVR model in accurately predicting fatigue life for the
LDED titanium alloy specimens.

Using the ML model to predict the fatigue life of AM products requires fabricating
and measuring a sufficient number of samples, which is often impractical. Recent studies
have proposed incorporating physics knowledge into “black-box” ML mode to address
this issue. Salvati and colleagues presented pioneering work where they developed a
physics-informed neural network (PINN) or physics-informed machine learning (PIML)
framework to predict the finite fatigue life of defective materials [109]. Notably, the PINN
is trained using a combination of data loss and physics loss, as illustrated in Figure 4. The
dataset was provided by Romano et al., who fabricated aluminum alloy samples using
AM techniques like selective laser melting (SLM) [110]. These samples underwent CT
scans to reconstruct the morphology and location of defects. The morphological features
include the defects’ volume, external surface, and the projection of the external surface
onto the plane normal to the direction of the applied load. The defects’ sphericity and
diameter can be calculated from these features. Additionally, the distance between the
defects and the free surface of the specimen can be evaluated through CT scans. Fatigue
testing was conducted by applying a cyclic load of constant stress amplitudes, and the
fatigue lives were measured. The samples were then investigated using fractography to
detect pores, called killer defects, where fatigue cracks were triggered. In their proposed
PINN framework, the neural network is enforced with phenomenological constraints from
physics, specifically the linear elastic fracture mechanics (LEFM) model. In addition to the
data loss from the direct prediction of the neural network, the physics loss was determined
from Basquin’s law for stress-fatigue life diagrams. The sum of these two loss functions
was employed in the backpropagation process to optimize the network weights and bias.
This research highlighted that incorporating physics laws into the neural network could be
highly effective for accurately predicting the finite fatigue life of materials.
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In another recent study, Wang et al. introduced physics-guided ML frameworks aimed
at enhancing fatigue life prediction in AM materials [111]. Traditionally, evaluating fatigue
life, particularly fatigue crack growth life, relies on Paris’ law, incorporating empirical
model parameters [112]. However, this physics-based model often overlooks the influence
of defect characteristics such as size and location. To address this limitation, data-driven
approaches like ML prove beneficial [113]. The authors employed two ML models, SVR and
ANN, with inputs comprising the range of applied stress and defect features. They devised
adaptive ML models using Bayesian optimization to fine-tune model hyperparameters and
k-fold cross-validation for robustness. These models were trained and assessed using three
different AM materials, aluminum alloy, titanium alloy, and alloy steel, across datasets
varying in size from 8 to 30 [107,114,115]. Their findings suggested employing the ANN
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model for scenarios with limited data and the SVR model for relatively large datasets. They
also extended this physics-guided ML framework to a probabilistic model using maximum
likelihood estimation. The study demonstrated that while the physics-based Paris law
ensures predicted results consistent with physical observations, data-driven approaches
account for the variability in fatigue lives attributed to defect features. Ultimately, the
integrated physics-guided ML model maintained high prediction accuracy while mitigating
overfitting issues associated with limited fatigue data.

Gao et al. explored the predictability of various ML models in forecasting the fatigue
lives of titanium structures produced via AM methods, such as electron beam melting
(EBM) [116]. The authors utilized experimental data [117]. The ML regression models
examined in this study comprised multiple linear regression (MLR), ANNs, SVR, and
random forests (RF). Initially, the study assessed the influence of density, porosity, yield
stress, and fatigue stress on the predicted fatigue lives of samples. The resulting correlation
matrices and heatmaps emphasized the significant impacts of yield stress and fatigue
stress on the target prediction. Consequently, yield stress, which exhibited a positive
correlation with fatigue life, and fatigue stress, which demonstrated a negative correlation,
were selected as the input features. Following the training and evaluation of those four
regression models, the authors observed that all models demonstrated excellent predictive
capabilities. MLR displayed superior predictive performance at a 95% confidence interval,
followed by the SVR model. Furthermore, the study addressed hyperparameter tuning
and generalization for each model. Specifically, for the ANN model, three or four neurons
were recommended for the first hidden layer. For the SVR model, a coefficient of 0.0001 for
the RBF kernel function and a regularization hyperparameter of 30 were suggested. It was
also recommended that the RF model utilize three estimators with a maximum tree depth
of seven.

Recently, Li and co-workers proposed a physics-informed, data-driven framework to
predict the nondestructive fatigue life of laser powder bed fusion (LPBF)-processed metal
parts [118]. They fabricated two sets of LPBF Ti-6Al-4V Grade 5 parts for defect characteriza-
tion and fatigue testing, respectively. Various factors influencing fatigue performance were
considered, including process parameters, X-ray computed tomography (XCT)-inspected
defects, and fatigue test conditions. To address the challenges of time-consuming fatigue
testing and the limited availability of fatigue data, they developed a multimodal transfer
learning approach to investigate the relationships between process parameters, defects,
and fatigue performance. In the source task, a hierarchical graph convolutional network
(HGCN) was employed to classify defects based on process parameters and defect features
in images. The feature embeddings learned from the HGCN were then transferred to a
neural network layer for fatigue life modeling. The proposed framework was validated
through numerical simulations and an experimental case study. The FI score of defect
classification reached 0.96, while the fatigue life prediction yielded a mean absolute log
error as low as 0.04.

In another recent work, Nasiri et al. employed ML methods to model the fatigue
lifetimes in 3D-printed biomaterials [119]. They used fused deposition modeling (FDM),
a popular 3D printing method, to fabricate 162 dog-bone samples for their experiments.
The study investigated the influence of three key printing parameters on fatigue behavior:
print speed, nozzle diameter, and nozzle temperature. By systematically varying these
parameters, they aimed to understand how each factor affects the mechanical performance
of the printed biomaterials. The authors conducted rotating bending fatigue tests on the
samples to gather data, generating an experimental dataset for analysis. In addition to using
traditional ML models such as RF and SVR, the authors incorporated extreme gradient
boosting (XGBoost), a more advanced ML algorithm known for its high accuracy and
efficiency. To enhance model interpretability, they employed Shapley additive explanation
(SHAP), a technique allowing more precise insights into how each feature influences the
model’s predictions. Upon training and testing various ML methods, they found that
XGBoost outperformed the others, achieving an impressive R2 score of 0.9766. Furthermore,
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the SHAP analysis revealed that nozzle diameter had the most significant impact on fatigue
lifetimes, suggesting that this parameter plays a critical role in the mechanical durability
of the printed biomaterials. Conversely, print speed was identified as the least influential
factor. These findings highlight the potential of ML-assisted modeling in optimizing the 3D
printing process for enhanced material performance.

Table 6. Summary of reviewed papers on supervised learning for fatigue life prediction in AM.

Applications AM Techniques ML Methods Data Collection

Fatigue and service life
prediction [106] LDED 1 SVR models with different

input features

The authors examined
30 specimens and conducted
fatigue tests [107]

Fatigue life of defective
materials [109] SLM 2 Physics-informed

neural network
Five series of samples are
made and tested [110]

Fatigue crack growth life
prediction [111] HRAM 3, LDED, and LMD 4 SVR, ANN, and

Bayesian optimization
Three datasets
from [104,114,115]

Fatigue life prediction [116] EBM 5 MLR 6, ANNs, SVR, and RF Experimental data from [117]

Nondestructive fatigue
life [118] LPBF 7 HGCN 8, transfer learning

Two sets of parts were
fabricated for testing

Fatigue lifetime
modeling [119] FDM 9 XGBoost 10, RF, SVR

162 samples were made for
fatigue testing

1 LDED: laser-directed energy deposition; 2 SLM: selective laser melting; 3 HRAM: hybrid in situ rolled wire + arc
additive manufacturing; 4 LMD: laser melting deposition; 5 EBM: electron beam melting; 6 MLR: multiple linear
regression; 7 LPBF: laser powder bed fusion; 8 HGCN: hierarchical graph convolutional network; 9 FDM: fused
deposition modeling; 10 XGBoost: extreme gradient boosting.

3.2. Quality Detection

Mondal and Goswami reviewed the application of AI and ML techniques to improve
quality assurance in AM processes [120]. Their review focused on the use of CNN for
defect detection, highlighting CNNs’ capabilities in analyzing large volumes of image
data to identify and classify defects in AM products accurately. They noted that CNNs
are particularly effective in this domain due to their ability to learn complex patterns
and features, which makes it possible to detect various defect types with high precision.
In addition, Deshpande et al. examined an advanced two-stage CNN method, Faster
R-CNN, which has been effectively employed for defect localization and segmentation in
AM components [121]. We reviewed several studies on supervised learning for quality
detection in AM, which are summarized in Table 7, followed by detailed descriptions.

Convolutional neural networks have become a standard tool for assessing the quality
of parts produced through AM, particularly in scenarios where surface polishing post-
processing affects wear resistance and residual stresses. Abhilash and Ahmed integrated
CNN classification into the process of electrical discharge-assisted postprocessing to en-
hance the surface quality of AM components [122]. In their study, titanium alloys were
prepared using a direct metal laser sintering 3D printer. The researchers selected the lowest
discharge energy regime for polishing the samples. Images captured through an optical
microscope were fed into a CNN architecture comprising five convolutional layers and
a fully connected layer for prediction. This task was a multiclass classification problem,
with five surface categories reflecting different levels of surface roughness. Each class
had 50 data samples (images) manufactured and polished under distinct printing and
process parameters. The study leveraged the pre-trained ResNet50 model to expedite
model training. Subsequently, the convolutional layer weights were transferred to the
proposed CNN model, with only the weights of the fully connected layer and the output
layer being fine-tuned. The researchers employed a fivefold cross-validation approach
during the model training, achieving an impressive overall accuracy of 96%. Notably, all
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false negative predictions were confined to borderline classes, indicating the robustness of
the CNN model in discerning subtle differences in surface quality.

In a separate study, Ansari et al. investigated defects in surface deformation arising
from laser powder bed fusion (LPBF), which can significantly impact the mechanical and
physical properties of manufactured AM parts [123]. However, previous research did not
address real-time identification of surface deformation. Ansari’s study proposed a novel
real-time approach to classify surface deformation problems during LPBF processing using
a powder bed image as the input for each data sample. Thirteen bar-like geometries were
designed and printed using an EOS printer equipped with cameras and sensors to capture
each layer during printing to gather data samples. The collected powder bed images were
categorized as either normal or defective. The initial dataset consisted of 1022 images
converted to grayscale. Since detecting defects early is crucial to halt defect propagation
promptly, selecting relevant data samples yielded a final dataset comprising 239 normal
and 14 defective images. Given the dataset’s significant imbalance, data augmentation
methods were employed. They utilized CNN to classify the images. Three distinct model
architectures were developed and tested, incorporating techniques such as early stopping,
learning rate variation, and employing various model evaluation metrics to refine the
model. The results showcased exceptional model performance, achieving an accuracy of
up to 99%. The study also concluded that employing a balanced dataset through data
augmentation could lead to a more generalized and unbiased ML model.

Moreover, Banadaki et al. devised another real-time CNN model integrated into
an automated grading system to oversee the fused deposition modeling process, one of
the prominent AM processes [124]. They established an image acquisition system with
a high-resolution camera to capture the videos during printing. Subsequently, the data
were collected by converting the videos to frames representing 21 classes based on the
temperature and speed settings of the AM process. The images were manually inspected
to retain only those providing proper views of the printing area. Consequently, a total of
5000 images were obtained, from which a randomly selected subset of 100 images formed
the testing set. They employed a CNN architecture within a DL framework, incorporating
the aggregation layers, such as convolutional and pooling layers between low-level and
high-level layers. Low-level layers were utilized for spatial feature extraction, while high-
level layers extracted high-order features or patterns before passing them to the fully
connected layers for classification. Various metrics were used to assess the developed CNN
model, including accuracy, F1 score, sensitivity, and precision. Remarkably, exceptional
accuracies exceeding 93% were achieved for all classes. Additionally, the F1 score indicated
relatively varied accuracies among classes with different printing settings. Once the quality
predictive model was developed, it was utilized to detect the significance of the defects
during the 3D printing process and monitor the process’s quality.

Conrad et al. designed a comprehensive end-to-end workflow for efficiently sorting
AM-manufactured parts based on specific post-processing requirements [125]. The initial
stage of this automated process involved image rendering, wherein synthetic images were
generated from CAD models representing the AM parts. Notably, a variety of simulated
camera angles were employed during rendering, accompanied by data augmentation
techniques to ensure sufficient diversity in the training data. Subsequently, pre-trained
image classification neural networks were adopted and fine-tuned using the training image
dataset. In the final step, the trained neural network was deployed to recognize the parts,
with the resulting classification recommendations presented to the user via a graphic
user interface (GUI). The GUI displayed the top three class predictions for the user to
assess and compare with the actual part. The authors constructed a test set comprising
30 distinct parts to evaluate the framework, yielding 1200 images. Three pre-trained
CNN architectures, MobileNetV2, ResNet-50, and VGG16, were employed, with VGG16
achieving the highest average part classification accuracy [126–128]. Furthermore, the
authors enhanced the industrial applicability of their workflow by integrating physics
simulation into the rendering process. In an industrial case study with 215 distinct parts,
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the part classification accuracies reached 99.04% for the top three predictions and 90.37%
for the top one.

Recently, Toorandaz et al. integrated a photodiode sensor with ML algorithms to
establish a robust framework for surface roughness classification [129]. Data were collected
by printing 42 parts with 21 distinct parameter combinations through LPBF. Several ML
algorithms were employed, including RF, gradient boosting, SVM, ANN, and LSTM.
They found that RF resulted in superior performance, achieving a weighted F1 score of
0.71. In another study, Wang et al. employed a CNN-based segmentation process. They
developed a porosity investigation strategy to examine porosity defects in AM products
using micro-computed tomography (micro-CT) [130,131]. The training data included
120 manually annotated CT slices, and the analysis revealed correlations between pore
size, pore sphericity, pore evolution, and the discovery of pore-free zones. Furthermore,
Zhang et al. proposed a novel feature-learning engineering framework for AM quality
monitoring [132]. Their approach integrated engineering knowledge with a convolutional
autoencoder and incorporated 3D neighborhood models to characterize spatiotemporal
variations in melt pools during AM processes.

Table 7. Some studies on supervised learning for quality detection in AM.

Applications ML Methods Data Collection

Surface quality classification [122] CNN with pre-trained
ResNet50 architecture

250 images taken by an Olympus
optical microscope

Surface deformation defect
detection [123] CNNs with different architectures 511 images taken before and 511 images

after the AM process

Failure detecting and grading [124] CNN with pre-trained
Inception-v3 architecture

5000 images captured during the
printing processes

Part recognition [125] CNN with three different
pre-trained models

A large dataset generated from
CAD models

Surface roughness classification [129] RF, ANN, SVM, and LSTM Singal data collected a photodiode sensor
during printing

Porosity defects investigation [130] Mask region-based CNN [131] 120 manually annotated CT slices

Melt pool anomaly characterization [132] Convolutional autoencoder 5000 melt-pool images from the in situ
sensing system

3.3. Process Modeling and Control

Gunasegaram et al. reviewed both conventional closed-loop control and ML-assisted
approaches in metal AM [133]. They highlighted that offline ML models could optimize
AM process parameters before the process begins, whereas online models can analyze
in situ sensory data to detect and diagnose defects in real-time. Additionally, they pro-
posed an ML-assisted control framework for managing defects and anomalies during AM.
Zhang et al. also reviewed process optimization and in situ monitoring techniques in LPBF
AM, with a particular focus on supervised learning methods [134]. ML tasks in their review
include melt pool characterization, mechanical property prediction, quality regression, and
classification, among others. Several recent works on applying ML to process modeling
and control are summarized in Table 8, with further details provided in this subsection.

To mitigate uncertainty in the mechanical properties and quality of parts produced
using fused filament fabrication (FFF), Wenzel et al. developed a DL method to enhance
the AM processing system’s reliability by optimizing input parameters and predicting
system responses [135]. Latin hypercube sampling was employed for experimental design
to explore the input feature space and generate data efficiently [136]. The DL framework
comprised an RNN and an ANN. The RNN was tasked with estimating a behavior vec-
tor based on the input parameters and past observations of the system, while the ANN
predicted the system responses. This approach facilitated the identification of significant
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input parameters crucial for establishing a reliable AM processing system. The principle of
PIML was integrated into this DL method [137]. Domain knowledge, expressed through
physical laws, was utilized to initialize neural networks to learn fundamental correlations
between features. This aspect was essential for the method’s applicability across different
FFF 3D printing systems. For practical implementation in mass production, the authors
addressed the controllability of print bed adhesion. Relevant domain knowledge, including
various measurements and datasets, was extracted from scientific literature and incorpo-
rated into the proposed neural networks [138]. A case study involved four 3D printers in a
temperature- and humidity-controlled environment. Four hundred experiments were de-
signed, resulting in 1273 print bed adhesion measurements, with 20% forming a testing set.
Compared to a statistical approach, the proposed method exhibited a significantly lower
root mean square error (RMSE), especially when limited measurements were available.

Modeling over-deposition is critical in controlling the laser metal deposition (LMD)
process to prevent additional materials from melting onto the substrate. Perani et al. devel-
oped an LSTM model to simulate over-deposition, focusing on nickel alloys with various
shapes deposited via LMD [139]. Data collected during and after deposition included
deposition head positions, laser activation signals, melt pool images, and deposited shapes.
After data fusion, several new input features were incorporated, such as deposition speed
and two variables representing the geometry of deposited shapes. Sequences of input
features for 20 deposition steps were fed into the LSTM to predict deposition height for the
next time step. The relative errors on the testing sets ranged from 6% to 11%. The results
underscored the importance of selecting simple geometries to construct the training set
for modeling the LMD process. The authors intended to utilize this model in closed-loop
control of deposition parameters during real-time processes, indicating its potential for
practical application in enhancing LMD processing control and efficiency.

Inyang-Udoh and colleagues developed a predictive geometry control framework
for jet-based AM 3D printing processes [140]. A key component of this learning and
control framework was a physics-guided data-driven model, which utilized a convolutional
recurrent neural network (convRNN) to forecast the height evolution of AM manufactured
parts across various scenarios [141]. The convRNN model parameters were determined by
training the network with data from a limited number of layers during printing. Notably,
the model could be represented in dual forms, where the layer droplet input pattern
became the network parameters, making the network architecture interpretable in physical
terms. This model was integrated into a feedforward control scheme, with experimental
findings demonstrating its superiority over state-of-the-art open-loop control methods for
3D printing processes. Furthermore, the researchers developed an online learning algorithm
for the convRNN model and implemented it into a feedback control system. They also
conducted stability analyses of the developed model predictive control framework using
Lyapunov theorems. The physics-guided principle allowed minimal computational effort
to update the convRNN model while effectively controlling the printing system in practical
applications. Additionally, the online learning and feedback control strategy mitigated
process uncertainties and enhanced the geometric accuracy of the printed parts.

Huang et al. developed a novel method named multi-fidelity point-cloud neural
network (MF PointNN) for surrogate modeling of the melt pool, which is critical for UQ
and quality control in metallic AM processes, such as electron beam AM [142]. They
generated a high-fidelity (HF) dataset comprising 280 data points using finite element
(FE) modeling and simulation under uncertainty. The input features included controllable
and uncontrollable parameters, while the output targets represented the thermal field
response. Controllable parameters included preheating temperature, electron beam power,
and beam velocity. Uncertainty stemmed from uncontrolled parameters treated as random
variables, such as the absorption efficiency of beam power and material and thermal
properties of titanium alloy powder, including thermal conductivity, specific heat capacity,
and density. Moreover, they derived a low-fidelity (LF) dataset of 280 data points from FE
simulations with coarser meshes than those used for generating HF data. In the proposed



Future Internet 2024, 16, 419 17 of 30

MF PointNN framework, an LF PointNN was initially trained based on the LF training
samples. Subsequently, by freezing specific network coefficients of the LF PointNN, a
new PointNN was fine-tuned using the HF training data. The efficacy of this method
was evaluated by comparing predictions with various methods, including FE analysis,
surrogate modeling using kriging and singular value decomposition (SVD), and a standard
MF modeling approach using kriging and SVD [143]. The results demonstrated that
the proposed method enhanced the prediction performance of 3D thermal fields while
utilizing a limited number of training data samples, thereby reducing the computation cost
associated with FE analysis.

Yu and co-workers investigated the stability of the cladding layer’s formation during
the wire arc additive manufacturing (WAAM) process, significantly influencing the final
dimensional precision of WAAM weldments [144]. The experiments utilized the cold metal
transfer process, examining four different welding gun offsets and a no-offset setup. Each
experiment generates a dataset of 750 samples comprising temperature distribution images
on the weldment sidewall as inputs. The objective was to develop a DL model for cladding
layer offset recognition, constituting a multi-class classification problem. The authors
employed a CNN, integrating identity maps to facilitate the training of exceptionally deep
networks. The overall detection accuracy achieved an impressive 99.84%.

Most recently, Xiao et al. utilized experimental data from the National Institute of
Standards and Technology (NIST) to develop an ML model that predicts the melt pool for
future parts [145]. They employed a CNN to process raw melt pool images and extract
high-quality data, which was then used to train an MLP in creating a data-driven melt
pool model. This model can be applied to enable reliable melt pool-guided optimization in
AM processes and outperform the existing neighboring effect modeling (NBEM) method
regarding average relative error in predicting melt pool size. Wang et al. applied several
ML models to predict compositional changes during the AM process [146], using an
explainable AI technique to reveal the relationships between process conditions and these
compositional changes. Additionally, Kozjiek et al. developed an efficient tool to predict
melt pool temperature variations [147]. They defined physics-based features and collected
17,892 data samples from a two-color coaxial photodiode system, employing RF and
XGBoost, of which XGBoost achieved an average coefficient of determination score of 0.65.

Table 8. Summary of reviewed papers on supervised learning for process modeling and control
in AM.

Applications AM
Techniques

ML/Control
Methods Data Collection

Process parameter
optimization [135] FFF 1 RNN, ANN, and PIML 1273 print bed adhesion

measurements from experiments

Over-deposition
modeling [139] LMD LSTM Data collected during the

deposition of 36 tracks

Predictive geometry
control [140] Jet-based AM convRNN 2 and MPC 3 Online learning

Melt pool modeling [142] EBM MF PointNN 4 Data generated from finite element
simulations

Cladding layer offset
recognition [144] WAAM 5 CNN 750 temperature distribution

images from experiments

Melt pool prediction [145] Metal AM CNN and MLP Experimental data from NIST

Compositional change
prediction [146] LDED ANN, RF, SVM, etc. 117 ferromanganese specimens

Melt pool temperature
variation prediction [147] LPBF RF and XGBoost 17,892 data samples collected from

a photodiode system
1 FFF: laser-directed energy deposition; 2 convRNN: convolutional recurrent neural network; 3 MPC: model predictive
control; 4 MF PointNN: multi-fidelity point-cloud neural network; 5 WAAM: wire arc additive manufacturing.
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4. Applications of Semi-Supervised Learning in Additive Manufacturing

Manivannan introduced a novel semi-supervised DL approach for automatic quality
inspection in AM processes, including selective laser sintering (SLS) [148]. Unlike other
automated quality inspection systems that rely solely on fully supervised learning and
require large amounts of labeled data or images, the proposed approach harnesses labeled
and unlabeled data, thereby reducing manual labeling efforts. In this approach, a CNN
was utilized, and the loss function comprised the cross-entropy of the labeled images,
the cross-entropy of the pseudo-labeled images (where unlabeled images were assumed
to have true labels), and an entropy regularization term representing the probabilities of
unlabeled images belonging to the true class [149]. The training procedure involved three
steps. Initially, only labeled data were fed into the model, and the CNN weights and biases
were iteratively adjusted to minimize the loss function. Next, the output probability of
each unlabeled data was predicted, and a margin criterion was applied to assign a weight
to the data. Finally, combining labeled data and weighted unlabeled data formed a new
training set to update the CNN model. This approach was applied to a dataset for SLS
powder bed defect detection. The results demonstrated excellent model performance with
an accuracy of 98%, comparable to other state-of-the-art approaches, despite using only 25%
of the labeled training data samples [150]. The author successfully applied the proposed
approach to other publicly available defect inspection datasets, highlighting its flexible and
extensive applicability [151–154].

Numerous supervised learning endeavors have been undertaken to efficiently mon-
itor the quality of products produced through LPBF, a metal AM technique [155–157].
Nguyen et al. proposed a semi-supervised ML approach to minimize the effort required
for labeling training data samples to detect overheating in LPBF [158,159]. For data col-
lection, they utilized a digital camera to capture layer-by-layer monitoring images of the
powder bed following laser scanning or powder recoating. The images captured after
laser scanning were employed to train the ML model. This model, which featured the
DeepLab v3 + network with Xception as its backbone, was designed to classify characteris-
tic appearances at the pixel level. Data augmentation techniques were applied to prevent
overfitting and enhance the model’s robustness. Subsequently, the classified appearances
were correlated with post-process characteristics such as surface roughness, morphology,
and tensile strength to ascertain the quality of LPBF products, which were categorized as
anomaly-free, exhibiting a lack of fusion, or overheated. The results demonstrated that
the trained ML model possessed the capability for defect detection and quality prediction
across various geometries of products. The authors suggested extending this approach to
other 3D printing processes. Additionally, integrating thermal history data and employ-
ing RNNs could further enhance the model’s ability to predict quality and confirm the
occurrence of overheated defects.

Several studies have focused on anomaly detection during AM processes using ML
techniques to anticipate flaws or porosity in products [160–163]. However, many of these
approaches overlooked the dynamic nature of the manufacturing process. In a novel
approach, Larsen and Hooper proposed a methodology to construct a data-driven model
of the LPBF process dynamics, leveraging high-speed cameras co-axial with the laser
to capture real-time process signatures during material fusion [164]. By considering the
process dynamics, they framed the problem as utilizing sequences of historical observations
(i.e., images), process system states, and control inputs to predict residual error between
the predicted and observed states at the current time, termed the dynamic signature.
This method involved multiple models. An autoregressive model with additional inputs
was employed to approximate the first-order Markov chain governing the evolution of
the AM process. A variational autoencoder was also utilized to extract latent variables
associated with the images. Principal component analysis was then applied to reduce the
dimensionality of these latent variables. Subsequently, a variational RNN was developed
to process sequence data from previous time steps and predict the current state. Anomaly
detection was performed by computing Kullback–Leibler divergence at each time step to
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assess accumulated errors. The effectiveness of this approach was evaluated across various
levels of porosity in AM products, achieving an impressive receiver operating characteristic
area under a curve of up to 0.999.

In a separate study, Pandiyan et al. proposed a semi-supervised approach, utilizing
ML algorithms exclusively with data from the defect-free regime of LPBF processes to
predict anomalies [165]. The experiments involved creating overlapping lines to contract
a defect-free cube of nickel-based super alloy. Various combinations of laser power and
scanning velocity were tested to induce different LPBF process regimes, encompassing
phenomena such as balling, lack of fusion pores, conduction mode, and keyhole pores.
Data acquisition was facilitated using acoustic sensors, which normalized acoustic emission
signals. Two generative CNN architectures were developed in this work. One architecture
utilized a variational autoencoder, a commonly employed technique for tasks such as
image denoising, dimensionality reduction, feature extraction, image generation, machine
translation, and anomaly detection [166–168]. Typically, the encoder and decoder networks
can efficiently learn the data representation densely and reconstruct the original input.
The other architecture was based on a GAN, consisting of a generative network and a
discriminative network, designed to generate new distribution samples from the train-
ing set [169]. Both methods yielded impressive accuracies of 96% and 97% for anomaly
detection, respectively.

Mattera et al. employed a semi-supervised learning approach to enable real-time
anomaly detection during WAAM [170]. Their study used established process parameters
to guide material deposition and collected signal data from sensors monitoring welding
current and voltage. To distinguish between normal and abnormal operations, they im-
plemented a one-class classification model, a subtype of semi-supervised learning. This
model was trained exclusively on “good” data, enabling it to learn the typical patterns
of the process. Any significant deviation from these learned patterns was flagged as an
anomaly, indicating potential issues in the AM process. Compared to traditional anomaly
detection methods, their approach improved detection performance by 30%, demonstrating
its robustness in identifying real-time irregularities during WAAM operations. In another
study, Lui et al. proposed a self-supervised learning model designed to inspect and assess
party quality in AM processes with minimal labeled data [171]. Their approach centered
around image feature extraction, focusing on capturing defect-related features within the
AM process images. These extracted features were then used to generate pseudo-labels,
allowing the model to undergo self-supervised learning and adapt to defect identification
without extensive labeled datasets.

5. Applications of Reinforcement Learning in Additive Manufacturing

Close-loop control systems have been developed to regulate the AM processes, al-
lowing for adjusting process parameters during production to ensure quality control. For
instance, Wang et al. [172] designed a high-speed thermal sensor and a proportional–
integral–derivative (PID) controller, implementing them on an LPBF testbed. They used
thermal emission, measured by the thermal sensor, as feedback to the controller because
it correlated with the metal pool size. The control output was an analog voltage signal
representing laser power. The experiments demonstrated that this system significantly
improved printing quality, assessed through microscopic imaging and 3D scanning. As
an important subset of ML, RL offers advantages for handling optimization and control
problems, particularly in the context of quality control and scheduling optimization of
AM processes.

5.1. Quality Control

In recent years, researchers have increasingly focused on using RL to optimize process
parameters in AM processes. Table 9 summarizes several recent works, with further details
provided below. Dharmawan et al. proposed a model-based RL and correction framework
to control multi-layer and multi-bead (MLMB) deposition in robotic WAAM [173]. The
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model-based RL approach in this study was utilized to learn an optimal relationship
between process inputs and print outputs. To establish the transition from one state to
another after taking action (i.e., changing process inputs), the authors collected a dataset
along the print path by discretizing it into waypoints with local states and actions. A
Gaussian process regression model was then trained as the kriging dynamics function.
Additionally, the quality of the layer’s surface was periodically assessed, and the necessary
corrections were made if needed. The authors experimentally demonstrated and evaluated
this learning-correction framework on a robotic WAAM system, testing it with bronze and
stainless steel materials. Results showed that the standard deviation of the surface height
of each printed layer was significantly reduced compared to using single-bead parameters
during the WAAM processes.

Knaak et al. proposed a novel analysis approach combining CNN and RL methods to
monitor product quality in LPBF AM processes [174]. They employed image-based surface
roughness estimation, acquiring high-dynamic-range optical images of the product’s top
surfaces. These images were processed through CNNs to classify surface roughness and
defective areas into five categories, ranging from very low roughness to surface distortion.
Transfer learning was utilized to enhance the ML model’s performance. Subsequently, a
model-based RL method was used to train an agent to learn the optimal policy for selecting
the best LPBF process parameters based on a given state during the AM process. This study
employed an MDP framework, where the applied laser power, scan velocity, mean surface
roughness, and percentage of the defective area represented an MDP state. The action space
consisted of process parameters, specifically laser power and scan velocity combinations
to be applied in the next layer. A random forest algorithm was also used to approximate
system dynamics, serving as the transition probability function in this MDP framework for
LPBF processes. The agent received rewards based on the percentage of surface defects at
each state, with a higher positive reward given for a smaller defective surface area. The
optimal policy was learned to maximize accumulated rewards to ensure product quality.

Ogoke and Farimani presented a DRL framework to derive a versatile control policy
for minimizing the likelihood of melting defects during LPBF processes [175]. In this
study, they employed a model-free and policy-based RL method, PPO, in which the policy
was directly optimized. The state space was defined by sequential observations of the
temperature field, including nine heat maps of the local temperature distribution around
the laser’s current position. These heat maps were numerically encoded and fed into a
fully connected neural network as the policy network to predict an action. The action space
comprised various velocities or powers of the laser, while the reward was defined as the
absolute error between the target melt depth and the current depth. The algorithm was
trained on a simulator, acting as a virtual environment for the agent to interact in. The
simulation involved modeling the heat conduction of a moving heat source, approximating
the laser, within a rectangular domain. Assumptions included considering only conduction
models of heat transfer, assuming thermal properties to be temperature-independent, and
treating the powder bed as a solid continuum. The simulation results indicated that the
errors could be reduced by up to 91%. Additionally, the authors discussed the potential
for extending this method to experimental applications through the NIST AM metrology
testbed [176].

Recently, Shi et al. developed another DRL framework to enhance the uniform tem-
perature distribution during the LDED of nickel-based alloys [177]. They first created a fast
and efficient temperature simulation model of the deposition process, reducing computa-
tional costs while maintaining AM processing speed. This simulation model assumed a
straight-line movement of the laser beam and employed the Rosenthal equation to evaluate
temperatures at different sampling points on both sides of the product [178]. In their RL
framework, the continuous state space was represented by the substrate’s thermal distri-
bution, the sample’s thermal distribution, and material properties. The available actions
included varying laser power, scanning speed, the deposition axis, and the deposition
direction. Additionally, the transition probabilities were determined by the temperature
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simulation model. They employed the PPO algorithm, a policy-based RL method. Specif-
ically, a state, presented by a three-dimensional tensor, was fed into a CNN for feature
extraction before applying critic and actor networks to update the policy. Notably, after the
optimal policy was learned through simulations, it was evaluated in an LDED processing
environment. The results demonstrated that the derived policy improved temperature
uniformity in the products, thereby enhancing their hardness.

Dharmadhikari et al. introduced an RL methodology transformed into an optimization
problem for metal AM processes to ensure repeatability, control material microstructure,
and minimize product defects [179]. They proposed an off-policy RL framework based on
Q-learning, a value-based RL method, for the agent to learn optimal process parameters,
which included combinations of laser power and scan velocity to maintain a steady melt
pool depth. Specifically, the state was represented by discrete process parameters, and the
actions were the parameter changes. A Q-table was maintained and updated during the
learning since both state and action paces were finite. A digital twin, developed based
on the Eagar–Tsai formulation, emulated the LDED environment with which the agent
interacted [180]. The model calibration was conducted experimentally on an LDED system
using various laser powers and scan velocities for single-track and single-layer deposits
of SS316L powder on an SS304 substrate. The experimentally derived process map also
served as a validation tool to evaluate the optimal process parameters learned from the RL
framework. The authors investigated the effects of various hyperparameters on the learning
process, including domain discretization, the exploration-exploitation tradeoff parameter,
discount factor, learning rate, and number of episodes. This study emphasized RL as
an alternative approach for process parameter optimization, particularly when system
information or large datasets were unavailable.

Table 9. Some studies on reinforcement learning for quality control in AM.

Applications AM Processes RL Methods

MLMB 1 deposition
control [173]

WAAM Model-based RL methods

Process optimization for
quality improvement [174] LPBF Model-based RL methods

Melting defect
minimization [175] LPBF PPO (model-free

and policy-based)

Temperature uniformity
improvement [177] LDED PPO (model-free

and policy-based)

Product defect
minimization [179] LDED Q-learning (model-free

and value-based)

Defect mitigation
optimization [181] FFF G-learning (model-free)

Process parameter
optimization [182] LPBF Q-learning (model-free

and value-based)

Process control
optimization [183] WAAM Value iteration and DDPG 2

1 MLMB: multi-layer and multi-bead; 2 DDPG: deep deterministic policy gradient.

In another pioneering work, Chung et al. employed a model-free RL method to
achieve optimal defect mitigation strategies for quality assurance during FFF [181]. Their
approach falls into the category of online learning-based methods, designed to update
the model incrementally as new data becomes available rather than training it in batch
mode with a pre-provided and fixed dataset. However, the limited number of samples
for shape deviation during the AM process posed a challenge for the practical utilization
of online RL. To address this challenge, the authors proposed a transfer learning-based
solution called continual G-learning aimed at detecting and mitigating new defects during
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printing while reducing the need for extensive training samples. Specifically, continual
G-learning integrated both offline and online prior knowledge. Offline prior knowledge
was obtained from literature or previously experimental datasets, while online knowledge
was acquired during printing. Additionally, both the reward incurred in the AM process
and the information cost were considered in the expected return, which was maximized as
the objective. The authors designed an experimental platform to evaluate the performance
of the proposed RL framework. The results demonstrated that this method significantly
improved online defect mitigation in the AM process.

Mohamed et al. proposed a novel approach to optimize process parameters in metal
AM processes [182]. The environmental state variables in their method included laser
power, scan speed, and hatch spacing. They applied Q-learning to identify optimal pa-
rameter combinations and validated their approach through experiments on the LPBF of
aluminum alloy. The results highlighted the robustness of the predicted optimal parameters,
underscoring the potential of this approach for practical applications. Similarly, Mattera
et al. utilized a policy-based RL approach, especially deep deterministic policy gradient
(DDPG), to develop a control policy for AM processes [183]. This policy was successfully
tested on a WAAM simulator, which closely approximated a realistic AM environment.

5.2. Scheduling

Wang et al. reviewed the applications of RL in manufacturing scheduling, covering
areas such as job shop scheduling, flow shop scheduling, parallel machine scheduling, and
single machine scheduling [184]. They highlighted the importance of carefully designing
proper action and state spaces and accurately describing the scheduling environment.
Designed actions could take the form of heuristics, job sequences, or scheduled operators,
while state variables might encompass various types of production information. When
framing the scheduling problem as a graph, the state could be defined in terms of the
conditions of nodes and edges within the graph. They also discussed challenges across
problem, algorithm, and application domains, emphasizing the complexity and intricacies
involved in applying RL to manufacturing scheduling.

Specifically, RL has also been applied to optimize the AM scheduling of multiple ma-
chines. Alicastro et al. proposed an RL-iterated local search (ILS) meta-heuristic to achieve
optimal solutions with low computational costs [185]. The scheduling problem considered
in this study was based on the SLM process to increase the utilization of machines and
decrease the average cost of setup and post-processing operations. The problem definition
was similar to that of batch processing machine (BPM) problems. However, in an AM
scheduling problem, the processing time of a job depends not only on the total volume of
the parts but also on the maximum heights of those parts. The proposed ILS algorithm was
based on genetic algorithms with the variable neighborhood search, using a Q-learning
approach as the local search to improve solution performance. Such a local search could
effectively and efficiently choose the best neighborhood to explore for optimal solutions.
The computational experiments were conducted to illustrate that the developed method
reached optimal solutions faster than other approaches, especially for large productions.

Ying and Lin recently investigated two-stage assembly additive manufacturing ma-
chine scheduling problems (AMMSPs), where multiple parts were produced through job
batches in the production stage before being assembled into the final products in the assem-
bly stage [186]. The authors accounted for different specifications of each part and adopted
the mixed-integer linear programming (MILP) model to define the AMMSPs as optimiza-
tion problems [187]. Subsequently, they proposed an RL meta-heuristic, specifically the
iterated epsilon-greedy (IEG) algorithm, to balance exploration and exploitation during the
scheduling optimization. The goal of the induced optimal scheduling was to reduce the
makespan by placing parts in appropriate batches during the production stage and shorten-
ing the waiting time for product assembly. To demonstrate the performance of the proposed
framework, they utilized the iterated greedy (IG) algorithm as a baseline on a benchmark
problem, with numerical experiments and data described in previous works [188]. The
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results underscored that the proposed IEG algorithm was effective, efficient, and robust in
solving AM scheduling problems.

Sun et al. formulated dynamic scheduling problems as MDPs, incorporating batch
processing, random order, and machine eligibility constraints [189]. They proposed an out-
of-order enabled dueling deep Q-Network (O3-DDQN) approach with a reward function
closely aligned with minimizing total tardiness. Experimental results demonstrated that
this approach outperformed both classical scheduling rules and state-of-the-art learning
methods. In another study, Yang et al. applied DRL methods for multi-laser scanning
planning [190]. The objective was to maximize fabrication efficiency while maintaining the
quality of AM processes. Two case studies showed that the DRL methods achieved better
scheduling performance than baseline methods.

6. Conclusions and Outlooks

This review synthesizes recent advances in ML applications in AM, focusing on chal-
lenges like high data demands, limited adaptability of traditional methods, and the need
for improved quality control and process optimization. AM has historically relied on super-
vised learning and offline heuristic methods. Still, these approaches are often constrained
by resource-intensive data labeling, limited generalization, and insufficient responsiveness
to diverse manufacturing scenarios. Semi-supervised learning offers promising potential
to address these issues by reducing the dependency on extensive labeled datasets and
enhancing model generalization. This technique is particularly relevant to AM, where
labeled data can be difficult and costly to obtain. Semi-supervised learning leverages both
labeled and unlabeled data, accelerating model development and enabling it to account for
a broader range of production conditions, ultimately reducing costs and time requirements
in AM applications.

RL presents another critical advancement for AM by enabling real-time process control
and adaptability. Unlike traditional offline optimization, RL dynamically adjusts process
parameters based on immediate feedback from the AM environment. This capability
allows for the continuous improvement of manufacturing outcomes, leading to increased
efficiency, reduced defect rates, and enhanced flexibility. The integration of RL into AM
workflows could revolutionize the field by fostering production processes that are highly
responsive, adaptive, and capable of handling complex scenarios.

In conclusion, exploring advanced ML techniques, particularly semi-supervised learn-
ing and reinforcement learning, represents a transformative step toward addressing key
challenges in AM. These methods stand to enhance defect detection, quality assurance,
process control, and optimization while also pushing the boundaries of sustainable, high-
performance manufacturing. Future research and development in this area could lead to
scalable solutions, making AM more efficient and accessible across diverse industries.
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