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Abstract: Nowadays, Edge Intelligence has seen unprecedented growth in most of our daily life
applications. Traditionally, most applications required significant efforts into data collection for
data-driven analytics, raising privacy concerns. The proliferation of specialized hardware on sensors,
wearable, mobile, and IoT devices has led to the growth of Edge Intelligence, which has become
an integral part of the development cycle of most modern applications. However, scalability issues
hinder their wide-scale adoption. We aim to focus on these challenges and propose a scalable
decentralized edge intelligence framework. Therefore, we analyze and empirically evaluate the
challenges of existing methods, and design an architecture that overcomes these challenges. The
proposed approach is client-driven and model-centric, allowing models to be shared between entities
in a scalable fashion. We conduct experiments over various benchmarks to show that the proposed
approach presents an efficient alternative to the existing baseline method, and it can be a viable
solution to scale edge intelligence.

Keywords: collaborative computing; distributed systems; data-driven intelligence; machine learning;
model distillation

1. Introduction

Networks are experiencing massive data traffic increases due to the digital revolu-
tion in different industries, smart cities, e-commerce, and social platforms. Furthermore,
enormous volumes of data are constantly generated with the growth of Edge-centric
applications, e.g., the Internet of Things (IoT), sensors, wearables, and mobile device de-
ployments. Thus, advanced analytics, which can analyze this voluminous data arising in
complex scenarios in a decentralized manner, became a fundamental back-end technology
of user products and applications and the primary income source for most enterprises [1].

These data-driven analytics rely on the data produced by edge devices for training
Artificial Intelligence (AI) and Machine Learning (ML) models [1–4]. Historically, data
were gathered and kept in the cloud, where analytics and intelligence are located. However,
with the advances and abundance of Edge Intelligent Devices, there has been a growing
tendency to keep the data at the source/edge for better security, privacy, and cost-effective
data transfer [2,5]. This is especially motivated by recent security and privacy concerns
over collecting or storing sensitive user information [6].

To this end, Edge AI has emerged as a paradigm that supports the data-driven appli-
cations in IoT environments to train AI/ML models via distributed learning coordinated
via a central server or peer-to-peer communications between the distributed clients with-
out clients needing to share their private data [6]. Accordingly, each client trains a local
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model with their own private data, and leverages available communication channels to
securely exchange the model parameters (or updates) to create a common (or global) model.
Since AI/ML models perform better with larger training data, it is anticipated that the
global model would have better generalization abilities compared to the local model of the
clients [7].

Several methods have evolved under the Edge AI paradigm to accomplish decentral-
ized learning objectives, such as 1. Federated Learning (FL) [8], which involves clients that
conduct training of local models on their own devices, and then they engage in sending
model updates to the server, which aggregates these models to produce a global model
and takes care of coordinating the FL rounds; 2. Decentralized Learning (DL) [9], which
leverages peer-to-peer coordination for the model exchange among the edge devices; and 3.
Transfer Learning (TL) [10], which aims to share the knowledge between different models
of the same or different tasks.

These approaches are made possible by harnessing the advances in the AI/ML ac-
celerators embedded in Edge devices [11] and the high-throughput and low-latency 5G
and 6G technologies [12,13]. Nonetheless, several obstacles arise, diminishing the efficacy
of these technologies and rendering them unsuitable for large-scale decentralized Edge
AI. Among the key challenges for these approaches are the lack of ability to maintain high
statistical and system efficiency due to the highly heterogeneous devices, configurations,
and environments, and the strict synchronization requirements. This results in models with
low quality and long training time and hinders the existing approaches from scaling with a
large number of learners [11,14]. It should come as no surprise that low-quality models can
be quite expensive for various companies and organizations. For example, only recently,
the real estate company Zillow wrote down around USD 304M worth of inventory owing
to the low accuracy of its Zestimate AI algorithm [15]. Modern data-driven intelligence
needs systems that can produce accurate and timely models in a scalable manner [6,11].

We highlight the fundamental issues existing centralized and decentralized approaches
face and propose an innovative architectural design for decentralized collaborative learning.
In this view, the trained AI/ML models are treated as a commodity that can be exchanged
between learning entities to meet global or personal objectives. This view resembles
most online delivery services like Uber (passengers) or Deliveroo (food). For example,
Uber’s task is merely connecting the passengers wanting to be transported from point A to
point B with the appropriate drivers. Similarly, the proposed idea facilitates the learning
entities’ discovery and exchange of the trained models [16]. In this work, we make the
following contributions:

• We analyze centralized, federated, and decentralized methods and show their drawbacks.
• We propose a novel design for transforming the learning task into a collaborative

knowledge transfer system that allows the learning parties to share (or trade) the
trained models based on mutual benefits or needs.

• We present the design of a Model Discovery and Distillation (MDD) service and show its
efficacy in improving learning performance. (MDD is open-sourced and available in the
following link: https://github.com/ahmedcs/MDD Accessed on 5 November 2024).

• We seize an opportunity to decouple a common model’s training task from the models’
exchange task. This would facilitate the exchange of models among the best learning
parties to improve their model performance collaboratively.

This approach is anticipated to significantly improve AI/ML-based analytics of data
generated by various connected devices and sensors that are now an integral part of
our daily life applications. We hope this work will be a stepping stone towards a scal-
able and efficient design for collaborative learning between decentralized entities in the
IoT environments.

In the remainder of this work, we give a background on the existing learning methods
in Section 3. We then discuss the main limitations of existing paradigms and motivate our
proposed design in Section 4. We discuss the proposed architecture design in Section 5. We
then present the evaluation results in Section 6. Finally, we conclude this paper in Section 7.

https://github.com/ahmedcs/MDD
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2. Related Work

The field of decentralized learning and model-sharing has explored various ap-
proaches and methods to overcome the challenges and limitations of traditional learning
paradigms [8,11].

FL is often seen as a machine learning paradigm where a central server distributes the
training process to a group of decentralized clients. These clients then train a shared global
model using their individual datasets, which are never shared [8,14,17]. The FL method
has been utilized to improve the predictive accuracy of virtual keyboards, among other
applications [7,18].

Several research papers have focused on Federated Learning (FL), examining its
advances, limitations, and the need for new designs and approaches [7,17,19]. Other
studies have investigated the impact of heterogeneity on model accuracy and performance
in decentralized learning scenarios [14,20]. Additionally, research has been conducted on
communication efficiency, privacy preservation, collaboration, and knowledge transfer in
decentralized learning systems [10,21–23].

One key approach for transfer learning is knowledge distillation (KD). Beyond model
compression, knowledge distillation’s applicability extends to scenarios where teacher and
student models are pre-trained on different data subsets. This application of knowledge
distillation aims to consolidate the distinct knowledge each model possesses, a concept
that is increasingly relevant in decentralized collaborative learning [24,25] and Federated
Learning [25–27].

The proposed Model Discovery and Distillation (MDD) module in the current research
builds upon these works to improve efficiency, scalability, privacy, collaboration, and
knowledge transfer among learning entities.

3. Background

We present the various methodologies traditionally used for training AI/ML models
on big data generated from large-scale IoT, sensors, and mobile devices. Figure 1 depicts the
common four approaches for learning largely decentralized data. We discuss them as follows:

(a) Centralized Learning (CL)—Figure 1a: In most cases, the end devices continually
feed the generated data into the servers running in the cloud, where they are kept to be
processed and analyzed later. These data are evaluated to identify properties that will
assist in training AI and ML models using the cloud. High-end servers are used to train
these models in the cloud providers’ data centers. ML-as-a-service is becoming popular for
training models on large amounts of data at scale provided by various cloud providers,
such as Google Cloud, Azure, and AWS. Unfortunately, centralized learning (CL) is seeing
weaker adoption due to the gathering of user data, which poses serious threats to users’
personal information and privacy [28,29]. Further, the scalability is impeded due to high
communication costs associated with data transfer [7,23]. Even though various works have
aimed at reducing the communication overhead in the context of distributed data-parallel
learning [30], various challenges remain unsolved [11].

(b) Federated Learning (FL)—Figure 1b: In the FL paradigm, the clients are users with end
devices (e.g., mobile, IoT, or sensors) using apps generating the data. The client devices
maintain the data and never share it with others. So, the clients train local models and
engage with the FL server to create a common model. The server assists the clients with
the task of aggregating the clients’ models and coordinating the FL rounds [6–8]. The
training procedure consists of a series of rounds managed by the server until a specific
goal is achieved (e.g., target accuracy). In each cycle, the server selects a small set of clients
for participating in the FL round who perform training of the model on their local data
and share their new models to create a new global model. The server plays a crucial task
in performing this aggregation step. However, this synchronous update step results in
issues related to synchronization, dependability, and communication costs [11]. When a
training round begins, available clients log in and express their desire to participate with
the server. Typically, a client is available if it is fully connected (through IEEE 802.11/WiFi
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network, for instance), has a power source, and is idle [7]. Some recent works have explored
battery-powered scenarios [20].

The server then executes a selection algorithm to choose a subset of the large client
population. Then, the server sends the selected clients the FL task (i.e., the ML model and
hyper-parameter configurations). All the clients run the same number of optimization
steps determined by the FL task configuration. Then, the clients upload their new models
to the server. The FL server then combines the client models to generate a new global
model, which is check-pointed to the server’s storage [7]. However, because of the non-IID
distribution of the data, FL tends to be less efficient than CL due to the risk of divergence
and lower model accuracy and the role of malicious clients aiming to diverge the model [28].

(c) Decentralized Learning (DL)—Figure 1c: DL is an alternative way to build generic
models based on decentralized data in edge-device environments [9]. In DL, the learners
use peer-to-peer communication to coordinate their training of a model tailored to their
shared tasks [23]. Thus, device groups can train a shared model while maintaining the data
of individual devices. The devices must always be present to repeat the training procedure
in lockstep, and stragglers slow down the training because there is no central coordination.
As a result, scalability and efficiency are impeded, since devices cannot train independently
of slow learners [11].

(d) Transfer Learning (TL)—Figure 1d: Transfer Learning is an emerging ML method that
transfers information from one domain to another. TL relies on previously learned informa-
tion that ML algorithms can re-purpose, according to [31]. Additionally, TL supports using
IID data when training data are insufficient [31]. And TL can maintain efficiency because
it no longer relies on IID data availability. However, in TL, scalability is hampered as it
is not easy to find and choose which model to use for the transfer as there is a large pool
of models to choose from [10,22]. It is also challenging to perform scalable and secure TL
as it requires active participation over secure channels between the two parties and their
data during transfer learning (especially in IoT scenarios where data involves sensitive
information) [6,31].

Cloud
Services

Training Server

(a) Centralized 
Learning

User Data Model
Data Store

(c) Decentralized 
Learning

Aggregation Server

(b) Federated 
Learning

(d) Transfer
Learning

Knowledge

Knowledge

Figure 1. Comparison of the existing traditional learning paradigms. (a) Centralized Learning in-
volves data collection and then training. (b) Federated Learning involves clients training local models
and aggregating them to a global model via a server. (c) Decentralized Learning involves clients
collaboratively training on a common model via peer-to-peer exchange and coordination. (d) Transfer
Learning involves knowledge within models being used to train other models via distillation.
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4. Challenges and Motivation

We discussed traditional learning paradigms in the previous section, and analyzed their
primary contrasts. Now, we focus on the significant difficulties presented by these paradigms,
which lead to inefficient learning, limited scalability, or privacy concerns [6,11,28].

In Table 1, we qualitatively compare the existing approaches over efficiency, scalability,
and privacy metrics. Efficiency refers to the ability of a mechanism to achieve good accuracy
(or convergence) in a short time. Scalability refers to the ability of a scheme to scale the
learning process over a larger number of clients with minimal costs. Privacy refers to the
ability of a method to maintain or help enforce the privacy preservation of the client’s data.
Regarding efficiency, methods with greater control over data distribution (e.g., centralized)
would result in model convergence in a short time [19]. On the other hand, methods that
can coordinate the operations for many participants (e.g., federated) would result in better
abilities for scale [21]. Regarding privacy, methods that keep the user’s data private without
sharing it (e.g., decentralized or federated) would result in better privacy guarantees [2].

Table 1. Comparison of existing approaches.

Method Efficiency Scalability Privacy

Centralized Learning High Medium Low

Federated Learning Low Medium High

Decentralized Learning Low Low High

Transfer Learning Medium Low Medium

While current centralized methods are the most efficient (due to the lack of non-IID
data distribution problems), they are not desirable due to the non-existent or low privacy
guarantees. The decentralized and federated methods overcome this issue by providing
high privacy guarantees (due to the non-sharing of the data), but they fail to provide
satisfactory convergence results quickly. Transfer Learning provides a good comprise, but
it typically fails to scale well with large scenarios.

Unfortunately, the current paradigms, such as federated, decentralized, and transfer
learning, are not efficient or scalable enough to meet the growing demand and adoption of
decentralized services and applications [11]. One of the detrimental challenges that the face
of the traditional paradigms, which hinders efficiency and scalability, is the heterogeneity
of the users and learning environment [6,7,11]. When training on decentralized parties, the
common types of heterogeneity can be one or a combination of:

• Data: non-uniform data points of the learners in number, type, and distribution.
• Device: a diverse set of device hardware configurations and communication network

settings.
• Behavioral: dynamic participation availability driven by learners’ behavior.

We find that heterogeneity, regardless of type, can significantly impact the model
quality (as well as fairness), and cause model divergence in the worst case [14]. In Section 6,
we support this with experiments that cover many scenarios on five different benchmarks
(i.e., models and datasets) and large populations of thousands of users [14].

Since heterogeneity is endemic to decentralized approaches, mitigating its impact on
the performance of decentralized methods is desirable. Hence, we identify a pressing need
to manage, process and analyze the increasing amount of decentralized data generated by
collaborative parties to support the growth of ML and data-driven applications [7,9,11,13].
We seize an opportunity from the proliferation of connected devices and edge computing,
which create abundant data at the network’s edge. Regardless, there is a lack of frameworks
that can do so efficiently, at a low cost, and with fast training time, while observing privacy
requirements. Without questions, any centralized approach that collects user data becomes
infeasible. Nowadays, it is widely accepted that data are processed locally on edge devices,
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and models will be trained using collaborative approaches to decentralized data. This
will be the key driver for high-quality, personalized, and intelligent services for a cus-
tomized user experience, including personalized healthcare, gaming, and recommendation
services [1,11,13]. These forms of decentralized learning must protect data privacy and
efficiently use the intelligence and computational resources available at the edge.

Furthermore, practical deployment aspects such as heterogeneity, communication
costs, coordination, synchronization, and availability to participate in training are all factors
that either cause a hindrance to the scalability, slow down the FL rounds, or impact the
overall model performance (i.e., generalization) [11,14,17]. As a side effect, when training
is not sufficiently fast, the models can not adapt to localized shifts in data trends [11].
Therefore, addressing the above concerns guided our design of the following architecture.

5. The Proposed Architecture

This work addresses the following central question: What would be the architectural
design for allowing scalable collaborative learning over distributed data? We position
this work as a call for architectural designs that can:

• Efficiently enable various types of decentralized training between learning parties;
• Securely store a representation of the models in vaults, which ensure only authorized

access to clients’ models;
• Develop scalable model discovery methods by providing a distributed service to resolve

clients’ model requests by finding the best models matching their search criteria.

Next, we will discuss a potential design for a decentralized architecture that aims to
capture the essence of the aforementioned goals and objectives.

The proposed architecture is presented in Figure 2. The system introduces a Model
Discovery and Distillation (MDD) service that aids any party with the network in request-
ing and attaining knowledge within other models shared with the network. The service
helps discover the requested model meeting the requirements and the distillation process
with servers suited at the edge. Specifically, these servers and the target client of distil-
lation can arrange for the distillation of the discovered knowledge to the target client’s
model. This process can be any form of knowledge transfer learning method [10], such as
knowledge distillation [32], domain adaptation [33], mutual learning [34] fine-tuning, and
personalization [35]. This process could take a few rounds of knowledge transfer until the
target client’s objective is met (i.e., target accuracy is achieved).

The advantage of the proposed architecture is that it has no single point of control and
failure (like FL), no explicit synchronization among devices (like DL), and no expensive
movement of private data (like CL). This is because the MDD process is client-driven,
where learners create an initial model with their local datasets and then asynchronously
seek models in the network to boost the model quality via distillation. The system discovers
the model for the requester without involving other learners, which helps mitigate any
influence of the clients’ heterogeneity. The proposed architecture may also introduce
incentive mechanisms (e.g., based on monetary income or mutual interest [22]) to enable
the sharing of high-quality models in the network. There are various ways to realize
incentives in the MDD architecture to encourage knowledge dissemination and sharing of
high-quality models [36]. For instance, deep reinforcement learning (DRL) agents could
be leveraged to learn the optimal pricing strategy the MDD service uses, incentivizing
the clients towards model training [37]. Similarly, clients can also share the utility of each
shared model they receive to guide the system for distributing incentives [38]. The utility
is calculated as the percentage of average accuracy improvement over the model trained
solely on the client’s data.
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Figure 2. The proposed architectural design involves decentralized learning parties, secure model
vaults to store the models hosted by edge servers and discovery service for model exchange hosted
in the cloud.

In the proposed architecture, as shown in Figure 2, the data owners train an initial
model individually or in groups (e.g., via Federated Learning). Then, the learner(s) request
to store the model in private and secure model stores (or vaults). The system will evaluate
the model either on a public dataset by the service or via requesting testing parties to obtain
the quality metrics of the model. Whenever they require improvements on their model, the
learning parties request a trained model to the discovery service specifying certain qualities
of the requested model (e.g., a classifier needs to improve its accuracy to reach at least 90%
of accuracy for class D). This requires novel discovery algorithms to find the best models in
the network matching the requested knowledge. We provide the details of the algorithm
supporting the proposed architecture in Algorithm 1.

Algorithm 1: Model Discovery and Distillation (MDD)

1 Function Request Model (r)
2 if r ∈ Search(Knowledge_Vaults) then
3 //Retrieve the model from the matching knowledge vault;
4 Mknowledge = Knowledge_Vaults(r);

5 else
6 //Search for a matching model in global population;
7 if r ∈ Search(Global_Learners) then
8 Mknowledge = Global_Learners(r);

9 //Perform Knowledge Distillation;
10 Mnew = Distill(MKnowledge, Mlearner);

11 Function Store Model (M)
12 r = Extract_representation(M);
13 V = Find_vault(r);
14 Store_vault(V, r, M);

Therefore, the key innovation in this architecture is the introduction of discovery
service design based on distributed architecture. This distributed service will act as the
arbiter of clients’ requests, leveraging decentralized edge servers for the discovery process.
In particular, we envision the MDD service as a distributed service leveraging cloud
resources or serverless computing to handle client requests [4]. The computing service
that handles the knowledge discovery would rely on a distributed ledger (e.g., name or
directory service) to keep track of the knowledge produced in the network. The MDD
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service relies on the unused resources of the edge servers to aid with knowledge distillation
for updating clients’ models [5].

However, achieving scalable and efficient discovery requires investigating novel
discovery algorithms and protocols to search the network for the models that fulfill the
requirements of clients’ requests (the exploration of scalable discovery algorithms is part of
our future work). The discovery service works by employing a service similar to Named
Data Networking (NDN) [39] used for finding content in content-distribution networks
(CDN) or Information-Centric Networks [40]. Similar to NDN, the models are treated as
content that requires retrieval, and they are addressed using their key features, such as the
task they solve, the dataset they were trained on, etc. Moreover, other performance metrics
are collected about the model. Then, this information is stored in the distributed ledger
(or directory service) and used to forward client requests to the destination (i.e., the model
owner). Moreover, optimal routing algorithms can handle the dynamic and mobile IoT
environments [41].

Upon completion of discovery, the requester either obtains a copy of the model and
applies knowledge transfer technique (e.g., model distillation) [10,32] to integrate the
knowledge of the discovered model(s) into its model and enhance the model quality (e.g.,
classification accuracy for class D), or the client can share its model with an Edge or Cloud
server to allow for the knowledge distillation to occur on the server. In our design, we
envision that the clients can seek full or partial assistance from edge server(s) to conduct
the knowledge transfer operations to integrate the knowledge into their own models. This
can be proven useful, especially in IoT use cases where the clients are typically limited in
computational resources. In the following, we conduct experiments aiming at showcasing
(1) the heterogeneity’s detrimental impact on the collaboratively produced models, and (2)
the effectiveness of the new system in improving model performances via model discovery
and distillation.

6. Experimental Evaluation

In this section, we conduct preliminary experiments to evaluate the proposed MDD
service. To this end, we design simulation experiments: (1) to showcase the impact of
heterogeneity on the model performance as presented in Section 6.2; and (2) to compare the
proposed MDD approach with the existing baseline methods in terms of model performance
using several benchmarks, such as Logistic Regression with Synthetic dataset, CCN with
FEMINIST dataset, and RNN with Reddit dataset, as presented in Section 6.3.

6.1. Experimental Setup

We leverage the FLASH framework [42], which covers FL benchmarks of five different
benchmarks involving tasks such as logistic regression, image classification, and natural
language processing. These tasks are reminiscent of common AI/ML tasks in scenarios in-
volving federated IoT data [6,11]. FLASH provides the necessary infrastructure to simulate
traditional FL, and defines a set of hyper-parameters for controlling the experiments. The
clients’ device hardware configurations regarding computation are based on realistic device
profiles [42]. Moreover, a real-world user trace reflects real availability dynamics during
the training process. The datasets involve various tasks, such as the Logistic Regression
model trained on the Synthetic Dataset, the CNN model trained on the FEMINIST dataset,
and the RNN model trained on the Reddit dataset. The data are distributed non-IID among
the clients, reflecting the real-world data distributions among independent data owners or
producers in typical mobile and IoT scenarios (for the source code and datasets, we refer
the reader to our public repository: https://github.com/ahmedcs/MDD Accessed on 5
November 2024).

As performed in prior works [8,14,42], the training and test data are partitioned to
make unique partitions of the data assigned to each client. The clients are sampled to use
the allocated training and test partition during training and test rounds, respectively. We
instrument the framework with information logging and configurations of the generated

https://github.com/ahmedcs/MDD
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scenarios to be run on the server’s GPU. For more details, we refer interested readers
to [14,42].

6.2. Heterogeneity Impact

As discussed previously, one of the main problems in decentralized IoT scenarios is
the device, configurations, and environment heterogeneity [7,11,14]. We extensively run
experiments in FL settings covering over one thousand five hundred different heterogeneity
settings, FL configurations, and learning hyper-parameters. The average model accuracy
is evaluated by invoking a test round after every 10 training rounds. During test rounds,
the model accuracy is evaluated by every client using its own test dataset, and then these
accuracy figures are averaged to produce the average test accuracy of the model. Figure 3
shows a bar plot for the achieved test accuracy from all the experiments (normalized to the
maximum baseline accuracy for each of the five benchmarks) and contrasts the following
cases: (i) U: uniform or homogeneous situations in which all clients have identical hardware
and network settings and are constantly accessible. (ii) BH: a behavior heterogeneity case
where the devices have variable availability patterns based on real-world trace; (iii) DH: a
device heterogeneity case where each device is assigned a different compute and commu-
nication profile from real-world trace; and (iv) H: a mixed heterogeneity case with both
device and behavior heterogeneity.

As Figure 3 shows, all the heterogeneity cases (BH, DH, and H) significantly impact
the test accuracy compared to the homogeneous case (U). The results show that the median
accuracy (the light green line) is lowered by up to 12%, and the variance is severely high
in the heterogeneous cases. What makes matters worse is that heterogeneity can prevent
training from converging. This reinforces the motivation of this work, that heterogeneity is
endemic to decentralized learning and to scale the training should cope with heterogeneity
to produce high-quality models (c.f. [14] for more detailed results).
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Figure 3. The quality impact of heterogeneity. We find that the values are zero in heterogeneous
cases when the models diverge. The values are greater than one when an experiment results in better
model accuracy than the baseline with the default configurations.

6.3. Efficacy of the Proposed Approach

We extend the FLASH framework with the MDD module to aid the clients in discovering
and distilling the models. We also use FL as the most common baseline for decentralized
learning methods. To have a fair comparison, we run the training for FL in an ideal scenario
to produce its best results. To this end, we use the uniform (or homogeneous) setting (U) for
Federated Learning in which devices have the same hardware configurations and are available
throughout the training. We aim to demonstrate that different clients in the network can learn
within their own groups at their own pace (i.e., FL group vs. individual clients’ group, as
in Figure 2). Then, the MDD service will prove to be effective if discovering and distilling
the models for the individual clients or groups via the MDD service results in improvements
of the models produced by other parties. In this case, the individual clients request the FL
groups’ model and use it as their initial model before training.
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Experimental setting: Similarly to Figure 2, the experiments involve a small group of
10 independent parties individually conducting local training on their own data (IND) for
a variable number of epochs and a large group consisting of the remaining clients training a
global model via FL for 500 rounds (FL). We contrast the model quality of these two groups
with the case when the proposed architecture is used (MDD). The 10 individual learners
will request a global model trained by the FL group from the discovery service, and then
each of the 10 learners will distill the FL model with their own model. The result plots
show the test accuracy averaged by testing a model on the 10 individual clients (IND). The
x-axis shows the local epochs used for training the model using the isolated 10 individual
clients’ datasets. Therefore, this number would be 0 in the FL case.

Traditional AI models: First, we conduct the experiments using 10 clients in an individual
group and 9990 clients in an FL group to train using logistic regression as the model on
synthetic dataset distributed in non-IID fashion over all the clients in both groups. As
shown in Figure 4, training the individual clients for a few epochs attains high average
accuracy (IND) due to the simplicity of the LR model. The FL model (FL) shows lower
accuracy when tested on the test datasets of the 10 individual parties because of the
large population size, which confirms with observations about FL in non-IID settings [19].
However, when the 10 clients request and distill the FL model via (MDD), their average
test accuracy improves by 12 accuracy points.

Deep Neural Network (DNN) models: Next, we leverage DNN models to conduct
experiments in a device heterogeneous setting. Specifically, both Recurrent Neural Network
(RNN) and Convolution Neural Network (CNN) models are trained by over 10 clients who
learn individually, and 3990 and 803 clients belong to the FL group. The FEMNIST and
REDDIT datasets, used to train the CNN and RNN models, respectively, are distributed in
a non-IID fashion among all the clients in both groups.
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Figure 4. Performance comparison in the LR-Synthetic scenario.

Next, in Figure 5a, we observe that training for the model locally for 100 epochs
does improve the model for the individual parties (IND). The FL model (FL) shows good
accuracy when tested on the 10 individual clients. This might be due to the CNN models’
ability to generalize well on samples of the Feminist dataset (which consists of easy-to-
classify image classes of digits and letters). Moreover, the model is trained on many samples
from 3390 clients in the FL group. We note then that if the individual parties (IND) request
the FL model and distill their local models with the FL model, then the result is their local
models improve in accuracy by 10 accuracy points (i.e., MDD).

Next, we observe in Figure 5b that in the RNN-Reddit case, the model trained by the
FL group (FL) on its own shows very low accuracy values on the test set of the clients. In
contrast, the model trained on the individual clients (IND) improves in accuracy over the
training epochs. This might be due to the difficulty of text-based datasets such as Reddit,
which is difficult to generalize well, especially with a small client population. Therefore,
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the FL model could not perform well when tested on the IND group, which confirms
observations about FL in non-IID settings [19]. Further, we observe improvement in the
individual clients’ model accuracy by 6 accuracy points, which are achieved when they
discover and distill the FL model with their own local model (i.e., the MDD approach).
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(a) CNN-FEMNIST.
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Figure 5. Performance comparison in scenarios involving DNNs.

In summary, the results obtained using a variety of benchmarks and case studies
demonstrate that the developed MDD approach is effective. However, there are technical
limitations and research gaps that require further attention:

• Discovery mechanism: The effectiveness of the MDD approach largely depends on
the efficacy of the discovery protocol. In this work, we have relied on assumptions
of the availability of discovery information. However, we have not explored the
overhead of the discovery method and how to implement such a protocol at the
Internet scale. We believe this can be overcome by borrowing approaches from content
(or information)-centric network [40].

• Distillation method: Similarly, the effectiveness of the MDD approach largely depends
on the efficiency of the distillation methods. In this work, we have used a simple
model fusion based on average to achieve knowledge distillation. However, we have
not explored the effectiveness of various distillation methods and their computational
overhead. We believe there is a recent line of work on achieving efficient knowledge
distillation between pre-trained models [43].

With this work, we set the first steps toward additional research into some technical
areas that are required for this strategy to become practically viable.

7. Conclusions

This paper examines the challenges of main decentralized learning paradigms, and
demonstrates how they fail to facilitate effective collaboration in complex situations, such
as IoT use cases.

Our contribution in this work is that we underline the need for the research community
to produce new designs based on model sharing. This promotes the services for identifying
models owned by various network participants to support large-scale, decentralized learn-
ing collaboration. This paper uses several benchmarks and case studies to demonstrate the
benefit of the established MDD strategy.

We believe the current work has some limitations, specifically in studying optimal
discovery and distillation methods to achieve an effective and scalable MDD system.
The methods used in this work are trivial and are meant to demonstrate the potential
of the proposed approach; however, the methods for discovery and distillation require
extensive evaluation.

For future research, we recommend conducting more research into the technical,
practical, and efficient implementation of discovery and distillation techniques. Specifically,
we believe for discovery methods, there are extensive lines of work related to content-
centric network that could be leveraged. For instance, several Internet content delivery
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methods have been proposed and studied. On the distillation approaches, there is recent
interest in efficient knowledge distillation in decentralized environments. These methods
could be incorporated into the MDD approach, but their overhead must be analyzed. In
our ongoing research, we plan to develop protocols that enable scalable and secure model
storage, discovery, and transfer to achieve the objectives of the proposed architecture.
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