
Citation: Carrascal, D.; Bartolomé, P.;

Rojas, E.; Lopez-Pajares, D.; Manso, N;

Diaz-Fuentes, J. Fault Prediction and

Reconfiguration Optimization in

Smart Grids: AI-Driven Approach.

Future Internet 2024, 16, 428. https://

doi.org/10.3390/fi16110428

Academic Editor: Stefano Rinaldi

Received: 15 October 2024

Revised: 12 November 2024

Accepted: 17 November 2024

Published: 20 November 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Fault Prediction and Reconfiguration Optimization in Smart
Grids: AI-Driven Approach
David Carrascal † , Paula Bartolomé † , Elisa Rojas * , Diego Lopez-Pajares , Nicolas Manso
and Javier Diaz-Fuentes

Universidad de Alcalá, Departamento de Automática, Escuela Politécnica Superior,
28805 Alcalá de Henares, Spain; david.carrascal@uah.es (D.C.); p.bartolome@edu.uah.es (P.B.);
diego.lopezp@uah.es (D.L.-P.); miguel.manso@edu.uah.es (N.M.); j.diazf@edu.uah.es (J.D.-F.)
* Correspondence: elisa.rojas@uah.es
† These authors contributed equally to this work.

Abstract: Smart grids (SGs) are essential for the efficient and distributed management of electrical
distribution networks. A key task in SG management is fault detection and subsequently, network
reconfiguration to minimize power losses and balance loads. This process should minimize power
losses while optimizing distribution by balancing loads across the grid. However, the current
literature yields a lack of methods for efficient fault prediction and fast reconfiguration. To achieve
this goal, this paper builds on DEN2DE, an adaptable routing and reconfiguration solution potentially
applicable to SGs, and investigates its potential extension with AI-based fault prediction using real-
world datasets and randomly generated topologies based on the IEEE 123 Node Test Feeder. The study
applies models based on Machine Learning (ML) and Deep Learning (DL) techniques, specifically
evaluating Random Forest (RF) and Support Vector Machine (SVM) as ML methods, and Artificial
Neural Network (ANN) as a DL method, evaluating each for accuracy, precision, and recall. Results
indicate that the RF model with Recursive Feature Elimination (RFECV) achieves 94.28% precision
and 81.05% recall, surpassing SVM (precision 89.32%, recall 6.95%) and ANN (precision 72.17%, recall
13.49%) in fault detection accuracy and reliability.

Keywords: smart grids; AI; fault prediction; machine learning; deep learning

1. Introduction

Smart grids (SGs) represent the future solution for electricity transmission and distribu-
tion networks [1–3], as their main objective is to achieve full network monitoring, allowing
a better energy balance between producers and consumers. SG systems must be able to
react quickly and predictably, adapting to changes in energy demand and supply through
the control of energy consumption and storage devices. The applications managing the
SG must rely on a secure, highly scalable, and always available communication network,
as they need to handle large volumes of real-time data to consistently respond to changes
in the network state [4,5].

One of the most important aspects of SGs is the reconfiguration of the power distribu-
tion within the network. This is crucial because it allows the system to reroute power in
case of a failure in one of the network links, or simply to optimize the distribution based
on a given criterion [6]. Many existing contributions [7–9] place more emphasis on the
latter case, in which reconfiguration through optimization improves power losses due to
propagation or line overload, or by addressing other electrical parameters. Generally, most
reconfiguration algorithms applied to SGs focus on network resilience in case of faults aim
to provide backup routes or paths to perform the distribution. However, the proposed
strategies are always reactive to the fault, whether in a centralized or distributed manner.

Therefore, in this work, we aim to generate a preventive, and thus proactive, recon-
figuration strategy for network faults by leveraging real-world SG datasets and Machine
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Learning (ML) and Deep Learning (DL) techniques. The proposed approach is based on a
previously existing routing and reconfiguration solution for SGs, known as DEN2DE [10].
We build upon this foundation to develop a novel fault prediction mechanism that classifies
alternative routes to preemptively identify those likely to cause network errors. Our work
contributes to the field by providing a fault prediction solution tailored specifically for SG
reconfiguration, which is trained and validated using real datasets as detailed in Section 3.
Furthermore, we ensure its generalizability across diverse network topologies by testing
it with random configurations generated through the Boston University Representative
Internet Topology Generator (BRITE) tool, using parameters from the IEEE 123 Node Test
Feeder model [11]. Through these validations, we examine the optimization of multiple ML
and DL models for DEN2DE by employing feature selection, assessing the most suitable
predictive model for each scenario.

This article is organized as follows. Section 2 provides an overview of related reconfig-
uration algorithms applied to SGs. Section 3 presents the main real-world datasets analyzed
for this study. Section 4 briefly explains the foundation routing and reconfiguration solution
and how our proposal extends it. Section 5 presents the validation environment and the
evaluation of the different Artificial Intelligence (AI) models along with their respective
optimizations. Section 6 outlines the results obtained, as well as the best configuration of
the evaluated models, together with a brief discussion regarding the generalization of our
study, and finally, Section 7 provides the conclusions and future work.

2. Related Work

In order to analyze the contributions of our work, we first briefly examine the works
in relation to SG reconfiguration and fault tolerance. To start with, the reconfiguration of
SGs represents a complex discrete optimization problem that can be addressed through
various methods, including optimization solvers or metaheuristic algorithms, as well as
ML or DL models [12–16]. The choice of approach typically depends on the complexity of
the network and the specific system requirements. In the literature on reconfiguration for
SGs, two primary directions have been identified: the first focuses on defining an objective
function aimed at optimizing the internal performance of the grid (e.g., minimizing power
propagation losses, capacity overloading, and costs), while the second concentrates on
reconfiguring the network to enhance resilience and fault tolerance.

Delving into specific examples and algorithms, Rodriguez et al. [9] propose a dis-
tributed reconfiguration approach for smart grids based on the Open Shortest Path First
(OSPF) routing protocol, aiming to enhance fault detection and minimize power losses.
This method is implemented in a multi-agent system deployed in secondary substations
and validated on the IEEE 123 Node Test Feeder, where agents execute the OSPF algorithm
to reconfigure the grid in response to network changes. For Islanded Microgrids (IMGS),
Hemmatpour et al. [17] introduce a reconfiguration methodology focused on optimizing
voltage stability and power flow. Using an Adaptive Multi-Objective Harmony Search
Algorithm and validated on IEEE 33-bus and 69-bus systems, this approach improves
IMGS performance by increasing loadability and reducing power losses, which is crucial
for systems lacking a main grid. Similarly, Sun et al. [18] present a self-healing strategy for
microgrid islanding, optimizing generation re-dispatch, network reconfiguration, and load
shedding. The problem is modeled as a Mixed-Integer Quadratic Programming (MIQP)
to minimize costs and ensure smooth islanding and is validated only on the IEEE 9-bus
system. Moreover, for offshore High-Voltage Direct Current (HVDC) transmission systems
connected to wind farms, Sanz et al. [19] address the challenge of minimizing power losses
by proposing a reconfiguration algorithm based on Particle Swarm Optimization (PSO),
which optimizes the topology of meshed HVDC grids. However, these works mainly focus
on optimizing the internal operating parameters of SGs, typically power losses and network
configuration costs, but not potential network failures.

Regarding the works focused on providing resilience and fault tolerance in SGs,
a growing trend has been observed to place more emphasis on ML and DL. Hosseinzadeh
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et al. [20] present an enhanced K-Nearest Neighbors (KNN) algorithm combined with
Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) for efficient
fault detection and classification, demonstrating robustness and precision suitable for real-
time applications in SGs. Li et al. [21] propose a Convolutional Neural Network (CNN)-
based method for fault localization using voltage data, achieving superior accuracy in
low-observability scenarios. The approach is validated on IEEE 39-bus and 68-bus systems,
showing resilience and effectiveness in complex conditions. Another similar work using
CNNs is by Alhanaf et al. [22], who employ Artificial Neural Networks (ANNs) and one-
dimensional CNNs (1D-CNNs) for fault management, extracting fault characteristics from
raw signals and demonstrating high accuracy in real-time applications on the IEEE 6-bus
system. Furthermore, Kaplan et al. [23] presented a Long Short-Term Memory (LSTM)
network for fault diagnosis, targeting the complexities of renewable energy sources. Their
method was validated using Simulink SG models in Matlab, and it was found to improve
fault prediction accuracy, outperforming traditional techniques and enhancing the reliability
of SGs. Efatinasab et al. [24] address vulnerabilities to adversarial attacks in fault zone
prediction using a Bayesian Neural Network (BNN) framework. The model improves
prediction robustness and introduces an uncertainty-based detection scheme to counter
adversarial threats, achieving high accuracy. Other works, such as Marashi et al. [25],
investigate fault propagation in cyber-physical systems, proposing a neural network model
that achieves high predictive accuracy in the IEEE 14-bus and 57-bus topologies, enabling
early fault detection and preventive actions in SGs. Finally, Ding et al. [26] propose
a resilient microgrid formation strategy, combining distributed generator control and
topology reconfiguration to optimize load restoration after outages using CPLEX, validated
on the IEEE 33-bus and 615-bus test systems. However, these works focus on optimizing a
model for a single topology, and the use of real datasets is missing.

Therefore, after analyzing the state of the literature, the main contributions of our
work consist of (1) a fault prediction solution for SG reconfiguration, (2) based on real
datasets, and (3) generalized for any type, shape, or size of topology (i.e., evaluated with
the random topology generator BRITE, according to real parameters). For this purpose,
ML and DL models are analyzed, followed by their optimization.

3. Data Source Search, Analysis, Purge, and Selection

To comprehensively evaluate the different AI techniques for fault prediction in re-
configuration scenarios for SGs, a high-quality dataset is essential. Both the quality and
quantity of data are crucial for defining a consistent model. In the energy context, our
experience proves there is a lower degree of availability of datasets. The protection of user
privacy in the measurement and analysis of their energy behavior reduces the number of
publicly available datasets, as they primarily depend on energy companies [27]. Neverthe-
less, the pursuit of optimizing energy distribution and reducing user consumption, along
with other environmental motivations, has led to the creation of public datasets in recent
years. Table 1 represents several analyzed residential datasets, along with details about
their implementation, such as location, number of residences, deployment period, sampling
frequency, and measured electrical parameters. As part of our research analysis, to evaluate
and select the most appropriate dataset from the ones available in Table 1, the following
requirements were considered:

• Quantity: it is crucial to review the quantity of data available in each dataset, ensuring
that they include measurements from a large number of residential buildings and
cover extended periods to analyze energy consumption patterns effectively.

• Quality: The quality of the data depends on the resolution of the measurements.
Datasets such as REDD and BLUED offer high sampling frequencies, allowing for
better energy disaggregation and a more representative analysis of energy behavior.

• Location: The location of the data is important because it affects voltage differences
between countries. For example, datasets from the U.S., such as BLUED, operate at
less than 120 V, whereas European datasets like ECO handle up to 230 V.
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• Parameterization: The samples include voltage (V), current (I), and power (P, Q, S),
each associated with a timestamp and an identifier corresponding to the respective
residence. Some datasets, such as HUE and SustDataED, also include environmental
data, which is important for understanding the impact of climatic conditions.

• Photovoltaic generation: in the context of SGs, it is essential to choose datasets that
include information on renewable energy generation, such as Smart* and SustDataED.

Table 1. Comparison of public power consumption datasets.

Name Location Residences Period (Days) Resolution Parameters

AMPds2 [28] Vancouver
(Canada) 1 730 60 s I, V, P, S, F, pf

BLUED [29] Pittsburgh
(USA) 1 8 83.33 µs I, V, switch

events

ECO [30] Switzerland 6 244 1 s P

GREEND [31] Italy and
Austria 9 310 1 s P

HUE [32]
British
Columbia,
Canada

28 60 1 s P

iAWE [33] New Delhi
(India) 1 73 1 s V, I, P, S

REDD [34] Boston (USA) 6 119 66.66 µs I, V, P

Smart* [35] Massachusetts
(USA) 3 90 60 s P, S, V, I

SustDataED
[36]

Madeira
(Portugal) 50 1144 60 s I, V, P, Q, S

UK-DALE [37] UK 5 499 62.5 µs P, switch state

Among the analyzed datasets, SustDataED was particularly selected due to the large
number of multiple users, both in terms of consumption and production, over a long period.
Likewise, it is important that the samples have a good resolution and provide real-time
information on the climatic conditions of the location where the residences are situated.
In the following sections, we examine this dataset in detail and outline the main design
criteria applied to generate the final dataset, curated from SustDataED and complemented
with the PVWatts tool, which was eventually leveraged for our evaluation.

3.1. SustDataED—Dataset Analysis

The SustDataED dataset [36] was created as part of the SINAIS research project,
aimed at providing ecological feedback to users to promote sustainable energy behavior
and greater use of renewable energy sources. This dataset encompasses five years of
energy consumption and production data from 50 households in the city of Funchal
(Madeira, Portugal), divided into three different deployments. This implies there are
no measurements from 50 households simultaneously throughout the five years of the
project but separately in three groups.

Figure 1 depicts the three aforementioned deployments. Since we were working with
consumption and generation measurements that were partially correlated with weather
and temporal conditions, we selected the time period with the highest number of house-
holds deployed simultaneously. In our case, we chose the first deployment, in which
measurements from up to 23 households were available simultaneously.

The data available in SustDataED are quite varied. Table 2 lists the different types of
measurements included in the dataset. However, not all of them were relevant for this study.
For instance, a high level of granularity, such as power event measurements or user event
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measurements, was not required for our analysis. As shown in Table 2, the measurements
related to energy production were uncertain. At first glance, SustDataED appeared suitable
because it provided real photovoltaic production measurements. However, these data were
reported as aggregate values and pertained to a photovoltaic system that supplied all the
households, with no information about the system’s dimensions, as they were not specified.
It was also unclear whether the size of the photovoltaic system increased over time, making
household-level analysis more complex.

Figure 1. Time series of measurements of the SustDataED dataset.

Table 2. Types of measurements in SustDataED dataset. Utility: useful (✓), useless (X), questionable (?).

Type of Measurement Utility

Energy consumption measurements ✓

Energy production measurements ?

Demographic measurements ✓

Environmental and climatic conditions measurements ✓

User event measurements X

Power event measurements X

3.2. SustDataED—Dataset Shortcomings

Since the literature on SustDataED did not provide clarity on household-level pho-
tovoltaic energy production measurements, an alternative was sought to form a new
production dataset. To perform this production data simulation, two tools were chosen in
order to compare and ensure that the results obtained from them were consistent:

• Global Solar Atlas [38]: this platform is funded by the Energy Sector Management
Assistance Program (ESMAP) with the aim of mapping renewable energy resources
globally, providing access to both long-term averaged data and real-time data for any
location on Earth.

• PVWatts [39]: this platform is provided by the National Renewable Energy Laboratory
(NREL), which is the national laboratory of the U.S. Department of Energy.
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For each tool, the location was set to Funchal (Portugal), since the analysis should
correspond to the data collected in the SustDataED dataset. Once the location was estab-
lished, the photovoltaic system for each household was configured, and the relevant data
layers extracted like the Direct Normal Irradiation (DNI) ( kWh

m2 ) and Photovoltaic Power
Potential (PVOUT) ( kWh

kWp ), which are key parameters for estimating the power output of
photovoltaic systems. Additionally, climatic factors play a crucial role in verifying the
consistency of the generated power. According to the Köppen and Trewartha’s climate clas-
sifications, Funchal features a Mediterranean climate with oceanic influences or a temperate
climate with dry summers. Located in a subtropical zone, the city experiences minimal
daily temperature variations, leading to relatively stable temperatures throughout the year.

After configuring both systems, the dates corresponding to the SustDataED time
series were aligned to collect photovoltaic production data. In both tools, as shown in
Figure 2, a comparative analysis of the same parameters, DNI and PVOUT, was conducted
for the same time periods. The results, as illustrated in Figure 2, were found to be nearly
identical. Following this verification of consistency between the two tools for simulating
photovoltaic production values, PVWatts was selected due to its more streamlined export
capabilities, facilitating the integration with the SustDataED data for the construction of
the final dataset.

(a) (b)

(c) (d)

Figure 2. Comparison of Global Solar Atlas and PVWatts, total monthly values of photovoltaic energy
production (PVOUT) versus normal direct irradiation (DNI). (a) Global Solar Atlas—DNI. (b) Global
Solar Atlas—PVOUT. (c) PVWatts—DNI. (d) PVWatts—PVOUT.

In addition, a comprehensive correlation analysis was performed on the photovoltaic
power generation parameters for both SustDataED and PVWatts datasets to conclusively
evaluate the reliability of the energy production data. When examining the correlation
between the climatic variables and the power generation for both datasets, as shown in
Figure 3, distinct patterns emerged. For SustDataED (Figure 3a), it was evident that the
temperature exhibited a weak correlation with the generated power, yielding a coefficient
of only 0.279. This lack of strong correlation was consistent across other variables, making
it difficult to analyze energy production in relation to climatic conditions. In contrast,
for the PVWatts dataset (Figure 3b), most parameters showed a high degree of correlation,
approaching unity. For instance, the correlation between array plane radiation and power
generation was nearly ideal, with a coefficient of 0.999, as clearly shown in the graph.
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(a) (b)

Figure 3. Comparison using correlation matrices of photovoltaic production parameters.
(a) SustDataED—Photovoltaic parameters. (b) PVWatts—Photovoltaic parameters.

As illustrated in Figure 4, the scatter plot for the PVWatts correlation revealed that the
most significant parameters for photovoltaic power generation were the plane of irradiance
hitting the solar panel and the temperature of the solar cells. Given the limitations of
the production data from SustDataED, particularly in terms of accuracy and granularity,
the decision was to use the simulated production data from the PVWatts tool. This choice
was supported by the consistency of the PVWatts data when compared to the results from
the Global Solar Atlas.

Figure 4. Correlation patterns between production parameters in PVWatts.

3.3. SustDataED and PVWatts Tool—Final Dataset (KeyMonData)

After identifying and addressing the limitations of SustDataED by incorporating the
PVWatts tool for photovoltaic power generation data, the entire dataset was processed to
create the final dataset. The data processing workflow is outlined in Figure 5. As shown,
there were two main branches: the first branch originates from the SustDataED dataset
and included all household consumption data, while the second branch corresponded to
the photovoltaic generation data. Out of the 50 households, only 23 were selected from
the first deployment, as previously mentioned. Subsequently, 23 photovoltaic generation
profiles were generated, ultimately forming 23 files of real net loads, representing the sum
of consumption and generation data.

This new dataset required further processing to limit both its size and the temporal
series to align with the specified deployment. Additionally, to make the dataset more man-
ageable, the data were synthesized. Specifically, SustDataED provides measurements at a
minute-level resolution; however, working with minute-by-minute samples is unnecessary,
as the variations in consumption are negligible. Therefore, the resolution was reduced to
hourly samples. Thus, if the first deployment was limited to a duration of one year, there
were 8760 (24 h × 365 days) time intervals per household, for a total of 23 households.
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consum_1.csv
consum_2.csv

consum_50.csv

SustDataED

Consumption data

Production data

Climatic and
 eviromental data

User events data

Power events data

Demographica data

PVWatts

Monthly production data

Hourly production data

preprocessing_nodes.ipynb
split.ipynb

power_samples_dx_y.csv

power_samples_dx_y_z.csv

11 files

28 files

datasamples_process.py

consum_1.csv
consum_2.csv

consum_23.csv

Deployment selection 2
sum_range.ipynb

50 files

23 files

enviroment.csv

production.csv

env+prod.csvpreprocessing_production.ipynb 

mean_prod.csv

datasamples_process.py

pvwatts_hourly.csv

new_pvwatts_hourly.csv

preprocessing_production.ipynb

load_1.csv
load_2.csv

load_23.csv

Slection of production data
power_selection.ipynb new_pvwatts_hourly.csv

Data processing

*

Figure 5. Data processing scheme for the generation of the final dataset (*).
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Regarding the file naming convention, each file was labeled as load_x.csv, where x refers
to the identifier of the corresponding household for the calculated loads. Consequently,
this resulted into a total of 23 load files (load_x.csv), each containing 8760 time intervals.
The final fields included in the new dataset are outlined in Table 3. After being processed,
cleaned, and synthesized, the new dataset was named KeyMonData and has been made
publicly available for use by anyone [40].

Table 3. Resulting dataset (KeyMonData) from the processing stage.

Field Description Units

timestamp Time of measurement datetime

datetime Date of the average value datetime

H Hour of the average value -

iid Housing identifier -

Diffuse Irradiance Diffuse radiation index (DIF) W/m2

Plane of Array Irradiance Plane of array radiation index (POA) W/m2

Ambient Temperature Ambient temperature C

Cell Temperature Solar cell temperature C

DC Array Output DC array output power W

AC System Output AC system output power W

Pavg Consumed power W

Dif Net calculated load W

4. Reconfiguration Algorithm and Proposed Extension

The reconfiguration algorithm for the SG, upon which the ML and DL models were
built, was DEN2DE [10]. DEN2DE is an algorithm designed for discovering paths in dense
and heterogeneous networks, enabling the automation of the routing process from leaf
nodes to the root node of the topology, while efficiently managing resource sharing. In the
specific context of an SG, the root node is defined as the one having a direct connection to
the electrical distribution network, whereas the leaf nodes represent the remaining nodes
in the SG.

To further explain the reconfiguration process followed by DEN2DE, Figure 6 depicts
a scenario of load redistribution within an SG, similar to the IEEE 5-bus topology example.
In green, we can observe the nodes that have a surplus of load, which can be offered to
other nodes in the network. In orange, the nodes demanding power from neighboring
nodes, or ultimately, from the root node, are highlighted. However, calculating all possible
load redistribution solutions can be computationally complex within a reasonable time
frame. For instance, Figure 6a illustrates a suboptimal redistribution of resources, which
occurs as neighbors decide based on local decisions, which leads to most requests directed
to the node with a surplus of +100 (insufficient to meet all the demands), as represented by
the arrows. On the other hand, Figure 6b depicts an optimal distribution scenario, which
requires a more sophisticated approach.

To address this issue, DEN2DE proposes a three-phase solution. The first phase,
as shown in Figure 7, involves exploring all possible routes from the root node to each leaf
node in the topology. This exploration, as depicted in the figure, is carried out using labels.
The exploration begins at the root node, which generates the first label (1) and transmits it
to all its immediately connected neighbors, in this case to node 2. Node 2 receives the label,
appends its node identifier, stores it in its learning table, and then proceeds to transmit it
similarly to all its contiguous neighbors. In this way, node 3 receives the label 1.2, indicating
that it is two hops away from the root node, and it repeats the process by assigning the
label 1.2.3 to its neighbors, nodes 4 and 5. These nodes, in turn, perform the same process,
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exchanging labels 1.2.3.4 and 1.2.3.5, which allow them to learn an alternative route to the
root node. This is because they now have a direct route through node 3, as well as a longer
route through the node that just assigned them the new label. Ultimately, nodes 4 and 5
will attempt to transmit the last learned labels (1.2.3.4 and 1.2.3.5) back to node 3. However,
DEN2DE logic incorporates a loop prevention mechanism: if the label being offered is part
of any previously learned label in the learning table, it will be discarded. This is why labels
such as 1.2.3.5.4 and 1.2.3.4.5 are discarded by node 3, as illustrated in Figure 7.

−10 −80

+100 −50

Root

−60

Energy superhabit node

Energy demanding node

Energy demanding process

−10 −80

+100 −50

Root

−60

(a) (b)

Figure 6. Example of load redistribution in an existing SG. (a) Suboptimal energy demanding
scenario. (b) Optimal energy demanding scenario.

1 2 3

4 5

1 1.2

1.2
.3 1.2.3

1.2
.3.

5.4

1.2.3.4

Root

1.2.3.4
1.2.3.5.4

LT 4

1.2.3
LT 3

1.2.3.5
1.2.3.4.5

LT 5

1.2
LT 2

1.2.3.5

1.2.3.4.5

Root node

Nodes

Labels 
propagated
Learned
labels Table (LT)

Labels discarded
in receiver node
due to sharing prefix
with previous learned
prefix

Figure 7. Operation of the DEN2DE algorithm.

Once the entire labeling process across the network is finished, the first phase of the
algorithm is considered complete. The second phase of DEN2DE involves selecting the
best label per node for load redistribution, based on the criteria defined in the algorithm
itself (such as the number of hops, distance, losses, available load, etc.). In this example,
nodes with only one label do not need to apply this phase. However, nodes 4 and 5 will
need to select which label they will use, as it will later determine how they will redistribute
the load within the SG. The third phase of the algorithm focuses on the redistribution of
loads between the nodes. This phase assumes that all nodes have selected a label, i.e., a
route to reach the root node. As a result, a logical topology will be formed over the physical
topology of the SG, potentially leaving certain links unused. This enables optimal power
distribution within the SG, as illustrated in Figure 6b.

In summary, DEN2DE first explores the whole network topology (assigning labels
during the process), then it defines the order to follow for resource distribution (this
order is represented by the selected label) and, finally, it reconfigures the network based
on that order. In this work, several ML and DL models were evaluated to support the
DEN2DE algorithm during its second phase. More specifically, these models provided
additional information to enhance the selection of labels (and, hence, the order of resource
distribution), as they were chosen considering the prediction of potential faults that may
arise in the SG, which eventually improved the reconfiguration process as a whole.
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It is important to note that although we evaluated these models exclusively with
DEN2DE, both our dataset and our analysis of AI techniques could also provide a founda-
tion for analyzing other reconfiguration algorithms in SG networks. Ultimately, the tech-
niques examined in our study offer supplementary insights into fault prediction, and it is
at the discretion of the specific reconfiguration mechanism to incorporate this information
to enhance its procedure.

5. Evaluation

Considering the objective of this article, which aimed to detect and predict errors,
or faults more specifically, an error criterion had to be defined first to label the results
from the algorithm. Considering that the simulations were configured with a real scenario
involving losses and capacity limitations of the links, the decision was made to establish
the failure condition based on the presence of excess capacity in an energy exchange
between two nodes in the network. These errors were not introduced arbitrarily; rather,
we simulated the power balance based on the established configuration of the smart
grid. In scenarios where losses occurred due to excess capacity, we denoted that for
a given entry in the dataset, under those specific conditions, a fault would be marked
accordingly. Subsequently, our objective was to classify whether a fault would occur based
on predetermined conditions and configurations. In this step, it was decided to apply a
link configuration based on the IEEE 123 Node Test Feeder [11] to ensure that the process of
assigning capacities to nodes in the algorithm was random. For simplicity, three types of
links are defined in Table 4.

Table 4. Link configuration based on the IEEE 123 Node Test Feeder.

R (ohm/km) I max (A) Section (mm2)

0.272 185 70

0.78 100 25

1.91 53 10

Now that the definition of error is clear, in this section, we evaluate various ML and
DL techniques in terms of error prediction. Specifically, we define Random Forest (RF)
and Support Vector Machine (SVM) as ML methods, and ANN as a DL method, based on
their structural characteristics. Our evaluation follows the pipeline illustrated in Figure 8,
which first generates a comprehensive set of random topologies, then sets up the simulation
environment using DEN2DE, and finally performs an extensive analysis of the different
ML and DL models, each of which is examined in separate sections.

Original
datasets

Processed
datasets

GenerationBRITE

Real nodes
definition

Nodes

Links

P
A
R
S
E
R

Real random
topologies ML/DL models

Processing

Paths classification

DEN2NE

Training

Reconfiguration

Figure 8. Defined pipeline to detect and predict errors during the energy distribution process.
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5.1. Random Topologies’ Generation

The random topology generation process plays an important role in testing and
validating the ML and DL models. Creating diverse network scenarios establishes a robust
foundation for the precise detection and prediction of faults.

5.1.1. Brite Tool

BRITE [41] is a widely used tool designed to generate random network topologies
that simulate real-world network structures. In the context of this project, BRITE was used
to create random topologies representing different configurations of SGs with the aim of
importing them into the DEN2DE algorithm and simulating various network conditions.
BRITE allows the definition of multiple parameters and topological models, such as node
distribution, degree connectivity, and link probabilities, bringing flexibility and making
BRITE particularly useful for generating diverse scenarios. In addition, the tool supports
several models to generate network topologies, and two of them are established [42]:

• Waxman model [43]: This model is a probabilistic approach where nodes are placed
randomly, and the likelihood of a connection between two nodes decreases with their
distance. It is suitable for simulating the physical distance constraints in power grids.

• Barabasi–Albert model [44]: This model creates topologies based on preferential
attachment, where new nodes are more likely to connect to nodes with higher degrees.
This reflects the real-world nature of power grids, where certain nodes are hubs with
many connections.

As shown in Figure 9, both topological models are depicted with an identical number
of nodes. Node size reflects the number of connections within the topology, with larger
nodes representing those with more connections. In the Waxman model (see Figure 9a),
the topology exhibits a relatively random structure, resulting in an approximately uniform
average number of connections per node. Conversely, in the Barabási–Albert topological
model (see Figure 9b), initial nodes have a higher likelihood of connecting with newly
added nodes, thus creating what is known as a scale-free topology.

(a) (b)

Figure 9. Comparison of Router Waxman and Barabasi–Albert topology examples. (a) Router
Waxman model topology example. (b) Router Barabasi–Albert topology example.

5.1.2. Generation Process Automation

A key aspect of this project was the automation of topology generation, which is
essential for conducting large-scale simulations and enabling a comprehensive evaluation
of ML and DL models for error detection. By using customized scripts, BRITE topology
generation was automated, producing a total of 180 topologies that could then be used for
different simulation executions in DEN2DE. The total number of topologies generated was
determined by the product of several configured parameters:

• Topology models: two models, Router Waxman and Router Barabasi–Albert.
• Node counts: topologies were generated with 100, 150, and 200 nodes.
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• Connectivity levels: three different degrees of connectivity were specified, with each
topology having a degree of 2 m (due to bidirectional links).

• Random seeds: 10 different seed files were applied to ensure variety in the gener-
ated topologies.

5.2. Topology-Based Simulations in DEN2DE

Once the topologies were generated, they were imported into the DEN2DE framework,
and the algorithm executed simulations to model the energy distribution across the nodes.
These simulations incorporated the real load profiles that were extracted and processed
in Section 3.3 allowing for the simulation of power distribution processes in realistic
SG environments.

Considering that the objective was to discover energy transactions between nodes that
exceeded their link’s capacity, the scenario of lossy-constrained link capacity was defined.
Also, as specified for BRITE, five different seed files were applied to DEN2DE to obtain
different simulations from the same input topology. Based on the configured parameters
and the 8760 real-data rows available (representing one year of hourly data), the algorithm
could potentially run 47,304,000 unique simulations. As it was inefficient and impractical
to execute all of them, it was essential to decide which tests to conduct in DEN2DE, and
12 specific time points were chosen, each representing a specific hour of a day for each
month. To simplify the process, since the sample time frame started on 28 November 2010,
the 28th day of each month was selected. The time chosen for the extraction of load profiles
was 11:00 a.m., as this was when average energy production tended to be highest. This
selection strategy increased the likelihood of encountering energy exchanges that exceeded
the link capacity, leading to a higher number of errors in the load distribution process. This
was important for effectively training the ML and DL models.

5.3. Machine Learning Techniques

To detect and predict errors in the energy distribution process, a binary classification
of the dataset instances was performed using two supervised ML techniques: RF and SVM.
On one hand, an RF [45] combines multiple decision trees and obtains a final prediction
through majority voting of these trees, using criteria such as entropy or the Gini index to
determine the splits at each node. On the other hand, an SVM [46] aims to find the optimal
hyperplane to maximize the separation between two classes, adjusting the regularization
parameter C to balance the margin and classification errors, and configuring the parameter
γ along with the kernel type to handle non-linearity in the data. The development of these
techniques followed a sequence of necessary steps to design optimal models and configure
an effective training, based on the use of various classes and methods provided by the
open-source software library scikit-learn https://scikit-learn.org/stable/.

5.3.1. Feature Scoring

In this first step, a default model was designed for each ML technique to find the
features of the dataset that were the most important in the classification process.

For the RF technique, a model was trained using 10 estimators and the entropy crite-
rion. The importance of the dataset features was estimated using the feature_importances_
attribute provided by the classifier. This calculation was based on the mean and standard
deviation of the impurity reduction that occurred within each tree.

In Figure 10, the results show the relative importance values assigned to each feature,
with a total sum equal to one. There was a significant impact on the distance between
nodes and in the parameters resulting from DEN2DE (total_balance and abs_flux), which
corresponded to the gateway node load after energy balancing and the total flow of
resources exchanged in the distribution process, respectively. However, this method
introduced a bias towards features with high cardinality, or in other words, those with a
large number of unique values. This bias occurred because such features created deeper

https://scikit-learn.org/stable/
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split nodes in the trees, as there were more options for dividing the dataset. Therefore,
these types of features were more likely to receive higher importance scores [47].

Taking this into account, the permutation importance method was used for a compar-
ative analysis. In this second method, the feature values were permuted randomly one at
a time, and the classifier’s performance was evaluated at each iteration, so a feature that
significantly decreased the model’s accuracy when its values were permuted scored higher
in importance. In this case, as shown in Figure 11, the parameters resulting from DEN2DE
(total_balance and abs_flux) still showed high importance scores. However, now, the lengths
of the node labels and the link capacity also exhibited high importance scores.

Figure 10. Feature importance scoring for the RF using the feature_importances_ attribute.

Figure 11. Feature importance scoring for the RF using the permutation_importance method.

For the SVM technique, a default model was trained with an Radial Basis Function
(RBF) kernel, suitable for non-linearly separable datasets. Consequently, the importance of
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the dataset’s features was evaluated through the support_vectors_ and dual_coef_ attributes
provided by the class. As depicted in Figure 12, the results indicated that the lengths of
the source and destination labels had a significant influence on the dataset. As for the RF,
the permutation method was applied, obtaining similar results. In Figure 13, the lengths
of the labels, the link capacity, and the total energy flow (abs_flux) were highlighted in
the classification.

Figure 12. Feature importance scoring for the SVM using the support_vectors_ and dual_coef_ attributes.

Figure 13. Feature importance scoring for the SVM using the permutation_importance method.
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5.3.2. Hyperparameters’ Optimization

To find the best combination of hyperparameters for each model, the Grid Search
method [48] was used. This method performs an exhaustive search through a grid of
hyperparameters to identify the combination that offers the highest accuracy. Additionally,
since it is based on cross-validation, the dataset was divided into five folds.

In the case of the RF technique, the focus was on two main hyperparameters: the
number of estimators or trees and the impurity measurement criterion. The execution of the
method determined, based on the best_score_ and best_params_ attributes, the best combina-
tion of hyperparameters, achieving an accuracy of 99.18% with a classifier of 100 estimators
using the entropy criterion (Table 5). For a more detailed analysis, the cv_results_ attribute
was used, which provided comprehensive information about the search. It can be observed
that, although the variations in accuracy between different parameter combinations were
minimal, the fitting times showed significant differences. As shown in Table 6, the duration
of the training increased proportionally with the number of estimators configured in the
model. Therefore, since accuracy did not improve significantly when using more than 25 es-
timators, the classifier with 25 estimators based on the entropy criterion was determined to
be the optimal model.

Table 5. Accuracy (%) (mean_test_score) of cv_results_ attribute from the Grid Search in the RF.

Number of Estimators
Criterion

Entropy Gini

10 99.07 99.02

25 99.16 99.14

50 99.16 99.15

75 99.17 99.17

100 99.18 99.16

Table 6. Time (s) (mean_fit_time) of cv_results_ attribute from the Grid Search in the RF.

Number of Estimators
Criterion

Entropy Gini

10 147 146

25 373 382

50 747 761

75 1072 1002

100 1439 987

To model an optimal SVM, two hyperparameters were mainly studied: the type of
kernel and the regularization parameter C (See Tables 7 and 8). The parameter γ was
omitted due to the prior scaling of the data, which eliminated its impact. In this case,
different from the RF, the search for the best combination of hyperparameters required
more execution time, taking approximately 350 h. The results of this process showed that
the optimal model was an SVM with an RBF kernel and a regularization parameter C
equal to one, achieving an accuracy of 97.78% and requiring a relatively low training time
compared to other hyperparameter combinations. The analysis of the cv_results_ attribute
revealed that the sigmoid kernel offered the worst performance and that the polynomial
(poly) kernel showed an increase in training time as C increased, suggesting that a high C
value was not suitable for this kernel.
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Table 7. Accuracy (%) (mean_test_score) of cv_results_ attribute from the Grid Search in the SVM.

C
Kernel

poly rbf sigmoid

0.25 97.65 97.66 95.96

0.5 97.65 97.71 95.94

0.75 97.65 97.75 95.82

1 97.65 97.78 95.81

Table 8. Time (s) (mean_fit_time) of cv_results_ attribute from the Grid Search in the SVM.

C
Kernel

poly rbf sigmoid

0.25 21,030 13,876 14,659

0.5 28,807 10,277 18,695

0.75 42,183 9328 12,235

1 47,460 9446 12,869

5.3.3. Dimensionality Reduction

After analyzing the best combinations of hyperparameters for each ML technique,
the application of some dimensionality reduction methodologies on the dataset was studied.
This aimed to eliminate irrelevant or redundant information from the dataset to achieve
more efficient model training. Three different techniques were tested to later compare the
performance of the RF and SVM models in Section 6:

• Recursive Feature Elimination with Cross-Validation (RFECV) [49]: This method
iteratively discards the least influential features until the model’s performance no
longer significantly improves. With 5-fold cross-validation, it can be seen in Figure 14
that the maximum accuracy for the optimal RF model was achieved with eight features.
Additionally, it was confirmed that the identified features (cap, dist, origen_id, dest_id,
len_origen_tag, len_dest_tag, total_balance, abs_flux) matched those with the highest
scores in Section 5.3.1. However, in the case of SVM, the classifier class did not have
the necessary attributes for implementing RFECV (coef_, feature_importances_), so this
technique was only applied to RF.

• Univariate Feature Selection [50] uses the SelectKBest() method, which requires prior
scaling and the specification of a fixed number of features to work with. In this case,
values of k equal to five and eight features were selected.

• PCA [51] reduces the dimensionality of the dataset using the Singular Value Decom-
position (SVD) technique. It works by finding the principal directions of variation
(k vectors) in the dataset to construct a projection matrix, which establishes a new
k-dimensional feature space. To define the optimal number of components, the elbow
method was used. Figure 15 shows the variance leveling off at three components, so
for comparative purposes, the performance of RF and SVM was studied for two and
four components.

5.4. Deep Learning Techniques

The development of DL techniques was divided into the optimal design and training
of two ANN models, using two different libraries: Scikit-Learn and the Keras module of
TensorFlow. ANNs, and particularly Multilayer Perceptrons (MLPs), are built from various
layers of nodes and connections that replicate the neural structure of the human brain [52].
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Figure 14. Analysis of RF model accuracy based on the number of features used with RFECV method.

Figure 15. Analysis of variance based on the number of components used in PCA.

Regarding their development, it is important to note that the feature scoring and
dimensionality reduction steps applied to the ML models in Section 5.3 were omitted.
This is because ANNs internally analyze and score the importance of features within the
network, so these steps are not necessary to include [53].

5.4.1. Hyperparameters’ Optimization

In this step, hyperparameter tuning was performed to achieve optimal performance
of the ANN. To do this, a Grid Search method was applied to the MLP model provided
by the Scikit-Learn library. The study was focused on configuring hidden layers and the
number of neurons per layer (hidden_layer_sizes), as well as other hyperparameters such
as the activation function (activation) and the optimization algorithm (solver). To prevent
overfitting during Grid Search execution, a maximum number of 100 iterations was set
along with early stopping, which was activated if no significant improvements occurred in
10 consecutive iterations.

The entire search process took around 2.34 h on a server with 32 processors. In Table 9,
it can be seen that the Stochastic Gradient Descent (SGD) optimization algorithm generally
outperformed the Adam algorithm. Regarding training times, Table 10 represents the impact
of both the layer structure and the number of neurons configured in the network. Similarly,
the dimensions also affected the achieved accuracies, with some cases of overfitting leading
to lower classification accuracies.
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Table 9. Accuracy results (%) (mean_test_score) extracted from the cv_results_ attribute of the MLP.

Solver Adam Sgd

Hidden Layers
Activation Function

Relu Tanh Relu Tanh

(5,) 90.17 97.61 97.66 97.54

(8,) 92.03 89.73 97.65 97.65

(10,) 87.00 89.90 97.48 89.76

(50,) 86.89 89.82 89.53 97.65

(100,) 90.95 89.71 84.56 89.72

(5, 5) 89.80 89.72 97.66 97.65

(8, 8) 88.49 89.72 89.89 97.65

(10, 10) 81.68 89.70 90.30 97.65

(50, 50) 81.91 82.04 97.66 89.73

Table 10. Time results (s) (mean_fit_time) extracted from the cv_results_ attribute of the MLP.

Solver Adam Sgd

Hidden Layers
Activation Function

Relu Tanh Relu Tanh

(5,) 88 37 63 35

(8,) 96 43 35 36

(10,) 94 40 56 43

(50,) 157 168 143 70

(100,) 236 223 170 131

(5, 5) 136 50 52 44

(8, 8) 159 54 69 46

(10, 10) 149 55 54 48

(50, 50) 333 319 166 155

Therefore, the analysis of the results determined that the optimal MLP configu-
ration was given by a structure of two hidden layers with five neurons each (5, 5),
the Rectifier Lineal Unit (RELU) activation function, and the SGD optimization algorithm.
Figures 16 and 17 represent the evolution of the accuracy values and the loss function,
respectively. The optimal model converged at iteration 41, achieving an accuracy of 97.66%
and a loss function value of 0.0712.

5.4.2. Model Execution and Results’ Evaluation

After identifying the optimal hyperparameters for the MLP model from the Scikit-
Learn library, the configuration was replicated in the ANN model defined by the Keras
module of TensorFlow. The goal was to verify that the results obtained with Grid Search
were consistent and that two different ANN models with the same hyperparameter values
achieved similar results.

In Figures 18 and 19, it can be observed that unlike the previous model, the Keras ANN
completed all 100 iterations in this case. However, it was confirmed that the loss function
(0.068) and the accuracy values (97.87%) obtained in the last iteration were very similar to
those of the previous model.
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Figure 16. Evolution of the accuracy value for the ANN from Scikit-Learn.

Figure 17. Evolution of the loss function value for the ANN from Scikit-Learn.

Figure 18. Evolution of accuracy value for the ANN from Keras.
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Figure 19. Evolution of the loss function value for the ANN from Keras.

6. Results and Discussion

The results presented in Table 11 provide a comprehensive view of the performance
of the developed models. To validate the performance in ML models, two methods were
employed: the confusion matrix [54] and the K-fold cross-validation [55]. In the case of DL
techniques, in addition to the confusion matrix, the evaluation methods provided by the
Scikit-Learn library and the Keras module were used, which provided the values of losses
and accuracy obtained.

In the following sections, we analyze these three models, highlighting first the obtained
results and afterwards, discussing them. Additionally, we finally discuss the potential
generalization to other topologies and reconfiguration algorithms.

All trained models, along with their optimization processes and configurations, as well
as the final dataset (KeyMonData), are available in a public GitHub repository [40].

Table 11. Summary of results obtained from the development of ML and DL models.

Confusion Matrix K-Fold Cross-Validation

Accuracy Precision Recall F1 Score Accuracy Standard Deviation/(*,**) Loss

None Applied 99.29 94.40 74.27 83.16 99.30 0.02

RFECV 99.44 94.28 81.05 87.17 99.47 0.02

kbest (n = 5) 97.79 65.97 12.55 21.08 97.80 0.02

kbest (n = 8) 97.74 53.95 27.37 36.32 97.79 0.01

PCA (n = 2) 97.55 12.52 00.67 01.27 97.35 0.01

Random Forest
[25 estimators,

entropy criterion]

PCA (n = 4) 98.06 81.66 22.60 35.41 98.04 0.00

None Applied 97.23 89.32 06.95 12.83 97.79 0.01

kbest (n = 5) 97.11 65.25 12.29 20.73 97.80 0.01

kbest (n = 8) 97.05 71.19 09.30 16.46 97.79 0.01

PCA (n = 2) 97.61 - 0 - 97.76 0.00

SVM
[C = 1, kernel = rbf]

PCA (n = 4) 97.61 - 0 - 97.76 0.00

sklearn 97.84 69.03 14.98 24.66 97.83 * -ANN
[(5, 5), relu, sgd] keras 97.84 72.17 13.49 22.74 97.85 ** 0.0690

Note: * Score()/ ** Evaluate().

6.1. Random Forest

The confusion matrix provided some metrics that were essential to evaluate the
performance of the RF model. Firstly, if we only focus on Accuracy, the results seemed quite
good for the five tests conducted with different dimensionality reduction techniques applied
during the RF model training. However, when analyzing the Precision and Recall metrics,
notable differences were observed. For example, PCA application with two components
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obtained a result with a good Accuracy value (97.55%), but the Precision was poor (12.52%),
which indicated that the percentage of detected errors out of the total errors in the dataset
was extremely low (0.67%). Therefore, the F1 Score was also significantly low (1.27%), as it
is a metric that combines the values of Precision and Recall.

Accordingly, by analyzing all the metrics provided by the confusion matrix, it was
determined that the dimensionality reduction technique that worked best in training the
RF was the RFECV. It presented the lowest error prediction cost because it reduced the
probability of false alarms and undetected real errors with high percentages in Precision
(94.28%) and Recall (81.05%), respectively. The second best option to detect and predict
errors was to use all the features of the dataset without applying any reduction technique.
The results achieved by evaluating with the K-fold cross-validation method showed the
same accuracy values that the ones obtained with the confusion matrix, confirming the
good performance of the RFECV technique application.

6.2. Support Vector Machine

To evaluate the performance of the SVM model, it is important to emphasize the
significant computational cost and time required to train the classifier. In this case, 325 h
were needed to complete the process of running and validating the results of the five tests.
Regarding the confusion matrix, it can be noticed at first glance that in both cases of PCA
application, undefined values were obtained for the Precision and F1 Score metrics. This
was because the SVM model failed to make any error predictions.

Therefore, although a high percentage of Accuracy was achieved (97.61%), the model
was not performing the classification correctly, and the error cost was very high. In the case
of the Precision metric, the best results were obtained by not applying any dimensionality
reduction technique to the dataset (89.32%), as it could be observed that in the Univariate
Feature Selection technique or SelectKBest(), efficiency decreased as the number of con-
figured features was reduced (65.25%). On the other hand, the Recall metric showed low
values in all tests, indicating that the proportion of errors that were correctly identified was
very small.

With the analysis presented, it can be conclusively determined that the SVM was not
sufficiently efficient to meet the objective of detecting and predicting errors. Regarding the
K-fold cross-validation method, similar accuracy values were obtained, just as with the RF.
We deem it essential to delineate the limitations of the SVM model, as this will substantiate
our rationale for eschewing its application in error detection within SGs. The findings
elucidate the inherent unsuitability of the SVM model for this particular task, thereby
offering critical insights that can inform a more judicious model selection in analogous
applications or use cases.

6.3. ANNs

Given that in the development of DL techniques, no dedicated steps are performed
for feature scoring and dimensionality reduction of the dataset, the evaluation focused
on comparing the results obtained by the two ANNs. As mentioned in Section 5.4.2,
the performance of both developed ANNs was very similar. The achieved accuracies
were identical (97.84%), and the other metrics obtained from the confusion matrix showed
minimal differences between the two models. For example, a slightly higher Recall was
observed for the Scikit-Learn ANN (14.98%), but both models indicated poor effectiveness in
error detection. However, the Keras ANN produced higher Precision and therefore, a lower
probability of false alarms (72.17%).

Furthermore, the evaluation methods provided by Scikit-Learn (score()) and Keras
(evaluate()) were applied to both ANNs. In the first case, only the accuracy value of
the model was obtained, while in the second case, the loss function was also provided.
As expected, the results remained similar and, although the differences between the two
models were minimal; if the effectiveness in detecting real errors was prioritized, the Keras
ANN would be chosen. However, a higher Recall was observed in some simpler ML
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methods (such as RF when applying RFECV) compared to these more sophisticated DL
methods, which may be attributed to the different levels of effectiveness of dimensionality
reduction techniques used in ML models and the internal feature scoring performed
by ANNs.

6.4. Generalization to Other Topologies and Reconfiguration Algorithms

These findings highlight the effectiveness of ML and DL techniques in improving the
reliability of SGs and offer valuable insights for the future development of intelligent grid
management systems.

It is important to clarify that our developed models are not intended as tailor-made so-
lutions for a specific, fixed topology. Rather, they are optimized by employing randomized
topologies that vary systematically in node numbers, connectivity degrees, and probabilis-
tic topological models, applying the IEEE 123 Node Test Feeder parameters to achieve
this diversity. While it is true that our model may not deliver peak performance for any
particular topology, we emphasize that it achieves optimal average performance across a
broad range of topologies, representing a trade-off approach that generalizes effectively
across diverse network conditions.

Accordingly, additional investigation with different reconfiguration algorithms, or with
AI techniques specifically tailored for certain topologies, would be desirable in the long
term to compare to what extent the customization of models would yield better results.
In any case, this initial study serves as a foundation for future analysis and proves its ability
to enhance the DEN2DE algorithm, which was our main objective.

7. Conclusions

In this manuscript, we proposed a novel approach for predicting faults in SGs through
the application of ML and DL models to support the reconfiguration process. Building
upon the DEN2DE algorithm, we addressed the complexities of load redistribution in
dense and heterogeneous SGs by applying advanced ML and DL techniques to enhance
decision-making during the grid’s reconfiguration phase. By utilizing real-world datasets
such as SustDataED and integrating simulated photovoltaic energy production data from
tools like PVWatts, this work demonstrated the feasibility of employing AI-driven models
to predict potential grid faults and improve system resilience.

The proposed methodology effectively identified optimal routes for load balancing
while minimizing errors in energy distribution. Among the evaluated models, the Random
Forest classifier, optimized with RFECV as a dimensionality reduction technique, consis-
tently demonstrated superior performance. This configuration achieved high levels of
Precision (94.28%) and Recall (81.05%), ensuring a balanced error detection capability with
a reduced false alarm rate, as compared to other models. Extensive testing and validation
in simulated environments confirmed that this RF-RFECV configuration enhanced the ro-
bustness and adaptability of the SG, managing the uncertainties associated with renewable
energy sources and dynamic changes within the grid topology effectively.

Future research could build on the current findings by investigating additional ML
and DL models to further enhance fault prediction capabilities. Additionally, extending the
application of these models by simulating additional time samples to gain further insights,
or to a broader range of datasets beyond SustDataED, potentially encompassing different
regions, scales, and topological configurations, even different reconfiguration algorithms,
would contribute to improving the generalization and robustness of the proposed approach.
An important direction for future work also includes evaluating the developed models in
light of the intrinsic characteristics of smart grids, such as distributed generation, fluctuating
load demands, and the integration of renewable energy sources, to better understand their
adaptability and performance in real-world smart-grid environments.
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