
Citation: Pendyala, V.S.; Chintalapati,

A. Using Multimodal Foundation

Models for Detecting Fake Images on

the Internet with Explanations. Future

Internet 2024, 16, 432. https://

doi.org/10.3390/fi16120432

Academic Editor: Gianluigi Ferrari

Received: 17 October 2024

Revised: 15 November 2024

Accepted: 19 November 2024

Published: 21 November 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Using Multimodal Foundation Models for Detecting Fake
Images on the Internet with Explanations
Vishnu S. Pendyala 1,* and Ashwin Chintalapati 2

1 Department of Applied Data Science, San Jose State University, San Jose, CA 95192, USA
2 Department of Computer Science, Purdue University, West Lafayette, IN 47907, USA; achintiii@outlook.com
* Correspondence: vishnu.pendyala@sjsu.edu

Abstract: Generative AI and multimodal foundation models have fueled a proliferation of fake
content on the Internet. This paper investigates if foundation models help detect and thereby contain
the spread of fake images. The task of detecting fake images is a formidable challenge owing to its
visual nature and intricate analysis. This paper details experiments using four multimodal foundation
models, Llava, CLIP, Moondream2, and Gemini 1.5 Flash, to detect fake images. Explainable AI
techniques such as Local Interpretable Model-Agnostic Explanations (LIME) and removal-based
explanations are used to gain insights into the detection process. The dataset used comprised real
images and fake images generated by a generative artificial intelligence tool called MidJourney.
Results show that the models can achieve up to a 69% accuracy rate in detecting fake images in an
intuitively explainable way, as confirmed by multiple techniques and metrics.

Keywords: misinformation containment; large multimodal models; explainable AI; image processing

1. Introduction

Even before the arrival of multimodal large language models, the detection of fake
images was shown to be difficult [1]. The advent of such models and, consequently, the
rapid advancement of image manipulation techniques, often driven by artificial intelligence,
has rendered traditional forensic methods increasingly ineffectual. These sophisticated
image generation algorithms can create highly realistic and convincing alterations, making
it arduous to discern authentic images from fabricated content. The inherent complexity
of digital images, characterized by vast amounts of data and intricate patterns, necessi-
tates computationally intensive analysis, often exceeding the capabilities of conventional
detection tools. The continuous emergence of novel manipulation methods demands a
constant adaptation of detection techniques, rendering the pursuit of a universal solution
elusive. The subtle and often imperceptible nature of many image alterations can easily
evade human perception, necessitating the development of robust automated detection
systems, which this paper intends to address.

Foundation models such as LLaVA [2], Moondream 2 [3], and Gemini 1.5 Flash [4]
can generate fake images. The work described in the following sections used the same
foundation models to detect fake and authentic images from a given dataset. It compared
and contrasted their performance in doing so, both quantitatively and quantitatively using
evaluation metrics and explainable AI. The work also used another foundation model
called CLIP [5] for the detection. CLIP is a model that learns visual concepts from natural
language supervision. Its primary function is to understand the relationship between
images and text. While it can be used as a component in image generation systems, it
does not generate images. The performance of these four foundation models is explained
using Local Interpretable Model-Agnostic Explanations (LIME) [6] and removal-based
explanations [7].
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1.1. Related Work

For various reasons, misinformation containment is largely an unsolved problem
today [8]. While large language models (LLMs) have been used for detecting textual
misinformation [9], there is hardly any evidence of using foundation multimodal models
for fake image detection. A prior superficial study [10] concluded that GPT-4, Bard, and
Bing were unreliable for detecting fake images, but no metrics were provided to support this
conclusion. Another study [11] demonstrated that using large language models (LLMs) and
that Vision Language Models (VLMs) can significantly improve object detection accuracy.
In a different study [12], GPT 3.5, an LLM, was used to extract features to detect out-of-
context (OOC) media. The study focused on the automated detection of the misuse of real
photographs with conflicting captions. The authors proposed a method that enhances the
COSMOS structure, which assesses the coherence between an image and its captions. By
employing prompt engineering, the authors developed a robust feature extraction method
that captures the correlation between captions.

Explainability techniques, LIME, and SHapley Additive exPlanations (SHAP) have
been used to explain the classification of pneumonia from chest X-rays [13] and a rare and
aggressive form of childhood eye cancer called retinoblastoma from fundus images [14],
as well as the diagnosis of different abnormalities in human kidneys from computer
tomography images [15], and more such image processing applications. SHAP has also
been used in the context of land cover and land use classification in remote sensing [16].
However, there does not seem to be any evidence of these techniques being used in detecting
fake images, which this study attempted.

Existing techniques for fake image detection include deepfake detection. Deepfake
detection relies on traditional convolutional neural network-based architectures to make
predictions with a focus on classification techniques. These techniques largely focus on
maximizing accuracy but provide limited explainability features. Using foundational multi-
modal models can help provide transparency in detections to understand the strengths and
weaknesses of each model. Some of the deepfake detection approaches are discussed below.

1.1.1. Classification Based on Spatial and Temporal Features for Deepfake Detection

Fake image detection approaches typically focus on spatial and temporal features,
while foundation models leverage extensive unlabeled data through self-supervised learn-
ing, enhancing detection accuracy and reducing demographic bias. Convolutional transfer
deepfake detection [17] has been used to learn low-level spatial features and temporal
information. Existing CNN architectures are modified to take on multiple Transformer
layers, each taking separate temporal and spatial dimensions to optimize performance.

1.1.2. Fake Image Detection Using Foundation Models

Despite this, foundation models can still play an important role in deepfake image
detection. Combining traditional deepfake techniques using convolutional neural networks
with foundation models can help enhance fake image detection [18]. The research high-
lights the importance of analyzing biases related to age, gender, and ethnicity when using
deepfake detection. Foundation models are designed to reduce bias with their extensive
and diverse training data. All four models integrate techniques such as bias audits and
detection, post-training mitigation techniques, and constant model evaluation. Studies
have shown that even though foundation models such as LLMs are not trained for deepfake
detection, they can use their world knowledge to perform reasonably well on the task [19].
Studies have also shown that prompt engineering can improve performance.

1.1.3. Interpretability of Foundation Models in Image-Related Tasks

A novel approach to improve the interpretability of multimodal large language models
(MLLMs) by leveraging the image embedding component was proposed by integrating
an open-world localization model with an MLLM [20]. The architecture was claimed to
significantly enhance interpretability, allowing for the creation of a novel saliency map to
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explain any output token, the identification of model hallucinations, and the assessment of
model biases through semantic adversarial perturbations. In a novel approach, pretrained
language models were used to interpret the features learned by image classifiers [21]. By
connecting the feature space of image classifiers with language models, the system called
TExplain generates textual explanations during inference. These explanations help to iden-
tify frequent words and patterns, providing insights into the classifier’s behavior, detecting
spurious correlations and biases, and enhancing the interpretability and robustness of
image classifiers.

1.2. Contributions of This Study

As discovered in the literature review, there is hardly any evidence of using foundation
models for fake image detection. This study is unique in using foundation models for fake
image detection and explaining the process using explainable AI techniques. In addition to
LIME, the work also used removal-based explanation, a technique that has been gaining
significance recently. The results show that there is promise in the idea and also demonstrate
the need for further improvements in foundation models.

The rest of this article is organized as follows. The next section describes the overall
design and the artifacts used for the experiments. The materials detailed include the dataset
and foundation models. Since LLMs generate text based on patterns in the input they
receive, the way an input “prompt” is formulated can significantly impact the quality and
specificity of the output. Prompting strategies refer to the techniques and approaches used
to craft effective input prompts that guide the model to produce the most relevant, accurate,
or useful responses. Therefore, prompting strategies and experiments with the models are
explained next. The following section describes the performance evaluation of the models.
Challenges faced, difficulties overcome, and results are discussed next, followed by the
application of explainability techniques and the conclusion.

2. Materials and Methods

A broad overview of the approach taken for this work is illustrated in Figure 1.
Foundation models such as CLIP were tested on the dataset, and their performance was
evaluated using appropriate metrics. The classifications made by the foundation models
were then evaluated using various explainable AI techniques such as LIME and removal-
based explanations. The dataset and other details are explained below.

Figure 1. Design of the experiments.

2.1. Dataset

The dataset used for the experiments is available in the public domain on Kaggle [22].
It contains the following 11 classes of images: traffic lights, frogs, dogs, cats, airplanes, cars,
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trucks, ships, birds, horses, and deer. A portion of these images was selected for evaluation
(from the test directory), and another portion was selected for n-shot prompting (from the
train directory). For the zero-shot prompting, a total of 113 real images and 116 fake images
were used as test images.

2.2. Foundation Models

Four different multimodal models, three downloaded from Hugging Face, namely,
Llava 1.6, CLIP, and Moondream2, and one other, Gemini 1.5 flash from Google, were used
for these experiments. Large Language and Vision Assistant (Llava) [2,23], is an advanced
multimodal model that integrates a vision encoder with a language model to enhance
visual and language comprehension. The model has demonstrated appreciable visual
reasoning capabilities [24]. The second model used was OpenAI’s CLIP, a multimodal
model specializing in binary image classification. The third model used was Moondream2,
also from Hugging Face. Lastly, Gemini 1.5 flash was used, which is Google’s fastest
multimodal model known for its use with a variety of tasks. It features a long context
window, allowing it to process extensive data efficiently, and is optimized for speed with
sub-second average first-token latency.

2.3. Overview of Model Architectures

To understand the strengths and weaknesses of each foundation model used in test-
ing and experimentation, the architectures of these four models are observed. This will
help make predictions on expected results based on the strengths and weaknesses of
these models.

Starting with CLIP, it is a multimodal learning architecture developed by OpenAI.
CLIP is an image classifier, meaning that its specialty is in binary image classification.
CLIP trains its model on a large-scale dataset containing images and their corresponding
text descriptions, which renders it similar in capability to the GPT-2 and GPT-3 models.
CLIP uses contrastive learning, a technique largely popular in the field of unsupervised
learning. CLIP has several components, one of which is an image encoder, which utilizes
architectures and ResNet models to produce high-dimensional vector representations. CLIP
also has a text encoder, which allows it to convert textual descriptions into embeddings.
CLIP has a vast amount of training data that allow it to make its predictions. CLIP has
versatility and is effective for image retrieval, image classification, and matching images
with textual descriptions.

Llava 1.6 is an extension of large language models like Llama, which integrates
language and vision encoders separately. Unlike CLIP, which has the primary task of
zero-shot image classification, Llava’s architecture aims for comprehensive multimodal
understanding. Llava is classified as an auto-regressive language model based on its
transformer architecture. Because of this, Llava can perform tasks that require both textual
and visual comprehension, such as visual question answering and image captioning. While
CLIP is to be an image classifier based on images and contextual prompts, Llava’s goal is
to operate as an LLM with additional image processing capabilities. Because of this, one
might expect additional n-shot prompting to be successful when using Llava.

Google’s Gemini 1.5 Flash Multimodal LLM processes up to 1 million tokens in its
long context window and is optimized for low-latency tasks. Similarly to LLava, Gemini’s
model can act as both a text model and an image model separately. Gemini also uses
a dual-encoder structure similar to that of the CLIP image classification model. Unlike
Llava or CLIP, Gemini’s transformer decoder model architecture means it is designed for
lightweight, optimized efficiency. This makes it highly suitable for real-time AI-generated-
image detection tasks. However, Gemini 1.5 Flash’s explainability features are slightly
more limited compared to other foundation models.

Moondream2 is a smaller, multimodal LLM authored by vikhayk on HuggingFace. It
uses a transformer-based architecture similar to those of Llava and CLIP. It uses approxi-
mately 1.87 billion parameters and training data to generate responses to a given image and
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text prompt. Given that this is an authored model, it is frequently updated, and potential
weaknesses this model could have, such as reduced ability to scale on batched images,
are addressed.

2.4. Prompting and Experimentation

To meet the respective model nuances, the prompting strategies and responses to the
given prompts for each of the models differed slightly. Llava 1.6 was best at interpreting
the prompt as a multiple-choice question. An example prompt for the Llava 1.6 model is
as follows:

Is the image real or fake?
(A) Real
(B) Fake

The model outputs responses as an answer to the multiple-choice question, either A/B
or (A) Real/(B) Fake.

For OpenAI’s CLIP model, since it is a binary classification model, the prompts are
passed in as labels. The first label provided is “You are an image forensics expert. This is a
real image with no technical interference”. The second label provided is “You are an image
forensics expert. This is a fake image with technical interference”. From there, the softmax
function is used to get the models to output the respective probabilities for each label. The
label with the higher probability determines if the model classifies the image as real or fake.

The Moondream2 model had a slightly modified prompt. It had difficulty answering
the prompt as a multiple-choice question. The prompt that worked best with this model is
as follows: “Determine if the image is real or fake and answer clearly”. This prompted the
model to respond in a concise statement whether it believed the image provided was real
or fake. The response from this model is of the form “This image is real/fake”, followed
by a brief description of the image. The following are examples of real responses that the
model output:

1. The image is real, as it shows a horse standing in a field of tall grass.
2. The image is a fake or computer-generated (CGI) image of a city street with a traf-

fic light.
3. The image is real, as it shows a large ship sailing across the ocean.
4. The image is a fake, as it is a 3D rendering of a cat sitting on a blue background.

String parsing was then used to determine the prediction the LLM made and classify
the prediction as real or fake.

Google Gemini answers the multiple-choice question similarly to the Llava model.
However, at first, its responses were a bit indecisive, and on some occasions, it would not
come to a clear decision. Thus, we had to use contextual priming to obtain an updated
prompt: “You are an image forensics expert. Analyze the image and state concisely whether
it is (A)real or (B)fake? Choice:(”

The following are examples of responses generated:

1. Choice: **(A)real** This image appears to be a real photograph. There are no obvious
signs of manipulation or digital alteration.

2. Choice: **(B)fake** The image appears to be generated using AI. The frog’s texture
and lighting are too perfect and unrealistic, and the water’s reflections are artifi-
cial. The overall image lacks the natural imperfections and noise found in real-
world photographs.

2.5. Evaluation

Experiments were run by taking a random sample of 25 images from the test images
and having the model predict whether each of those 25 images was real. This was carried
out 20 separate times, and with each iteration, the accuracy score, precision score, F1 score,
and the Matthews correlation coefficient were obtained, all from the sklearn.metrics library.
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In accumulating these 20 iterations, the mean value of each metric was taken to generate an
average accuracy, precision, F1, and MCC value.

2.6. Challenges and Difficulties

Throughout this process, there were some challenges faced. Firstly, the majority of the
models were computationally intense, which made for a slow process in terms of gathering
the results and running the experiments. Next, selecting different models that would be
suited for the task at hand was an unexpected challenge. One image classifier and three
multimodal image/text models were used, and a host of other potential candidate models
considered were not successful because they were unable to process images. Some of
these models had limited capability as image captioning models without much scope for
using them for the problem being addressed. Each model also had different prompting
techniques required to achieve the task at hand, and different response methods.

3. Results and Discussion

The results in Table 1 show that the models had varying levels of success with both
zero-shot and n-shot prompting.

Table 1. Performance metrics for various models.

Model Prompting Technique Accuracy Precision F1 Score MCC

Llava

0-Shot 0.62 0.73 0.583 0.347
1-Shot 0.65 0.77 0.609 0.38
2-Shot 0.65 0.76 0.613 0.39
3-Shot 0.66 0.77 0.613 0.391
4-Shot 0.696 0.794 0.657 0.424

CLIP

0-Shot 0.48 0.446 0.407 −0.07
1-Shot 0.452 0.460 0.567 −0.122
2 Shot 0.488 0.502 0.609 −0.020
3-Shot 0.488 0.505 0.558 −0.057
4-Shot 0.500 0.451 0.505 0.024

Moondream2

0-Shot 0.632 0.784 0.579 0.375
1-Shot 0.650 0.594 0.732 0.435
2-Shot 0.583 0.529 0.660 0.248
3-Shot 0.583 0.578 0.705 0.188
4-Shot 0.667 0.639 0.760 0.300

Gemini 1.5 Flash

0 Shot 0.55 0.6804 0.5148 0.2075
1-Shot 0.6375 0.6990 0.5839 0.3181
2-Shot 0.6 0.5741 0.5512 0.1095
3-Shot 0.575 0.7749 0.5344 0.3253
4-Shot 0.6875 0.6966 0.6325 0.4013

The Llava model had a relatively steady and moderate increase in all metrics as the
model gained more context due to relative prompts. It had the highest accuracy, precision,
and Matthews correlation coefficient with four-shot prompting. Each prompt seemed to
train the model better and add clarity to the model. The few-shot learning strategy helped
it steadily improve.

The CLIP model for image classification performed the worst of all the models. This
could be because CLIP is not a text generator, rather it is an image classifier. Image
classification models are typically specialized to categorize given images into predefined
classes. Although CLIP allows the customization of labels, it is still based largely on
pretraining. Because we are not attempting to classify images into predetermined classes,
this could explain why CLIP was not quite as successful.

Both Moondream2 and Gemini 1.5 Flash performed similarly in terms of their overall
results. The results from one-shot prompting were better than that of zero-shot prompting;
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however, the two- and three-shot prompting results were worse as the metrics dipped once
again. Four-shot prompting seemed to be enough for both models to determine consistent
patterns across the dataset and generate better results.

3.1. LIME Explainability

To understand the decision-making process of each of the models as more prompts
and context were added, LIME explainability was used first. LIME generates several
perturbed samples of images and makes predictions on those perturbed samples. From
there, LIME assigns weights to those perturbed samples based on their proximity to the
original instance, and a linear regression model is run on the perturbed samples and
predicted outcomes. From the results of this model we can identify which features both
positively and negatively impact model confidence in its predictions. Figures 2–4 illustrate
this idea.

Figure 2. A picture of a bird.

Figure 3. Positive regions of confidence.

Figure 4. Negative regions of confidence.
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In the example image in Figure 2, the bird appears to be in mid-flight. The Llava
model predicts that this image is real, which is indeed the correct prediction, and that there
is no fabrication. Running the LIME explainability technique on the model for this image
reveals the regions of positive and negative confidence for the model when making its
prediction. The positive regions are shown in Figure 3 and the negative regions in Figure 4.
The results shown are for the Llava model.

The results from LIME are aligned with human intuition. The “positive regions” are
the regions that are heavily strengthening the model’s confidence that the image is real
(which was its prediction). The results appear to make sense, as the regions are indeed
important in determining that the bird in the photo seems lifelike and does not appear to
have been manipulated. The negative regions of confidence mainly appear to be in the
background. The background of this image is quite blurry and can seem to raise doubts as
to whether or not this image has been fabricated.

The LIME explainability results differed for all models in regard to how different
prompting techniques influenced the different confidence regions. Starting with Llava, the
regions of confidence did not differ despite the increased context provided by the model.
This meant that for each image, the exact same positive regions of confidence and negative
regions of confidence were always generated. This means that the inherent features that the
model relies on to make predictions do not change. However, the model can calibrate its
understanding of the features better and avoid overfitting with more provided examples.

With regard to the CLIP image classification model, LIME reveals that the regions of
confidence changed when prompts were added. Figure 5 shows the results for a real image
of a dog with zero-shot prompting, while Figure 6 with one-shot prompting.

The regions of confidence differ as a contextual prompt is provided. The positive
regions shift from a large portion of the background to a more prominent region of the
image, the dog’s face. The negative regions also shift from a large portion of the background
to the grass in front of and near the subject. CLIP’s focus shifts to new areas of the image
when a contextual prompt is added. However, the regions of confidence stay the same
when additional prompts are added.

The Moondream2 model highlights explainability regions similarly to the Llava model.
With additional contextual prompting, the same regions of positive and negative confidence
are found. However, unlike the Llava model, Moondream2 does not show continued
improvement as more contextual prompts are added. Contextual prompting has been
proven to be less effective when using Moondream2.

Figure 5. Positive and negative regions generated by CLIP with zero-shot prompting.
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Figure 6. Positive and negative regions generated by CLIP with one-shot prompting.

Another observation made when looking at the regions generated with Moondream2
shown in Figures 7 and 8 is that the regions of positive and negative confidence take up a
much greater portion of the overall image as opposed to with other models. These larger
regions suggest that the model might be leveraging broader features rather than focusing
on the fine-grained details of the image. In addition, Moondream might outperform other
models in tasks where understanding the overall scene is crucial. This also means that the
model could use improvement on tasks involving fine detail analysis of an image.

With the Gemini 1.5 Flash model, each additional contextual prompt changes the
regions of high and low confidence. The results obtained from analyzing a real image of a
cat are shown in Figures 9–13.

Figure 7. Positive regions generated by Moondream2 model.

These results show that Gemini is the only model where positive and negative regions
change for every single prompting technique. The results obtained from the previous
section showed that the biggest difference in results occurred when going from zero-shot
prompting to one-shot prompting. This somewhat tracks when looking at the results
generated by LIME. The positive regions shift more from the carpet to the cat’s face and
body, which is the subject of the image. The negative regions, which were largely centered
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on the cat’s features, shifted toward the carpet and surrounding area. In general, the extra
prompting did not help Gemini that much. However, it was taking the prompt into context,
and the regions of confidence changed more often than with any other model.

Figure 8. Negative regions generated by Moondream2 model.

Figure 9. Positive and negative regions generated by Gemini for zero-shot prompting.

Figure 10. Positive and negative regions generated by Gemini for one-shot prompting.

Figure 11. Positive and negative regions generated by Gemini for two-shot prompting.

Figure 12. Positive and negative regions generated by Gemini for three-shot prompting.
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Figure 13. Positive and negative regions generated by Gemini for four-shot prompting.

There was a limitation obtained from using LIME. A small portion of images when
run with the LIME explainer generated very little positive and very little negative regions.
This could be because of the following:

1. The model is overfitting to specific features irrelevant during training;
2. The model might have learned misleading correlations;
3. Approximating the model’s behavior could have limitations.

Further understanding these issues requires continued research and testing.

3.2. Jaccard Index

To further quantify the results we interpreted using LIME, the Jaccard similarity
coefficient can be used. The Jaccard Index, also known as the Jaccard similarity coefficient,
is a statistical measure used to quantify the similarity and diversity between two sets. In the
context of image analysis and model interpretability, particularly with LIME, the Jaccard
Index can be employed to evaluate the overlap between regions identified as positively or
negatively contributing to a model’s decision.

Mathematically, the Jaccard Index is defined as

Jaccard Index =
|A ∩ B|
|A ∪ B|

where |A ∩ B| represents the size of the intersection of sets A and B (i.e., the common
elements between the two sets), and |A ∪ B| denotes the size of the union of sets A and B
(i.e., all unique elements present in either set).

3.3. Jaccard Index for Evaluating Overlap Between Positive and Negative Regions

The Jaccard Index, also known as the Jaccard similarity coefficient, is a statistical
measure used to quantify the similarity and diversity between two sets. In the context of
image analysis and model interpretability, particularly with LIME, the Jaccard Index can be
employed to evaluate the overlap between regions identified as positively or negatively
contributing to a model’s decision.

Significance of the Jaccard Index

In this study, the Jaccard Index is utilized to compare the overlap between the positive
regions (areas of the image that positively influence the model’s prediction) and the negative
regions (areas that negatively influence the model’s prediction) highlighted by LIME:

• Jaccard Index close to 1: A high Jaccard Index indicates significant overlap between
positive and negative regions. This suggests that the model may rely on the same
areas of the image for both positive and negative contributions, potentially indicating
regions of ambiguity or mixed relevance.

• Jaccard Index close to 0: A low Jaccard Index suggests minimal overlap, indicating
that the model clearly distinguishes between different parts of the image for positive
and negative contributions. This separation can reflect a well-defined decision-making
process where distinct regions contribute either positively or negatively, but not both.

• Moderate Jaccard Index: A moderate value suggests that while there is some overlap,
there are also distinct areas that are uniquely positive or negative. This could reflect a
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balanced interpretation of the model, where certain features play dual roles depending
on the context.

The Jaccard Index thus provides a quantitative measure to assess the extent to which
the model’s focus areas overlap for positive and negative influences, offering insights into
the model’s interpretability and decision-making behavior. The results from taking each
model’s average Jaccard index over a sampling of images are shown in Table 2.

Table 2. Jaccard scores for different models.

Model Jaccard Score

Llava 0.0

CLIP 0.0

Moondream2 0.758

Gemini 0.0

The Moondream2 model is the only model with a Jaccard score that is not 0. This
confirms our suspicions that this model relies on the same regions for both positive and
negative contributions, which could imply that it is not great at very fine, detailed tasks.
The other three models have a Jaccard score of 0, signifying no overlap, which can mean a
more precise decision-making method.

3.4. Removal-Based Explanations

Another approach to understanding model explainability is the removal-based expla-
nation approach. This approach involves systematically occluding varying regions of an
image and observing how these changes reflect in the model’s predictions. This approach
can help identify the most and least influential regions of an image that contribute to
the model’s decision making. The steps for generating removal-based explanations are
as follows:

1. Define the prediction function.
2. Generate the baseline predictions for the image using the original prediction function.
3. Define a function to occlude regions in an image and create a list of regions to occlude.

Change the region size and step size of the occlusion as needed.
4. For each region, measure the change in probabilities from the baseline prediction to

the new prediction of the occluded image.
5. Output the most and least influential regions of the image.

The exact formula for calculating the most and least influential regions of the im-
age is simply using the change in the Euclidean distance between the array of baseline
probabilities and the array of new probabilities. Euclidean distance allows us to consider
the difference across all dimensions, or elements in the array. In addition, it allows the
comparison of probability vectors in their entirety. The Euclidean distance can be used to
effectively compare the relative importance of each feature and is an efficient computation.
The format of the probability logits for the Llava 1.6 model is as follows when rounded to
three significant figures:

5.628 × 10−9 6.580 × 10−9 5.843 × 10−7 8.407 × 10−7 8.424 × 10−7 8.423 × 10−7

3.244 × 10−9 2.710 × 10−9 8.083 × 10−6 1.673 × 10−5 1.667 × 10−5 1.676 × 10−5

7.354 × 10−9 7.297 × 10−9 3.910 × 10−5 5.414 × 10−5 5.399 × 10−5 5.411 × 10−5

3.539 × 10−12 3.148 × 10−12 6.416 × 10−4 3.512 × 10−8 3.483 × 10−8 3.512 × 10−8

7.207 × 10−11 1.090 × 10−10 4.333 × 10−4 1.199 × 10−6 1.188 × 10−6 1.196 × 10−6

6.364 × 10−11 5.660 × 10−11 2.718 × 10−5 4.118 × 10−7 4.065 × 10−7 4.085 × 10−7


The resulting array of all Euclidean distances generated by the repeated occlusion of

portions of the image is shown in Table 3.
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Table 3. Top 5 most and least influential regions.

Region (Coordinates) Influence Value

Most Influential Regions

(90, 135, 60, 30) 11.738492

(60, 120, 60, 30) 11.481618

(30, 120, 60, 30) 11.475345

(60, 135, 60, 30) 11.300630

(90, 120, 60, 30) 11.210486

Least Influential Regions

(270, 165, 60, 30) 9.290663

(240, 165, 60, 30) 9.257188

(270, 120, 60, 30) 9.470703

(270, 60, 60, 30) 9.491793

(270, 135, 60, 30) 9.506325

Since CLIP is a pure image classification model, the probability logits outputted are
much simpler to understand. It is the probability that the image satisfies the first prompt
followed by the probability that the image follows the second prompt. The format is
as follows:

Baseline Probabilities: [0.43507442, 0.5649257]

Since the Euclidean distance calculations are carried out on an array of two numbers
instead of several probability logits like with Llava, the calculations are much simpler and
more efficient. The results are shown in Table 4.

Table 4. Top 5 most and least influential regions (CLIP model).

Region (Coordinates) Euclidean Distance

Most Influential Regions

(180, 138, 60, 30) 0.34646508

(180, 135, 60, 30) 0.3147826

(180, 15, 60, 30) 0.2995943

(150, 15, 60, 30) 0.29548472

(150, 105, 60, 30) 0.28423652

Least Influential Regions

(270, 138, 60, 30) 0.005460461

(270, 135, 60, 30) 0.005460461

(270, 120, 60, 30) 0.005460461

(270, 105, 60, 30) 0.005460461

(270, 90, 60, 30) 0.005460461

This explainability technique does have limitations. Firstly, the technique systemati-
cally occludes parts of the image based on region size and step size. This means that these
metrics are crucial in generating the regions that are occluded, and the optimization of
these metrics is key. Next, because of this, the most and least influential regions remain
consistent, which means that we cannot use removal-based explanations to identify the
effectiveness of zero- vs. n-shot prompting. The most/least influential regions will remain
the same, similar to what can be realized with LIME.
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The result of using this explainability technique on a sample image is illustrated in
Figures 14 and 15.

Figure 14. Most/least influential regions generated by Llava.

The comparison reveals interesting results. The Llava model’s most influential regions
comprised more of the house and grass in the background. CLIP’s most influential regions
comprised near and around the traffic light. However, both model’s least influential regions
were around the bottom right-hand corner of the image, which makes sense. In considering
the road at the bottom right of the image is not the main focus of the image, it makes sense
that these regions would be the least influential for either model to make a prediction.

One aspect to note is that this explainability technique requires direct access to logit
probabilities generated by the model. Gemini 1.5 Flash does not provide access to those
logits, and neither does Moondream2, so the explainability technique is not used for
these models.

Figure 15. Most/least influential regions generated by CLIP.

4. Conclusions

As image generation and manipulation become more prevalent, the implications for
misinformation, security, and trust in visual media grow more profound. This work proved
that foundation models work reasonably well for fake image detection. Accuracy levels
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rose as high as 69.6 percent and the models Llava, CLIP, and Gemini each had MCC scores
consistently in the range of 0.3 and 0.4. This indicates a positive correlation between
the model’s predictions and the desired outcomes. Multiple explainability techniques
confirm that the functionality of the models aligns with human intuition. The highlighted
regions examined heavily by the LIME and integrated gradient explainability techniques
are prominent regions in the images. The multiple foundation models used for this work
show promise that they can be used for fake image detection. It was observed that the
models get better with training using few-shot learning. Specifically, Llava and Gemini
showed considerable improvements as new contextual prompts were added, and few-shot
prompting improved the accuracy and F1 score of each model. A future direction can be
to fine-tune the models with additional training data and investigate their performance.
Since the dataset of images represented 11 classes, there are other images we can pull to
test these models further. Another research direction is to combine image analysis with the
analysis of related information such as text and audio. Combining textual misinformation
as well as fake images could be an intriguing tactic for analyzing multimodal models
further. Yet, another research approach is to use interdisciplinary knowledge such as from
digital forensics to enhance the analysis.
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