
Citation: Knights, V.A.; Petrovska, O.;

Kljusurić, J.G. Nonlinear Dynamics

and Machine Learning for Robotic

Control Systems in IoT Applications.

Future Internet 2024, 16, 435.

https://doi.org/10.3390/fi16120435

Academic Editors: Cheng-Chi Lee

and Dinh-Thuan Do

Received: 9 October 2024

Revised: 14 November 2024

Accepted: 18 November 2024

Published: 21 November 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Nonlinear Dynamics and Machine Learning for Robotic Control
Systems in IoT Applications
Vesna Antoska Knights 1,* , Olivera Petrovska 2 and Jasenka Gajdoš Kljusurić 3

1 Faculty of Technology and Technical Sciences, University St. Kliment Ohridski, 7000 Bitola, North Macedonia
2 Faculty of Technical Science, Mother Teresa University, 1000 Skopje, North Macedonia;

olivera.petrovska@unt.edu.mk
3 Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia;

jasenka.gajdos@pbf.unizg.hr
* Correspondence: vesna.knights@uklo.edu.mk

Abstract: This paper presents a novel approach to robotic control by integrating nonlinear dynamics
with machine learning (ML) in an Internet of Things (IoT) framework. This study addresses the
increasing need for adaptable, real-time control systems capable of handling complex, nonlinear
dynamic environments and the importance of machine learning. The proposed hybrid control system
is designed for a 20 degrees of freedom (DOFs) robotic platform, combining traditional nonlinear
control methods with machine learning models to predict and optimize robotic movements. The
machine learning models, including neural networks, are trained using historical data and real-
time sensor inputs to dynamically adjust the control parameters. Through simulations, the system
demonstrated improved accuracy in trajectory tracking and adaptability, particularly in nonlinear
and time-varying environments. The results show that combining traditional control strategies with
machine learning significantly enhances the robot’s performance in real-world scenarios. This work
offers a foundation for future research into intelligent control systems, with broader implications for
industrial applications where precision and adaptability are critical.

Keywords: nonlinear dynamics; machine learning; robotic control

1. Introduction

The integration of robotic systems with advanced control methods and machine
learning has become a key research focus, particularly in the context of the Internet of Things
(IoT) [1,2]. As IoT applications continue to expand across various industries [3,4], from
smart agriculture to autonomous transportation [5,6], the demand for adaptive, real-time
control systems that can handle complex, dynamic environments has grown significantly [7].
These systems must be capable of interacting with diverse sensors, processing vast amounts
of data, and making intelligent decisions to optimize performance [8]. In this regard,
the combination of nonlinear dynamics, machine learning, and IoT technologies offers a
promising approach [9,10].

Nonlinear control systems are well-suited for managing the complex dynamics of
robotic platforms, especially those with multiple degrees of freedom [11,12]. Traditional con-
trol techniques, such as PID and adaptive control, have been widely applied in robotics [13].
However, these approaches often struggle in environments characterized by high nonlin-
earity, uncertainty, and time-varying conditions. Recent advancements in machine learning,
particularly deep learning and recurrent neural networks, provide new opportunities to
enhance control accuracy and adaptability [14–17]. By leveraging the universal approxima-
tion capability of neural networks, it is possible to model the intricate relationships between
input control signals and system behavior, enabling more precise control in real-time
scenarios [17].

Future Internet 2024, 16, 435. https://doi.org/10.3390/fi16120435 https://www.mdpi.com/journal/futureinternet

https://doi.org/10.3390/fi16120435
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://orcid.org/0000-0003-1768-2231
https://orcid.org/0000-0001-6657-7337
https://doi.org/10.3390/fi16120435
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/article/10.3390/fi16120435?type=check_update&version=1

Future Internet 2024, 16, 435 2 of 23

In parallel, the integration of the IoT allows for the seamless exchange of informa-
tion between robotic systems and distributed networks, facilitating real-time monitoring,
control, and decision-making across large-scale environments [18,19].

The IoT infrastructure supports the collection of sensor [20–22] data from various
sources, which can be fed into machine learning models for the continuous adaptation of
control parameters. This adaptability is essential in applications such as smart farming,
where environmental conditions can change unpredictably, requiring the control system to
respond promptly.

This paper introduces a hybrid control architecture that combines nonlinear dynamics
and machine learning (ML) techniques to optimize robotic control systems, specifically
designed for a 20 degrees of freedom (DOFs) robotic platform [23]. The integration of ML
into this system enables real-time adjustments, improving the adaptability and precision of
the control strategy.

This research builds on previous work by integrating nonlinear dynamic modeling
with machine learning and the IoT, focusing on practical implementation and real-time
adaptability in various IoT-driven scenarios [24–31].

Recent studies have demonstrated the potential of machine learning techniques in
robotic control. For instance, El-Hussieny et al. [11] utilized a deep learning-based Model
Predictive Control (MPC) framework to enhance the trajectory tracking of a three DOFs
robotic leg, highlighting the advantages of data-driven models over traditional analytical
methods in real-time control scenarios. Similarly, Yuan et al. [24] explored the application
of auxiliary physics-informed neural networks to solving the forward and inverse prob-
lems of nonlinear integro-differential equations, demonstrating the efficacy of adaptive
learning models in complex environments. Chen and Wen [32] explored the application
of multi-layer neural networks in industrial robot trajectory tracking, while Li et al. [33]
and Zheng et al. [34] applied recurrent neural networks to trajectory tracking for high-
dimensional robotic systems, demonstrating the efficacy of adaptive learning models in
complex environments. Moreover, the integration of the IoT with robotic control systems
has been discussed extensively, particularly in smart farming applications [35–37] where
real-time data processing and environmental adaptability are crucial.

The diagram in Figure 1 illustrates the four-layer architecture of an IoT system [38],
with each layer serving specific functions in the IoT ecosystem:

Future Internet 2024, 16, x FOR PEER REVIEW 2 of 25

approximation capability of neural networks, it is possible to model the intricate relation-
ships between input control signals and system behavior, enabling more precise control
in real-time scenarios [17].

In parallel, the integration of the IoT allows for the seamless exchange of information
between robotic systems and distributed networks, facilitating real-time monitoring, con-
trol, and decision-making across large-scale environments [18,19].

The IoT infrastructure supports the collection of sensor [20–22] data from various
sources, which can be fed into machine learning models for the continuous adaptation of
control parameters. This adaptability is essential in applications such as smart farming,
where environmental conditions can change unpredictably, requiring the control system
to respond promptly.

This paper introduces a hybrid control architecture that combines nonlinear dynam-
ics and machine learning (ML) techniques to optimize robotic control systems, specifically
designed for a 20 degrees of freedom (DOFs) robotic platform [23]. The integration of ML
into this system enables real-time adjustments, improving the adaptability and precision
of the control strategy.

This research builds on previous work by integrating nonlinear dynamic modeling
with machine learning and the IoT, focusing on practical implementation and real-time
adaptability in various IoT-driven scenarios [24–31].

Recent studies have demonstrated the potential of machine learning techniques in
robotic control. For instance, El-Hussieny et al. [11] utilized a deep learning-based Model
Predictive Control (MPC) framework to enhance the trajectory tracking of a three DOFs
robotic leg, highlighting the advantages of data-driven models over traditional analytical
methods in real-time control scenarios. Similarly, Yuan et al. [24] explored the application
of auxiliary physics-informed neural networks to solving the forward and inverse prob-
lems of nonlinear integro-differential equations, demonstrating the efficacy of adaptive
learning models in complex environments. Chen and Wen [32] explored the application
of multi-layer neural networks in industrial robot trajectory tracking, while Li et al. [33]
and Zheng et al. [34] applied recurrent neural networks to trajectory tracking for high-
dimensional robotic systems, demonstrating the efficacy of adaptive learning models in
complex environments. Moreover, the integration of the IoT with robotic control systems
has been discussed extensively, particularly in smart farming applications [35–37] where
real-time data processing and environmental adaptability are crucial.

The diagram in Figure 1 illustrates the four-layer architecture of an IoT system [38],
with each layer serving specific functions in the IoT ecosystem:

Figure 1. Architecture of the IoT and a robot.

Sensing layer: This layer showcases the use of embedded devices, such as sensors
and actuators, tasked with data acquisition. These devices collect environmental data.

Figure 1. Architecture of the IoT and a robot.

Sensing layer: This layer showcases the use of embedded devices, such as sensors and
actuators, tasked with data acquisition. These devices collect environmental data.

Network layer: This employs a range of communication technologies including WiFi
and Bluetooth for local connectivity. For applications requiring extended range, tech-
nologies like Zigbee, cellular networks (4G/5G), and LoRaWAN are also incorporated.
This layer may also integrate security measures such as encryption and authentication to
safeguard data exchanges.

Future Internet 2024, 16, 435 3 of 23

Data processing layer: Located primarily in cloud-based platforms, this layer handles
the heavy lifting of data analysis. It processes incoming data streams to extract actionable
insights and supports advanced computational tasks. Technologies in use include data
management systems and machine learning algorithms, often within structures like data
lakes that store vast amounts of unprocessed data.

Application layer: This is a simulator that control applications and highlights where
the data become actionable through various applications. It is potentially developed in
programming environments like MATLAB R2024a, Python 3.10, or Java 19.0.1.

2. Materials and Methods

This study presents a control system designed for a 20 DOFs robotic platform, inte-
grating nonlinear dynamic equations and machine learning models. The robot is modeled
using a set of nonlinear differential equations, and the control system is developed using
MATLAB. The dynamic modeling incorporates the Adams–Bashforth–Moulton method for
solving the equations of motion, chosen for their balance between computational efficiency
and accuracy in predicting dynamic states. The hybrid control strategy combines traditional
feedback control and a neural network that dynamically adjusts the control parameters
based on real-time sensor inputs. The neural network is trained on historical data collected
from the robot’s previous trajectories, allowing it to predict necessary adjustments for
improved performance in real-world tasks.

2.1. Mathematical Foundation and Dynamic Modeling

The flyer model was adapted, which is extensively detailed in the literature [23]
and serves as the basis for the implemented software representing a complete humanoid
mechanism. Figure 2 illustrates the basic model serving as the foundation for the software
in MATLAB’s implementation. In this schematic representation of the humanoid robot,
contact with the ground is facilitated by a cart with the specified dimensions. The primary
segment of the mechanism is the pelvis, which is rigidly attached to the stationary cart.
This modeling approach aligns with techniques used in robotic manipulator design, where,
typically, a single open kinematic chain is sufficient to represent the manipulator.

Future Internet 2024, 16, x FOR PEER REVIEW 3 of 25

Network layer: This employs a range of communication technologies including WiFi
and Bluetooth for local connectivity. For applications requiring extended range, technol-
ogies like Zigbee, cellular networks (4G/5G), and LoRaWAN are also incorporated. This
layer may also integrate security measures such as encryption and authentication to safe-
guard data exchanges.

Data processing layer: Located primarily in cloud-based platforms, this layer handles
the heavy lifting of data analysis. It processes incoming data streams to extract actionable
insights and supports advanced computational tasks. Technologies in use include data
management systems and machine learning algorithms, often within structures like data
lakes that store vast amounts of unprocessed data.

Application layer: This is a simulator that control applications and highlights where
the data become actionable through various applications. It is potentially developed in
programming environments like MATLAB R2024a, Python 3.10, or Java 19.0.1.

2. Materials and Methods
This study presents a control system designed for a 20 DOFs robotic platform, inte-

grating nonlinear dynamic equations and machine learning models. The robot is modeled
using a set of nonlinear differential equations, and the control system is developed using
MATLAB. The dynamic modeling incorporates the Adams–Bashforth–Moulton method
for solving the equations of motion, chosen for their balance between computational effi-
ciency and accuracy in predicting dynamic states. The hybrid control strategy combines
traditional feedback control and a neural network that dynamically adjusts the control
parameters based on real-time sensor inputs. The neural network is trained on historical
data collected from the robot’s previous trajectories, allowing it to predict necessary ad-
justments for improved performance in real-world tasks.

2.1. Mathematical Foundation and Dynamic Modeling
The flyer model was adapted, which is extensively detailed in the literature [23] and

serves as the basis for the implemented software representing a complete humanoid
mechanism. Figure 2 illustrates the basic model serving as the foundation for the software
in MATLAB’s implementation. In this schematic representation of the humanoid robot,
contact with the ground is facilitated by a cart with the specified dimensions. The primary
segment of the mechanism is the pelvis, which is rigidly attached to the stationary cart.
This modeling approach aligns with techniques used in robotic manipulator design,
where, typically, a single open kinematic chain is sufficient to represent the manipulator.

Figure 2. Architecture of mobile robot and code for generating flier object.
Figure 2. Architecture of mobile robot and code for generating flier object.

In this case, however, due to the complexity of the humanoid structure, multiple
kinematic chains are required, each originating from specific segments of the mechanism.

Future Internet 2024, 16, 435 4 of 23

Figure 2 depicts the mechanism as consisting of three kinematic chains, indicated by curved
lines with arrows showing the direction of the chain extension. Chain I comprises the
pelvis, torso, and head; chain II, the pelvis, torso, and right arm; and chain III, the pelvis,
torso, and left arm.

Each chain is composed of segments (numbered: torso—4, head—7, right upper arm—10,
right forearm—12, right hand—14, left upper arm—17, left forearm—19, left hand—21) in
Figure 2. All other segments are imaginary with approximately zero dimensions, as well as
negligible dynamic characteristics so as not to affect the real part of the mechanism (masses m
and moments of inertia J, have values of 0). This division into kinematic chains is a functional
approach for this model.

The head and torso segments are separated, introducing three additional degrees of
freedom between them, replicating realistic movement. A rotational degree of freedom
around the z-axis is introduced between the pelvis and torso, providing a third degree of
freedom at the waist. The arm complexity is increased by adding two more degrees of
freedom at the shoulders (allowing rotation around the y-axis) and incorporating triangular
joints along the z-axis in both arms. The model includes hands, which can rotate relative to
the forearm, achieved through a combination of rotations around the x- and y-axes. The
resulting structure, thus, provides a total degree of freedom as given by N = 20i + 6.

The state of the robotic system is defined by the vector X [23,39], which includes the
joint angles, angular velocities, and accelerations. The pose of a base segment in space is
given by the following equation:

X = [x, y, z, φ, θ, ψ]T (1)

The vector contains six components that describe the position and orientation in a
three-dimensional space: x y z represent the Cartesian coordinates of the position in space.
φ θ ψ represent angles that are typically Euler angles, describing the orientation of the
segment in space (φ—roll rotation around x-axis; θ—pitch rotation about the y-axis; and
ψ—yaw rotation about the z-axis).

φ(roll) = atan
(

2·(ω·x + y·z), 1 − 2·
(

x2 + y2
))

(2)

θ(pitch) = asin(2·(ω·z + x·y)) (3)

ψ(yaw) = atan2
(

2·(ω·z + x·y), 1 − 2·
(

y2 + z2
))

(4)

This vector describes the spatial positioning and orientation of an object (such as a
robot) in terms of the translational coordinates x, y, z and rotational coordinates φ θ ψ. It is
used for determining the location and orientation in space, suitable for tasks like navigation,
positioning, and alignment in a fixed reference frame. Its purpose is to provide a general
pose in 3D space, useful for external tasks and interactions, whereas a state vector that
includes joint dynamics is more specialized for internal control and analysis within robotic
systems and is given in Equation [5], which includes the joint angles, angular velocities,
and accelerations. This would indeed be a more detailed and dynamic focused version of a
state vector in robotics.

Q = [X q]T = [x y z φ θ ψ q1 q2 q3 . . . qn]
T (5)

This vector typically encompasses not only the positions of the joints but also their
velocities and accelerations over time, making it highly suitable for dynamic modeling
and control purposes. The dynamic model, governed by nonlinear dynamic equations
derived from the Euler–Lagrange formulation [40,41], for a robotic system with n degrees
of freedom (DOFs) is described as follows:

H(q)
..
q + h

(
q,

.
q
)
+ g(q) = τ (6)

Future Internet 2024, 16, 435 5 of 23

where

H(q) is the inertia matrix, influenced by the robot’s configuration;
..
q represents the joint accelerations;
h
(
q,

.
q
)

represents the Coriolis and centrifugal forces, dependent on both the position and
velocities of the joints;
g(q) is the gravitational force vector, depending solely on its configuration;
u is the control input vector (torques or forces).

The robot’s velocity motion is governed by the following differential equations:

.
q =

cosθ 0
sinθ 0

0 1

[v
ω

]
(7)

where q represents the joint positions, θ represents the orientation, υ represents the linear
velocities, andω represents the angular velocities. The key engineered features include the
Euler angles (derived from quaternion orientation data), total angular velocity (ωt), and
total linear acceleration (v t).

ωt =

√
(angular_velocity_X)2 + (angular_velocity_Y)2 + (angular_velocity_Z)2 (8)

vt =

√
(linear_accelerat_X)2 + (linear_accelerat_Y)2 + (linear_accelerati_Z)2 (9)

Analyzing the movement of the robot in the environment, the Jacobian matrix is
used, J = ∂X

∂Q , which gives the relationship between the point of the robot located in the
local coordinate system and the speed of the entire mechanism in relation to the global
coordinate system:

H(q)
..
q + h

(
q,

.
q
)
+ g(q) = τ + JT (q) Fext (10)

JT (q) is the transpose of the Jacobian matrix. This matrix relates the external forces
and torques Fext acting on the robot to the torques at the joints. The Jacobian J(q) trans-
forms the joint velocity vectors into end-effector velocity vectors in the workspace, and its
transpose JT (q) maps the external forces applied to the end-effector back to the equivalent
joint torques.

Fext represents the external forces. This vector represents the forces and torques from
the environment acting on the robot. These could be due to interaction with objects, external
loads, or any other environmental influence exerting force on the robot.

In an IoT-integrated robotic system, the motion of the robot can be monitored through
a connected device that communicates with the controller, publishing pose data in a
structured format, such as JSON sensor data for “current_pose”, which include information
about the robot’s position and orientation (the position of the robot’s tool reference frame is
described by the coordinates in Equation (1) and the orientation by Equation (5)).

Once all of these data are organized, they are ready to be used to create a virtual “flyer”
object. However, before using this object, it must first be created in the computer’s memory.
This is performed with the help of the k_flier constructor. When this constructor is called, it
creates a new flyer object (in this case, named flier20), based on the structured data from
the gen_links function.

In simple terms, the ‘gen_links’ function gathers all the complex information needed
to define the flyer, while the ‘k_flier’ constructor brings it to life in the digital environment,
allowing researchers to use this model in simulations and to further study its behavior.

The flowchart (Figure 3) effectively outlines a robust system for managing commands
in an automated or robotic system, ensuring that actions are taken based on successful
connections and accurate sensor data, with contingencies for failures. It emphasizes a
structured approach to operational readiness, monitoring, and execution, allowing for real-
time adjustments and precise control based on environmental feedback and operational

Future Internet 2024, 16, 435 6 of 23

status. The integration of feedback loops and error checks promotes high reliability and
safety, crucial for maintaining performance and responsiveness in dynamic environments.

Future Internet 2024, 16, x FOR PEER REVIEW 6 of 25

structured approach to operational readiness, monitoring, and execution, allowing for
real-time adjustments and precise control based on environmental feedback and opera-
tional status. The integration of feedback loops and error checks promotes high reliability
and safety, crucial for maintaining performance and responsiveness in dynamic environ-
ments.

Figure 3. Command and control process flowchart for robotic operations.

2.2. Integrating Nonlinear Methods with Neural Networks
The diagram in Figure 4 outlines a hybrid control architecture that integrates tradi-

tional numerical calculations with neural network predictions to optimize robotic control.
This architecture is designed to adaptively refine control strategies through iterative learn-
ing, making it highly effective for complex robotic applications. We proposed a hybrid
control architecture that combines the strengths of nonlinear mathematical methods and
neural networks. A neural network is used to optimize the robot’s control strategy, such
as path planning, joint control, or disturbance handling. The inputs to the neural network
were as follows: the joint angles, joint velocities, external forces, etc. The outputs of the
neural network were as follows: the predicted joint torques, optimized trajectories, or con-
trol signals.

Figure 3. Command and control process flowchart for robotic operations.

2.2. Integrating Nonlinear Methods with Neural Networks

The diagram in Figure 4 outlines a hybrid control architecture that integrates tradi-
tional numerical calculations with neural network predictions to optimize robotic control.
This architecture is designed to adaptively refine control strategies through iterative learn-
ing, making it highly effective for complex robotic applications. We proposed a hybrid
control architecture that combines the strengths of nonlinear mathematical methods and
neural networks. A neural network is used to optimize the robot’s control strategy, such
as path planning, joint control, or disturbance handling. The inputs to the neural network
were as follows: the joint angles, joint velocities, external forces, etc. The outputs of the
neural network were as follows: the predicted joint torques, optimized trajectories, or
control signals.

Machine learning models are integrated to learn from the robot’s past trajectories and
to dynamically adjust the control parameters.

The inputs to the neural network are the variables that describe the current state of the
robot and the environment. In this case, these include the following: the position of each
joint in the robot, which can be represented as a vector Q (Equation (5)) of size n, where
n is the number of joints q = [q1, q2, . . . , qn] the speed at which each joint is moving
(vector dq =

.
q) of size n: dq =

.
q =

[.
q1,

.
q2,

.
q3, . . .

.
qn

]
; and the external forces acting on

the robot (including disturbances, gravity, or forces from contact with the environment).
F =

[
Fx, Fy, Fz

]
, where the components are forces in the three-dimensional space. The

previous control signals or torques applied to the joints are used as inputs if the control
strategy depends on past actions.

Future Internet 2024, 16, 435 7 of 23Future Internet 2024, 16, x FOR PEER REVIEW 7 of 25

Figure 4. Hybrid control architecture workflow for robotic systems.

Machine learning models are integrated to learn from the robot’s past trajectories and
to dynamically adjust the control parameters.

The inputs to the neural network are the variables that describe the current state of
the robot and the environment. In this case, these include the following: the position of
each joint in the robot, which can be represented as a vector Q (Equation (5)) of size n,
where n is the number of joints 𝑞 = ሾ𝑞ଵ, 𝑞ଶ, … , 𝑞 ሿ the speed at which each joint is moving
(vector 𝑑𝑞 = 𝑞ሶ) of size n: 𝑑𝑞 = 𝑞ሶ = ሾ𝑞ሶଵ, 𝑞ሶଶ, 𝑞ሶଷ, … 𝑞ሶ ሿ; and the external forces acting on the
robot (including disturbances, gravity, or forces from contact with the environment). 𝐹 =ൣ𝐹௫, 𝐹௬, 𝐹௭ ൧, where the components are forces in the three-dimensional space. The previous
control signals or torques applied to the joints are used as inputs if the control strategy
depends on past actions.

Applying Equation (5), the outputs of the neural network are the variables that rep-
resent the control actions the robot should take (Figure 5). The joint torques τ are applied
to each joint to achieve the desired motion. With a vector τ of size n, 𝑦 = ሾ𝜏ଵ 𝜏ଶ 𝜏ଷ … 𝜏ሿ்,
and the desired angles 𝑞 (joint positions) and 𝑞ሶ (joint velocities) for each joint, the ro-
bot should be guided by the neural network to a specific posture or trajectory.

Figure 4. Hybrid control architecture workflow for robotic systems.

Applying Equation (5), the outputs of the neural network are the variables that repre-
sent the control actions the robot should take (Figure 5). The joint torques τ are applied to
each joint to achieve the desired motion. With a vector τ of size n, y = [τ1 τ2 τ3 . . . τn]

T ,
and the desired angles qn (joint positions) and

.
qn (joint velocities) for each joint, the robot

should be guided by the neural network to a specific posture or trajectory.

Future Internet 2024, 16, x FOR PEER REVIEW 7 of 25

Figure 4. Hybrid control architecture workflow for robotic systems.

Machine learning models are integrated to learn from the robot’s past trajectories and
to dynamically adjust the control parameters.

The inputs to the neural network are the variables that describe the current state of
the robot and the environment. In this case, these include the following: the position of
each joint in the robot, which can be represented as a vector Q (Equation (5)) of size n,
where n is the number of joints 𝑞 = ሾ𝑞ଵ, 𝑞ଶ, … , 𝑞 ሿ the speed at which each joint is moving
(vector 𝑑𝑞 = 𝑞ሶ) of size n: 𝑑𝑞 = 𝑞ሶ = ሾ𝑞ሶଵ, 𝑞ሶଶ, 𝑞ሶଷ, … 𝑞ሶ ሿ; and the external forces acting on the
robot (including disturbances, gravity, or forces from contact with the environment). 𝐹 =ൣ𝐹௫, 𝐹௬, 𝐹௭ ൧, where the components are forces in the three-dimensional space. The previous
control signals or torques applied to the joints are used as inputs if the control strategy
depends on past actions.

Applying Equation (5), the outputs of the neural network are the variables that rep-
resent the control actions the robot should take (Figure 5). The joint torques τ are applied
to each joint to achieve the desired motion. With a vector τ of size n, 𝑦 = ሾ𝜏ଵ 𝜏ଶ 𝜏ଷ … 𝜏ሿ்,
and the desired angles 𝑞 (joint positions) and 𝑞ሶ (joint velocities) for each joint, the ro-
bot should be guided by the neural network to a specific posture or trajectory.

Figure 5. Neural network-based dynamic control system for robotic actuation.

From the MATLAB robot code, the inputs are as follows: q(7:26), the angles of the
robot’s joints; dq(7:26), the velocities of the robot’s joints; and FW, the external forces acting
on the robot.

Outputs: The torque values that should be applied to each joint to achieve that which
is desired, such as from the main loop of the neural network, where the torques (currently
with physics-based models) are calculated.

Neural network architecture: The input layer has a size 2n + m, where n is the number
of joints, and m is the number of force components. Hidden layers: the number of layers
and neurons are chosen per layer based on the complexity of the control problem. A

Future Internet 2024, 16, 435 8 of 23

common starting point is two hidden layers with 64 neurons each. The output layer has
a size n, corresponding to the torques for each joint. Activation functions: typically, the
ReLU (Rectified Linear Unit) is used for the hidden layers and a linear activation for the
output layer.

The control strategy for the robotic system involves using the torques predicted by a
neural network to precisely actuate the robot’s joints. This method incorporates real-time
data on the joint positions, velocities, and external forces to calculate the necessary torques
(Figure 6). These torques are then applied directly to the joints, enabling the robot to achieve
the desired movements and postures efficiently. This approach ensures both accuracy and
reduced energy consumption, enhancing the robot’s performance and durability.

Future Internet 2024, 16, x FOR PEER REVIEW 9 of 25

Figure 6. Neural network framework for solving nonlinear dynamics optimization in robotic con-
trol.

The main loop of the MATLAB code (Algorithm 1) performs the execution of the
planned motions:

Algorithm 1 Predict Function
 1: while (t < T)
 2: t = i*dt;
 3: % Update the states
 4: Q_132 = [q; TetaA; TetaB; dq; dTetaA; dTetaB];
 5: options = odeset(‘RelTol’, 1 × 10−2, ‘AbsTol’, 1 × 10−4, ‘MaxOrder’, 3);
 6: [tout,Q_132_out] = ode113(@ECCERdof_PomPod,[t t + dt], Q_132, options);
 7: Q_132 = Q_132_out(end,:)’;
 8: q = Q_132(1:26);
 9: ...
10: % Control adjustments

Here, the robot states (positions, velocities, etc.) are updated over time using a nu-
merical integration method (ode113), which approximates the continuous time dynamics
of the robot.

The loss function is defined as the mean squared error between the desired and actual
joint angles. The training process involves backpropagation, where the gradients of the
loss function are computed with respect to the network parameters and used to update
the weights.

Loss function. The mean squared error (MSE) between the predicted torques 𝑦ො and
the actual torques y is determined as follows: Ը = ଵ ∑ (𝑦ො − y)ଶୀଵ (12)

2.3. Adams–Bashforth–Moulton Method for Nonlinear Dynamics
The dynamics of the 20 DOFs robot are simulated using the ode113 solver, which

implements the Adams–Bashforth–Moulton method. This method is particularly well
suited for solving stiff ordinary differential equations (ODEs), which are common in ro-
botic systems due to the presence of multiple interacting components. The Adams–Bash-
forth–Moulton method is a predictor–corrector method used to solve ODEs of the form

(,)y f t y= .

Figure 6. Neural network framework for solving nonlinear dynamics optimization in robotic control.

Weight matrices
(
W1, W2, . . . , Wj) are used in each layer of a neural network to transform

the input data into a format that the network can use to make decisions or predictions. For
instance, W1 is the weight matrix used in the first layer of the network to transform the initial
input vector into the first hidden layer’s output (h1). Similarly, W2 transforms h1 into h2,
and so on. Neural networks use weight matrices in conjunction with nonlinear activation
functions (like the ReLU) to introduce nonlinearity into the network. This nonlinearity allows
the network to learn complex patterns beyond what a linear model could achieve.

During the training phase, these weight matrices are adjusted to minimize the loss
function—the measure of how far the network’s predictions are from the actual values. This is
typically performed using optimization algorithms like gradient descent, where Wj is updated
iteratively. This is described by the following equation:

W(t+1)
j = W(t)

j − µ
∂L
∂Wj

(11)

Wj denotes the weight matrix at the j-th layer at iteration t. The gradient ∂L
∂Wj

tells
us how to adjust Wj to reduce errors in the predictions, and η is the learning rate that
determines how big each update should be.

W1 and Wj are crucial for transforming and processing the input data through each
layer of the network, allowing the model to learn from the data and make increasingly
accurate predictions or control decisions. The use of multiple weight matrices enables the
network to handle a variety of tasks and adapt to different data patterns and complexities,
which is especially vital in applications like robotic control where the dynamics can be
highly variable and complex.

The main loop of the MATLAB code (Algorithm 1) performs the execution of the
planned motions:

Future Internet 2024, 16, 435 9 of 23

Algorithm 1 Predict Function

1: while (t < T)
2: t = i*dt;
3: % Update the states
4: Q_132 = [q; TetaA; TetaB; dq; dTetaA; dTetaB];
5: options = odeset(‘RelTol’, 1 × 10−2, ‘AbsTol’, 1 × 10−4, ‘MaxOrder’, 3);
6: [tout,Q_132_out] = ode113(@ECCERdof_PomPod,[t t + dt], Q_132, options);
7: Q_132 = Q_132_out(end,:)’;
8: q = Q_132(1:26);
9: . . .
10: % Control adjustments

Here, the robot states (positions, velocities, etc.) are updated over time using a
numerical integration method (ode113), which approximates the continuous time dynamics
of the robot.

The loss function is defined as the mean squared error between the desired and actual
joint angles. The training process involves backpropagation, where the gradients of the
loss function are computed with respect to the network parameters and used to update
the weights.

Loss function. The mean squared error (MSE) between the predicted torques ŷ and
the actual torques y is determined as follows:

Future Internet 2024, 16, x FOR PEER REVIEW 9 of 25

Figure 6. Neural network framework for solving nonlinear dynamics optimization in robotic con-
trol.

The main loop of the MATLAB code (Algorithm 1) performs the execution of the
planned motions:

Algorithm 1 Predict Function
 1: while (t < T)
 2: t = i*dt;
 3: % Update the states
 4: Q_132 = [q; TetaA; TetaB; dq; dTetaA; dTetaB];
 5: options = odeset(‘RelTol’, 1 × 10−2, ‘AbsTol’, 1 × 10−4, ‘MaxOrder’, 3);
 6: [tout,Q_132_out] = ode113(@ECCERdof_PomPod,[t t + dt], Q_132, options);
 7: Q_132 = Q_132_out(end,:)’;
 8: q = Q_132(1:26);
 9: ...
10: % Control adjustments

Here, the robot states (positions, velocities, etc.) are updated over time using a nu-
merical integration method (ode113), which approximates the continuous time dynamics
of the robot.

The loss function is defined as the mean squared error between the desired and actual
joint angles. The training process involves backpropagation, where the gradients of the
loss function are computed with respect to the network parameters and used to update
the weights.

Loss function. The mean squared error (MSE) between the predicted torques 𝑦ො and
the actual torques y is determined as follows: Ը = ଵ ∑ (𝑦ො − y)ଶୀଵ (12)

2.3. Adams–Bashforth–Moulton Method for Nonlinear Dynamics
The dynamics of the 20 DOFs robot are simulated using the ode113 solver, which

implements the Adams–Bashforth–Moulton method. This method is particularly well
suited for solving stiff ordinary differential equations (ODEs), which are common in ro-
botic systems due to the presence of multiple interacting components. The Adams–Bash-
forth–Moulton method is a predictor–corrector method used to solve ODEs of the form

(,)y f t y= .

=
1
n∑n

i=1(ŷi − yi)
2 (12)

2.3. Adams–Bashforth–Moulton Method for Nonlinear Dynamics

The dynamics of the 20 DOFs robot are simulated using the ode113 solver, which imple-
ments the Adams–Bashforth–Moulton method. This method is particularly well suited for
solving stiff ordinary differential equations (ODEs), which are common in robotic systems due
to the presence of multiple interacting components. The Adams–Bashforth–Moulton method
is a predictor–corrector method used to solve ODEs of the form

.
y = f (t, y).

The predictor step estimates the solution at the next time step using the previous values:

ypredict
n+1 = yn + h

m−1

∑
i=0

β f (tn−1, yn−1) (13)

The corrector step refines the estimate to enhance the accuracy:

yn+1 = yn +
h
2

[
∂0 f (tn+1, ypredict

n+1) +
m−1

∑
i=0

∂i f (tn−1, yn−1)

]
(14)

where h is the step size and βi and αi are the coefficients that depend on the order of
the method.

This method is particularly effective for ensuring that the solution remains stable and
accurate over long simulation periods, making it ideal for scenarios that integrate both the
outputs from numerical methods and adjustments from machine learning to generate the
optimal control inputs for the robotic system.

The hybrid control strategy, combining traditional control (PID and inverse kinematics)
with machine learning for model-free adaptation, can be implemented within the controller
block. The transformation to robot coordinates and feedforward components would be
primarily handled by traditional control methods, while the controller can adapt using
machine learning to fine-tune responses based on sensor feedback.

Future Internet 2024, 16, 435 10 of 23

The provided diagram (Figure 7) is consistent with the mathematical and control
methodologies discussed in this paper. It effectively visualizes the hybrid control architec-
ture where traditional control principles, numerical methods, and machine learning work
together to optimize the robotic motion control.

Future Internet 2024, 16, x FOR PEER REVIEW 10 of 25

The predictor step estimates the solution at the next time step using the previous
values:

1

1 1 1
0

(,)
m

predict
n n n n

i
y y h f t yβ

−

+ − −
=

= + (13)

The corrector step refines the estimate to enhance the accuracy:

1

1 0 1 1 1 1
0

(,) (,)
2

m
predict

n n n n i n n
i

hy y f t y f t y
−

+ + + − −
=

 = + ∂ + ∂
 (14)

where h is the step size and βi and αi are the coefficients that depend on the order of the
method.

This method is particularly effective for ensuring that the solution remains stable and
accurate over long simulation periods, making it ideal for scenarios that integrate both the
outputs from numerical methods and adjustments from machine learning to generate the
optimal control inputs for the robotic system.

The hybrid control strategy, combining traditional control (PID and inverse kinemat-
ics) with machine learning for model-free adaptation, can be implemented within the con-
troller block. The transformation to robot coordinates and feedforward components
would be primarily handled by traditional control methods, while the controller can adapt
using machine learning to fine-tune responses based on sensor feedback.

The provided diagram (Figure 7) is consistent with the mathematical and control
methodologies discussed in this paper. It effectively visualizes the hybrid control archi-
tecture where traditional control principles, numerical methods, and machine learning
work together to optimize the robotic motion control.

Figure 7. Block diagram of the control architecture for a mobile robot.

The control structure can be broken down into the following stages:
Reference trajectory generator: This block generates the desired reference trajectory

defined by 𝑥ௗ, which is the desired position in the x-direction; 𝑦ௗ, which is the desired
position in the y-direction; 𝜓ௗ, which is the desired heading angle; and 𝑉ௗ, which is the
desired velocity.

The feedforward block compensates for known disturbances and path deviations. In
the methodology discussed earlier, this is supported by the traditional control methods,
where the feedforward signal works as a primary reference, while the feedback corrects
errors.

Coordinate transformation and guidance errors: This block transforms the global ref-
erence trajectory into the robot’s local coordinate frame. It computes the errors between
the desired trajectory (from the reference generator) and the current trajectory of the ro-
bot.

Figure 7. Block diagram of the control architecture for a mobile robot.

The control structure can be broken down into the following stages:
Reference trajectory generator: This block generates the desired reference trajectory

defined by xed, which is the desired position in the x-direction; yed, which is the desired
position in the y-direction; ψed, which is the desired heading angle; and Vd, which is the
desired velocity.

The feedforward block compensates for known disturbances and path deviations. In the
methodology discussed earlier, this is supported by the traditional control methods, where the
feedforward signal works as a primary reference, while the feedback corrects errors.

Coordinate transformation and guidance errors: This block transforms the global
reference trajectory into the robot’s local coordinate frame. It computes the errors between
the desired trajectory (from the reference generator) and the current trajectory of the robot.

The outputs include the following: eψ, which is the error in the heading angle and
ex, ey, which are the position errors in the x- and y-directions. The desired heading and
velocity values ψed, Vd are passed to the controller.

The controller processes the errors and generates control signals u1 and u2, which corre-
spond to the commands for the steering wheel and driving force, respectively. The controller
seeks to minimize the errors eψ and ex, ey by adjusting the steering and speed commands.

This is analogous to the inverse kinematics calculation q = f−1(p).
Controller: The controller block is responsible for generating the actuation commands

u1 (steering) and u2 (driving force). In the context of the earlier methodology, this would in-
volve both traditional control (PID and adaptive control) and machine learning components
for fine-tuning the actuation.

The mathematical formulation for control is presented with the following equations:

u1 = Kpex + Ki

∫
exdx + Kd

dex

dt
(15)

u2 = Kpeψ + Ki

∫
eψdx + Kd

deψ

dt
(16)

where Kp, Ki, Kd are the control gains, adaptively tuned using the neural network; ψd is
the desired heading angle; and ψ is the current heading angle.

Mobile robot dynamics: The dynamics of the mobile robot, such as the steering and driving
forces, are controlled by the inputs u1 and u2. This block represents the physical model of the robot,
whose dynamics were mathematically modeled using the Adams–Bashforth–Moulton method.

Sensors and feedback loop: The sensor block provides the actual state y = [xe, ye, ψ]T

back to the controller for feedback-based correction. The sensor inputs, such as the current
pose (position and orientation), are used to refine the predictions from the neural network

Future Internet 2024, 16, 435 11 of 23

and the Adams–Bashforth–Moulton method, ensuring precise real-time feedback and
minimizing the error e(t).

Results and feedback loop: The outputs of the mobile robot block (current posi-
tions xe, ye; heading ψ; and velocity Vx) are compared to the desired reference values
xed, yed, ψ, Vd to continuously adjust the control inputs. The feedback loop ensures
that the robot stays on the desired trajectory by constantly minimizing the errors through
corrective actions from the controller.

The key equations that are applied in this architecture involve computing the trajectory
errors, updating the control laws, and modeling the robot’s motion [42], based on its
dynamics (typically represented by differential equations).

The diagram represents a closed-loop control system for trajectory tracking, where the
robot continuously receives updated trajectory information and makes real-time adjust-
ments to its steering and speed to follow the reference path. The control system integrates
sensor feedback and guidance algorithms to ensure accurate path following.

Forward kinematics is the process of determining the position and orientation of the
end-effector (in task space p) from the joint angles (in configuration space q).

Mathematically, it is represented as follows:

p = f (q)

where

p is the position and orientation of the end-effector in the task space;
q is the vector of the joint angles in the configuration space;
f is the forward kinematics function.

This function maps the joint angles to the end-effector’s position and orientation in
the task space.

Inverse kinematics is the process of determining the required joint angles (in config-
uration space q) to achieve a desired position and orientation of the end-effector (in task
space p).

Mathematically, it is represented as follows:

p = f−1(q)

where q is the vector of the joint angles in the configuration space; p is the desired position
and orientation of the end-effector in the task space; and f−1 is the inverse kinematics
function. This function maps a desired end-effector position and orientation back to the
necessary joint angles.

Mapping the relationship between the spaces: the actuation inputs u are mapped to
the configuration space q using specific functions, denoted as f−1

spec.
From configuration space to task space: the joint angles q are then mapped to the task

space p using the forward kinematics function:

p = f f ind(q) (17)

Inverse mapping: conversely, the task space p can be mapped back to the configuration
space q using inverse kinematics, f−1

f ind, and then from the configuration space to the
actuation space using fspec.

q = f−1
f ind(p) (18)

u = fspec(q) (19)

Forward process: u (actuation) → q (configuration) → p (task space).
Inverse process: p (task space) → q (configuration) → u (actuation).
The forward kinematics f maps the joint angles to the task space positions, while the

inverse kinematics f−1 maps the task space positions to the necessary joint angles. The

Future Internet 2024, 16, 435 12 of 23

additional mappings fspec and f−1
spec connect the actuation commands with the configuration

space, effectively linking the entire control system from the actuator inputs to the task-
specific outputs.

The system’s foundation is built on mathematical equations representing inverse
kinematics and the dynamic model of the robot. The equations below define the positional
errors and control inputs: ex = xd − x ey = yd − y eψ = ψd − ψ.

The robot’s control inputs u1 and u2 are derived based on these error measurements
and are fed into the controller to generate the desired driving force FD and steering wheel
commands δ.

In Figure 8, the control system, which integrates both the traditional control methods
and a neural network within a hybrid control architecture, is presented. This configuration
is composed of two main loops: the tracking loop and the nonlinear inner loop with a
neural network.

Future Internet 2024, 16, x FOR PEER REVIEW 13 of 25

Figure 8. Hybrid control system integrating neural network and traditional control methods.

The tracking loop generates the desired trajectory signals, including the reference
positions 𝑞ଵௗ and velocities 𝑞ሶଵௗ, and computes the trajectory errors 𝑒 and 𝑒ሶ. These er-
rors are processed through the gain matrices L and Kv to produce a reference signal that
guides the robust control term and the nonlinear inner loop. The summation operation,
represented by the plus sign in the diagram (Figure 8), combines the reference signals and
feedback states to compute the error signals. By minimizing these errors, the tracking loop
ensures that the robot’s movement remains as close as possible to the desired path.

The nonlinear inner loop incorporates a neural network that provides an adaptive
control term 𝑓መ(𝑥). This neural network estimates and compensates for the nonlinearities
and uncertainties in the robot’s dynamics, particularly those not addressed by the tradi-
tional control elements. The neural network receives inputs corresponding to the robot’s
states, including positions and velocities, and outputs an adaptive control signal 𝑓መ(𝑥).
This signal is combined with the robust control term 𝑣(𝑡), enhancing the system’s adapt-
ability and providing improved tracking accuracy by adjusting to dynamic changes in real
time.

The robust control term 𝑣(𝑡) provides stability to the control system by handling
model uncertainties and disturbances. It receives the reference input τ from the tracking
loop and works in conjunction with the adaptive term 𝑓መ(𝑥) generated by the neural net-
work. Unity gain, represented by the number “1” in the diagram, indicates that certain
control signals pass through unchanged as they proceed to different stages of the system.
The robust control term, therefore, adds an additional layer of reliability, ensuring that
the system remains resilient to unexpected changes and modeling inaccuracies.

The robot system block represents the actual physical dynamics of the robot. The
combined output from the robust control term and force control loop is fed into this block,
which calculates the resulting joint positions qଵ and velocities qሶ ଵ . The feedback from
these actual states is looped back into the tracking and force control loops, allowing the
control system to continuously refine its actions based on the current robot state, ensuring
accurate trajectory tracking and force application.

Unlike conventional feedback mechanisms, which typically rely on fixed control
gains or linear models, the neural network adapts in real time based on state feedback,
providing an output 𝑓መ(𝑥) that is combined with the robust control term 𝑣(𝑡). The com-
bined control input to the robot system is 𝜏 = 𝑣(𝑡) + 𝑓መ(𝑥) . The error 𝑒 in the tracking
loop 𝑒 = 𝑞ௗ − 𝑞. By leveraging the neural network’s learning capabilities, the control law
becomes adaptive, ensuring that the system can cope with dynamic environmental
changes, which is especially valuable in applications involving variable loads or complex

Figure 8. Hybrid control system integrating neural network and traditional control methods.

The tracking loop generates the desired trajectory signals, including the reference
positions q1d and velocities

.
q1d, and computes the trajectory errors e and

.
e. These errors are

processed through the gain matrices L and Kv to produce a reference signal that guides the
robust control term and the nonlinear inner loop. The summation operation, represented
by the plus sign in the diagram (Figure 8), combines the reference signals and feedback
states to compute the error signals. By minimizing these errors, the tracking loop ensures
that the robot’s movement remains as close as possible to the desired path.

The nonlinear inner loop incorporates a neural network that provides an adaptive con-
trol term f̂ (x). This neural network estimates and compensates for the nonlinearities and
uncertainties in the robot’s dynamics, particularly those not addressed by the traditional
control elements. The neural network receives inputs corresponding to the robot’s states,
including positions and velocities, and outputs an adaptive control signal f̂ (x). This signal
is combined with the robust control term v(t), enhancing the system’s adaptability and
providing improved tracking accuracy by adjusting to dynamic changes in real time.

The robust control term v(t) provides stability to the control system by handling model
uncertainties and disturbances. It receives the reference input τ from the tracking loop and
works in conjunction with the adaptive term f̂ (x) generated by the neural network. Unity
gain, represented by the number “1” in the diagram, indicates that certain control signals
pass through unchanged as they proceed to different stages of the system. The robust
control term, therefore, adds an additional layer of reliability, ensuring that the system
remains resilient to unexpected changes and modeling inaccuracies.

The robot system block represents the actual physical dynamics of the robot. The
combined output from the robust control term and force control loop is fed into this block,
which calculates the resulting joint positions q1 and velocities

.
q1. The feedback from these

actual states is looped back into the tracking and force control loops, allowing the control

Future Internet 2024, 16, 435 13 of 23

system to continuously refine its actions based on the current robot state, ensuring accurate
trajectory tracking and force application.

Unlike conventional feedback mechanisms, which typically rely on fixed control gains
or linear models, the neural network adapts in real time based on state feedback, providing
an output f̂ (x) that is combined with the robust control term v(t). The combined control
input to the robot system is τ = v(t) + f̂ (x). The error e in the tracking loop e = qd − q. By
leveraging the neural network’s learning capabilities, the control law becomes adaptive,
ensuring that the system can cope with dynamic environmental changes, which is especially
valuable in applications involving variable loads or complex trajectories. The prediction
error eqN = F(x)− f̂ (x) is associated with the neural network’s approximation defined
as follows. If we make a comparison to traditional control, in this neural network control
model, L functions similarly to Kp (proportional control). Kf is a gain matrix that determines
how the system reacts to differences between the desired and measured interaction forces.
Kv plays a role akin to Kd (derivative control), and the effect of Ki (integral control) is
adaptively handled by the neural network’s feedback learning capability and the robust
control adjustments over time.

3. Results

An examination of the feature distributions between the training and test datasets is
presented in Figures 9 and 10.

Future Internet 2024, 16, x FOR PEER REVIEW 14 of 25

trajectories. The prediction error 𝑒ே = 𝐹(𝑥) − 𝑓መ(𝑥) is associated with the neural net-
work’s approximation defined as follows. If we make a comparison to traditional control,
in this neural network control model, 𝐿 functions similarly to 𝐾𝑝 (proportional control).
Kf is a gain matrix that determines how the system reacts to differences between the de-
sired and measured interaction forces. 𝐾𝑣 plays a role akin to 𝐾𝑑 (derivative control),
and the effect of 𝐾𝑖 (integral control) is adaptively handled by the neural network’s feed-
back learning capability and the robust control adjustments over time.

3. Results
An examination of the feature distributions between the training and test datasets is

presented in Figures 9 and 10.

Figure 9. Distribution of orientation, velocity, and acceleration features in training and test datasets.

Figure 10. Distribution of engineered features reflecting robot dynamics in training and test da-
tasets.

Figure 8 displays the basic sensory data acquired from the robot, including orienta-
tion, angular velocity, and linear acceleration along different axes. The distributions reveal
consistent patterns between the training and test data, indicating that the experimental
setup effectively captures the dynamic behavior of the robotic system under varied con-
ditions.

Figure 9. Distribution of orientation, velocity, and acceleration features in training and test datasets.

Figure 8 displays the basic sensory data acquired from the robot, including orientation,
angular velocity, and linear acceleration along different axes. The distributions reveal con-
sistent patterns between the training and test data, indicating that the experimental setup
effectively captures the dynamic behavior of the robotic system under varied conditions.

Figure 9 further extends this analysis to include engineered features that are critical
for the robotic control algorithms, such as the total angular velocity and Euler angles.

This plot showcases the distributions for the engineered features such as the total an-
gular velocity, total linear acceleration, Euler angles, and derived velocity and acceleration
metrics in the training and test datasets.

The consistency across these feature distributions validates the data processing and
feature engineering steps undertaken, ensuring that the machine learning models trained
on these data are well equipped to generalize from training to real-world application
scenarios. This robust feature engineering is further supported by the correlation analysis
presented in Figure 11, which provides a deeper insight into the relationships between the
orientation, angular velocity, and linear acceleration parameters.

Future Internet 2024, 16, 435 14 of 23

Future Internet 2024, 16, x FOR PEER REVIEW 14 of 25

trajectories. The prediction error 𝑒ே = 𝐹(𝑥) − 𝑓መ(𝑥) is associated with the neural net-
work’s approximation defined as follows. If we make a comparison to traditional control,
in this neural network control model, 𝐿 functions similarly to 𝐾𝑝 (proportional control).
Kf is a gain matrix that determines how the system reacts to differences between the de-
sired and measured interaction forces. 𝐾𝑣 plays a role akin to 𝐾𝑑 (derivative control),
and the effect of 𝐾𝑖 (integral control) is adaptively handled by the neural network’s feed-
back learning capability and the robust control adjustments over time.

3. Results
An examination of the feature distributions between the training and test datasets is

presented in Figures 9 and 10.

Figure 9. Distribution of orientation, velocity, and acceleration features in training and test datasets.

Figure 10. Distribution of engineered features reflecting robot dynamics in training and test da-
tasets.

Figure 8 displays the basic sensory data acquired from the robot, including orienta-
tion, angular velocity, and linear acceleration along different axes. The distributions reveal
consistent patterns between the training and test data, indicating that the experimental
setup effectively captures the dynamic behavior of the robotic system under varied con-
ditions.

Figure 10. Distribution of engineered features reflecting robot dynamics in training and test datasets.

Future Internet 2024, 16, x FOR PEER REVIEW 15 of 25

Figure 9 further extends this analysis to include engineered features that are critical
for the robotic control algorithms, such as the total angular velocity and Euler angles.

This plot showcases the distributions for the engineered features such as the total
angular velocity, total linear acceleration, Euler angles, and derived velocity and acceler-
ation metrics in the training and test datasets.

The consistency across these feature distributions validates the data processing and
feature engineering steps undertaken, ensuring that the machine learning models trained
on these data are well equipped to generalize from training to real-world application sce-
narios. This robust feature engineering is further supported by the correlation analysis
presented in Figure 11, which provides a deeper insight into the relationships between the
orientation, angular velocity, and linear acceleration parameters.

Figure 11. Correlation matrix of orientation, angular velocity, and linear acceleration parameters.

From the results, as can be seen, a very strong correlation (1.0) is evident between roll
(orientation_x) and scalar_part, as well as between yaw (orientation_z) and pitch (orien-
tation_y). There is a notable negative correlation (−0.8) between angular velocity in the z-
direction (w_z) and angular velocity in the y-direction (w_y). Furthermore, a moderate
positive correlation (0.4) exists between linear acceleration in the y-direction (dv_y) and
linear acceleration in the z-direction (dv_z). The strong correlations observed in the data
not only highlight the critical relationships between the orientation and velocity parame-
ters but also provide valuable insights into the feature importance for the subsequent pre-
dictive modeling.

In Figure 12, is presented the structure of the neural network model. The developed
model consists of a sequential architecture designed to predict the robotic joint torques,
which is crucial for the accurate control of a 20 DOFs robotic platform. The input layer
receives 41 features, comprising the joint angles, velocities, and force measures, reflecting
the comprehensive state of the robot necessary for effective torque computation.

Figure 11. Correlation matrix of orientation, angular velocity, and linear acceleration parameters.

From the results, as can be seen, a very strong correlation (1.0) is evident between
roll (orientation_x) and scalar_part, as well as between yaw (orientation_z) and pitch
(orientation_y). There is a notable negative correlation (−0.8) between angular velocity
in the z-direction (w_z) and angular velocity in the y-direction (w_y). Furthermore, a
moderate positive correlation (0.4) exists between linear acceleration in the y-direction
(dv_y) and linear acceleration in the z-direction (dv_z). The strong correlations observed in
the data not only highlight the critical relationships between the orientation and velocity
parameters but also provide valuable insights into the feature importance for the subsequent
predictive modeling.

In Figure 12, is presented the structure of the neural network model. The developed
model consists of a sequential architecture designed to predict the robotic joint torques,
which is crucial for the accurate control of a 20 DOFs robotic platform. The input layer

Future Internet 2024, 16, 435 15 of 23

receives 41 features, comprising the joint angles, velocities, and force measures, reflecting
the comprehensive state of the robot necessary for effective torque computation.

Future Internet 2024, 16, x FOR PEER REVIEW 16 of 25

Figure 12. Structure of the neural network model.

First layer: The model begins with a dense layer of 3810 units. Although this number
appears large, it was initially chosen to test the capacity of the network to capture complex
patterns in the high-dimensional data. This layer uses ReLU activation to introduce non-
linearity, allowing the model to learn more complex functions.

Dropout and regularization: A dropout rate of 20% follows to prevent overfitting by
randomly omitting subsets of features during training, thus ensuring that the model does
not rely too heavily on any single neuron.

Hidden layers: A subsequent dense layer with 128 units further processes the learned
representations, with another dropout layer at 10% to continue regularization. ReLU acti-
vation is used here as well to maintain nonlinear learning.

Output layer: The final layer consists of 20 units corresponding to each joint torque,
with a linear activation function. This setup is crucial as the task is a regression problem
where each output unit predicts a continuous value representing the torque.

The training progress of a neural network model is presented in Figure 13, which
shows the performance over 100 epochs. It includes the loss and accuracy metrics for each
epoch, demonstrating how the model’s performance improves as training progresses. As
the epochs increase, the loss decreases and the accuracy increases, indicating effective
learning and adaptation by the model to the training data. By the final epochs, the model
achieves a high accuracy and low loss, suggesting that it has effectively captured the un-
derlying patterns in the training dataset. The final accuracy is 0.9304 and the loss is 0.1850.

Figure 13. Evolution of training metrics over a series of epochs with accuracy and loss.

Figure 12. Structure of the neural network model.

First layer: The model begins with a dense layer of 3810 units. Although this number
appears large, it was initially chosen to test the capacity of the network to capture com-
plex patterns in the high-dimensional data. This layer uses ReLU activation to introduce
nonlinearity, allowing the model to learn more complex functions.

Dropout and regularization: A dropout rate of 20% follows to prevent overfitting by
randomly omitting subsets of features during training, thus ensuring that the model does
not rely too heavily on any single neuron.

Hidden layers: A subsequent dense layer with 128 units further processes the learned
representations, with another dropout layer at 10% to continue regularization. ReLU
activation is used here as well to maintain nonlinear learning.

Output layer: The final layer consists of 20 units corresponding to each joint torque,
with a linear activation function. This setup is crucial as the task is a regression problem
where each output unit predicts a continuous value representing the torque.

The training progress of a neural network model is presented in Figure 13, which
shows the performance over 100 epochs. It includes the loss and accuracy metrics for
each epoch, demonstrating how the model’s performance improves as training progresses.
As the epochs increase, the loss decreases and the accuracy increases, indicating effective
learning and adaptation by the model to the training data. By the final epochs, the model
achieves a high accuracy and low loss, suggesting that it has effectively captured the
underlying patterns in the training dataset. The final accuracy is 0.9304 and the loss
is 0.1850.

Future Internet 2024, 16, 435 16 of 23

Future Internet 2024, 16, x FOR PEER REVIEW 16 of 25

Figure 12. Structure of the neural network model.

First layer: The model begins with a dense layer of 3810 units. Although this number
appears large, it was initially chosen to test the capacity of the network to capture complex
patterns in the high-dimensional data. This layer uses ReLU activation to introduce non-
linearity, allowing the model to learn more complex functions.

Dropout and regularization: A dropout rate of 20% follows to prevent overfitting by
randomly omitting subsets of features during training, thus ensuring that the model does
not rely too heavily on any single neuron.

Hidden layers: A subsequent dense layer with 128 units further processes the learned
representations, with another dropout layer at 10% to continue regularization. ReLU acti-
vation is used here as well to maintain nonlinear learning.

Output layer: The final layer consists of 20 units corresponding to each joint torque,
with a linear activation function. This setup is crucial as the task is a regression problem
where each output unit predicts a continuous value representing the torque.

The training progress of a neural network model is presented in Figure 13, which
shows the performance over 100 epochs. It includes the loss and accuracy metrics for each
epoch, demonstrating how the model’s performance improves as training progresses. As
the epochs increase, the loss decreases and the accuracy increases, indicating effective
learning and adaptation by the model to the training data. By the final epochs, the model
achieves a high accuracy and low loss, suggesting that it has effectively captured the un-
derlying patterns in the training dataset. The final accuracy is 0.9304 and the loss is 0.1850.

Figure 13. Evolution of training metrics over a series of epochs with accuracy and loss.

Figure 13. Evolution of training metrics over a series of epochs with accuracy and loss.

4. Simulations

Two typical cart movements, linear and circular, were simulated: a cart motion with a
trapezoidal velocity profile and a circular motion.

A simulation of the robot’s cart motion with a trapezoidal velocity profile was con-
ducted to analyze its dynamic behavior. The characteristics of the motion are summarized
in Table 1.

Table 1. Characteristics of cart motion with trapezoidal velocity profile.

Cart Motion with Trapezoidal Velocity Profile

distance (m) 4
time (s) 3.5

max acceleration (m/s2) 6.5
max speed (m/s) 1.13

Figure 14 presents the positions of the robot’s joints during the simulation of a cart motion
with a trapezoidal velocity profile with a distance of 1 m and a time period of T = 3.5 s.

Future Internet 2024, 16, x FOR PEER REVIEW 17 of 25

4. Simulations
Two typical cart movements, linear and circular, were simulated: a cart motion with

a trapezoidal velocity profile and a circular motion.
A simulation of the robot’s cart motion with a trapezoidal velocity profile was con-

ducted to analyze its dynamic behavior. The characteristics of the motion are summarized
in Table 1.

Table 1. Characteristics of cart motion with trapezoidal velocity profile.

Cart Motion with Trapezoidal Velocity Profile
distance (m) 4

time (s) 3.5
max acceleration (m/s2) 6.5

max speed (m/s) 1.13

Figure 14 presents the positions of the robot’s joints during the simulation of a cart
motion with a trapezoidal velocity profile with a distance of 1 m and a time period of T =
3.5 s.

Figure 14. Position of the robot’s joints during a cart motion with a trapezoidal velocity profile with
a distance of 1 m and a time period of T = 3.5 s.

Figure 15 shows the tracking errors (tracking errors) affecting the stability during the
cart motion with a trapezoidal velocity profile with a distance of 1 m, T = 3.5 s. The tracking
errors indicate that the most significant deviation occurs in the X joint during the stride,
but it still remains within the bounds of stability.

Figure 14. Position of the robot’s joints during a cart motion with a trapezoidal velocity profile with a
distance of 1 m and a time period of T = 3.5 s.

Figure 15 shows the tracking errors (tracking errors) affecting the stability during the
cart motion with a trapezoidal velocity profile with a distance of 1 m, T = 3.5 s. The tracking

Future Internet 2024, 16, 435 17 of 23

errors indicate that the most significant deviation occurs in the X joint during the stride,
but it still remains within the bounds of stability.

Future Internet 2024, 16, x FOR PEER REVIEW 18 of 25

Figure 15. Tracking errors during the cart motion with a trapezoidal velocity profile with a distance
of 1 m and a time period of T = 3.5 s.

This research emphasizes the importance of simulations that compare the intended
(reference) and actual paths that a robot follows during circular motion. By examining
both the trajectory and the orientation angles (ψd for reference and ψ for actual), this study
assesses how closely the robot adheres to its planned course. The tracking error (eψ), which
quantifies the deviation between the robot’s actual path and its intended trajectory, as
shown in Figure 16, is a critical measure in this analysis of the robot’s cart motion with a
trapezoidal velocity profile.

Figure 16. A detailed visual representation of the simulation: reference ψd and actual ψ course angles
and tracking error eψ during the robot’s cart motion with a trapezoidal velocity profile movement.

Figure 15. Tracking errors during the cart motion with a trapezoidal velocity profile with a distance
of 1 m and a time period of T = 3.5 s.

This research emphasizes the importance of simulations that compare the intended
(reference) and actual paths that a robot follows during circular motion. By examining
both the trajectory and the orientation angles (ψd for reference and ψ for actual), this study
assesses how closely the robot adheres to its planned course. The tracking error (eψ), which
quantifies the deviation between the robot’s actual path and its intended trajectory, as
shown in Figure 16, is a critical measure in this analysis of the robot’s cart motion with a
trapezoidal velocity profile.

Future Internet 2024, 16, x FOR PEER REVIEW 18 of 25

Figure 15. Tracking errors during the cart motion with a trapezoidal velocity profile with a distance
of 1 m and a time period of T = 3.5 s.

This research emphasizes the importance of simulations that compare the intended
(reference) and actual paths that a robot follows during circular motion. By examining
both the trajectory and the orientation angles (ψd for reference and ψ for actual), this study
assesses how closely the robot adheres to its planned course. The tracking error (eψ), which
quantifies the deviation between the robot’s actual path and its intended trajectory, as
shown in Figure 16, is a critical measure in this analysis of the robot’s cart motion with a
trapezoidal velocity profile.

Figure 16. A detailed visual representation of the simulation: reference ψd and actual ψ course angles
and tracking error eψ during the robot’s cart motion with a trapezoidal velocity profile movement.
Figure 16. A detailed visual representation of the simulation: reference ψd and actual ψ course angles
and tracking error eψ during the robot’s cart motion with a trapezoidal velocity profile movement.

Future Internet 2024, 16, 435 18 of 23

A simulation of the robot’s circular motion was conducted to analyze its dynamic
behavior. The characteristics of the circular motion, with a radius (amplitude) of 1 m and a
period of 3.5 s, are summarized in Table 2.

Table 2. Characteristics of circular motion.

Circular Motion

radius/amplitude (m) 1
time (s) 3.5
max acceleration (m/s2) 6.445
max speed (m/s) 1.8

Figure 17 presents the positions of the robot’s joints during the simulation of circular
motion with a radius of 1 m and a time period of T = 3.5 s. Figure 18 shows the tracking
errors (tracking errors) affecting the stability during the circular motion with a radius of
1 m and T = 3.5 s. The tracking errors indicate that the most significant deviation occurs in
the X joint during the stride, but it still remains within the bounds of stability.

Future Internet 2024, 16, x FOR PEER REVIEW 19 of 25

A simulation of the robot’s circular motion was conducted to analyze its dynamic
behavior. The characteristics of the circular motion, with a radius (amplitude) of 1 m and
a period of 3.5 s, are summarized in Table 2.

Table 2. Characteristics of circular motion.

Circular Motion
radius/amplitude (m) 1
time (s) 3.5
max acceleration (m/s2) 6.445
max speed (m/s) 1.8

Figure 17 presents the positions of the robot’s joints during the simulation of circular
motion with a radius of 1 m and a time period of T = 3.5 s. Figure 18 shows the tracking
errors (tracking errors) affecting the stability during the circular motion with a radius of
1 m and T = 3.5 s. The tracking errors indicate that the most significant deviation occurs in
the X joint during the stride, but it still remains within the bounds of stability.

Figure 17. Position of the robot’s joints during the circular motion with a radius of 1 m and a time
period of T = 3.5 s.

Figure 17. Position of the robot’s joints during the circular motion with a radius of 1 m and a time
period of T = 3.5 s.

By examining both the trajectory and the orientation angles (ψd for the reference and
ψ for the actual trajectories), this study assesses how closely the robot adheres to its planned
course (Figure 19). The tracking error (eψ), which quantifies the deviation between the
robot’s actual path and its intended trajectory, is a critical measure in this analysis of the
robot’s circular movement.

5. Discussion

The results of this study demonstrate the efficacy of integrating nonlinear dynamics
with machine learning (ML) in optimizing control systems for a 20 degrees of freedom
(DOFs) robotic platform. By utilizing a hybrid control approach that combines traditional
feedback methods with neural networks, the proposed system adapts to real-time changes
in complex environments, such as those characterized by nonlinearity and time variance.

Future Internet 2024, 16, 435 19 of 23

This significantly enhances the accuracy and robustness of the robot’s trajectory tracking
capabilities, particularly in IoT-driven scenarios where unpredictable disturbances and
diverse environmental inputs are common.

Future Internet 2024, 16, x FOR PEER REVIEW 20 of 25

Figure 18. Tracking errors during the circular motion with a radius of 1 m and a time period of T =
3.5 s.

By examining both the trajectory and the orientation angles (ψd for the reference and
ψ for the actual trajectories), this study assesses how closely the robot adheres to its
planned course (Figure 19). The tracking error (eψ), which quantifies the deviation be-
tween the robot’s actual path and its intended trajectory, is a critical measure in this anal-
ysis of the robot’s circular movement.

Figure 18. Tracking errors during the circular motion with a radius of 1 m and a time period of T = 3.5 s.

Future Internet 2024, 16, x FOR PEER REVIEW 20 of 25

Figure 18. Tracking errors during the circular motion with a radius of 1 m and a time period of T =
3.5 s.

By examining both the trajectory and the orientation angles (ψd for the reference and
ψ for the actual trajectories), this study assesses how closely the robot adheres to its
planned course (Figure 19). The tracking error (eψ), which quantifies the deviation be-
tween the robot’s actual path and its intended trajectory, is a critical measure in this anal-
ysis of the robot’s circular movement.

Figure 19. A detailed visual representation of the simulation: references and actual trajectories during
the robot’s circular motion.

In comparison to previous studies, this work advances the field of robotic control
in several ways [43]. For instance, El-Hussieny et al. [11,44] successfully applied a deep
learning-based Model Predictive Control (MPC) framework to a three DOFs biped robot

Future Internet 2024, 16, 435 20 of 23

leg, showing improvements in trajectory tracking. However, their focus was on a lower
dimensional system and did not account for as much real-time adaptability in nonlinear
environments. Similarly, Yuan et al. [24,45,46] applied auxiliary physics-informed neural
networks to solve nonlinear integral differential equations, showing promise in adapt-
ing to complex environments, but with limited integration in real-time control systems
for robotics.

Chen and Wen [32] explored the use of multi-layer neural networks in trajectory track-
ing for industrial robots. Their results highlighted the potential for ML in improving control
precision, yet their study did not integrate the additional complexity of nonlinear dynamics.
Our hybrid control architecture addresses this gap by providing a more comprehensive
solution that allows for faster and more accurate adjustments in dynamic environments,
particularly with the inclusion of real-time sensor data from IoT platforms.

This study also builds upon earlier works on robotic control using deep reinforcement
learning [47,48], where Tang et al. reviewed real-world successes in the application of
these techniques. While deep reinforcement learning offers significant benefits for robotic
systems, our hybrid approach enhances the control system by combining machine learn-
ing models with traditional nonlinear control techniques. This hybrid method provides
superior adaptability in real-time applications, particularly in IoT-driven settings.

Furthermore, Levine [49] explored deep and recurrent neural architectures for con-
trol tasks in high-dimensional robotic systems. Similarly, studies by Li et al. [33] and
Zheng et al. [34] applied recurrent neural networks (RNNs) in trajectory tracking for high-
dimensional robotic systems, underscoring the importance of adaptive learning models
in nonlinear environments. While these works contributed valuable insights into ML
applications with high-dimensional control, our study goes further by leveraging the itera-
tive learning capabilities of neural networks within a feedback control loop, allowing for
continuous system optimization in real-time scenarios.

Additionally, Wei and Zhu [50] demonstrated the application of MPC for trajectory
tracking and control [51,52] in mobile robots, addressing challenges in time-varying en-
vironments. Our approach builds upon these findings by integrating neural networks to
predict joint torques directly, allowing for faster adaptation and reduced computational
complexity in real-time robotic control.

Moreover, the integration of the IoT with robotic control systems has been extensively
discussed, particularly in smart farming applications where real-time data processing and
adaptability are crucial [35–37]. This study further advances the field by demonstrating
how an IoT framework can enhance the efficacy of ML models in dynamically adjusting
the control parameters based on real-time sensor inputs [44]. The adaptability of this
system is critical for environments requiring constant adjustments due to rapidly changing
conditions [42].

Our neural network model demonstrated a high accuracy and low loss, with a final
accuracy of 0.9304 and a loss of 0.1850. These results suggest that the model effectively
captured the underlying patterns in the training dataset, demonstrating strong potential
for real-world application in robotic control systems. However, while this level of accuracy
is commendable, there is room for improvement when compared to the results obtained in
studies such as that of Almassri et al. [53], where a neural network approach integrated
with Inertial Measurement Unit (IMU) and Ultra-Wideband (UWB) data fusion achieved a
99% positioning accuracy for moving robots.

The combination of nonlinear control methods, machine learning, and IoT technologies
creates a robust platform for future research and development. While this study provides
a solid foundation, there are several avenues for future work. One area of focus could
be improving the scalability of the system for even higher degrees of freedom in robotic
platforms. Additionally, exploring more advanced neural network architectures, such as
deep reinforcement learning models, could further enhance the system’s adaptability and
decision-making capabilities in highly uncertain environments.

Future Internet 2024, 16, 435 21 of 23

Moreover, future studies could investigate the integration of other emerging technolo-
gies, such as edge computing and 5G, to further reduce latency and improve real-time
control in IoT environments [54,55]. The potential to extend this hybrid approach to other
industries, such as autonomous transportation or healthcare robotics, offers promising
directions for further exploration [56,57].

Among these factors, model inaccuracies and sensor delays contribute most signifi-
cantly to the total tracking error. Neural network prediction errors are also influential, but
their impact can be minimized with adequate training. Understanding these contributions
allows for targeted improvements in model accuracy, network training, and delay manage-
ment strategies to enhance real-world performance. In an IoT environment, where commu-
nication delays can occasionally occur, the control system’s inherent robustness—derived
from the combination of the robust control term and the adaptive neural network—enables
it to tolerate short-term data unavailability or latency. If the delays are persistent, further
techniques such as predictive control can be integrated into the system, where the neural
network could predict the likely future states based on historical data, thus maintaining
continuity in the control response.

6. Conclusions

The integration of nonlinear dynamics, machine learning, and the IoT in this study
demonstrates significant improvements in robotic control system performance, particu-
larly in real-time adaptability and precision. These findings contribute to the growing
body of knowledge in intelligent control systems and present valuable insights for future
developments in both industrial and research applications.

Author Contributions: Conceptualization, V.A.K., O.P. and J.G.K.; methodology, V.A.K.; software, V.A.K.;
validation, V.A.K.; formal analysis, V.A.K., O.P. and J.G.K.; investigation, V.A.K.; resources, V.A.K.; data
curation, V.A.K.; writing—original draft preparation, V.A.K., O.P. and J.G.K.; writing—review and editing,
V.A.K., O.P. and J.G.K.; and visualization, V.A.K., O.P. and J.G.K. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The original contributions presented in the study are included in the
article, further inquiries can be directed to the corresponding author.

Acknowledgments: I would like to express sincere gratitude to Veljko Potkonjak, who first introduced
me to the field of robotics and software for robot programs in MATLAB simulations.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Song, Q.; Zhao, Q. Recent Advances in Robotics and Intelligent Robots Applications. Appl. Sci. 2024, 14, 4279. [CrossRef]
2. Zaitceva, I.; Andrievsky, B. Methods of Intelligent Control in Mechatronics and Robotic Engineering: A Survey. Electronics 2022, 11, 2443.

[CrossRef]
3. Wang, Y.; Hou, M.; Plataniotis, K.N.; Kwong, S.; Leung, H.; Tunstel, E.; Rudas, I.J.; Trajkovic, L. Towards a Theoretical Framework

of Autonomous Systems Underpinned by Intelligence and Systems Sciences. IEEE/CAA J. Autom. Sin. 2021, 8, 52–63. [CrossRef]
4. Gabsi, A.E.H. Integrating Artificial Intelligence in Industry 4.0: Insights, Challenges, and Future Prospects—A Literature Review.

Ann. Oper. Res. 2024. [CrossRef]
5. Antoska Knights, V.; Gacovski, Z. Methods for Detection and Prevention of Vulnerabilities in the IoT (Internet of Things) Systems.

In Internet of Things—New Insights; IntechOpen: London, UK, 2024. [CrossRef]
6. Knights, V.; Petrovska, O.; Prchkovska, M. Enhancing Smart Parking Management through Machine Learning and AI Integration

in IoT Environments. In Navigating the Internet of Things in the 22nd Century—Concepts, Applications, and Innovations [Working Title];
IntechOpen: London, UK, 2024. [CrossRef]

7. Chataut, R.; Phoummalayvane, A.; Akl, R. Unleashing the Power of IoT: A Comprehensive Review of IoT Applications and
Future Prospects in Healthcare, Agriculture, Smart Homes, Smart Cities, and Industry 4.0. Sensors 2023, 23, 7194. [CrossRef]
[PubMed]

8. Sadeghzadeh, N.; Farajzadeh, N.; Dattatri, N.; Acevedo, B.P. SPS Vision Net: Measuring Sensory Processing Sensitivity via an
Artificial Neural Network. Cogn. Comput. 2024, 16, 1379–1392. [CrossRef]

https://doi.org/10.3390/app14104279
https://doi.org/10.3390/electronics11152443
https://doi.org/10.1109/JAS.2020.1003432
https://doi.org/10.1007/s10479-024-06012-6
https://doi.org/10.5772/intechopen.113898
https://doi.org/10.5772/intechopen.1006490
https://doi.org/10.3390/s23167194
https://www.ncbi.nlm.nih.gov/pubmed/37631731
https://doi.org/10.1007/s12559-023-10216-6

Future Internet 2024, 16, 435 22 of 23

9. Sarker, I.H. Machine Learning: Algorithms, Real-World Applications and Research Directions. SN Comput. Sci. 2021, 2, 160.
[CrossRef]

10. Khanna, A.; Kaur, S. Internet of Things (IoT), Applications and Challenges: A Comprehensive Review. Wirel. Pers. Commun. 2020,
114, 1687–1762. [CrossRef]

11. El-Hussieny, H. Real-Time Deep Learning-Based Model Predictive Control of a 3-DOF Biped Robot Leg. Sci. Rep. 2024, 14, 16243.
[CrossRef]

12. Knights, V.; Petrovska, O. Dynamic Modeling and Simulation of Mobile Robot Under Disturbances and Obstacles in an
Environment. J. Appl. Math. Comput. 2024, 8, 59–67. [CrossRef]

13. Antoska Knights, V.; Gacovski, Z.; Deskovski, S. Guidance and Control System for Platoon of Autonomous Mobile Robots. J.
Electr. Eng. 2018, 6, 281–288. [CrossRef]

14. Richards, S.M.; Azizan, N.; Slotine, J.-J.; Pavone, M. Adaptive-Control-Oriented Meta-Learning for Nonlinear Systems. arXiv
2021, arXiv:2103.04490. Available online: https://arxiv.org/abs/2103.04490 (accessed on 1 September 2024).

15. Knights, V.; Prchkovska, M. From Equations to Predictions: Understanding the Mathematics and Machine Learning of Multiple
Linear Regression. J. Math. Comput. Appl. 2024, 3, 137. [CrossRef]

16. Sakaguchi, H. Machine Learning of Nonlinear Dynamical Systems with Control Parameters Using Feedforward Neural Networks.
arXiv 2024, arXiv:2409.07468. [CrossRef]

17. Meindl, M.; Lehmann, D.; Seel, T. Bridging Reinforcement Learning and Iterative Learning Control: Autonomous Motion
Learning for Unknown, Nonlinear Dynamics. Front. Robot. AI 2022, 9, 793512. [CrossRef]

18. Lewis, F.L.; Jagannathan, S.; Yesildirek, A. Neural Network Control of Robot Manipulators and Nonlinear Systems; Taylor & Francis
Ltd.: London, UK, 1999; ISBN 0-7484-0596-8.

19. Sayeed, A.; Verma, C.; Kumar, N.; Koul, N.; Illés, Z. Approaches and Challenges in Internet of Robotic Things. Future Internet
2022, 14, 265. [CrossRef]

20. Afanasyev, I.; Mazzara, M.; Chakraborty, S.; Zhuchkov, N.; Maksatbek, A.; Kassab, M.; Distefano, S. Towards the Internet of
Robotic Things: Analysis, Architecture, Components and Challenges. In Proceedings of the 2019 IEEE International Conference
on Developments in eSystems Engineering (DeSE), Kazan, Russia, 7–10 October 2019. [CrossRef]

21. Sikder, A.K.; Petracca, G.; Aksu, H.; Jaeger, T.; Uluagac, A.S. A Survey on Sensor-Based Threats to Internet-of-Things (IoT)
Devices and Applications. arXiv 2018, arXiv:1802.02041. Available online: https://www.researchgate.net/publication/322975901
(accessed on 15 September 2024).

22. Vermesan, O.; Bahr, R.; Ottella, M.; Serrano, M.; Karlsen, T.; Wahlstrøm, T.; Sand, H.E.; Ashwathnarayan, M.; Gamba, M.T. Internet
of Robotic Things Intelligent Connectivity and Platforms. Front. Robot. AI 2020, 7, 104. [CrossRef]

23. Antoska, V.; Jovanović, K.; Petrović, V.M.; Baščarević, N.; Stankovski, M. Balance Analysis of the Mobile Anthropomimetic Robot
Under Disturbances—ZMP Approach. Int. J. Adv. Robot. Syst. 2013, 10, 206. [CrossRef]

24. Yuan, L.; Ni, Y.-Q.; Deng, X.-Y.; Hao, S. A-PINN: Auxiliary Physics Informed Neural Networks for Forward and Inverse Problems
of Nonlinear Integro-Differential Equations. J. Comput. Phys. 2022, 462, 111260. [CrossRef]

25. Pascal, C.; Raveica, L.-O.; Panescu, D. Robotized Application Based on Deep Learning and Internet of Things. In Proceedings of
the 2018 22nd International Conference on System Theory, Control and Computing (ICSTCC), Sinaia, Romania, 10–12 October 2018.
[CrossRef]

26. Li, Q.; Sompolinsky, H. Statistical Mechanics of Deep Linear Neural Networks: The Backpropagating Kernel Renormalization.
Phys. Rev. X 2021, 11, 031059. [CrossRef]

27. Meng, X.; Li, Z.; Zhang, D.; Karniadakis, G.E. PPINN: Parareal Physics-Informed Neural Network for Time-Dependent PDEs.
arXiv 2019, arXiv:1909.10145. [CrossRef]

28. Gardašević, G.; Katzis, K.; Bajić, D.; Berbakov, L. Emerging Wireless Sensor Networks and Internet of Things Technologies—
Foundations of Smart Healthcare. Sensors 2020, 20, 3619. [CrossRef] [PubMed]

29. Coronado, E.; Venture, G. Towards IoT-Aided Human–Robot Interaction Using NEP and ROS: A Platform-Independent, Accessible
and Distributed Approach. Sensors 2020, 20, 1500. [CrossRef]

30. Yilmaz, N.; Wu, J.Y.; Kazanzides, P.; Tumerdem, U. Neural Network-Based Inverse Dynamics Identification and External Force
Estimation on the da Vinci Research Kit. In Proceedings of the 2020 IEEE International Conference on Robotics and Automation
(ICRA), Paris, France, 31 May–31 August 2020. [CrossRef]

31. Antoska Knights, V.; Stankovski, M.; Nusev, S.; Temeljkovski, D.; Petrovska, O. Robots for safety and health at work. Mech.
Eng.—Sci. J. 2015, 33, 275–279.

32. Chen, S.; Wen, J.T. Industrial Robot Trajectory Tracking Control Using Multi-Layer Neural Networks Trained by Iterative Learning
Control. Robotics 2021, 10, 50. [CrossRef]

33. Li, J.; Su, J.; Yu, W.; Mao, X.; Liu, Z.; Fu, H. Recurrent Neural Network for Trajectory Tracking Control of Manipulator with
Unknown Mass Matrix. Front. Neurorobotics 2024, 18, 1451924. [CrossRef]

34. Zheng, X.; Ding, M.; Liu, L.; Guo, J.; Guo, Y. Recurrent Neural Network Robust Curvature Tracking Control of Tendon-Driven
Continuum Manipulators with Simultaneous Joint Stiffness Regulation. Nonlinear Dyn. 2024, 112, 11067–11084. [CrossRef]

35. Dhanaraju, M.; Chenniappan, P.; Ramalingam, K.; Pazhanivelan, S.; Kaliaperumal, R. Smart Farming: Internet of Things
(IoT)-Based Sustainable Agriculture. Agriculture 2022, 12, 1745. [CrossRef]

https://doi.org/10.1007/s42979-021-00592-x
https://doi.org/10.1007/s11277-020-07446-4
https://doi.org/10.1038/s41598-024-66104-y
https://doi.org/10.26855/jamc.2024.03.007
https://doi.org/10.17265/2328-2223/2018.05.005
https://arxiv.org/abs/2103.04490
https://doi.org/10.47363/JMCA/2024(3)137
https://doi.org/10.7566/JPSJ.93.105001
https://doi.org/10.3389/frobt.2022.793512
https://doi.org/10.3390/fi14090265
https://doi.org/10.1109/DeSE.2019.00011
https://www.researchgate.net/publication/322975901
https://doi.org/10.3389/frobt.2020.00104
https://doi.org/10.5772/56238
https://doi.org/10.1016/j.jcp.2022.111260
https://doi.org/10.1109/ICSTCC.2018.8540714
https://doi.org/10.1103/PhysRevX.11.031059
https://doi.org/10.1016/j.cma.2020.113250
https://doi.org/10.3390/s20133619
https://www.ncbi.nlm.nih.gov/pubmed/32605071
https://doi.org/10.3390/s20051500
https://doi.org/10.1109/ICRA40945.2020.9197445
https://doi.org/10.3390/robotics10010050
https://doi.org/10.3389/fnbot.2024.1451924
https://doi.org/10.1007/s11071-024-09585-w
https://doi.org/10.3390/agriculture12101745

Future Internet 2024, 16, 435 23 of 23

36. Amertet Finecomess, S.; Gebresenbet, G.; Alwan, H.M. Utilizing an Internet of Things (IoT) Device, Intelligent Control Design,
and Simulation for an Agricultural System. IoT 2024, 5, 58–78. [CrossRef]

37. Friha, O.; Ferrag, M.A.; Shu, L.; Maglaras, L.; Wang, X. Internet of Things for the Future of Smart Agriculture: A Comprehensive
Survey of Emerging Technologies. IEEE/CAA J. Autom. Sin. 2021, 8, 718–752. [CrossRef]

38. GeeksforGeeks. Architecture of Internet of Things (IoT). GeeksforGeeks. 2024. Available online: https://www.geeksforgeeks.
org/architecture-of-internet-of-things-iot/ (accessed on 29 September 2024).

39. Antoska, V.; Potkonjak, V.; Stankovski, M.J.; Baščarević, N. Robustness of Semi-Humanoid Robot Posture with Respect to External
Disturbances. Facta Univ. Ser. Autom. Control Robot. 2012, 11, 99–110.

40. Lagrange Equations (in Mechanics); Encyclopedia of Mathematics; EMS Press: Berlin, Germany, 2001; Available online: https:
//encyclopediaofmath.org/wiki/Euler-Lagrange_equation (accessed on 20 September 2024).

41. Weisstein, E.W. Euler-Lagrange Differential Equation. In MathWorld; Wolfram Research, Inc.: Champaign, IL, USA, 2024; Available
online: https://mathworld.wolfram.com/Euler-LagrangeDifferentialEquation.html (accessed on 20 September 2024).

42. Antoska-Knights, V.; Gacovski, Z.; Deskovski, S. Obstacles Avoidance Algorithm for Mobile Robots, Using the Potential Fields
Method. Univ. J. Electr. Electron. Eng. 2017, 5, 75–84. [CrossRef]

43. Patil, S.; Vasu, V.; Srinadh, K.V.S. Advances and Perspectives in Collaborative Robotics: A Review of Key Technologies and
Emerging Trends. Discov. Mech. Eng. 2023, 2, 13. [CrossRef]

44. Piga, D.; Bemporad, A. New Trends in Modeling and Control of Hybrid Systems. Int. J. Robust Nonlinear Control 2020, 30, 5775–5776.
[CrossRef]

45. Roy, S.; Rana, D. Machine Learning in Nonlinear Dynamical Systems. Resonance 2021, 26, 953–970. [CrossRef]
46. Gilpin, W. Generative Learning for Nonlinear Dynamics. Nat. Rev. Phys. 2024, 6, 194–206. [CrossRef]
47. Tang, C.; Abbatematteo, B.; Hu, J.; Chandra, R.; Martín-Martín, R.; Stone, P. Deep Reinforcement Learning for Robotics: A Survey

of Real-World Successes. arXiv 2024, arXiv:2408.03539.
48. Han, D.; Mulyana, B.; Stankovic, V.; Cheng, S. A Survey on Deep Reinforcement Learning Algorithms for Robotic Manipulation.

Sensors 2023, 23, 3762. [CrossRef]
49. Levine, S. Exploring Deep and Recurrent Architectures for Optimal Control; Stanford University: Stanford, CA, USA, 2013; Available

online: https://people.eecs.berkeley.edu/~svlevine/papers/dlctrl.pdf (accessed on 25 September 2024).
50. Wei, J.; Zhu, B. Model Predictive Control for Trajectory-Tracking and Formation of Wheeled Mobile Robots. Neural Comput. Appl.

2022, 34, 16351–16365. [CrossRef]
51. Silaa, M.Y.; Barambones, O.; Bencherif, A. Robust Adaptive Sliding Mode Control Using Stochastic Gradient Descent for Robot

Arm Manipulator Trajectory Tracking. Electronics 2024, 13, 3903. [CrossRef]
52. Schwenzer, M.; Ay, M.; Bergs, T.; Abel, D. Review on Model Predictive Control: An Engineering Perspective. Int. J. Adv. Manuf.

Technol. 2021, 117, 1327–1349. [CrossRef]
53. Almassri, A.M.M.; Shirasawa, N.; Purev, A.; Uehara, K.; Oshiumi, W.; Mishima, S.; Wagatsuma, H. Artificial Neural Network

Approach to Guarantee the Positioning Accuracy of Moving Robots by Using the Integration of IMU/UWB with Motion Capture
System Data Fusion. Sensors 2022, 22, 5737. [CrossRef] [PubMed]

54. Ma, X.; Xu, M.; Li, Q.; Li, Y.; Zhou, A.; Wang, S. 5G Edge Computing: Technologies, Applications and Future Visions; Springer
Nature: Berlin/Heidelberg, Germany, 2024; Available online: https://books.google.mk/books?id=zGgFEQAAQBAJ&printsec=
frontcover&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false (accessed on 8 October 2024).

55. Attaran, M. The Impact of 5G on the Evolution of Intelligent Automation and Industry Digitization. J. Ambient. Intell. Humaniz.
Comput. 2023, 14, 5977–5993. [CrossRef] [PubMed]

56. Biswas, A.; Wang, H.-C. Autonomous Vehicles Enabled by the Integration of IoT, Edge Intelligence, 5G, and Blockchain. Sensors
2023, 23, 1963. [CrossRef]

57. Carvalho, G.; Cabral, B.; Pereira, V.; Bernardino, J. Edge Computing: Current Trends, Research Challenges and Future Directions.
Computing 2021, 103, 993–1023. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/iot5010004
https://doi.org/10.1109/JAS.2021.1003925
https://www.geeksforgeeks.org/architecture-of-internet-of-things-iot/
https://www.geeksforgeeks.org/architecture-of-internet-of-things-iot/
https://encyclopediaofmath.org/wiki/Euler-Lagrange_equation
https://encyclopediaofmath.org/wiki/Euler-Lagrange_equation
https://mathworld.wolfram.com/Euler-LagrangeDifferentialEquation.html
https://doi.org/10.13189/ujeee.2017.050402
https://doi.org/10.1007/s44245-023-00021-8
https://doi.org/10.1002/rnc.5222
https://doi.org/10.1007/s12045-021-1194-0
https://doi.org/10.1038/s42254-024-00688-2
https://doi.org/10.3390/s23073762
https://people.eecs.berkeley.edu/~svlevine/papers/dlctrl.pdf
https://doi.org/10.1007/s00521-022-07195-4
https://doi.org/10.3390/electronics13193903
https://doi.org/10.1007/s00170-021-07682-3
https://doi.org/10.3390/s22155737
https://www.ncbi.nlm.nih.gov/pubmed/35957295
https://books.google.mk/books?id=zGgFEQAAQBAJ&printsec=frontcover&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false
https://books.google.mk/books?id=zGgFEQAAQBAJ&printsec=frontcover&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false
https://doi.org/10.1007/s12652-020-02521-x
https://www.ncbi.nlm.nih.gov/pubmed/33643481
https://doi.org/10.3390/s23041963
https://doi.org/10.1007/s00607-020-00896-5

	Introduction
	Materials and Methods
	Mathematical Foundation and Dynamic Modeling
	Integrating Nonlinear Methods with Neural Networks
	Adams–Bashforth–Moulton Method for Nonlinear Dynamics

	Results
	Simulations
	Discussion
	Conclusions
	References

