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Abstract: The abundance of powered semiconductor devices has increased with the introduction of
renewable energy sources into the grid, causing power quality disturbances (PQDs). This represents a
huge challenge for grid reliability and smart city infrastructures. Accurate detection and classification
are important for grid reliability and consumers’ appliances in a smart city environment. Conven-
tionally, power quality monitoring relies on trivial machine learning classifiers or signal processing
methods. However, recent advancements have introduced Deep Convolution Neural Networks
(DCNNs) as promising methods for the detection and classification of PQDs. These techniques have
the potential to demonstrate high classification accuracy, making them a more appropriate choice
for real-time operations in a smart city framework. This paper presents a voting ensemble approach
to classify sixteen PQDs, using the DCNN architecture through transfer learning. In this process,
continuous wavelet transform (CWT) is employed to convert one-dimensional (1-D) PQD signals into
time–frequency images. Four pre-trained DCNN architectures, i.e., Residual Network-50 (ResNet-
50), Visual Geometry Group-16 (VGG-16), AlexNet and SqeezeNet are trained and implemented in
MATLAB, using images of four datasets, i.e., without noise, 20 dB noise, 30 dB noise and random
noise. Additionally, we also tested the performance of ResNet-50 with a squeeze-and-excitation
(SE) mechanism. It was observed that ResNet-50 with the SE mechanism has a better classification
accuracy; however, it causes computational overheads. The classification performance is enhanced
by using the voting ensemble model. The results indicate that the proposed scheme improved
the accuracy (99.98%), precision (99.97%), recall (99.80%) and F1-score (99.85%). As an outcome of
this work, it is demonstrated that ResNet-50 with the SE mechanism is a viable choice as a single
classification model, while an ensemble approach further increases the generalized performance for
PQD classification.

Keywords: ensemble learning; deep convolution neural networks; deep learning; machine learning;
power quality disturbances; revolutionary technologies; smart cities; transfer learning
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1. Introduction
1.1. Motivation

The widespread integration of renewable energy sources along with the extensive
introduction of non-linear loads and semiconductor devices in the power system causes
the degradation of power quality in terms of distortions in voltage, current, and frequency.
Power quality disturbances (PQDs) lead to system protection malfunction and system
instabilities and limit the lifetime of electrical equipment [1]. As a result, these disruptions
significantly impact the reliability of the power grid. In smart city environments, where
interconnected devices and systems rely on stable power, poor power quality can result in
decreased productivity, compromised safety, and increased manufacturing costs [2]. In the
context of a smart grid, as shown in Figure 1, power quality issues across the generation,
transmission, and distribution systems are primarily caused by (1) intermittent renewable
energy sources, (2) the presence of power electronics, 3) system faults, (4) variations in load,
(5) switching operations, (6) imbalances in load distribution, and (7) non-linear loads. The
non-linear loads include (1) variable-speed drives, (2) computers, (3) fluorescent lighting,
and (4) other electronics. By addressing these issues, smart cities can ensure reliable energy
delivery, enhance operational efficiency, and improve the overall quality of life for residents.
Hence, compliance with power quality standards is integral to monitoring setups, which
require accurate detection and classification of various kinds of PQDs, including sag, swell,
flicker, interruption, harmonics, and transients. This critical problem motivates research
scholars to design and investigate a framework for the correct classification of PQDs. In the
context of smart cities, the integration of advanced PQD classification methods into smart
grid communication systems is essential for ensuring grid stability. Smart grids require
efficient and reliable data exchange between key components such as distributed energy
resources, smart meters, and control systems. This enables quicker decision-making and
response to grid anomalies, ultimately improving the resilience and efficiency of smart
city infrastructures. Similarly, interoperability between diverse systems and devices is
crucial for ensuring the smooth operation of smart grids. These devices must be able to
communicate and function together seamlessly. A customary communication standard
being followed in this work ensures compatibility across different platforms and enables
smooth integration into existing infrastructures. Furthermore, the security of data traffic
within smart grids is also a critical concern, especially given the increasing volume of
sensitive information exchanged between components. By implementing robust encryption,
access control, blockchain for data integrity, secure communication protocols, and regular
security audits, this study ensures that both the PQD data and classification results remain
secure throughout the entire classification process. These security measures support the
proposed method and make it resilient to cyber threats in smart grid applications.
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Figure 1. Power quality disturbance sources in smart grid.

1.2. Related Work

Researchers have shown great interest in developing more accurate methods for de-
tecting and classifying PQDs. According to the literature, the classification of PQDs can
be divided into two different types based on the techniques employed: (i) signal process-
ing with intelligent classifier-based methods and (ii) deep learning techniques. Various
signal transformation techniques including S-transform (ST) [3], Fourier transform (FT) [4],
wavelet transform (WT) [4,5], Hilbert–Huang transform (HHT) [6], and Decomposition
methods [7] are used for processing stationary and non-stationary PQD signals for features
extraction. ST is a widely used signal processing technique for feature extraction because
of its suitability in dealing with noisy signals; however, it involves a lot of computational
effort. On the other hand, FT is not a good choice for non-stationary PQDs due to the set
window resolution. In a noisy environment, WT does not perform well in the extraction of
distinguished PQD features. HT emerged as a promising tool for the time–frequency-based
classification of PQDs with increased computational complexity. The increasing density
of PQDs due to the occurrence of multiple PQDs limits the efficacy of signal processing
techniques to meet the classification requirements [8]. Additionally, these methods face
the challenges of balancing resolution, requirements of feature engineering, and classifier
design issues. The literature reported various studies on classifiers, such as the Artificial
Neural Network (ANN) [9,10], Decision Tree (DT) [11,12], Bayesian Network (BN) [13],
Fuzzy Logic (FL) [14], Intelligent Expert System (IES) [15], and support vector machine
(SVM) [16,17], used to establish a correlation between extracted features and unique tar-
gets for the classification of PQDs. The choice of a classifier for PQD classification largely
depends on its ability to adapt to various disturbances and maintain computational stability.

Classical classifiers have shown satisfactory performance in the recognition of PQDs.
However, due to shallowness, deep learning methods are replacing them to meet evolv-
ing classification needs. Deep learning models such as long short-term memory (LSTM)
networks [18,19] and CNNs [20,21] have shown dominance over classical methods due
to their high-level feature learning and enhanced mapping capabilities. Compared to
LSTM, CNNs perform better in capturing spatial and temporal features, making them
suitable choices for tasks that require instantaneous feature extraction [22]. Recently, ex-
tensive research has been carried out to explore the potential of CNNs to monitor and
classify PQDs. Studies using CNN models for PQD classification can be divided into two
categories: (i) PQD classification based on signal data and (ii) PQD classification based
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on image data. The authors of [23] conducted a comparative analysis of different CNN
models for identifying PQDs with synthetic and recorded signals. The results showed
that the classifier achieved higher performance with synthetic data and lower accuracy
with real data. Jidong Wang et al. [24] proposed a bagging LSTM approach classification
of fifteen different types of PQ signals. The results showed that the proposed approach
requires less training time without compromising accuracy. The authors of [25] developed
a four-stage disturbance detection system for six types of voltage disturbance signals. The
first two stages are designated as data processing stages. The third stage deals with the
training of CNN models, and an experimental circuit for analysis of online disturbance
is presented in the fourth stage. The experimental results established that the proposed
system is architecturally efficient. In another work [26], a squeeze-and-excitation network
(SENet) is presented for self-learning of each channel feature. The authors claim to have
achieved an average accuracy of 98.95% in noisy environments. On the other hand, there
are limited studies in the literature that deal with PQD classification using their images.
In the study by Santhosh Manikonda et al. [27], a transfer learning approach is used for
classifying PQDs through image classification. VGG-16 is used as a pre-trained model to
classify five PQDs through scalograms. The results confirmed the efficacy of the proposed
strategy. In another work [28], the authors developed a deep transfer learning framework
for PQD classification. A small dataset containing voltage waveform images was used to
train the model and classify four different types of PQDs. With the limited training dataset,
the model achieved high accuracy for PQD classification. A signal transformation from
1-D to two-dimensional (2-D) time–frequency images is performed in [29]. A CNN-based
deep learning model is employed to classify sixteen different types of PQDs. Deep learning
models are extremely important for generalization and problem learning. Additionally,
the generalization ability of a single classification model can be enhanced by combining
multiple classification models via an ensemble approach. The idea of this approach is to
enhance the accuracy and stability of the overall model, thereby achieving better perfor-
mance. Some studies [30–32] have employed an ensemble approach to classify various
PQDs. However, ensembles of shallow learners are trained using PQD signal data instead
of deep learning models trained on PQD image data. The stated work reveals that using an
ensemble approach with deep learning models is a promising way to improve the accuracy,
robustness, and generalization ability of the PQD classification model. This strategy has the
potential to simplify the training process, reducing complexity and time while maintaining
a high classification performance.

This paper proposes a voting ensemble model that utilizes the potential of pertained
DCNNs by using time–frequency images of various types of PQDs as training samples.
The proposed approach decreases the complexity of the training course and achieves high
classification performance.

1.3. Research Gap

Although machine learning models have demonstrated effectiveness in PQD classifi-
cation, there are several challenges to consider:

Firstly, the classification of PQDs is primarily treated as a signal processing problem.
In this regard, machine learning methods process time series signals as the input and
require feature engineering to extract domain-specific information. Exclusion of frequency
domain information when processing time domain signals can limit classification accuracy
because important features may be missed. Moreover, training a classification model
from scratch requires a large dataset and computational resources, resulting in a longer
training time. Additionally, tuning hyperparameters is a challenging task, especially to
mitigate overfitting.

Secondly, the classification performance of a single model often faces generalization
problems across different datasets, which can be improved by integrating several deep
learning models.
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These challenges can be addressed by transforming the time domain signals into
time–frequency images utilizing continuous wavelet transform (CWT). The proposed ap-
proach instigates an ensemble technique employing DCNNs with transfer learning. The
pre-trained DCNN architecture offers significant advantages in image classification, show-
ing robustness in capturing significant features that are usually ignored in conventional
techniques. Moreover, the need for feature engineering is avoided by simultaneously
performing feature learning and classification. Hence, converting PQD signals to images
allows the model to visually classify disturbances and consider complex characteristics that
are not present in time series data. Additionally, the generalization capability of individual
learners can be improved by utilizing an ensemble of various DCNNs.

Table 1 presents a summary of the reported work of the most recent studies in the
literature. It is evident from Table 1 that there are only a few studies that have used both
time and frequency features for PQD classification, i.e., that consider the PQD classification
problem as an image processing problem. Moreover, there is a notable gap in leveraging
ensemble DCNN architectures to classify PQDs using both time and frequency features for
improved accuracy.

Table 1. Summary of recent studies related to PQD classification 1.

Ref. Publication
Year

Methodology
No. of PQD

Classes

Features

Ensemble
Approach

Unified Model
Approach

Time
Domain

Frequency
Domain

[12] 2021 × DWT, MLP, SVM 9
√

×
[30] 2021 DWT, LR, NB, DT, × 9

√
×

[33] 2021 × Hybrid CNN 13
√ √

[24] 2022 Bagging-LSTM × 15
√

×
[28] 2022 × CNN 3

√ √

[34] 2023 × CNN-LSTM 14
√

×
[29] 2023 × S-transform- CNN 16

√
×

[26] 2023 × HT-CNN 16
√

×
[35] 2023 × CWT-CNN 7

√
×

1 Here, DWT, LR, NB, DT, LSTM, MLP, SVM, CNN, HT, and CWT are acronyms of the discrete wavelet transform,
linear regression, naïve Bayes, discrete time, long short-term memory, multi-layer perceptron, support vector
machine, convolution neural network, heterogenous, and continuous wavelet transform, respectively.

1.4. Problem Statement

Accurate classification of PQDs is essential for grid reliability and stability. Traditional
methods for classifying PQDs are based on time series signals, which ignore information
in the frequency domain. The time–frequency information is important for feature en-
hancement. Moreover, the performance of a single classification model often suffers from
generalization issues across dissimilar datasets. Therefore, there is a need for an inclusive
approach that transforms time domain signals to the time–frequency domain to improve
feature extraction and uses ensemble deep learning methods to achieve accurate PQD
classification.

1.5. Contributions

This work contributes to this field as follows:

(1) We present a method for transforming time domain PQD signals to time–frequency
domain images based on CWT. This transformation allows deep models to more
effectively identify and extract high-level disturbance features.

(2) We propose an ensemble classification framework based on transfer learning with
DCNN models to classify PQDs using time–frequency images. The framework in-
cludes four pre-trained DCNN models, ResNet-50, VGG-16, AlexNet, and SqueezeNet,
which were selected after rigorous experimental evaluation. We evaluate their perfor-
mance across a spectrum of sixteen different PQD classes.
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(3) The proposed ensemble approach uses the voting approach to improve the accuracy
and generalization capabilities of individual classifiers. This method aggregates
predictions from multiple classifiers using a voting scheme.

The paper is ordered as follows: the proposed approach is given in Section 2. The
experiments along with the results are discussed in Section 3, while the study is concluded
and future work is proposed in Section 4.

2. Proposed Methodology

An overview of the proposed method for classifying PQDs is shown in Figure 2. It
consists of five essential steps: (1) PQD dataset generation; (2) time–frequency transfor-
mation; (3) DCNN-based transfer learning; (4) ensemble learning; and (5) evaluation. In
the first step, various PQD signals are generated by using the open-source PQD signal
generator given in [36]. Once the data are formulated, the signals are then transformed into
a time–frequency spectrum of signals using CWT. In the third step, various pre-trained
DCNN models including ResNet-50, VGG-16, AlexNet, and SqueezeNet are employed as
classification models. After this, a voting-based ensemble model is exercised to achieve the
final classification of PQDs. Finally, the model’s performance is evaluated by considering
various performance evaluation matrices. The details of each step involved in the proposed
framework are described in the following sub-sections.

Figure 2. The proposed ensemble classifier based on DCNN models for PQD classification. Here, PQD
and ResNet are abbreviations of power quality disturbance and residual neural network, respectively.

2.1. PQDs Dataset Generation

In this work, a dataset of sixteen different kinds of PQDs including single and mul-
tiple disturbances is constructed according to the IEEE-1159, EN 50160, and IEC 61000
standards [37]. It has been widely used in previous studies [36,38] to evaluate classifier
performance. The parameters and their specifications are given in Table 2 and configured
using an open-source PQD dataset generator [36].
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Table 2. Parameters and their specifications for PQD dataset generation [36].

Parameters Specifications

Number of PQD classes 16

PQD class,
characteristics, equation and

parameter range

Flicker
(D1) [1 + αf sin(ωt)] sin(ωt)] 0.1 ≤ αf ≤ 0.2, 5 ≤ β ≤ 20 Hz

Flicker + Harmonics
(D2)

[1 + αf sin(βωt)] × [α1 sin(ωt) + α3
sin(3ωt) + α5 sin(5ωt) + α7

sin(7ωt)]

0.1 ≤ αf ≤ 0.2, 5 ≤ β ≤ 20
0.05 ≤ α3, α5, α7 ≤ 0.15, Σ(αi

2) = 1

Flicker + Sag
(D3)

[1 + αf sin(βωt)][1 − α(u(t − t1) −
u(t − t2))] sin(ωt)]

0.1 ≤ αf ≤ 0.2, 5 ≤ β ≤ 20
0.1 ≤ α ≤ 0.9, T ≤ (t2 − t1) ≤ 9T

Flicker + Swell
(D4)

[1 + αf sin(βωt)][1 + α(u(t − t1) −
u(t − t2))] sin(ωt)]

0.1 ≤ αf ≤ 0.2, 5 ≤ β ≤ 20
0.1 ≤ α ≤ 0.8, T ≤ (t2 − t1) ≤ 9T

Harmonics
(D5)

α1 sin(ωt) + α3 sin(3ωt) + α5
sin(5ωt) + α7 sin(7ωt)

0.05 ≤ α3, α5, α7, ≤ 0.15, Σ(αi
2) =

1

Impulsive transient
(D6)

[1 − α(u(t − t1) − u(t − t2))]
sin(ωt)]

0.1 ≤ α ≤ 0.414, T/20 ≤ (t2 − t1)
≤ T/10

Interruption
(D7)

[1 − α(u(t − t1) − u(t − t2))]
sin(ωt)] 0.9 ≤ α ≤ 1, T ≤ (t2 − t1) ≤ 9T

Interruption + Harmonics
(D8)

[1 − α(u(t − t1) − u(t − t2))] ×
[α1 sin(ωt) + α3 sin(3ωt) + α5

sin(5ωt) + α7 sin(7ωt)]

0.9 ≤ α ≤ 1, T ≤ (t2 − t1) ≤ 9T
0.05 ≤ α3, α5, α7 ≤ 0.15, Σ(αi

2) = 1

Normal
(D9)

[1 ± α(u(t − t1) − u(t − t2))]
sin(ωt) α < 0.04, T ≤ (t2 − t1) ≤ 9T

Notch
(D10)

sin(ωt) − sign(sin(ωt)) × Σ k[u(t −
(t1 − 0.02n)) − u(t − (t2 − 0.02n))]

0 ≤ t1, t2 ≤ 0.5T, 0.1 ≤ K ≤ 0.4,
0.01T ≤ t2 − t1 ≤ 0.05T

Oscillatory transient
(D11)

sin(ωt) + α − (t − t1)/τ sin(ωn(t −
t1))(u(t2) − u(t1))

0.1 < α ≤ 0.8, 0.5T ≤ (t2 − t1) ≤
3T,

8 ≤ τ ≤ 40, 300 ≤ 2πωn ≤ 900

Sag
(D12)

[1 − α(u(t − t1) − u(t − t2))]
sin(ωt) 0.1 ≤ α < 0.9, T ≤ (t2 − t1) ≤ 9T

Sag + Harmonics
(D13)

[1 − α(u(t − t1) − u(t − t2))] ×
[α1 sin(ωt) + α3 sin(3ωt) + α5

sin(5ωt) + α7 sin(7ωt)]

0.1 ≤ α < 0.9, T ≤ (t2 − t1) ≤ 9T,
0.05 ≤ α3, α5, α7 ≤ 0.15, Σ(αi

2) = 1

Spike
(D14)

sin(ωt) + sign(sin(ωt)) × Σ k[u(t −
(t1 − 0.02n)) − u(t − (t2 − 0.02n))]

0 ≤ t1, t2 ≤ 0.5T, 0.1 ≤ K ≤ 0.4,
0.01T ≤ t2 − t1 ≤ 0.05T

Swell
(D15)

[1 + α(u(t − t1) − u(t − t2))]
sin(ωt) 0.1 ≤ α ≤ 0.8, T ≤ (t2 − t1) ≤ 9T

Swell + Harmonics (D16)
[1 + α(u(t − t1) − u(t − t2))] × [α1
sin(ωt) + α3 sin(3ωt) + α5 sin(5ωt)

+ α7 sin(7ωt)]

0.1 ≤ α < 0.8, T ≤ (t2 − t1) ≤ 9T,
0.05≤ α3,

α5, α7 ≤ 0.15, Σ(αi
2) = 1

Samples for each class 500

Reference frequency 50 Hz

Sampling frequency 3.2 kHz

Number of cycles/class sample 10

Magnitude of the signal 1 p.u.

Noise levels 20 dB, 30 dB and random noise

This process results in a dataset with dimensions of 8000 × 1600. To approximate the
realistic conditions and enable comparative analysis, random noise in the range of 20–30 dB
is added to the generated data. Figure 3 shows an example of the sixteen PQDs with 20 dB
noise along with respective class information.
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Figure 3. An example of PQDs with 20 dB noise: (a) flicker; (b) flicker + harmonics; (c) flicker + sag;
(d) flicker + swell; (e) harmonics; (f) impulsive transient; (g) interruption; (h) interruption + harmonics;
(i) normal; (j) notch; (k) oscillatory transient; (l) sag; (m) sag + harmonics; (n) spike; (o) swell; and
(p) swell + harmonics.

2.2. Time–Frequency Transformation

Numerous signal processing techniques have been developed to obtain a time–frequency
demonstration of a time domain signal. Among these techniques, CWT is widely recog-
nized for its effectiveness in generating a time–frequency representation of transient signals.
Due to the transient nature of most PQDs, CWT is particularly beneficial for PQD studies.

Let us assume that ϕ (t) is the mother wavelet, a set of wavelet basis functions can be
constructed as Equation (1) [35].

ϕa,b =
1√
a
ϕ

(
t − b

a

)
(1)

In this context, a represents the scaling factor and b denotes the translation time, with
ϕ serving as the mother wavelet. The CWT for a given continuous signal x(t) is expressed
by Equation (2) [35].

CT( a, b)) =
1√
a

 ∞∫
−∞

x(t)ϕ
(

t − b
a

)
dt

 (2)
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After the transformation, the amplitude scale of the wavelet coefficients is calculated
by Equation (3) [35].

A(a, b) = |C(a, b)| (3)

After applying CWT, the time–frequency representations of the signals for Figure 3
are illustrated in Figure 4.

Figure 4. An example of a time–frequency representation of PQDs with 20 dB noise: (a) flicker;
(b) flicker + harmonics; (c) flicker + sag; (d) flicker + swell; (e) harmonics; (f) impulsive transient;
(g) interruption; (h) interruption + harmonics; (i) normal; (j) notch; (k) oscillatory transient; (l) sag;
(m) sag + harmonics; (n) spike; (o) swell; (p) swell + harmonics.

2.3. DCNN Models

Currently, DCNNs are applied to a wide variety of applications in image classification
tasks. In this work, four types of DCNNs were explored, i.e., ResNet-50, VGG-16, AlexNet
and SqueezeNet, for the classification of PQDs. The basic architecture of each network is
illustrated in sub-sections.

2.3.1. ResNet-50

ResNet-50 is a residual network deep learning model proposed by [39], shown in Figure 5.
It has fifty layers, including a (1) convolutional layer, (2) max pooling layer, (3) deconvolution
layer, and (4) Softmax layer. It accepts input images with a size of 227 × 227. ResNet-50 was
selected for the PQD classification task due to its superior performance and effective solution to
the vanishing gradient problem.
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VGG16 [40] is a sixteen-layer deep model. It presents thirteen convolutional layers
combined with three fully connected layers. The convolutional layers are further split into
five parts, each with numerous convolutional layers and a max pooling layer. It accepts
images with a size of 224 × 224, and its design is displayed in Figure 6.
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2.3.3. AlexNet

According to [41], AlexNet comprises five convolutional layers, three pooling layers,
two fully connected layers, and one Softmax layer. The network accepts input images with
a size of 227 × 227. The basic design of AlexNet is given in Figure 7.
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2.3.4. SqueezeNet

The SqueezeNet model was developed by [42] and consists of eighteen layers. The
model has a convolutional layer at the start, followed by fire modules, and ends with an
additional convolutional layer. The model supports various activation functions including
ReLU, Tanh, and Sigmoid. The architecture of SqueezeNet used for PQD classification is
illustrated in Figure 8.
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2.4. Soft Voting Ensemble Approach

The soft voting approach considers the confidence levels of each classifier’s predictions.
It converts each classifier’s predictions into probabilities for the respective classes and then
aggregates these probabilities to determine the final classification result. Using a voting
ensemble approach often results in better performance than a single model. In this study,
DCNN models were ensembled and the final decision was determined using a soft voting
technique, as given by Equation (4).

ε j = argmaxm

n

∑
i=1

αiYi
j,m (4)

where n denotes the total number of classifiers, αi represents the weight of the ith classifier,
and Yi

j,k is the prediction probability of the ith classifier for the jth sample of the mth class.

2.5. Performance Evaluation Metrices

Accuracy assessment is very important in evaluating the classification performance
of machine learning algorithms. The performance of the proposed ensemble classification
model was valued using specific performance metrics selected from [43].

• Accuracy (A): This is the ratio of the model’s true predictions to the overall prediction.
Mathematically, it can be formulated as Equation (5).

Accuracy (A) =
TP + TN

TP + TN + FP + FN
(5)

where TP denotes true positive, representing the accurately predicted positive cases.
TN represents true negatives, indicating the accurately predicted negative cases. FP
corresponds to false positives, showing negative events wrongly predicted as posi-
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tive; FN represents false negatives, representing the positive occurrences incorrectly
predicted as negative.

• Precision (P): this denotes the ratio of accurately predicted positive occurrences out of
the total number of predicted positive occurrences and is expressed as Equation (6).

Precision =
TP

TP + FP
(6)

• Recall (R): this refers to the proportion of accurately predicted positive instances
among all instances in the class and can be stated as Equation (7).

Recall =
TP

TP + FN
(7)

• F1-score: this denotes a weighted mean of the precision and recall, formulated as
Equation (8).

F1 − score =
(2 × P × R)
(P + R)

(8)

3. Experimental Results and Discussion

This part discusses the experimental setup developed to execute the proposed method-
ology, followed by the obtained results and discussion. Finally, the proposed model’s
performance is compared with the literature.

3.1. Experimental Setup

In this sub-section, the PQD dataset of different noise levels is presented. In addition,
the parameter settings of the DCNN models are also given in this part. The performance
of the presented model is assessed on the synthetic database comprising sixteen different
PQD signals, including the single and composite disturbances derived from [36] given in
Section 2. The generated dataset consists of a total of 8000 signals, including 500 signals for
each class. It is instrumental in adding noise to the PQD signals to create a more realistic
dataset. In light of this, various noise levels such as 20 dB noise, 30 dB noise, and random
noise are added to the original PQD signals of each class. Afterward, the 1-D signals are
converted into time–frequency 2-D images by employing CWT. Thus, for each noise level,
an image dataset of 500 × 16 is prepared, out of which 7200 images are used for training and
validation and the remaining 800 images are reserved for testing the proposed framework.
Various experiments with different training options have been performed to achieve the
optimal performance of each deep model. The best settings of the parameters for each deep
model are given in Table 3.

Table 3. Training options for DCNN models.

DCNN
Model

Training Parameters

Optimizer

Hyperparameter with
Search Space Optimized Value

Learning Rate Batch Size Epoch Learning
Rate

Batch
Size Epoch Number of

Layers
Input Image
Size (Pixel)

ResNet-50 SGD

[0.01, 0.001, 0.00015] [16, 32, 48] [10, 20, 30] 0.0001 32 30

177 224 × 224
VGG-16 SGD 41 224 × 224
AlexNet SGD 25 227 × 227

SqueezeNet SGD 68 227 × 227
ResNet-50

with
attention

mechanism

SGD 177 224 × 224

In deep learning, hyperparameter tuning plays a critical role in optimizing the perfor-
mance of models. The minimum batch size, max epochs, and learning rate were considered
for hyperparameter optimization for the different models in this study, as shown in Table 2.
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A random search algorithm was performed, starting with a default learning rate of 0.001,
and fine-tuned through multiple iterations, eventually selecting 0.0001 to ensure stable
convergence without overshooting during training, while the mini batch size varied be-
tween 16 and 48 with steps of 16. Similarly, the model was tested with 10 epochs to observe
the performance and convergence trends. After analyzing the validation performance, 30
epochs were settled on to avoid overfitting, as further training did not significantly improve
accuracy. By using pre-trained CNN architectures and fine-tuning only the final layers,
the robustness of these models was utilized to avoid overfitting the dataset. By following
this comprehensive hyperparameter tuning and avoiding an overfitting strategy, optimal
performance for PQD classification was ensured, exhibiting a balance between performance
and generalization. The proposed technique is implemented in MATLAB using a PC model
Intel Core i9-9820X CPU (3.3.0 GHz), DDR4 32 GB RAM, and NVIDIA GeForce RTX 2080
8G GPU.

3.2. Training and Evaluation of DCNNs

The training and evaluation of each model for different noise levels are presented in
the following sub-sections.

3.2.1. ResNet-50 Classification Results

The training performance of the ResNet-50 model for 30 epochs, with and without
noise, is shown in Figure 9.

Figure 9. ResNet-50 training performance for noisy and noiseless datasets.
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It is observed that under no noise conditions, the ResNet-50 achieved a maximum
training and validation accuracy of 98.01% and 97.14%, respectively, with 0.133% training
and 0.158% validation losses. Its performance degraded under noisy conditions, and
for 20 dB noise, the training and validation accuracies decreased to 94.38% and 91.79%,
respectively. The confusion matrices for noisy and noiseless datasets are illustrated in
Figure 10, which demonstrates that the classification accuracy is relatively high for noiseless
testing datasets as compared to other noisy datasets. The diagonal entries of the confusion
matrix represent the true classification of testing instances, while the off-diagonal entries
depict the misclassification of these samples. Additionally, accuracy, precision, recall,
and F1-score were computed using Equations (4)–(7). The results indicate that ResNet-50
achieves superior performance on noiseless datasets, with an average value of accuracy
(99.75%), precision (98.04%), recall (98%), and F1-score (98%), whereas with noisy test
datasets, its performance decreases, resulting in an average value of accuracy (99.25%),
precision (94.55%), recall (94%), and F1-score (94.13%) with 20 dB noise as shown in Table 4.

Figure 10. ResNet-50 confusion matrices for noisy and noiseless testing datasets.

Table 4. Performance evaluation of DCNNs and voting ensemble technique for noisy and noiseless
test dataset.

Model

Without Noise 20 dB Noise 30 dB Noise Random Noise
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ResNet-50 99.75 98.04 98 98 99.25 94.55 94 94.13 99.5 96.18 96 96.02 99.38 95.29 95 95.07
VGG-16 99.48 96.17 95.88 95.90 99.13 93.50 93 93.07 99.39 95.36 95.13 95.16 99.25 94.26 94. 94.05
AlexNet 99.38 95.21 95 95.01 98.91 91.73 91.25 91.23 99.08 93.23 92.63 92.71 98.94 92.05 91.49 91.60

SqueezeNet 98.75 90.75 90 90.01 98.59 89.31 88.75 88.75 98.66 90.10 89.25 89.30 98.59 89.21 88.75 88.75
ResNet-50 with SE mechanism 99.86 98.46 98 98.23 99.35 94.66 94 94.33 99.5 96.22 96 96.11 99.68 95.51 95 95.25

Voting Ensemble 99.98 99.97 99.80 99.85 99.73 98.23 97.23 97.78 99.90 99.83 99.65 99.80 99.88 98.68 98.10 98.05
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3.2.2. VGG-16 Classification Results

The training performance of VGG-16 for 30 epochs, with and without noise, is shown
in Figure 11. Without the noise dataset, VGG-16 achieved maximum training and validation
accuracies of 96.20% and 93.50%, respectively, with 0.140% training and 0.190% validation
losses. For 20 dB noise, the training and validation accuracies decreased to 93.50% and
92.30%, respectively. The confusion matrices for the noise and noiseless datasets are shown
in Figure 12, which demonstrate that 99.48% is the highest testing accuracy achieved for the
noiseless dataset followed by 99.39% for 30 dB noise, 99.25% for random noise and 99.13%
for 25 dB noise. Furthermore, for the VGG-16 model, the precision, recall, and F1-score are
also calculated. The results indicate that VGG-16 achieves superior performance on the
noiseless test dataset, with (1) an average value of accuracy (99.48%), (2) precision (96.17%),
(3) recall (95.88%), and (4) F1-score (95.90%), whereas the lowest performance is recorded
with the 20 dB noise test dataset with the following average values: (1) accuracy (99.13%),
(2) precision (93.50%), (3) recall (93%), and (4) F1-score (93.07%), as shown in Table 4.

Figure 11. VGG-16 training performance for noisy and noiseless datasets.
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Figure 12. VGG-16 confusion matrices for noisy and noiseless testing datasets.

3.2.3. AlexNet Classification Results

The training performance of AlexNet for 30 epochs, with and without noisy datasets,
is shown in Figure 13.

Figure 13. AlexNet training performance for noisy and noiseless datasets.
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The performance trend of AlexNet is in line with the ResNet-50 and VGG-16 models.
It obtained maximum training and validation accuracies of 93.92% and 92.19%, respectively,
with 0.205% training and 0.269%, validation losses. The training and validation accuracies
decreased to 92.50% and 90.938%, respectively, for 20 dB noise. The confusion matrices
for noisy and noiseless datasets are illustrated in Figure 14. The test accuracy is relatively
high for noiseless datasets as compared to other noisy datasets. Moreover, the performance
matrices including accuracy, precision, recall, and F1-score are given in Table 4. The results
specify that AlexNet attains the highest performance for the noiseless test dataset, giving an
average value of accuracy (99.38%), precision (95.21%), recall (95%), and F1-score (95.01%).
In the case of noisy test datasets, it produces the lowest average results of accuracy (99.91%),
precision (91.73%), recall (91.25%), and F1-score (91.23%) with 20 dB noise, as shown in
Table 4.

Figure 14. AlexNet confusion matrices for noisy and noiseless testing datasets.

3.2.4. Ensemble Model Results

The classification accuracy of the deep model can be improved using the ensemble
technique. For this purpose, an ensemble of the above-stated deep learning models has
been used, utilizing the weights from the Softmax function for voting. The mean values of
the performance matrices for every type of dataset obtained for all deep models and the
proposed approach are given in Table 4.

The performance matrices, including accuracy, precision, recall and F1-score, for the
developed model are given in Table 4. The voting ensemble approach showed a better
outcome compared to the single DCNN models. Although the evaluation metrics for
the noiseless dataset using individual deep models are closely related to the results of
the ensemble approach, a notable difference between the proposed approach and DCNN
models becomes evident when dealing with a noisy dataset. It improved the results for
each case and produced the best results for noiseless cases, giving the following values:
accuracy (99.98%), precision (99.97%), recall (99.80%), and F1-score (99.85%), while the
lowest performance is recorded for 20 dB noise, with accuracy (99.73%), precision (98.23%),
recall (97.23%), and F1-score (97.78%), as compared to other cases.
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The performance of the ResNet-50 model was also evaluated with an SE attention mech-
anism for PQD classification. The SE mechanism improves feature learning by amplifying
important features while suppressing less useful ones. The training results of ResNet-50 with
and without the attention mechanism are shown in Figure 15. The model with SE produced
comparatively better results than the standard ResNet-50. Both the training and validation
accuracy are recorded as 98.71% and 98.40%, respectively, with 0.121% training and 0.144%
validation losses. In noisy conditions (20 dB noise), the attention-enhanced model also per-
formed better, giving 95.89% and 93.11% training and validation accuracy, respectively, as
compared to the standard ResNet-50. Additionally, accuracy, precision, recall, and F1-score are
calculated according to Equations (4)–(7) in Table 4, which demonstrate that ResNet-50 with the
attention mechanism consistently delivers better results compared to the baseline model without
any attention. However, despite improved performance, the integration of the SE mechanism
introduces computational overheads. The attention module requires additional computational
resources, leading to increased model complexity and longer training and inference times,
as explained in Section 3.3. While the accuracy and feature learning is enhanced, the added
computation may impact real-time applications, especially in systems like smart grids where
rapid decision-making is crucial. Therefore, while ResNet-50 with the attention mechanism
shows improved results, its computational overheads must be carefully considered, particularly
in resource-constrained environments.

Figure 15. ResNet-50 with SE mechanism’s training performance for noisy and noiseless datasets.

3.3. Comparative Analysis with Literature

In this sub-section, a comparison of the proposed approach with the literature is
presented in Table 5 to highlight the standing of the developed model. For this purpose,
references utilizing 1-D signal data and 2-D image data, both with and without noisy data,
are considered. A thorough evaluation of the proposed model is presented in terms of
accuracy, precision, recall, and F1-score. The reported work lacks detailed performance
evaluation metrics, which may result in improper classification outcomes due to class
imbalance. In [24,26,30,38,44], the authors use 1-D signals for the classification of PQDs
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using machine learning models, whereas in [28,29,33], the authors consider a 2-D image
dataset for PQD classification using transfer learning. The highest classification accuracy of
99.71% is achieved in [44] for noiseless 1-D signal fast discrete S-transform with a memetic
firefly algorithm-based light gradient boost machine. On the other end, the authors in [28]
achieved a maximum accuracy of 99.80% based on a PQD image dataset using a transfer
learning approach. In comparison with the literature, our voting ensemble model has
outperformed the reported methods in all of the performance evaluation matrices. Thus,
the proposed method can improve the accuracy of pre-trained models for classifying PQD
signals using their images. To address the computational cost of our approach and its
feasibility for real-time applications in smart grids, it is important to note that CNNs
are deep architectures and can be computationally expensive. However, in this method,
transfer learning approaches are employed, which significantly reduce training time and
computational efforts by using pre-trained CNN architectures. This allows us to focus on
fine-tuning the models for PQD classification rather than training from scratch, making
the process more efficient and feasible for real-time applications. PQDs can be specified
both in frequency and magnitude by different standards such as IEEE 1159, EN 50160, and
IEC 61000, [45]. IEEE Std. 1159 focuses on power quality monitoring and classification
of disturbances like voltage disturbances, including sags, swells, interruptions, flicker,
harmonics, transients, and electrical noise, whereas EN 50160 defines voltage quality, in-
cluding frequency, voltage variations, flicker, harmonics, and voltage dips and swells, as
well as defining thresholds for acceptable voltage variations. IEC 61000 regulates elec-
tromagnetic compatibility, including voltage dips, surges, harmonics, flicker, transients,
and high-frequency disturbances. The authors in [46,47] were able to achieve 100% (three
classes) and 99.78% (nine classes, Stockwell Transform and Decision Tree) classification
accuracy, respectively, using the IEC 61000 standard; however, other PQDs are not incorpo-
rated in the work. A PQD classification accuracy of 99.26% is achieved for eight classes for
the EN 50160 standard using a probabilistic neural network [48]. In another work [25], eight
different types of PQDs based on the EN 50160 standard are classified using a CNN model,
giving a 97.94% classification accuracy. The proposed approach utilized sixteen different
PQDs based on all these standards and produced a 99.98% classification accuracy. Thus,
the proposed approach is substantially adaptable for various power quality monitoring
environments with a high classification accuracy.

In smart grid applications, real-time performance is critical to ensure timely detection
and classification of PQDs. Although the ensemble deep CNN approach shows strong
accuracy and robustness in classifying PQDs, it is important to assess the time performance.
The training and test times (single sample and batch of fifty samples) for each architecture
were recorded on a PC model Intel Core i9-9820X CPU (3.3.0 GHz), DDR4 32 GB RAM and
NVIDIA Ge-Force RTX 2080 8 G GPU and are presented in Table 6.

Table 5. Performance comparison of the proposed approach with the literature.

Method
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1-D Signals
FDST+MFA_LGBM [44] 99.71 - - - 96.85 - - - 98.45 - - - - - - -

SE with (LR+NB+J48 DT) [30] 91 91.5 91 91.10 - - - - - - - - 89.33 89.60 89.3 89.3
DR with (KNN, SVM, NB, RF) [38] - - - - 99.72 - - - 99.48 - - - 99.65 - - -

Bagging-LSTM [24] - - - - 98.67 - - - 99.20 - - - - - - -
HT+DAOM [26] 99.44 99.24 99.15 99.19 - - - - 98.95 98.58 98.05 98.31 - - - -

2-D Images
Pre-trained deep Networks [28] 99.80 - - - - - - - - - - - - - - -

ST+CNN [29] 99.12 - - - 98.57 - - - 98.14 - - - 83.45 - - -
1-D+2-D CNN [33] 99.71 - 99.53 99.80 - - - - - - - - - - - -

Proposed Approach 99.98 99.97 99.80 99.85 99.73 98.23 97.23 97.78 99.90 99.83 99.65 99.80 99.88 98.68 98.10 98.05
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Table 6. Comparison of computational times of deep CNNs models.

Model Training Time Test Time (Batch of Fifty
Samples) Test Time (Single Sample)

ResNet-50 298 min 48 s 2.98 s 59.8 ms
VGG-16 293 min. 50 s 2.77 s 55.6 ms
AlexNet 270 min 59 s 2.51 s 50.4 ms

SqueezeNet 330 min 25 s 4.02 s 80.6 ms
ResNet-50 with SA mechanism 283 min 41 s 2.69 s 53.9 ms

Voting Ensemble - 2.75 s 55.1 ms

ResNet-50, VGG-16, and ResNet-50 with SA mechanisms show higher accuracy com-
pared to other deep models; however, relatively high training times are required, as these
are deep and computationally intensive models compared to AlexNet and SqueezeNet.
Moreover, a relatively long time is also taken to process the testing images. The training
time is not provided for the ensemble model as it relies on the performance of the base
models. Due to the complexity involved in combining multiple models, the voting en-
semble with the highest classification accuracy requires 2.75 s to process a batch of fifty
test images. For a single test sample, the test time is computed as 55.1 ms. The stated
inference time illustrates that the proposed system can detect and classify disturbances
rapidly, with each model’s testing performance for a single test sample making them
suitable for real-time grid monitoring. The ability to process each sample in milliseconds
provides sufficient time for automated control systems to initiate protective or corrective
actions within the necessary dynamics of a power grid. Furthermore, by leveraging edge
computing devices equipped with GPUs or TPUs, the low-latency classification can be
implemented locally, minimizing communication delays and further enhancing real-time
responsiveness. Therefore, the proposed model has real-time application importance. In
addition to this, several strategies can be incorporated to meet the rigorous time constraint,
including modern hardware such as GPU/TPU and utilizing a sliding window technique,
and model pruning and quantization can further enhance the inference speed without
sacrificing classification accuracy. The deep CNN-based ensemble approach used in this
study for PQD classification can be effectively integrated into a power grid through a
three-layered architecture consisting of data acquisition and preprocessing, disturbance
detection, and a communication interface. In the first layer, smart sensors and Phasor
Measurement Units (PMUs) are deployed across the grid to continuously monitor electrical
parameters by capturing voltage and current signals at various locations. These signals
are then preprocessed and converted from 1-D time domain signals into time–frequency
images using CWT. Depending on the grid’s setup and communication capabilities, this
preprocessing can be performed either on local edge devices near the measurement points
or at centralized data hubs. In the next layer, the preprocessed time–frequency images
are fed into the deep CNN-based ensemble model for disturbance classification. This
can be implemented on edge computing devices equipped with GPUs/TPUs, ensuring
low-latency processing. The trained model can be deployed either on these edge devices
or at centralized processing units to perform real-time disturbance classification. Once
disturbances are detected and classified, the results are communicated to the central control
center or grid operators via a secure communication network. These results can then trigger
automated control actions such as switching operations, load balancing, or system protec-
tion reconfiguration to mitigate the impact of disturbances. Additionally, the system can
be integrated with existing Supervisory Control and Data Acquisition (SCADA) systems
to enhance comprehensive monitoring and automated decision-making. By adopting this
layered approach, the proposed deep CNN ensemble system can be seamlessly incorpo-
rated into the existing power grid infrastructure, enabling enhanced monitoring, rapid
disturbance detection, and effective response strategies, thereby improving grid reliability
and stability in a smart city context.
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4. Conclusions

This work presents a voting ensemble approach based on pre-trained deep learning
models for PQD classification using time–frequency images. In this process, CWT is used to
convert 1-D PQD signals into 2-D time–frequency images. Four DCNNs including ResNet-
50, VGG-16, AlexNet and SqueezeNet are employed to classify sixteen PQD classes for four
datasets, i.e., without noise, 20 dB noise, 30 dB noise, and random noise. In the case of the
individual model, ResNet-50 produced the best results for accuracy (99.75%), precision
(98.04%), recall (98%), and F1-score (98%). To further enhance the performance of the
classification model, a voting ensemble approach is presented. The proposed approach out-
performed the individual deep learning models for accuracy (99.98%), precision (99.97%),
recall (99.80%), and F1-score (99.85%) with the noiseless dataset. The results confirm the
suitability of the proposed approach using image classification applications for PQDs in the
context of smart cities, where reliable energy quality is crucial for the operation of various
connected devices and infrastructure. In the future, it is intended to explore new deep
learning models with real-world datasets to demonstrate their effectiveness in a real-time
smart city environment, contributing to enhanced energy management and resilience.
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