
Citation: Hornsteiner, M.; Kreussel,

M.; Steindl, C.; Ebner, F.; Empl, P.;

Schönig, S. Real-Time Text-to-Cypher

Query Generation with Large

Language Models for Graph

Databases. Future Internet 2024, 16,

438. https://doi.org/10.3390/

fi16120438

Academic Editors: Filipe Portela and

Athanasios D. Panagopoulos

Received: 2 September 2024

Revised: 15 November 2024

Accepted: 19 November 2024

Published: 22 November 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Real-Time Text-to-Cypher Query Generation with Large
Language Models for Graph Databases
Markus Hornsteiner , Michael Kreussel , Christoph Steindl , Fabian Ebner , Philip Empl
and Stefan Schönig *

Faculty of Informatics and Data Science, University of Regensburg, 93053 Regensburg, Germany;
markus.hornsteiner@ur.de (M.H.); philip.empl@ur.de (P.E.)
* Correspondence: stefan.schoenig@ur.de

Abstract: Based on their ability to efficiently and intuitively represent real-world relationships and
structures, graph databases are gaining increasing popularity. In this context, this paper proposes an
innovative integration of a Large Language Model into NoSQL databases and Knowledge Graphs
to bridge the gap in field of Text-to-Cypher queries, focusing on Neo4j. Using the Design Science
Research Methodology, we developed a Natural Language Interface which can receive user queries in
real time, convert them into Cypher Query Language (CQL), and perform targeted queries, allowing
users to choose from different graph databases. In addition, the user interaction is expanded by
an additional chat function based on the chat history, as well as an error correction module, which
elevates the precision of the generated Cypher statements. Our findings show that the chatbot is able
to accurately and efficiently solve the tasks of database selection, chat history referencing, and CQL
query generation. The developed system therefore makes an important contribution to enhanced
interaction with graph databases, and provides a basis for the integration of further and multiple
database technologies and LLMs, due to its modular pipeline architecture.

Keywords: chatbot; ChatGPT; cypher language; graph database; knowledge graphs; LLM; natural
language interface; Neo4j; question answering

1. Introduction

Large Language Models (LLMs) have emerged as powerful tools in the realm of natural
language processing, possessing the unique capability of understanding and generating
human language. This capability positions LLMs as transformative assets across a wide
array of applications. In recent years, the deployment of LLMs has expanded rapidly,
with diverse use cases emerging across multiple sectors. The introduction of generative
AI models such as ChatGPT [1] has brought LLMs into the public spotlight, significantly
elevating the recognition and adoption of AI technologies. This surge in interest has opened
new avenues for developers and users alike, leading to the integration of generative AI
into various aspects of daily life.

One of the key strengths of LLMs is their ability to process and analyze vast amounts
of data in a relatively short time frame. As the world becomes increasingly interconnected,
enormous volumes of related data are transmitted across the internet, necessitating struc-
tured approaches for processing and utilization. To manage these data, specialized database
management systems have been developed, particularly for handling graph data. Among
these, Neo4j stands out as the most popular graph database management system [2].

In this context, data models like NoSQL databases, when integrated with LLMs,
offer a flexible and efficient way to process and represent diverse data types and complex
relationships. Traditional relational database models, which require join operations for
every edge usage, are inefficient in comparison to NoSQL models within the context of
knowledge graphs [3]. Knowledge graphs are sophisticated data structures that represent

Future Internet 2024, 16, 438. https://doi.org/10.3390/fi16120438 https://www.mdpi.com/journal/futureinternet

https://doi.org/10.3390/fi16120438
https://doi.org/10.3390/fi16120438
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://orcid.org/0000-0002-8024-1220
https://orcid.org/0000-0002-7616-5931
https://orcid.org/0000-0002-7666-4482
https://doi.org/10.3390/fi16120438
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/article/10.3390/fi16120438?type=check_update&version=1

Future Internet 2024, 16, 438 2 of 26

entities as nodes and their relationships as edges, with both entities and nodes containing
various attributes [4]. This structure provides a comprehensive model of a given domain,
making it an ideal foundation for training LLMs. Neo4j, with its inherent compatibility
with knowledge graph structures, is well-suited for managing such data. The semantic
richness of knowledge graphs aligns seamlessly with the capabilities of LLMs, enabling a
deeper understanding of data and their interconnections [5].

This paper aims to explore the potential synergies between NoSQL databases, knowl-
edge graphs, and LLMs, specifically focusing on data processing and contextual analysis.
To achieve this objective, we have developed a chatbot that leverages multiple databases,
including knowledge graphs, to answer user queries about the data contained within these
graphs. The application is designed with a modular architecture, allowing researchers to
customize the chatbot to meet their specific needs. For this work, we utilized the Ope-
nAI GPT-4 Turbo API [6]. Furthermore, we tested the application to assess its real-world
applicability and to evaluate the accuracy of the system. Additionally, we address po-
tential limitations and challenges associated with generating Cypher Query Language
(CQL) statements.

To this end, this paper presents four key contributions to advance research in complex
database query generation: (1) an automated approach for CQL generation tailored to
meet the demands of complex query requirements, (2) a fully automated process that
removes the dependence on template-based insertion methods prevalent in prior research,
(3) integrated error correction mechanisms designed to enhance query accuracy, and (4) a
robust database selection framework that optimally aligns generated queries with suitable
databases. Together, these contributions aim to establish a more reliable and versatile
framework for CQL generation in database applications.

The remainder of this paper is structured as follows: In Section 2 the core principals
that are necessary to understand the topic are explained. First, Large Language Models in
general are examined, followed by Prompt Engineering and Sampling. After that, NoSQL is
described, combined with Knowledge Graphs and CQL. In Section 3 we investigate existing
literature that focuses on creating query statements from natural language. In Section 4 the
research approach of this paper will be dissected. Following this, the technical realization
and implementation of the developed chatbots architecture is then shown in Section 5, and
a brief demonstration of the application is given. Then, an evaluation of the developed
prototype is carried out in Section 6, based on several criteria and the results are presented.
Afterwards, the findings, challenges, and limitations of the study will be discussed in
Section 7. The paper concludes with an outlook on opportunities for improvement and
further development in Section 8.

2. Theoretical Foundations

In this section, the theoretical foundations to understand the core principals of the
proposed integration are explained.

2.1. Large Language Models

Large Language Models (LLMs) are artificial intelligences that are trained with enor-
mous amounts of words. In this process, they utilize neural networks to deduce com-
plex relationships between words in test-based training data. Most times, LLMs use the
transformer architecture as a foundation for language processing tasks. The transformer
architecture is based on the concept of self-attention, in which several parts of the input
sequence are put into relation to enable a differentiated view of the sequence [7]. Through
training on the data, LLMs learn the connection between words and how they can be used
in a language. This offers the possibility to perform certain processing tasks with the human
language [8]. Generally, LLMs can be divided into their four core principals: pre-training,
adaptation, utilization, and evaluation. All of these are essential for the success of an
LLM [9].

Future Internet 2024, 16, 438 3 of 26

Pre-training: In the pre-training phase, the foundation of the LLMs skills is being
created. Through training on vast amounts of data, the LLM learns foundational Natural
Language Understanding and Natural Language Generation abilities [9,10].

Adaptation: After the pre-training phase, LLMs have the capability to perform several
tasks concerning human language. Depending on the overall goal of the specific LLM, in
the adaption phase, the skills are expanded or the behavior is adjusted to the demands of
the developer [9].

Utilization: In the utilization phase, different prompting strategies to tackle the
processing of the tasks are designed. For example, the prompting strategy of in-context
learning demands the user to frame the task in natural language and input it into a text
box. The model then analyses and implements the requested task [9,11].

Evaluation: To evaluate the effectiveness and the quality of an LLM, different bench-
marking tasks must be performed to empirically analyze the abilities of the LLM [9].

2.2. Prompt Engineering and Prompt Tuning

Prompt Engineering is the process of creating particular prompts that are input into the
Large Language Model to generate the requested output from the LLM [12]. Engineering
refers, in this context, to the formulation of the prompt, which is adjusted so that the
model creates the desired outcome. Prompt Engineering tasks can be performed in two
different ways. On the one hand, the prompts can be generated by hand. The results
are then compared afterwards in order to identify the best result. Another approach to
perform Prompt Engineering is the use of backpropagation in prompt embedding spaces.
Backpropagation performs significantly better in Prompt Engineering cases, but requires
the user to have access to the specific model [13]. In both cases, the goal of the Prompt
Engineering process is to identify the best possible input to create the desired output. Prompt
Tuning is related to Prompt Engineering, but they use different concepts in the context of
LLMs. While prompt engineering only focuses on the adaptation of the input prompts,
Prompt Tuning utilizes soft prompts to influence the output. Soft prompts are prompts that
are engineered by Artificial Intelligence to achieve the best possible outcome for the specific
purpose. Since soft prompts consist of embeddings that distill knowledge from the model
itself, soft prompts can be task-specific and act as a substitute for additional training data.
They are very effective at guiding the model towards the desired output [14,15]. Few-shot
prompting is a Prompt Engineering task that enables the LLM to solve a given task by
providing it with only a limited amount of examples to learn from. For this the prompt has
to be very precise and follow a structured formulation to result in satisfactory results [1,16].
All of these concepts are foundational to improve the quality and specificity of a given
language processing task.

2.3. Sampling

Text decoding methods that solely focus on high probability outputs lead to very
generic and repetitive outputs. That is why models like the GPT model utilize sampling to
generate more human-like outputs [1]. Sampling is a method of text generation in which
the probability of the next token is being calculated. The token with the highest probability
in the probability distribution is chosen as the next word in the output [17]. There are
two different sampling methods that can be utilized for the decoding process. These two
methods are the deterministic method and the stochastic method.

Deterministic sampling: In deterministic sampling, also known as greedy sampling,
the token with the highest probability to be the next one, based on the probability distribu-
tion, is generally chosen. This leads to a very predictable output, which can cause repetitive
and generic outputs by virtue of the deterministic approach [18,19].

Stochastic sampling: In stochastic sampling, tokens are generally chosen based on the
probability distribution. However, in contrast to deterministic sampling, the next token is
chosen arbitrarily from a vocabulary subset. The problem with this approach can be the loss
of semantic meaning caused by the randomness of the approach [19]. Stochastic sampling

Future Internet 2024, 16, 438 4 of 26

methods like nucleus sampling [17] try to avoid this problem by generating the text based
on a dynamic nucleus, which is a small subset of the whole vocabulary containing a varying
amount of potential words. This method stands in contrast to other stochastic sampling
methods that rely on a fixed candidate pool.

2.4. NoSQL

NoSQL is a generic term, and stands for “Not Only SQL”. It represents a category of
database management systems. It refers to any data storage method used for storing and
querying data that does not utilize the traditional relational database management system
model [20]. They are especially useful in cases where the strict complexity of relational
databases is unneeded, and a significantly higher data throughput is desired. They also offer
other benefits such as the ability to be horizontally scalable and, therefore, will not cause
the same operational efforts as relational database management systems [21]. In general,
there are four main categories of NoSQL database models, including key-value-stores,
document-based stores, graph-based stores, and column-oriented stores. In this paper, we
mainly focus on graph-based stores. Graph-based NoSQL databases uses relationships and
nodes to represent the stored data. With this characteristic, they are especially fitting for
Knowledge Graphs, since they are able to represent the natural structure of Knowledge
Graphs efficiently [20,22]. With the efficient way of storing and querying data, NoSQL
databases are valuable in an LLM context. With the higher flexibility, they are also more
fitting at handling the complex data structures that are used by LLMs than other databases.

2.5. Knowledge Graphs

Knowledge Graphs are structured representations of information. They comprise the
three main components: entities, relationships, and semantic descriptions. Entities are the
primary objects within the graph. They represent different items, such as real-world objects,
e.g., people. Relationships represent the connections between the different entities. They
define the relations and, therefore, provide the structure of the Knowledge Graph. The
semantic description contains the properties and characteristics of the different entities, e.g.,
the name and gender of a person [23]. Knowledge Graphs are generally used in scenarios,
where very accurate and explicit knowledge is required and the relationship between the
entities is crucial [24]. In an LLM context, they can enhance the understanding of the data,
since they provide knowledge concerning inference and interpretability. The representation
of relationships provides a reasonable and accessible understanding for humans and, there-
fore, provide a lot of value. Neo4j [25] is a NoSQL, open-source graph database that uses
Knowledge Graphs for data representation. Graph databases are databases that utilize the
concept of knowledge graphs in their data representation and storage [26]. The advantage
of Neo4j is the ability to represent the relationships between the entities bidirectional.

2.6. Cypher

Cypher is a versatile query language that is used for property graphs. It is main
capabilities are querying and modifying property graph databases. It is mainly used for its
flexibility and a query interface that is similar to SQL. Cypher queries transform property
graphs into tables that represent patterns in the graph. Cypher queries follow a linear
structure, so that each clause functions as a step in the progression of the query. The core
principals of CQL are pattern matching and graph navigation. In the pattern matching
operation, patterns are expressed visually as “ASCII art”, and represent a limited form of
regular path queries [27]. The patterns are expressed syntactically, and encode the nodes
and edges by using arrows between them. It is the evaluation of graph patterns concerning
graph databases. While the graph patterns provide the querying of the graph databases,
it is important to be able to navigate the topology of the data more flexibly in the graph
navigation operation [28]. Cypher is utilized within Neo4j for the intuitive way of working
with graph data. The pattern matching operation allows for efficient querying and aligns
with the graph-based databases.

Future Internet 2024, 16, 438 5 of 26

3. Related Work

In recent years, the field of Natural Language Interfaces (NLIs) for databases has
emerged as a prominent area of interest, drawing substantial interest from both academic
research and various industry sectors. Such NLIs allow users to convert natural language
into, for example, structured queries, which can then be used to retrieve the desired
information from databases and reduce the complexity posed by conventional query
languages [29]. Therefore, an overview of the existing literature on the tasks “Text to SQL”
and “Text to NoSQL” will be given below.

3.1. Text to SQL

The area of text-to-SQL systems is one of the most extensively researched areas in the
field of natural language interfaces for databases. SQLNet [30] and TypeSQL [31] each use
bidirectional Long Short Term Memory Models (LSTM) to process and encode input in
plain text. Both methods follow a so-called sketch-based approach. In this concept, the
information extracted from the encoded input is integrated into predefined SQL templates
with the help of decoders. To decode and predict the specific content of individual SQL
clauses, such as SELECT or WHERE, both methods use multiple LSTM or a pointer network.
Yu et al. extend this idea with their SyntaxSQLNet [32] model. In the encoding step, they
not only take into account the user query and the column information, but also integrate
the current decoding history of the SQL query. To generate the query, they introduce a
syntax tree decoder specifically designed for SQL which recursively determines which
SQL clause needs to be predicted next, and activates the correspondingly assigned decoder.
This method enables a more accurate prediction of SQL clauses, and is able to solve much
more complex queries. Besides using LSTM, there are also different techniques to extract
information from the input. Montgomery et al. [33] developed an approach in which a
graph is created that represents the schema of the SQL database, which is used to simplify
the mapping of user queries to SQL queries. In parallel, they use NLP techniques to extract
relevant information from the natural language query. ER-SQL [34] uses the pre-trained
BERT-Large model [35] as an input encoder for the questions, the table schema, and the
table content. Both of these methods also follow the sketch-based concept, in which the
extracted information is integrated into SQL templates for building the query. Recent
papers have also presented models, like SEQ2SQL [36] or X-SQL [37], which do not require
the use of tools such as SQL templates in the text-to-SQL area, and can directly convert
natural language input into SQL queries. In addition, more and more new approaches
have recently emerged that use advanced LLMs such as Codex [38] or OpenAI’s GPT-3 [1],
experimenting with various prompt strategies. These models completely take over the
encoding and decoding of the input, enabling a direct and efficient conversion of natural
language into structured SQL queries. Such approaches are characterized by high flexibility
and adaptability to different environments, as they do not require specific templates or
database schemas [39]. Beyond that, various test data sets have been developed for the
text-to-SQL task, of which WikiSQL [36] and Spider [40] are among the most prominent.
WikiSQL has established itself as the main dataset for researching text-to-SQL applications
on a single table. Spider was developed to better represent the complexity of actual use
cases. Unlike WikiSQL, where queries are limited to single tables, Spider allows the
formulation of more sophisticated and multi-layered queries across multiple tables.

3.2. Text to NoSQL

In contrast to traditional SQL-based systems, the variety of database schemas and
less strict query structures in NoSQL query languages pose a particular challenge for the
development of NLI, as they require flexible and dynamic processing and interpretation of
the natural language. Therefore, various approaches have been developed in the literature
that use classical and modern techniques to deal with this challenge. Mondal et al. [41]
developed a query–response model that can handle various queries, like assertive, inter-
rogative, imperative, compound, and complex forms. Their system is essentially based

Future Internet 2024, 16, 438 6 of 26

on the extraction of entities and attributes from natural language using NLP techniques,
from which the query can then be formed after semantic analysis. Pradeep et al. [42] and
Hossen et al. [43] both propose deep learning-based approaches for generating queries. In
the former, after the identification of the question type by a question detection module, the
natural question is converted into the query by an encoder–decoder architecture. For each
different question type, such a deep learning module was created. In the latter, the question
is first pre-processed using NLP techniques. The information obtained from this is used in
the next step to extract collections and attributes using the Levenshtein distance algorithm.
A BERT-based module is then used to extract the operation from the natural question.
Finally, all extracted information is used to map it with a syntax tree, which is then used
to generate the query. All these approaches have been developed and tested to generate
queries for the database MongoDB. In contrast, Zhang et al. [44] developed an NLI for
querying elasticsearch databases. In their system, the user’s question is first converted into
a template question using a pre-trained transformer-based sequence-to-sequence model
into a template question. This is then used by an encoder to generate the condition fields
and values, which can then be inserted for the elasticsearch query templates.

3.3. Graph-Based Query Languages

Graph databases pose a particular challenge for the automatic generation of query
statements in the area of NoSQL databases. The reason for this lies in the complex nature
of graph-based query structures, where not only the entities and their attributes, but
also the relationships between them, play a crucial role. In this area, a large majority
of the scientific literature focuses on the SPARQL Protocol And RDF Query Language,
SPARQL [45] for short, a query language specifically for querying and manipulating data
in Resource Description Framework (RDF) formats, which is often used in graph-based
databases. Agahei et al. [46] proposed an NLI, which follows a sketch-based approach.
In their model, the natural question is first processed using NLP techniques and label
encoding, and then the question is classified into its corresponding query pattern, which
is used as a template. Subsequently, the corresponding information is extracted from the
question using entity linking and relation extraction, which can then be inserted into the
selected SPARQL template. Liang et al. [47] created a model, which first classifies the user’s
query for syntactic information to determine the type of query. The information obtained
from this is used to build the SELECT clause of a SPARQL query. Subsequently, the phrase
mapping approach uses several models in the form of an ensemble method to extract
the resources, properties, and classes of the RDF schema from the question. Finally, all
possible queries are created with this information, and the most plausible are determined
using a tree-LSTM for ranking. Some papers propose the use of transformer-based [48]
or seq2seq-based [49] architectures for SPARQL query generation. These methods do not
require any pre-processing with NLP techniques or auxiliary structures such as query
templates. Due to the advance of LLMs, novel approaches analogous to the text to SQL task
were recently introduced, which test OpenAI’s language models GPT-3 [1], GPT-3.5-turbo,
and GPT-4 [50] with different prompt strategies to generate SPARQL queries [51,52]. In
addition, a large number of test data sets have already been designed for the text to SPARQL
task, of which the LC-QuAD [53] and QALD [54] series are the most popular [55].

In contrast, the literature for NLIs to generate Cipher Query Language (CQL) state-
ments for the Neo4j database is rather sparse, and it is not much researched yet. Several
papers use NLP techniques to process the question in natural language. Hains et al. [56]
presented a system that uses NLP to process the user’s question, then maps it with question
type dependent patterns and extracts labels and variables to generate the CQL statement.
However, they only presented the concept of how this could be performed, but not an
implementation of the system. Kobeissi et al. [57] created a NLI for querying process
execution data with Cypher. Their system consists of two main components, namely In-
tent Detection/Entity Extraction and Query Construction. In the former, generic intent
patterns are used to determine the type of question from which the form of the MATCH

Future Internet 2024, 16, 438 7 of 26

and RETURN clauses of the Cypher query. In addition, named entity recognition is used
to derive entity-tag sets from the question. This information is then used to construct the
CQL statement in the query construction module, starting with the MATCH clause and
proceeding algorithmically. Zhou et al. [58] pursued a sketch-based approach to create
Cypher queries for SCD files. Here, the user question is supplemented with additional
information using the Knowledge Graph and synonyms are replaced. Semantic triplets are
then generated from the question using a Bi-LSTM, which are then converted into Cypher
code segments and used to select the predefined assembly template. Finally, the finished
CQL statement is constructed from the code snippets and template. Chatterjee et al. [59]
introduce an NLI for querying wind turbine maintenance data in Neo4j graph databases.
In their work, they create both a seq2seq model extended with an attention mechanism
and a transformer-based model to create Cypher queries. The advantage of these models is
that the natural language input does not have to be pre-processed and can be converted
directly into CQL statements without further auxiliary structures. They showed that the
transformer based model is slightly more accurate in generating Cypher queries, while
being almost 10 times more computationally efficient. With regard to the use of LLMs to
generate Cypher queries, Feng et al. [60] are the only paper found in this literature search to
have taken such an approach. In their system, a named entity recognition is first performed
on the user question in which the entities from the question are mapped to nodes in the
graph. The results of this and the original question are then incorporated into several
prompts which are used by ChatGPT to generate the CQL statement. In addition, they also
tested different prompt strategies, as well as an improvement of the query by ChatGPT in
case of error/empty result. However, the ChatGPT version used was not mentioned in
the paper.

4. Concept

As the existing literature attests, text-to-SQL systems have been thoroughly researched
in the context of Natural Language Interfaces (NLIs) for databases. Shifting the focus to
NoSQL databases, though, reveals more significant challenges due to their complexity.
Query generation in graph databases is particularly challenging. Most of the literature
focuses on SPARQL as a query language. Conversely, the Cypher Query Language (CQL),
which is used to query graph databases in Neo4j, has been relatively less explored, both in
terms of breadth and depth. To fill this research gap and develop an appropriate artifact
for this topic, the Design Science Research Methodology (DSRM) as outlined by March
and Smith [61] and further developed by Peffers et al. [62], was applied. This approach
is particularly appropriate, as it allows a specific organizational problem to be addressed
through the development of a meaningful IT artifact [63]. By applying DSRM, the research
focuses on creating a solution that not only addresses the technical aspects of querying
graph databases using CQL, but also considers the usability and practicality of the solution
in organizational settings. The development of such an artifact, adapted to the complexities
of NoSQL databases and Neo4j in particular, aims to make a significant contribution to the
field by improving the capabilities and ease of use for practitioners and researchers alike.

4.1. Problem Identification and Motivation

In accordance with this methodology, the first step was to identify the problems and
motivation for this research contribution. These were primarily outlined in the Introduction
and Related Work sections. It is apparent that there is a substantial need for research in
the area of Cypher Query Language for querying graph databases in Neo4j, whereas the
most significant research gap can be identified in generating these CQL queries with LLMs.
This need is critical not only for driving research in this area, but also for making the query
capabilities of different databases more accessible.

Future Internet 2024, 16, 438 8 of 26

4.2. Objectives of a Solution

In line with this idea, the goal is to develop an application that takes a modular
approach to integrating and querying different databases in natural language, with a par-
ticular focus on querying using CQL in Neo4j. On a more granular level, the following
objectives of the solution are of particular importance. These are derived from the existing
literature and our own assessment. The primary objective of this research is to enhance the
natural language interface. The aim is to develop a system that can seamlessly translate nat-
ural language queries into CQL without any intermediate substructures. This advancement
will allow users to interact with Neo4j graph databases using conversational language,
making the process of accessing data both intuitive and user-friendly. In further stages of
this approach, this will be a key aspect to make graph database technology more accessible
to a wider audience, including those without technical expertise in database querying.
Another important goal is to improve the accuracy of these CQL queries. It is important
that the queries generated from natural language are correct. If this is not the case at the
first attempt, the solution includes mechanisms to correct the query and proceed with
optimizing the Cypher queries. In addition, there is a focus on facilitating complex data
retrieval. The system will be designed to handle more complex queries, allowing users
to access and retrieve data relationships stored in graph databases. Ensuring scalability
and performance is also a key consideration. The system should be able to manage dif-
ferent types of datasets and graph schemas while maintaining high performance in data
processing and query execution. In addition, the research aims to promote integration and
compatibility. The proposed solution will be designed to easily integrate with existing
systems and be compatible with various databases and large language models, ensuring its
adaptability and long-term utility. Lastly, a user-friendly interface is another crucial aspect
of our project. The success of the model depends on its ease of use, underlining the need
for an interface that simplifies interactions and enhances the overall user experience.

4.3. Design Principles

Each of the aforementioned goals has been developed to bridge the gap between
advanced database technology and user-friendly interfaces to enhance the field of nat-
ural language processing for database queries. Derived from these goals, the following
design principles can now be derived, which were adopted in the development of the
technical artifact.

Consistent approach: The design of our artifact is driven by a consistent approach,
ensuring uniformity in functionality across different modules and aspects of the application.
This consistency is essential for providing a seamless user experience, making the transi-
tion between different types of queries and databases intuitive and straightforward. By
maintaining a consistent approach, users can expect predictable outcomes and interactions,
which is crucial for building user trust and proficiency with the application.

Accurate query generation: Another fundamental aspect of our solution is its capa-
bility to generate correct queries from natural language inputs. This involves advanced
processing models that can accurately interpret the user’s intent and translate it into valid
CQL queries. The system is designed to understand different verbal constructs and con-
vert them into corresponding database operations, ensuring that the results match the
user’s expectations.

Robustness: This marks another core principle guiding our design. The artifact
is constructed to handle a wide range of queries reliably, maintaining performance and
accuracy even under varying conditions. This robustness includes the ability to manage
complex queries, interpret nuances in natural language, and provide results consistently.
Additionally, the system is designed to be error tolerant, offering clear feedback to users to
correct issues or refine their queries.

Appropriate database selection and correct reference to chat history: The artifact
intelligently selects the appropriate database based on the query context and user require-
ments. It includes a mechanism to understand the context within which a query is made,

Future Internet 2024, 16, 438 9 of 26

including references to chat history. This feature allows the system to provide more ac-
curate and contextually relevant responses by understanding the user’s interactions and
the nature of their queries. The ability to reference and utilize chat history improves the
system’s ability to handle repetitive, multi-step interactions and thus improve performance.

4.4. Workflow Design

Derived from the objectives and design principles developed above, Figure 1 was
created. The workflow was created to explain the sequential operations from user input
to final response delivery. This section examines each step of the Business Process Model
and Notation (BPMN) model, providing a detailed understanding of the decision making
processes and interaction with the databases. The process is initiated when a user enters a
question. This is the primary interaction between the human and system, and triggers the
chatbot’s response mechanism. The chatbot internally generates a prompt that encapsulates
the user’s query, preparing the system for subsequent analysis and response. The system
evaluates the chat history to determine if a similar query has been previously addressed,
which optimizes the response time by avoiding redundant database queries. If the system
finds a relevant instance in the chat history, the chatbot constructs an answer in natural text
form, ready to be presented to the user. If the chat history does not provide a satisfactory
response, the system moves on to assess the feasibility of a database query with available
databases. This decision is crucial, since it involves choosing the correct database for
executing queries. If the underlying databases are not sufficient to answer the questions, an
“Unsuccessful Response” message is generated. However, if it is possible to answer with
the underlying database, the respective database schema for constructing an accurate and
efficient query is retrieved. Using the user’s prompt and the retrieved database schema,
the chatbot proceeds to generate a structured query. This query is tailored to retrieve the
relevant information from the database in response to the user’s initial question. If the
query execution fails, the chatbot generates an error prompt and reproduces improved
queries to retry with optimized Cypher queries. Upon a successful query execution, the
chatbot generates an answer from the query result. This answer is then formatted into
a natural text response that can be easily understood by the user. In case the chatbot
cannot generate a successful response from either the chat history or the database query,
it generates an unsuccessful response. The final step in the chatbot’s operational process
is presenting the response to the user. Whether the response is a direct answer, an error
message, or a notification of an unsuccessful query, the system communicates the outcome
clearly and effectively to the user, maintaining transparency in the interaction.

Figure 1. Artifact: workflow of the chatbot.

Future Internet 2024, 16, 438 10 of 26

4.5. Technical Realization and Implementation

The following section marks a shift from the conceptual framework to the technical
realization and implementation of the chatbot. It details the architecture, programming
languages, and database connections that are integral to the construction of the chatbot,
focusing on the design choices made to solve the identified problems.

4.6. Evaluation

Following the technical exposition, an evaluation phase will assess the chatbot’s
performance against pre-defined objectives. Metrics such as execution accuracy, response
time and syntax errors will be central to this analysis.

4.7. Discussion and Limitations

The discussion will then place these findings in wider context of existing research,
highlighting the implications of the study. This examination will serve to review new
insights and limitations of the solution created.

4.8. Conclusion and Future Work

In the concluding section, the research will present a synthesis of the findings and
suggest areas for future research. The conclusion will summarize the significance of the
findings while acknowledging the scope and limitations of the study. The proposed future
research directions will build on the reflective findings and suggest modifications and
improvements for the next possible iterations of the chatbot.

5. Implementation

The NLI built as part of this project was designed on the basis of modular architecture.
This approach allows for easier testability, maintainability of the individual components
and, above all, expandability for additional databases or language models. Figure 2 shows
the schematic architecture of the chatbot. The entire chatbot was implemented in the
Python programming language. The whole system is hosted in docker [64] containers,
and consists of three main pipelines, namely the Agent, Chat_from_History, and QA, which
are responsible for processing the user’s request and generating a suitable response. In
the following, the implementation of the individual modules and the processing of user
questions in them will be described.

Figure 2. Schematic architecture of the chatbot.

Future Internet 2024, 16, 438 11 of 26

At the start of the chatbot, the user interface, database descriptors, and language
models are initialized first. For the creation of the user interface (UI), the open source
python library gradio [65] was used, which provides a variety of components to build a UI
for a chatbot quickly and easily.

The database descriptors Listing 1 contain the name of the available databases, as
well as a brief description of the information they contain. This is necessary in order
to be able to select the appropriate database for the user’s question later in the agent
pipeline. The database adapter contains the connection information and a client to the
respective database. The required large language models are also initialized at the same
time. Three independent LLMs, i.e., Json LLM, Query LLM and Chat LLM, are required for
the chatbot. Due to hardware limitations, it was decided to use the latest version of Open
AI’s GPT-4-Turbo for each of the models. Table 1 shows an overview of the models and
their parameters. Regarding the temperature parameter, it is particularly important for
the first two models to be set to 0.0 so that the output is as focused and deterministic as
possible.

Listing 1. Database Descriptors.

DATA_BASE_DESCRIPTORS = [
DataBaseDescriptor(

‘‘MovieDatabase ’’, ‘‘A neo4j database containing information about
movies , actors and directors ’’, MOVIE_DB_ADAPTER

),
]

Table 1. Used Large Language Models.

Models
Parameters

Json LLM Query LLM Chat LLM

model gpt-4-1106-preview

temperature 0.0 0.0 0.2

max_tokens 50 100 200

response_format type: json_object n.s. n.s.

The reason behind this is that when making decisions or generating CQL statements,
it is fundamentally important that the model only uses the nodes and parameters that are
given to it in the prompt, and does not invent its own values here, as these would then lead
to an incorrect decision/cipher query. For the Chat LLM, this parameter was set slightly
higher in order to prevent the model to include its internal knowledge into the answer.
In the latest GPT-4-Turbo models, a so-called response_format can also be defined. This
allows the JSON mode [66] to be activated for a model, which is used in the Json LLM. Its
functionality will be explained in more detail in the Agent Pipeline section. For the other
two models, the default parameter of the response_format were applied.

5.1. Agent Pipeline

When the user enters a question, it is sent to the Agent pipeline together with the
database descriptors, LLM instances and the current chat history. The task of this pipeline
is first to decide whether the question posed by the user can be answered with the available
resources. For this purpose, the special decision prompt, Listing 2, is created for the user
question. This contains the available databases with their description from the database
descriptors, the user question, the current chat history and an answer schema. In this,
the response options for the expected answer can be defined in advance. In the first field,
“database”, the names of the available databases and the option “None” are given to the

Future Internet 2024, 16, 438 12 of 26

model as a selection option. It is important to note here that the model can only make one
selection in the current implementation.

Listing 2. Decision Prompt.

‘‘Decide if you can answer the question only with the information of the
chat history and if not which Database should be used to answer the
question.

Important: You must answer in JSON format!
You have the follwing Databases available:
{available_db_prompt}
The question is:{ question}
The current chat history is:
{history.format_for_model ()}
Follow this example for the output:
{{

database: Literal [{ available_db_list }],
can_answer_from_history: bool ,

}}’’

In the second field, the model should use a boolean value to indicate whether the
question can only be answered with information from the specified chat history. Now,
using the JSON mode of Open AI, the language model will follow exactly this schema in
its response, and does not add any additional explanations to the answer, which makes
it possible to parse it as a JSON object. Depending on the model’s answer, three different
paths can now be initiated for further processing of the user question: First, if the Json
LLM has decided that the question cannot be answered neither from the previous chat
history or from a available database, then the user will be shown an apology which is
streamed into the UI an ends the process (1). Secondly, if the question can be answered
from the previous chat history, it is sent together with the current history and the Chat LLM
instance to the Chat_from_History pipeline (2). The third and last possible case is when the
question cannot be answered by the chat history but by a query to an available database (3).
Here, a information message about the selected database is streamed back to the UI, and
subsequently, the question is sent together with the Query LLM instance and the selected
database descriptor to the QA pipeline, where it is further processed. In the following, the
last two options will be explained in more detail below.

5.2. Chat from History Pipeline

The purpose of this pipeline is to generate an answer to the question based only on the
current chat history. A chat history contains three different types of messages: SYSTEM,
USER and ASSISTANT. The system message is added at the beginning of each conversation
and assigns a role to the language model. All questions created by the user are flagged
as USER messages. Full text responses from the Chat LLM, database query results and
also auxiliary information, such as which database was selected, are all categorized as
ASSISTANT messages. To prevent irrelevant information such as the auxiliary information
from being taken into account when answering on the basis of the history and thus possibly
distorting the answer, a process parameter is added to each message. This is a boolean value
which specifies whether a message should be included in such tasks or not. In order to be
able to generate a full text answer with the Chat LLM, another customized prompt Listing 3
is used, which contains the current formatted chat history, as well as the user question.

Particularly important in this prompt is the request to the model that the information
provided is authoritative. This ensures that it neither adds internal knowledge to its
response that does not originate from the chat history, nor attempts to correct potentially
incorrect statements. When the Chat LLM has finished generating the answer, it is streamed
back to the UI and presented to the user and the process is complete.

Future Internet 2024, 16, 438 13 of 26

Listing 3. Chat from History Prompt.

‘‘You are an assistant that helps to form nice and human understandable
answers.

The information part contains the current chat history that you must use to
answer the user.

The provided information is authoritative , you must never doubt it or try to
use your internal knowledge to correct it.

Make the answer sound as a response to the question. Do not mention that you
based the result on the given information.

If the provided information is empty , say that you don’t know the answer.
Information:
{formatted_chat_history}
Question: {question}
Helpful Answer:’’

5.3. Query Answering (QA) Pipeline

The task of this pipeline is to answer the user question from the corresponding
database. The first step in this process is to generate a suitable CQL statement to query the
underlying Neo4j database. For this purpose, an additional customized prompt, Listing 4,
was created, which will be used for the Query LLM. In addition to the user question, this
contains the schema of the selected graph, which lists all nodes and relationships between
them, as well as the properties of them both. This schema is dynamically retrieved from
the graph database for prompt creation, using the connection details from the selected
DB descriptor. Furthermore, example queries can also be added for few shot prompting,
which the model can use as a guide for query generation. In addition to the temperature
parameter of the Query LLM the prompt also includes requests to strictly adhere to the
provided schema. This is to prevent the model from creating new nodes/relationships or
properties that do not exist in the graph and thus causing errors in the database during
execution. It is also required not to explain the generated cipher statement to ensure that
the query can be parsed for the database without problems. After the CQL statement has
been generated by the Query LLM, it is first streamed back to the UI and presented to the
user before being executed via the database client of the database descriptor. Depending on
the result of the request, two different processing paths are now taken. If the query could
be executed on the database without errors, the raw query result is first streamed back to
the UI in JSON format. This allows the user to check it and recognize possible errors in the
plain text response. The query result is then transferred to the Chat LLM. A customized
prompt was also created for this similar to the chat from history prompt, which contains
the raw JSON and user question.

Listing 4. Generate Query Prompt.

‘‘Task:Generate Cypher statement to query a graph database.
Instructions:
Use only the provided relationship types and properties in the schema.
Do not use any other relationship types or properties that are not provided.
Schema :{ schema}
Hint: You can use the following queries as examples:
{self.few_shots}
Note: Do not include any explanations or apologies in your responses.
Do not include any text except the generated Cypher statement.
The question is:{ question}’’

The model is also asked to consider the result as authoritative and absolute and not to
try to correct or explain it. This is to ensure that the generated full-text answers are concise,
brief, and accurate to the initial question, and only contain information which can be found
in the database. When the model has finished generating the answer text, it is streamed to
the UI and presented to the user. This concludes the processing procedure. However, if the
generated query has caused an error such as a syntax or semantic error during execution

Future Internet 2024, 16, 438 14 of 26

on the database, the processing path through the error correction module is taken. Due
to the fact that the cipher language of Neo4j can be very error-prone, due to the extensive
syntax, and a smooth query generation can therefore never be guaranteed, this module
was created to automate the error correction in CQL queries as best as possible, and thus
improve the user experience. The task of the module is to improve the initially generated
query depending on the user question and the error message. In the event of an error, first
an error correction prompt Listing 5 is created. Analogous to the generated query prompt,
it contains the user query, the schema of the graph, and few shot examples.

In addition, the incorrect CQL statement and the error that the Neo4j database has
returned are also included. This is then sent to the Query LLM, which generates an improved
query which is then executed a second time on the database. If the fixed CQL statement
again causes an error, a new error correction prompt is created and the process starts
again. As can be seen, the correction of the faulty query happens in a loop. To prevent this
from potentially running for an infinitely long time, the maximum number of attempts
was set to three in the implementation via a hardcoded parameter. When the maximum
number of retries is reached, the module aborts the cycle and streams an error message
back to the UI, asking the user to rephrase and resubmit their question. However, if the
error could be resolved, or the revised cipher query no longer caused an exception, an
information message is streamed back to the user in the UI. Following this, identical to
error-free query generation, the database result is streamed back into the UI and passed
to the Chat LLM to generate the full-text response. After this has also been streamed back
to the UI, the processing of the request is finished. A major advantage in this approach is
that the error correction module is error agnostic. This means that it is not necessary to
define the possible error types and the corresponding reaction to them beforehand, but
that the Query LLM decides independently how to deal with the error. Furthermore, this
also ensures that each troubleshooting is customized to the query instead of using generic
approaches. At the beginning of this section, it was emphasized that the chatbot was
built in such a way that potentially several similar, but also different, databases can be
used. In the current implementation, this is achieved by adapting the chatbot to a specific
database type using only prompts, more precisely the query generation and error correction
prompt. It must therefore be possible to exchange these two prompts flexibly depending
on the database selected by the Json LLM. This is achieved by storing these prompts in the
database client from the database descriptor. If, for example, a new SQL database is to be
stored in the chatbot, its client must first be created programmatically, and thus also the
two prompts. Then, depending on the selection of the database, the respective prompts and
client connector are passed on to the QA pipeline, which can then be used to create suitable
queries in the correct language. In this way, it is possible to use only one pipeline for the
query generation of many different languages, which significantly improves maintainability
and minimizes code overhead. In addition, the modular design of the pipelines makes it
possible to easily add new pipelines or change the processing sequence.

Listing 5. Error Correction Prompt.

‘‘Task:Fix this Cypher statement to query a graph database.
Instructions:
Use only the provided relationship types and properties in the schema.
Do not use any other relationship types or properties that are not provided.
Schema: {schema}
Hint: You can use the following queries as examples:
{self.few_shots}
Note: Do not include any explanations or apologies in your responses.
Do not include any text except the generated Cypher statement.
The question that should be answered is:{ question}
The generated Cypher statement is: ‘{query}‘
The error message is: ‘{error_message}‘
’’

Future Internet 2024, 16, 438 15 of 26

5.4. Demonstration

This section provides a brief overview of the graphical user interface and application of
the chatbot. Figure 3 shows the Gradio UI of the bot and the four possible communication
scenarios. As the interface in 1 shows, the UI consists of three main components. In the
center of the screen is the chat box for any located interaction with the bot. All user questions
and any answers or help information from the bot are streamed into this. Above this, the
available database descriptors are listed in a table with the data abbreviation and their
short description. This should help the user to receive a quick overview of the available
databases and their content. Below the chat is the input box, in which the user can ask
and send questions to the bot. The first example shows the scenario in which the user asks
a question that the chatbot cannot answer either from the chat history or with the help
of a database. In the second exemplary chat process, an answer to the user’s question is
provided by a query to the database. Here, it can be observed as to how the chatbot first tells
the user which database it uses to answer the question. It then presents the generated query
and, after it has been executed, the number of results it has found. In this chat message, a
dropdown is also added, which contains the raw JSON result of the database query. The last
message of the bot displays the full text answer to the question. The third scenario shows
the answering of a user request with the help of the chat history. For better visualization,
in this simplified example, the same question was asked twice in a row, but in reality it
would also be possible for the chatbot to refer to messages that are longer in the past. In this
conversation, you can clearly see how the bot tells the user that it has decided to answer
their question using history. It can also be seen here, that due to the rather low value of the
temperature parameter of the Chat LLM, and the requirement in the prompt to adhere strictly
to the history, the bot tries to deviate his answers as little as possible from the previous
answers. The last scenario shows the error correction module in action. The user question
asked in this example was “How many stations are between Snoiarty St and Groitz Lane ?”
Analogous to regular CQL generation, the user is again presented with the initially created
cipher statement. However, as a timeout error occurs on the database when this query is
executed, it is fixed within the error correction module, and the user is informed of the error
and presented with the revised version. In the event that the error in the query could not be
resolved in the first attempt, this message is presented to the user for each new version, as
long as the loop is running. When the error has been fixed, the raw database results in the
dropdown and the full text answer will be displayed again, identical to the second scenario.

Future Internet 2024, 16, 438 16 of 26

Figure 3. Communication scenarios in the chatbot.

6. Evaluation

For the evaluation of the chatbot, a suitable test data set for the text to CQL task was
first required. In Section 3 of this work, it was already shown that, with Spider [40] and
WikiSQL [36], established and famous data sets for text to SQL exist. In addition, there
are also widely used data sets for the text to SPARQL task in the area of graph databases
with LC-QuAD [53] and QALD [54] series. Considering this, a suitable test data set for
the generation of cipher queries was also searched for in order to evaluate the translation
capabilities of the chatbot. However, after an extensive search, it was discovered that only
a few exist or have been made publicly available. A total of four data sets were found:
Guo et al. [67] created a Chinese dataset with 10,000 native language cipher pairs as part
of their work. While these were published on GitHub [68], the underlying knowledge
graph needed for query generation is only available for download on the Chinese website
Baidu, which can only be accessed from selected countries which currently does not
include Germany. Chatterjee et al. [59] and Kobeissi et al. [57] created test data sets for
their respective use cases in the area of maintenance information on wind turbines [69]
and process execution data [70], respectively. Although the question–CQL pairs and the
available graph database are publicly available, they could not be used for evaluation. The
reason for this is that the schemas of the graphs are rather complex and, therefore, very
extensive, which would result in large query prompts. Since each of these contains the
schema of the graph and properties of the nodes/connections, the resulting costs for the
Open AI API would significantly exceed the cost constraints of this work. The fourth test
data set found was CLEVR [71]. The underlying graph behind CLEVR simulates an artificial
subway network inspired by the London tube and train network. The included nodes and
relationships have been expanded to include a variety of properties such as cleanliness

Future Internet 2024, 16, 438 17 of 26

or music played, which can be queried. The repository contains scripts for generating a
random graph and the corresponding test dataset. Due to the relatively lightweight nature
of the graph, which nonetheless allows complex queries, it was decided to use this dataset to
evaluate the text to CQL capabilities of the chatbot. In addition to the generation of Cypher
statements, other capabilities of the chatbot, such as database selection and response from
history, were also evaluated. Since there are no test data sets for such tasks, these were
self-constructed on the basis of the available graphs. In total, three different Knowledge
Graphs were used across all parts of the evaluation, the characteristics of which are briefly
presented in Table 2. The Movie Graph contains information about movies and people who
were in certain relationships to them, for example actors or directors. Northwind represents
a traditional retail system with products, orders, customers, suppliers and employees.

Table 2. Graphs used for evaluation.

Graphs
Details

Movie Northwind CLEVR

Nodes 171 1.035 287

Relationships 253 3.139 337

Distinct Relation. types 6 4 1

Distinct Properties 8 47 22

Both of these graphs are part of sample datasets provided directly by NEO4J [72]. In
the following, the evaluation methods used are explained and the results presented.

For the evaluation of all experiments, the Exact Set Match Accuracy (EM) metric was
utilized to ensure a consistent measurement of performance across different evaluation
targets [73].

ScoreLF(Ŷ, Y) =

{
1, Ŷ = Y
0, Ŷ ̸= Y

The EM metric is calculated by comparing each predicted answer, denoted as Yhat,
with the ground truth answer Y. This comparison is performed for all N instances within the
respective dataset. If the predicted answer exactly matches the ground truth, it is considered
correct. The final accuracy is then derived by taking the ratio of correctly matched instances
to the total instances in the dataset. Given that each experiment in this study targeted
different aspects of the chatbots capabilities, tailored question schemas were necessary
to align with specific evaluation goals. These schemas were designed to accommodate
the unique requirements of each experiment, ensuring that the evaluations accurately
captured the performance of the chatbot in generating CQL, selecting the appropriate
database, and providing responses based on conversational context. Descriptions of these
question schemas, as well as further analysis of the EM metric results, are presented in the
subsequent sections.

6.1. Database Decision Evaluation

The aim of this evaluation was to find out how accurate the chatbot is at selecting the
right database to answer the user’s question. For this, 282 questions and correct database
selection pairs were created by hand, covering all databases from Table 2. In order to be
able to evaluate whether the bot is also able to correctly recognize that it cannot answer a
question with the available databases, the test data set also contains questions that are not
related to one of the databases. Consequently, the correct choice for these questions was
expected to be “None”. Only the Json LLM was used for the evaluation, as only this part of
the chatbot is responsible for the database selection.

Future Internet 2024, 16, 438 18 of 26

The schema for database selection was structured as follows: “Given the [Database
Descriptions] and [question], determine which database is best suited for the task.” In the
evaluation dataset, the ground truth answers were the names of the respective databases,
serving as the benchmark for accuracy in database selection.

The options available for selection were “MovieDatabase, Northwind, CLEVR, None”.
For each of the databases, a short and concise description of their content was given in
the corresponding descriptor. The selection accuracy is defined by the number of correctly
selected databases divided by the sum of all questions. As can be seen in Table 3, the
chatbot, or rather the Json LLM, is very good at selecting the correct database for the user’s
question, reaching a overall selection accuracy of 96.45%. The data set for CLEVR alone
is a little less accurate in comparison. After closer examination, the reason behind this
is that some of the questions in this test data set do not contain any keywords from the
CLEVR database description, which prevents the model from finding an assignment to
a descriptor. In addition, due to the fact that CLEVR was generated synthetically, none
of the station names or subway lines have an equivalent in the real world that the LLM
could reference from its internal knowledge. This is different in the movie dataset. Here,
the model can conclude from its training data that, for example, the person “Keanu Reeves”
is an actor and that a question containing this person can be answered with the help of the
movie graph.

Table 3. Database decision evaluation result.

Metrics
Selection Options

Questions Selection Accuracy (%)

Movie 118 100

CLEVR 100 92

Northwind 30 100

None 34 100

∑ 282 96.45

6.2. Chat from History Evaluation

Further evaluation aimed to assess the ability of the Json LLM to effectively reuse
information from previous interactions in the chat history. The chatbot was tested on a
series of questions within the Movie and CLEVR databases, categorized into zero-step,
one-step, two-step, and three-step reasoning questions, as shown in Table 4. Throughout
the process, the ability to recognize the question in the chat history is evaluated, not
necessarily the correctness of the answer, meaning the results can be either true or false.
For evaluating the chatbots capability to reference prior interactions, the following schema
used was: “Given the current [chat history] and [question], determine if the question
can be answered solely using the chat history.” Here, the ground truth answers were
boolean values, indicating whether the required information was indeed present in the
conversation history.

The zero-step reasoning describes the posing of an initial question without any his-
torical context for that question, implying for the model that it would correctly output
“false” in such cases. In one-step reasoning, the question selected at the start is asked
once again and then checked to see if it was recognized in the existing history, and the
history would be used to answer it. In this case, the “true” result would be appropriate.
The two-step reasoning now merges the first question with the second question in the
chat history and asks a composite question. It then checks if the chatbot recognizes this
combined question from the chat history and correctly handles it. Again, “true” would be
the proper return value. With increasing complexity, an analogous approach was applied

Future Internet 2024, 16, 438 19 of 26

to three-step reasoning. For each reasoning step, 214 questions were asked, resulting in a
total of 856 questions.

Table 4. Chat from history evaluation result.

Metrics
Sel. Options

Questions Sel. Accuracy (%)

0-Step Reasoning 214 100.00

1-Step Reasoning 214 82.24

2-Step Reasoning 214 79.44

3-Step Reasoning 214 87.38

∑ 856 87.27

The evaluation revealed varying patterns in response accuracy. The results revealed
the model’s ability to perform zero-step reasoning questions with 100% accuracy, demon-
strating flawless decisions when there is no prior input. In contrast, one-step reasoning
questions showed a decline in accuracy, with the model correctly using chat history 82.24%
of the time. This trend continued with two-step reasoning questions, where the model’s
accuracy decreased to 79.44%. However, an interesting pattern appeared in the three-step
reasoning category, where accuracy increased to 87.38%. This indicates that although
the model struggles with intermediate complexity, it is better at handling more complex
referencing tasks, which likely involve more robust integration of contextual information.

6.3. CQL Query Generation Evaluation

The evaluation further investigated the effectiveness of CQL statement generation of
the model using the CLEVR dataset, as shown in Table 5. The schema for CQL generation
was framed as: “Given the selected [graph schema] and [question], generate a Cypher
query”. This schema required the chatbot to formulate accurate CQL queries based on
the graph’s structure and the specified query intent. The test data set contains an English
question, a so-called “gold query”, which generates the correct query result and the raw
query result. Thereby, two distinct setups were compared, zero-shot prompting, where the
system generates queries without prior context, and few-shot prompting, where the system
utilizes a small number of examples, respectively 4, to support its query generation. In
order to evaluate the ability of the Query LLM to generate database queries from natural
language input, both the raw query results of the generated query and the full text responses
were considered. In this approach, we checked both whether the raw database results
matched and whether the generated full-text response was correct. The reason for this is
that some test questions from CLEVR are aimed at yes/no answers, so the result set of the
generated statement may be empty. In this case, the answer would be wrong if our chatbot
answered “it does not know the answer”. The so-called execution accuracy, presented by
Guo et al. [67], was used as a suitable evaluation metric. This describes how many of the
generated CQL statements produce a correct query result in relation to all generated queries.
A conscious decision was made not to use metrics such as logical accuracy, which check
whether the generated CQL query is identical to the gold query, because the evaluation
was about how well the system is able to generate statements that produce correct answers
and not identical CQL statements. The evaluation was performed using 500 questions
per prompt type and syntax and semantic errors, respectively, timeout errors, were also
recorded as indicators of the system’s proficiency.

Future Internet 2024, 16, 438 20 of 26

Table 5. CQL query generation evaluation result.

Selection Option
Metrics

0-Shot Prompt. Few-Shot Prompt.

Sel. Accuracy (%) 61.00 92.80

Syntax Errors 48 0

Semantic Errors 20 0

Questions 500 500

The findings revealed a notable discrepancy in the agent’s performance between
the zero-shot and few-shot prompting. In the zero-shot scenario, where the chatbot was
required to generate queries without prior examples, the execution accuracy stood at 61%.
However, the model’s accuracy improved significantly in the few-shot context, reaching
92.8%. This indicates the chatbot’s ability to learn and adapt from examples, improving
its query generation capabilities. In particular, the few-shot approach eliminated syntax
and semantic errors, with zero instances detected, while the zero-shot approach produced
48 syntax errors and 20 semantic errors.

6.4. Performance Evaluation

To ensure practical application in real-world scenarios and to identify any potential
bottlenecks in the system, the performance times during the execution of all evaluation
tasks have been measured (see Table 6). To evaluate the performance of our approach,
we use the average duration (in seconds) of all observations as the primary performance
measure. Mathematically, the performance measure is defined as

Performance Measure(x̄) =
1
n

n

∑
i=1

xi

where xi represents the duration (in seconds) for the i-th observation, and n is the total
number of observations. This was gathered simultaneously during the previous evaluation
techniques in the previous sections, starting with the database selection times for each
database, including Movie, CLEVR, Northwind, and None if no applicable database is the
correct reference for the model. Then, the chat history evaluation times were measured
with increasing complexity from zero-step reasoning to three-step reasoning. Lastly, the
times of zero-shot and few-shot were compared, differentiating between query generation
time, query execution time, and answer generation time. Indeed, the evaluation provided
differentiated insights into the performance of our system. As for the database selection
task, the CLEVR dataset revealed slightly higher durations compared to the other datasets,
which is consistent with the previous findings of slightly lower accuracy. When exam-
ining the reasoning tasks, we observed a trend where increased context led to slightly
longer durations.

However, the model showed stable performance in scenarios with extended context
lengths. The three-step reasoning trials showed that the model could maintain efficient pro-
cessing times despite the added complexity. During zero-shot prompting, query generation
was the most time-consuming process, confirming the general assumption, that the initial
context setup requires a high amount of resources. In contrast, query execution was per-
formed in near real-time, demonstrating the model’s efficiency in translating queries into
database actions. Notably, performance time improvements were observed, as expected,
in the few-shot query scenarios. The model used previous examples to optimize query
generation, resulting in a reduced duration for subsequent tasks.

Future Internet 2024, 16, 438 21 of 26

Table 6. Performance evaluation metrics.

x̄ Duration (in sec.) n

Database Decision

Movie 1.79 118
CLEVR 2.21 100
Northwind 1.74 30
None 1.53 34

History Evaluation

0-Step Reasoning 1.56 214
1-Step Reasoning 1.52 214
2-Step Reasoning 1.52 214
3-Step Reasoning 1.69 214

0-Shot Prompting

Query Generation 3.29 500
Query Execution 0.02 500
Answer Generation 1.72 500

Few-shot Prompting

Query Generation 3.01 500
Query Execution 0.01 500
Answer Generation 1.34 500

7. Discussion and Limitations

In this paper, an innovative approach for the creation and execution of Cypher queries
for Neo4j by a chatbot was presented, which is characterized by selecting the appropri-
ate one to answer a question from several predefined databases and recognizing when
a question can only be answered from the current chat history. However, this approach
involved both technical and conceptual challenges, which are discussed below. One of
the primary challenges was the problem of hallucination, where the chatbot generates
queries with incorrect syntax or properties. The results show that 24.62% of all incorrectly
generated queries in a zero-shot setting are attributed to syntax errors. This underlines
the need for continuous refinement of the model’s understanding and generation capa-
bilities, especially in the context of a specialized and extensive query language, such as
CQL. Furthermore, this also emphasizes the importance of developing error checking
mechanisms, as implemented in this work, to identify and correct syntax errors prior to
query execution. Considering this, the evaluation results also show the compelling ability
of GPT-4-turbo to learn from example queries. With few shot prompting, we were able
to increase the execution accuracy from 61% to 92.8%, with a complete elimination of
syntax and semantic errors. This improvement highlights the effectiveness of few-shot
learning in increasing the precision and reliability of the model in generating Cypher
queries. However, the current implementation of the chatbot also raises important privacy
and security considerations. Given the potential of the chatbot to access all information
contained in the graph, which may contain sensitive information, the current implementa-
tion should not be used to handle private data that cannot be disclosed to Open AI or in
general. For this purpose, alternative Large Language Models, such as Mixtral 8x7B [74]
or Code Llama [75], should be considered which are publicly available and can, therefore,
be executed on proprietary hardware for which suitable data protection measures can be
taken. Additionally, the chatbot’s ability to generate not only selection, but also deletion
and creation queries requires strict countermeasures to prevent unauthorized or unwanted
database modifications. For this, different approaches can be taken depending on the
database technology used. Neo4j, for example, allows to set the access rights of a database
client read-only, which prevents any modifying transactions and generates a corresponding
error. This solution was chosen in our implementation. If such setting options are not

Future Internet 2024, 16, 438 22 of 26

available, another possibility would be the definition of keywords according to which the
generated queries are checked and, if present, rejected. At the beginning of this project, it
was also considered to use the Python framework Langchain for implementation. With
its Neo4j DB QA Chain [76], this already offers pre-built functionalities for generating
and executing CQL on graph databases. Ultimately, however, the decision was made not
to utilize this library, as there would have been problems particularly with the dynamic
generation of prompts, on which our system is primarily based. The reason for this is
that it would have been necessary to extend Langchain’s pre-implemented prompts, for
which they are not intended. Consequently, this would have led to a continuous attempt
to adapt the program logic to Langchain, which would have required more effort than
programming it ourselves. Finally, it is also necessary to note the limitations of the test
dataset used for CQL generation. The current dataset, based on the CLEVR framework,
currently supports 33 different question types, which are extended by permutation and
substitution techniques. While this approach demonstrates the capabilities of the chat-
bot within a limited set of queries, it does not reach the complexity and diversity found
in state-of-the-art datasets such as Spider [40], WikiSQL [36], or the LC-QuAD/QUALD
series [53,54]. In order to fully validate and benchmark the performance of our system, due
to the lack of state-of-the-art datasets in the text to Cypher domains, the development of a
new, more comprehensive evaluation dataset that reflects the diversity and complexity of
real-world database query scenarios is essential. At the time of writing, initiatives from the
neo4j community are already underway to fill this gap [77].

8. Conclusions and Future Work

In this paper, we propose a way to integrate NoSQL and Knowledge Graphs into Large
Language Models. The paper enriches the field of natural language interfaces by applying
the design science research methodology to develop a chatbot that can answer user queries
by generating CQL queries. It also provides an extension that allows the bot to select the
appropriate database or chat history to answer the question. Through a comprehensive
evaluation, we were able to show that the chatbot is reliable and accurate in generating
Cypher statements, as well as making the right decision regarding the database and chat
history. We also provided an overview about the necessary theoretical foundations and
the related work concerning literature in the tasks “Text to SQL” and “Text to NoSQL”.
The further development of the chatbot was already considered during implementation.
Although only graph databases were used as a knowledge base in this paper, the modular
architecture of the system was developed in such a way that it is potentially possible to
support both multiple and different storage technologies simultaneously, such as relational
or document-oriented databases. Furthermore, it was also ensured that it is possible to
exchange the Large Language Models in the back-end. Since the processing logic of the
system was designed independently of the underlying database technology or LLM, it is
possible to extend the chatbot by defining the appropriate adapters that are fed into the
pipelines without having to change the logic in the rest of the system. In this way, the
chatbot should form a basis for meeting diverse user requirements in terms of database
technology and language models, with the aim of achieving a polyglot persistent system.

Future work could focus on several promising directions to extend the capabilities
and flexibility of the chatbot. In this study, only closed-source foundational models were
used to support the workflow. However, a valuable area for further research lies in fine-
tuning open-source models on text-to-Cypher datasets, allowing a comparison of these
models performance with the closed-source results achieved in this paper. Adaptive
prompt tuning could also significantly enhance the chatbot’s performance. By storing
corrected Cypher queries or specific user questions in a vector database, the chatbot could
dynamically reference these stored examples when faced with similar queries in the future,
reducing the likelihood of repeated mistakes. The use of DSPy, an open-source framework
that facilitates prompt optimization through programmatically defined modules, could
further streamline this adaptive tuning process. By treating language model interactions as

Future Internet 2024, 16, 438 23 of 26

structured modules, DSPy enables a more systematic prompt optimization framework and
reduces reliance on manually crafted prompts [78]. Another promising research direction
involves expanding the chatbot’s functionality to clarify ambiguous user questions. When
a query lacks specificity, an LLM could engage users with clarifying questions to refine
their input, ensuring responses that are accurate and contextually relevant. Frameworks
like LangGraph could be used to structure these interactions, enabling iterative dialogues
to better capture user intent. This capability would reduce misunderstandings and improve
answer quality, creating a more responsive, user-centered experience and advancing the
field of natural language interfaces.

Author Contributions: Conceptualization, M.H., M.K., C.S. and F.E.; Funding acquisition, S.S.;
Methodology, M.H., M.K., C.S. and F.E.; Project administration, S.S.; Supervision, P.E. and S.S.;
Writing—original draft, M.H., M.K., C.S. and F.E.; Writing—review and editing, M.H., P.E. and S.S.
All authors have read and agreed to the published version of the manuscript.

Funding: This work is funded by the “Bavarian Ministry of Economic Affairs, Regional Development
and Energy” within the project Security Iiot pRocEss Notation (SIREN).

Data Availability Statement: The original data presented in the study are openly available at: https:
//drive.google.com/file/d/1fJVcK5A3F8BIBVm9MNvfn-l-rJS6XsaS/view (accessed on 1 Septem-
ber 2024), Google Drive. The developed artifact is also openly available at: https://github.com/
mogelkill/text2cypher (accessed on 1 September 2024), GitHub. The evaluation results are also openly
available at: https://github.com/mogelkill/text2cypher/tree/main/evaluation_results (accessed on
1 September 2024), GitHub.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Brown, T.B.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.; Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell, A.; et al.

Language Models are Few-Shot Learners. arXiv 2020, arXiv:2005.14165.
2. DB-Engines. Graph DBMS Ranking. Available online: https://db-engines.com/en/ranking/graph+dbms (accessed on

21 November 2024).
3. Corbellini, A.; Mateos, C.; Zunino, A.; Godoy, D.; Schiaffino, S.N. Persisting big-data: The NoSQL landscape. Inf. Syst. 2017,

63, 1–23. [CrossRef]
4. Hogan, A.; Blomqvist, E.; Cochez, M.; D’amato, C.; Melo, G.D.; Gutierrez, C.; Kirrane, S.; Gayo, J.E.L.; Navigli, R.; Neumaier, S.;

et al. Knowledge Graphs. ACM Comput. Surv. 2021, 54, 1–37. [CrossRef]
5. Becker, R.; Eick, S.; Wilks, A. Visualizing network data. IEEE Trans. Vis. Comput. Graph. 1995, 1, 16–28. [CrossRef]
6. OpenAI. GPT-4 and GPT-4 Turbo Documentation. Available online: https://platform.openai.com/docs/models/gpt-4-and-gpt-

4-turbo (accessed on 21 November 2024).
7. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention Is All You

Need. In Proceedings of the 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA, 4–9
December 2017.

8. Thirunavukarasu, A.J.; Ting, D.S.J.; Elangovan, K.; Gutierrez, L.; Tan, T.F.; Ting, D.S.W. Large Language Models in Medicine. Nat.
Med. 2023, 29, 1930–1940. [CrossRef]

9. Zhao, W.X.; Zhou, K.; Li, J.; Tang, T.; Wang, X.; Hou, Y.; Min, Y.; Zhang, B.; Zhang, J.; Dong, Z.; et al. A Survey of Large Language
Models. arXiv 2023, arXiv:2303.18223.

10. Kulkarni, P.; Mahabaleshwarkar, A.; Kulkarni, M.; Sirsikar, N.; Gadgil, K. Conversational AI: An Overview of Methodologies,
Applications & Future Scope. In Proceedings of the 2019 5th International Conference On Computing, Communication, Control
And Automation (ICCUBEA), Pune, India, 19–21 September 2019; pp. 1–7. [CrossRef]

11. Dong, Q.; Li, L.; Dai, D.; Zheng, C.; Wu, Z.; Chang, B.; Sun, X.; Xu, J.; Li, L.; Sui, Z. A Survey on In-context Learning. arXiv 2022,
arXiv:2301.00234.

12. Amyeen, R. Prompt-Engineering and Transformer-based Question Generation and Evaluation. arXiv 2023, arXiv:2310.18867.
13. Sorensen, T.; Robinson, J.; Rytting, C.M.; Shaw, A.G.; Rogers, K.J.; Delorey, A.P.; Khalil, M.; Fulda, N.; Wingate, D. An Information-

theoretic Approach to Prompt Engineering Without Ground Truth Labels. In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics, Dublin, Ireland, 22–27 May 2022; Volume 1, pp. 819–862. [CrossRef]

14. Zhu, W.; Tan, M. Improving Prompt Tuning with Learned Prompting Layers. arXiv 2023, arXiv:2310.20127.
15. Lester, B.; Al-Rfou, R.; Constant, N. The Power of Scale for Parameter-Efficient Prompt Tuning. arXiv 2021, arXiv:2104.08691.
16. Zhao, T.Z.; Wallace, E.; Feng, S.; Klein, D.; Singh, S. Calibrate Before Use: Improving Few-Shot Performance of Language Models.

In International Conference on Machine Learning; PMLR: New York, NY, USA, 2021.

https://drive.google.com/file/d/1fJVcK5A3F8BIBVm9MNvfn-l-rJS6XsaS/view
https://drive.google.com/file/d/1fJVcK5A3F8BIBVm9MNvfn-l-rJS6XsaS/view
https://github.com/mogelkill/text2cypher
https://github.com/mogelkill/text2cypher
https://github.com/mogelkill/text2cypher/tree/main/evaluation_results
https://db-engines.com/en/ranking/graph+dbms
http://doi.org/10.1016/j.is.2016.07.009
http://dx.doi.org/10.1145/3447772
http://dx.doi.org/10.1109/2945.468391
https://platform.openai.com/docs/models/gpt-4-and-gpt-4-turbo
https://platform.openai.com/docs/models/gpt-4-and-gpt-4-turbo
http://dx.doi.org/10.1038/s41591-023-02448-8
http://dx.doi.org/10.1109/ICCUBEA47591.2019.9129347
http://dx.doi.org/10.18653/v1/2022.acl-long.60

Future Internet 2024, 16, 438 24 of 26

17. Holtzman, A.; Buys, J.; Du, L.; Forbes, M.; Choi, Y. The Curious Case of Neural Text Degeneration. arXiv 2019, arXiv:1904.09751.
18. Fan, A.; Lewis, M.; Dauphin, Y. Hierarchical Neural Story Generation. arXiv 2018, arXiv:1805.04833.
19. Su, Y.; Lan, T.; Wang, Y.; Yogatama, D.; Kong, L.; Collier, N. A Contrastive Framework for Neural Text Generation. Adv. Neural

Inf. Process. Syst. 2022, 35, 21548–21561.
20. Razu Ahmed, M.; Arifa Khatun, M.; Asraf Ali, M.; Sundaraj, K. A literature review on NoSQL database for big data processing.

Int. J. Eng. Technol. 2018, 7, 902. [CrossRef]
21. Pagán, J.E.; Cuadrado, J.S.; Molina, J.G. A repository for scalable model management. Softw. Syst. Model. 2015, 14, 219–239.

[CrossRef]
22. Marino, A.; Palmonari, M.; Spahiu, B. Towards an Access Control Model for KnowledgeGraphs. In Proceedings of the SEBD 2021

Italian Symposium on Advanced Database Systems—Proceedings of the 29th Italian Symposium on Advanced Database Systems,
Pizzo, Italy, 5–9 September 2021; Volume 2994.

23. Ji, S.; Pan, S.; Cambria, E.; Marttinen, P.; Yu, P.S. A Survey on Knowledge Graphs: Representation, Acquisition, and Applications.
IEEE Trans. Neural Netw. Learn. Syst. 2021, 33, 494–514. [CrossRef]

24. Pan, J.Z.; Razniewski, S.; Kalo, J.C.; Singhania, S.; Chen, J.; Dietze, S.; Jabeen, H.; Omeliyanenko, J.; Zhang, W.; Lissandrini, M.;
et al. Large Language Models and Knowledge Graphs: Opportunities and Challenges. arXiv 2023, arXiv:2308.06374.

25. Neo4j. The Leader in Graph Technology. Available online: https://neo4j.com/ (accessed on 21 November 2024).
26. Angles, R.; Gutierrez, C. Survey of graph database models. ACM Comput. Surv. 2008, 40, 1–39. [CrossRef]
27. Francis, N.; Green, A.; Guagliardo, P.; Libkin, L.; Lindaaker, T.; Marsault, V.; Plantikow, S.; Rydberg, M.; Selmer, P.; Taylor, A.

Cypher: An Evolving Query Language for Property Graphs. In Proceedings of the 2018 International Conference on Management
of Data. ACM, Houston, TX, USA, 10–15 June 2018; pp. 1433–1445. [CrossRef]

28. Angles, R.; Arenas, M.; Barceló, P.; Hogan, A.; Reutter, J.; Vrgoč, D. Foundations of Modern Query Languages for Graph Databases.
ACM Comput. Surv. 2018, 50, 1–40. [CrossRef]

29. Hendrix, G.G.; Sacerdoti, E.D.; Sagalowicz, D.; Slocum, J. Developing a natural language interface to complex data. ACM Trans.
Database Syst. 1978, 3, 105–147. [CrossRef]

30. Xu, X.; Liu, C.; Song, D. SQLNet: Generating Structured Queries From Natural Language Without Reinforcement Learning. arXiv
2017, arXiv:1711.04436. [CrossRef]

31. Yu, T.; Li, Z.; Zhang, Z.; Zhang, R.; Radev, D. TypeSQL: Knowledge-based Type-Aware Neural Text-to-SQL Generation. arXiv
2018, arXiv:1804.09769. [CrossRef]

32. Yu, T.; Yasunaga, M.; Yang, K.; Zhang, R.; Wang, D.; Li, Z.; Radev, D. SyntaxSQLNet: Syntax Tree Networks for Complex and
Cross-Domain Text-to-SQL Task. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing,
Brussels, Belgium, 31 October–4 November 2018; pp. 1653–1663. [CrossRef]

33. Montgomery, C.; Isah, H.; Zulkernine, F. Towards a Natural Language Query Processing System. In Proceedings of the 2020 1st
International Conference on Big Data Analytics and Practices, Bangkok, Thailand, 25–26 September 2020. [CrossRef]

34. Guo, A.; Zhao, X.; Ma, W. ER-SQL: Learning enhanced representation for Text-to-SQL using table contents. Neurocomputing 2021,
465, 359–370. [CrossRef]

35. Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. BERT: Pre-training of Deep Bidirectional Transformers for Language Understand-
ing. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and Short Papers), Minneapolis, MN, USA, 2–7 June 2019; pp. 4171–4186.
[CrossRef]

36. Zhong, V.; Xiong, C.; Socher, R. Seq2SQL: Generating Structured Queries from Natural Language using Reinforcement Learning.
arXiv 2017, arXiv:1709.00103.

37. He, P.; Mao, Y.; Chakrabarti, K.; Chen, W. X-SQL: Reinforce schema representation with context. arXiv 2019, arXiv:1908.08113.
38. Chen, M.; Tworek, J.; Jun, H.; Yuan, Q.; Pinto, H.P.d.O.; Kaplan, J.; Edwards, H.; Burda, Y.; Joseph, N.; Brockman, G.; et al.

Evaluating Large Language Models Trained on Code. arXiv 2021, arXiv:2107.03374.
39. Arora, A.; Bhaisaheb, S.; Patwardhan, M.; Vig, L.; Shroff, G. A GENERIC PROMPT FOR AN LLM THAT ENABLES NL-

TO-SQL ACROSS DOMAINS AND COMPOSITIONS. In Proceedings of the Eleventh International Conference on Learning
Representations, Kigali, Rwanda, 1–5 May 2023; pp. 1–12.

40. Yu, T.; Zhang, R.; Yang, K.; Yasunaga, M.; Wang, D.; Li, Z.; Ma, J.; Li, I.; Yao, Q.; Roman, S.; et al. Spider: A Large-Scale
Human-Labeled Dataset for Complex and Cross-Domain Semantic Parsing and Text-to-SQL Task. In Proceedings of the
2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Belgium, 31 October–4 November 2018;
pp. 3911–3921. [CrossRef]

41. Mondal, S.; Mukherjee, P.; Chakraborty, B.; Bashar, R. Natural Language Query to NoSQL Generation Using Query-Response
Model. In Proceedings of the 2019 International Conference on Machine Learning and Data Engineering (iCMLDE), Taipei,
Taiwan, 2–4 December 2019; pp. 85–90. [CrossRef]

42. Pradeep, T.; Rafeeque, P.C.; Murali, R. Natural Language To NoSQL Query Conversion using Deep Learning. Available online:
https://ssrn.com/abstract=3436631(accessed on 1 September 2024).

43. Hossen, K.; Uddin, M.; Arefin, M.; Uddin, M.A. BERT Model-based Natural Language to NoSQL Query Conversion using Deep
Learning Approach. Int. J. Adv. Comput. Sci. Appl. 2023, 14, 810–821. [CrossRef]

http://dx.doi.org/10.14419/ijet.v7i2.12113
http://dx.doi.org/10.1007/s10270-013-0326-8
http://dx.doi.org/10.1109/TNNLS.2021.3070843
https://neo4j.com/
http://dx.doi.org/10.1145/1322432.1322433
http://dx.doi.org/10.1145/3183713.3190657
http://dx.doi.org/10.1145/3104031
http://dx.doi.org/10.1145/320251.320253
http://dx.doi.org/10.48550/arXiv.1711.04436
http://dx.doi.org/10.48550/arXiv.1804.09769
http://dx.doi.org/10.18653/v1/D18-1193
http://dx.doi.org/10.48550/arXiv.2009.12414
http://dx.doi.org/10.1016/j.neucom.2021.08.134
http://dx.doi.org/10.18653/v1/N19-1423
http://dx.doi.org/10.18653/v1/D18-1425
http://dx.doi.org/10.1109/iCMLDE49015.2019.00026
https://ssrn.com/abstract=3436631
http://dx.doi.org/10.14569/IJACSA.2023.0140293

Future Internet 2024, 16, 438 25 of 26

44. Zhang, W.; Zeng, K.; Yang, X.; Shi, T.; Wang, P. Text-to-ESQ: A Two-Stage Controllable Approach for Efficient Retrieval of
Vaccine Adverse Events from NoSQL Database. In Proceedings of the 14th ACM International Conference on Bioinformatics,
Computational Biology, and Health Informatics. Houston, TX, USA, 3–6 September 2023; pp. 1–10. [CrossRef]

45. W3C. SPARQL 1.1 Overview. Available online: https://www.w3.org/TR/sparql11-overview/ (accessed on 21 November 2024).
46. Aghaei, S.; Raad, E.; Fensel, A. Question Answering Over Knowledge Graphs: A Case Study in Tourism. IEEE Access 2022,

10, 69788–69801. [CrossRef]
47. Liang, S.; Stockinger, K.; de Farias, T.M.; Anisimova, M.; Gil, M. Querying knowledge graphs in natural language. J. Big Data

2021, 8, 3. [CrossRef]
48. Rony, M.R.A.H.; Kumar, U.; Teucher, R.; Kovriguina, L.; Lehmann, J. SGPT: A Generative Approach for SPARQL Query

Generation From Natural Language Questions. IEEE Access 2022, 10, 70712–70723. [CrossRef]
49. Purkayastha, S.; Dana, S.; Garg, D.; Khandelwal, D.; Bhargav, G.S. A Deep Neural Approach to KGQA via SPARQL Silhouette

Generation. In Proceedings of the 2022 International Joint Conference on Neural Networks (IJCNN), Padua, Italy, 18–23 July 2022;
ISSN: 2161-4407. [CrossRef]

50. OpenAI. Models Overview Documentation. Available online: https://platform.openai.com/docs/models/overview (accessed
on 21 November 2024).

51. An, Y.; Greenberg, J.; Kalinowski, A.; Zhao, X.; Hu, X.; Uribe-Romo, F.J.; Langlois, K.; Furst, J.; Gómez-Gualdrón, D.A. Knowledge
Graph Question Answering for Materials Science (KGQA4MAT): Developing Natural Language Interface for Metal-Organic
Frameworks Knowledge Graph (MOF-KG). arXiv 2023, arXiv:2309.11361. https://doi.org/10.48550/arXiv.2309.11361.

52. Meyer, L.P.; Stadler, C.; Frey, J.; Radtke, N.; Junghanns, K.; Meissner, R.; Dziwis, G.; Bulert, K.; Martin, M. LLM-assisted
Knowledge Graph Engineering: Experiments with ChatGPT. In Working conference on Artificial Intelligence Development for a
Resilient and Sustainable Tomorrow; Springer: Cham, Switzerland, 2023. [CrossRef]

53. Dubey, M.; Banerjee, D.; Abdelkawi, A.; Lehmann, J. LC-QuAD 2.0: A Large Dataset for Complex Question Answering over
Wikidata and DBpedia. In Proceedings of the Semantic Web—ISWC 2019, Auckland, New Zealand, 26–30 October 2019; Ghidini,
C., Hartig, O., Maleshkova, M., Svátek, V., Cruz, I., Hogan, A., Song, J., Lefrançois, M., Gandon, F., Eds.; Springer International
Publishing: Cham, Switzerland, 2019; pp. 69–78. [CrossRef]

54. Perevalov, A.; Diefenbach, D.; Usbeck, R.; Both, A. QALD-9-plus: A Multilingual Dataset for Question Answering over DBpedia
and Wikidata Translated by Native Speakers. In Proceedings of the 2022 IEEE 16th International Conference on Semantic
Computing (ICSC), Laguna Hills, CA, USA, 26–28 January 2022; pp. 229–234, ISSN: 2325-6516, [CrossRef]

55. Perevalov, A.; Yan, X.; Kovriguina, L.; Jiang, L.; Both, A.; Usbeck, R. Knowledge Graph Question Answering Leaderboard: A
Community Resource to Prevent a Replication Crisis. arXiv 2022, arXiv:2201.08174. https://doi.org/10.48550/arXiv.2201.08174.

56. Hains, G.J.D.R.; Khmelevsky, Y.; Tachon, T. From natural language to graph queries. In Proceedings of the 2019 IEEE Canadian
Conference of Electrical and Computer Engineering (CCECE), Edmonton, AB, Canada, 5–8 May 2019; pp. 1–4. [CrossRef]

57. Kobeissi, M.; Assy, N.; Gaaloul, W.; Defude, B.; Haidar, B. An Intent-Based Natural Language Interface for Querying Process
Execution Data. In Proceedings of the 2021 3rd International Conference on Process Mining (ICPM), Eindhoven, The Netherlands,
31 October–4 November 2021; pp. 152–159. [CrossRef]

58. Zhou, Q.; Wu, C.; Yang, J.; Han, L.; Wu, B. Natural Language Query for SCD File. In Proceedings of the 4th International
Conference on Information Technologies and Electrical Engineering. Association for Computing Machinery, Changde, China,
29–31 October 2022; ICITEE ’21, pp. 1–6. [CrossRef]

59. Chatterjee, J.; Dethlefs, N. Automated Question-Answering for Interactive Decision Support in Operations & Maintenance of
Wind Turbines. IEEE Access 2022, 10, 84710–84737. [CrossRef]

60. Feng, G.; Zhu, G.; Shi, S.; Sun, Y.; Fan, Z.; Gao, S.; Hu, J. Robust NL-to-Cypher Translation for KBQA: Harnessing Large Language
Model with Chain of Prompts. In Knowledge Graph and Semantic Computing: Knowledge Graph Empowers Artificial General Intelligence;
Communications in Computer and Information Science; Wang, H., Han, X., Liu, M., Cheng, G., Liu, Y., Zhang, N., Eds.; Springer
Nature: Singapore, 2023; pp. 317–326. [CrossRef]

61. March, S.; Smith, G. Design and Natural Science Research on Information Technology. Decis. Support Syst. 1995, 15, 251–266.
[CrossRef]

62. Peffers, K.; Tuunanen, T.; Rothenberger, M.; Chatterjee, S. A design science research methodology for information systems
research. J. Manag. Inf. Syst. 2007, 24, 45–77. [CrossRef]

63. Hevner, A.R.; March, S.T.; Park, J.; Ram, S. Design Science in Information Systems Research. MIS Q. 2004, 28, 75–105. [CrossRef]
64. Docker. Docker Documentation. Available online: https://docs.docker.com/ (accessed on 21 November 2024).
65. Gradio. Build and Share Delightful Machine Learning Apps. Available online: https://www.gradio.app/ (accessed on 21

November 2024).
66. OpenAI. Structured Outputs: JSON Mode. Available online: https://platform.openai.com/docs/guides/structured-outputs#

json-mode (accessed on 21 November 2024).
67. Guo, A.; Li, X.; Xiao, G.; Tan, Z.; Zhao, X. SpCQL: A Semantic Parsing Dataset for Converting Natural Language into Cypher. In

Proceedings of the 31st ACM International Conference on Information & Knowledge Management, Atlanta, GA, USA, 17–21
October 2022; pp. 3973–3977. [CrossRef]

68. Guo, A. Text-to-CQL: A Dataset for Converting Natural Language into Cypher. Available online: https://github.com/Guoaibo/
Text-to-CQL (accessed on 21 November 2024).

http://dx.doi.org/10.1145/3584371.3613008
https://www.w3.org/TR/sparql11-overview/
http://dx.doi.org/10.1109/ACCESS.2022.3187178
http://dx.doi.org/10.1186/s40537-020-00383-w
http://dx.doi.org/10.1109/ACCESS.2022.3188714
http://dx.doi.org/10.1109/IJCNN55064.2022.9892263
https://platform.openai.com/docs/models/overview
https://doi.org/10.48550/arXiv.2309.11361
http://dx.doi.org/10.48550/arXiv.2307.06917
http://dx.doi.org/10.1007/978-3-030-30796-7_5
http://dx.doi.org/10.1109/ICSC52841.2022.00045
https://doi.org/10.48550/arXiv.2201.08174
http://dx.doi.org/10.1109/CCECE.2019.8861892
http://dx.doi.org/10.1109/ICPM53251.2021.9576850
http://dx.doi.org/10.1145/3513142.3513183
http://dx.doi.org/10.1109/ACCESS.2022.3197167
http://dx.doi.org/10.1007/978-981-99-7224-1_25
http://dx.doi.org/10.1016/0167-9236(94)00041-2
http://dx.doi.org/10.2753/MIS0742-1222240302
http://dx.doi.org/10.2307/25148625
https://docs.docker.com/
https://www.gradio.app/
https://platform.openai.com/docs/guides/structured-outputs#json-mode
https://platform.openai.com/docs/guides/structured-outputs#json-mode
http://dx.doi.org/10.1145/3511808.3557703
https://github.com/Guoaibo/Text-to-CQL
https://github.com/Guoaibo/Text-to-CQL

Future Internet 2024, 16, 438 26 of 26

69. Chatterjee, J.; Dethlefs, N. WindTurbine-QAKG: Automated Question-Answering Over Knowledge Graphs in O&M of Wind
Turbines. Available online: https://github.com/joyjitchatterjee/WindTurbine-QAKG (accessed on 21 November 2024).

70. van Dongen, B. BPI Challenge 2017. Available online: https://data.4tu.nl/articles/dataset/BPI_Challenge_2017/12696884
(accessed on 21 November 2024).

71. Mack, D.; Jefferson, A. CLEVR Graph: A Dataset for Graph-Based Reasoning. Available online: https://github.com/Octavian-
ai/clevr-graph (accessed on 21 November 2024).

72. Neo4j. Example Datasets - Getting Started. Available online: https://neo4j.com/docs/getting-started/appendix/example-data/
(accessed on 21 November 2024).

73. Tran, Q.B.H.; Waheed, A.A.; Chung, S.T. Robust Text-to-Cypher Using Combination of BERT, GraphSAGE, and Transformer
(CoBGT) Model. Appl. Sci. 2024, 14, 7881. [CrossRef]

74. Mistral AI. Mixtral of Experts. Available online: https://mistral.ai/news/mixtral-of-experts/ (accessed on 21 November 2024).
75. Meta AI. Introducing Code Llama, a state-of-the-art large language model for coding. Available online: https://ai.meta.com/

blog/code-llama-large-language-model-coding/ (accessed on 21 November 2024).
76. LangChain. Neo4j Cypher Integration Documentation. Available online: https://python.langchain.com/docs/integrations/

graphs/neo4j_cypher/ (accessed on 21 November 2024).
77. Bratanic, T. Crowdsourcing Text2Cypher Dataset. Available online: https://bratanic-tomaz.medium.com/crowdsourcing-text2

cypher-dataset-e65ba51916d4 (accessed on 21 November 2024).
78. Khattab, O.; Singhvi, A.; Maheshwari, P.; Zhang, Z.; Santhanam, K.; Vardhamanan, S.; Haq, S.; Sharma, A.; Joshi, T.T.; Moazam,

H.; et al. DSPy: Compiling Declarative Language Model Calls into Self-Improving Pipelines. arXiv 2023, arXiv:2310.03714.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://github.com/joyjitchatterjee/WindTurbine-QAKG
https://data.4tu.nl/articles/dataset/BPI_Challenge_2017/12696884
https://github.com/Octavian-ai/clevr-graph
https://github.com/Octavian-ai/clevr-graph
https://neo4j.com/docs/getting-started/appendix/example-data/
http://dx.doi.org/10.3390/app14177881
https://mistral.ai/news/mixtral-of-experts/
https://ai.meta.com/blog/code-llama-large-language-model-coding/
https://ai.meta.com/blog/code-llama-large-language-model-coding/
https://python.langchain.com/docs/integrations/graphs/neo4j_cypher/
https://python.langchain.com/docs/integrations/graphs/neo4j_cypher/
https://bratanic-tomaz.medium.com/crowdsourcing-text2cypher-dataset-e65ba51916d4
https://bratanic-tomaz.medium.com/crowdsourcing-text2cypher-dataset-e65ba51916d4

	Introduction
	Theoretical Foundations
	Large Language Models
	Prompt Engineering and Prompt Tuning
	Sampling
	NoSQL
	Knowledge Graphs
	Cypher

	Related Work
	Text to SQL
	Text to NoSQL
	Graph-Based Query Languages

	Concept
	Problem Identification and Motivation
	Objectives of a Solution
	Design Principles
	Workflow Design
	Technical Realization and Implementation
	Evaluation
	Discussion and Limitations
	Conclusion and Future Work

	Implementation
	Agent Pipeline
	Chat from History Pipeline
	Query Answering (QA) Pipeline
	Demonstration

	Evaluation
	Database Decision Evaluation
	Chat from History Evaluation
	CQL Query Generation Evaluation
	Performance Evaluation

	Discussion and Limitations
	Conclusions and Future Work
	References

