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Abstract: Selecting indexes capable of reducing the cost of query processing in database systems
is a challenging task, especially in large-scale applications. Quantum computing has been investi-
gated with promising results in areas related to database management, such as query optimization,
transaction scheduling, and index tuning. Promising results have also been seen when reinforcement
learning is applied for database tuning in classical computing. However, there is no existing research
with implementation details and experiment results for index tuning that takes advantage of both
quantum computing and reinforcement learning. This paper proposes a new algorithm called QRLIT
that uses the power of quantum computing and reinforcement learning for database index tuning.
Experiments using the database TPC-H benchmark show that QRLIT exhibits superior performance
and a faster convergence compared to its classical counterpart.

Keywords: database; indexing; quantum computing; quantum reinforcement learning; Grover’s search

1. Introduction

Executing queries in relational database applications with large amounts of data can
take significant time. Database management systems (DBMSs) offer various mechanisms
to reduce query execution time. One such mechanism is the creation and management of
indexes. Creating column indexes is a strategy that reduces the time required to search
and retrieve data. However, this index selection problem, which is to find an optimal set
of indexes (i.e., an optimal index configuration) for given database tables, is an NP-hard
problem [1,2]. This problem becomes more complex for large-scale database applications.
Furthermore, the necessity for deleting, modifying, and inserting data may occur with
considerable frequency, introducing further complexities to the problem. Indexes are
managed by the database administrator (DBA), who has the knowledge about the query
workload to create an efficient index configuration. As the query workload changes,
the DBA must re-evaluate the index configuration. To reduce the burden on the DBA,
various algorithms have been proposed to automate the process of tuning database indexes
in classical computing. These include algorithms that use supervised machine learning
techniques to learn what indexes have been used and how queries have been performed in
the past from the given training data and predict what indexes should be created for the
new query workload. Since training data are often difficult to obtain, there are index tuning
algorithms that make use of reinforcement learning, which does not depend on training
data and learns as it goes [3–16].

Quantum computing is an emerging technology that transforms the way information
is processed, offering significant potential advantages over classical systems enabled by
the quantum theory principles such as superposition and entanglement. This has been
verified by Shor’s algorithm [17], capable of factoring prime numbers in polynomial time
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and by a quantum search algorithm proposed by Lov Grover [18], with the ability to perform
searches on unstructured data with complexity O

(√
N
)

, where N is the number of elements
in the search space. Additionally, in database management, quantum computing has been
investigated with promising results in several areas of database management, including query
optimization and transaction scheduling [19], which are two other NP-hard problems.

However, an analysis of the current state of the art reveals that there are no studies
that implement quantum reinforcement learning strategies with experimental results in the
process of automating index tuning. To address this gap, in this paper, an existing index
tuning algorithm for classical computers is implemented and a quantum–classical (hybrid)
version, called Quantum Reinforcement Learning for database Index Tuning (QRLIT),
that employs the capabilities of Grover’s search is proposed. The primary objective is to
compare the performance of the hybrid algorithm against its classical counterpart.

The implemented classical algorithm [3,20] employs a machine learning technique called
reinforcement learning [21]. It is composed of two principal elements, a designated agent and
environment. The agent learns to make decisions through interactions with the environment
using a trial-and-error learning method. The classical index tuning algorithm employs a
technique called Epsilon-greedy [21] to balance the agent’s ability to explore or follow its
learned policy (exploiting). The proposed hybrid model replaces this technique with Grover’s
search algorithm, which enables a probabilistic approach and a natural balancing of the
exploring–exploiting duality through the manipulation of the number of iterations.

This paper contributes a novel algorithm that combines quantum computing with
reinforcement learning to automate the process of database index tuning. Furthermore,
a series of experiments demonstrate the advantages of using quantum computing over
traditional systems. The results obtained indicate that QRLIT converges faster to an optimal
policy and is able to produce a higher reward in terms of queries processed per hour than
its classical counterpart.

The rest of the paper is organized as follows: Section 2 provides some background
information. Section 3 presents an overview of the state of the art, and the classical index
tuning algorithm with its quantum counterpart implementation is described in Section 4.
The experimental environment and results obtained from running both algorithms are
detailed in Section 5. Finally, Section 6 concludes the paper and proposes directions for
future work.

2. Background

The purpose of this section is to provide the necessary context and foundations to un-
derstand the quantum–classical implementation. This background explains reinforcement
learning, the quantum computing foundations, and Grover’s quantum search algorithm.

2.1. Reinforcement Learning

In artificial intelligence, reinforcement learning is a branch inspired by the natural
process of learning through reinforcement. Entities known as agents learn a policy π that
maps states of the environment to actions with the purpose of maximizing the value of
accumulated rewards over time in a stochastic environment modeled by a Markov decision
process (MDP) [21]. An MDP is defined by a tuple with five elements (S, A, P, R,γ), where
S represents the state space, A the action space, P the state transition function defining the
dynamics of the MDP, R the reward function, and γ a discount factor with 0 ≤ γ ≤ 1 [21].

Q-learning is a modal-free algorithm used to solve reinforcement learning problems
based on temporal difference (TD) learning methods [21]. These methods involve learning
to make optimal decisions directly from experiences without a model of the environment’s
dynamics [21]. The core idea behind this algorithm is to learn a tabular policy, known as a
Q-table, which stores the values of actions for each state. These values, called Q-values,
represent the quality of each action in a specific state. In other words, it refers to how
effective that action is in obtaining a good reward. So, the greater the value, the higher the
potential reward and the better the action is considered.
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As a fundamental step in this algorithm, after the agent executes an action and receives
feedback from the environment (reward and new state), it is crucial to update its policy.
This process uses Equation (1), where Q(s, a) represents the Q-value of action a executed
in state s, where α is the learning rate, r is the reward obtained, γ is the discount rate that
influences the impact of future rewards, and maxaQ(s′, a′) represents the Q-value of the
action with the highest value in the new state of the environment s′.

TDError = r + γmaxaQ(s′, a′)−Q(s, a)

Q(s, a)← Q(s, a) + α(TDError)
(1)

In Q-learning, there is a limitation in balancing exploration and exploitation, as it
is important to explore the environment’s states to prevent the agent from getting stuck
in a local maximum. To find this balance, the algorithm can use a strategy known as
Epsilon-greedy [21]. This strategy uses an exploration rate epsilon ε, which decreases at
the end of each episode. Therefore, with this algorithm (Equation (2)), the agent explores
with a probability of ε or follows the learned policy (exploits) with a probability of 1− ε.

a =

{
argmaxa∈A, with probability 1− ε
randoma∈A, otherwise

(2)

2.2. Quantum Computing

Based on the principles of quantum theory, such as superposition and entanglement,
quantum computing offers great advantages over classical computing [17,18]. This sec-
tion is organized into two subsections that introduce and describe the building blocks of
quantum computing. It begins with the introduction of the system’s basic units and their
mathematical representation in Section 2.2.1. Then, the quantum logic gates are introduced,
which are responsible for operations on the information units in Section 2.2.2.

2.2.1. Information Unit

In the field of quantum computing, the fundamental unit of information is a quantum
bit, or qubit. Similarly to classical bits, qubits operate in a two-level system, corresponding
to states 0 and 1. However, in contrast to bits, which exist in a single state at a time,
qubits can be simultaneously in both. This phenomenon, which is paradoxical from the
perspective of classical physics, is known as superposition. According to quantum theory,
the precise state of a qubit in a superposition can only be identified through an observation
or measurement, at which point it will collapse to one of its fundamental states, either 0 or
1, with a certain probability [22].

Mathematically, the state of a qubit is described in Dirac notation as a linear combi-
nation of the base states |0⟩ and |1⟩, as illustrated in Equation (3). The complex domain
coefficients α and β represent the amplitudes of each state. The base states, designated by
the symbols |0⟩ and |1⟩, are described in the expressions presented in Equation (4). The
amplitudes of these states are either 0 or 1, depending on the state in question. However, in
the case of superposition, the values of α and β can be included within any arbitrary value
in a range between [0, 1].

|ψ⟩ = α|0⟩+ β|1⟩ =
[
α

β

]
(3)

|0⟩ =
[

1
0

]
, |1⟩ =

[
0
1

]
(4)

A qubit can be represented on a sphere known as a Bloch sphere [22]. In this model, it
is evident that the amplitudes of a quantum state are expressed in spherical coordinates, as
described in Equation (5).

|ψ⟩ = cos
θ

2
|0⟩+ (cosϕ+ isinϕ)sin

θ

2
|1⟩ (5)
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Quantum state amplitudes, also known as probability amplitudes, define the probabil-
ity of a superposition qubit being observed in the state |0⟩ or |1⟩. The probability of finding
the qubit in the state |0⟩ is calculated using Equation (6), while the probability of finding
the qubit in the state |1⟩ is determined by Equation (7).

P(|0⟩) = |α|2 (6)

P(|1⟩) = |β|2 (7)

|α|2 + |β|2 = 1 (8)

In order to allow for the encoding of more complex information in any computing
system, it is essential to combine multiple units. In quantum computing, this combination
is achieved through the tensor product of qubits. Equation (9) contains the notation for a
system of two qubits, while Equation (10) presents the result of their tensor product.

|ψ⟩⊗|ω⟩≡|ψ⟩ |ω⟩≡|ψω⟩≡|ψ,ω⟩ (9)

|ψ⟩ ⊗ |ω⟩ = (α|0⟩+ β|1⟩)⊗ (γ|0⟩+ δ|1⟩) =
[
α

β

]
⊗

[
γ

δ

]
=


α× γ
α× δ
β× γ
β× δ


= αγ|00⟩+ αδ|01⟩+ βγ|10⟩+ βδ|11⟩

(10)

2.2.2. Quantum Logic Gates

The ability to manipulate and control the amplitudes of the states of qubits is a
fundamental prerequisite for the implementation of a quantum computing process. This
manipulation is performed through quantum logic gates, or simply quantum gates, which
allow for the creation of quantum algorithms [22].

An operation is defined as a matrix that through matrix multiplication transforms one
quantum state into another. Equation (11) provides a mathematical demonstration of this
process, where U represents the operation in question, |ψ1⟩ the initial state, and |ψ2⟩ the
resulting state [22].

U|ψ1⟩=|ψ2⟩ (11)

A quantum gate that acts on several qubits is described by a matrix of dimensions
2n × 2n, where n represents the number of qubits. The most common quantum gates are
Pauli-X, Pauli-Z, Hadamard, Controlled NOT (CNOT or CX), and Controlled-Z, which
are represented in matrices correspondingly in Equation (13). The Pauli-X gate performs
state negation, which is equivalent to a NOT gate in classical computers, and the Pauli-Z
gate, also known as a phase-flip gate, transforms the |1⟩ state into −|1⟩. The Hadamard
gate sets the qubit in superposition, mapping the base state as presented in Equation (12).
The Controlled NOT is controlled by the state of a control qubit to perform the negation.
In other words, the gate is activated only if the qubit is in state |1⟩. In conclusion, the
Controlled-Z behaves in the same way as Controlled NOT, but in this case, a phase-flip
operation is performed.

H|0⟩ = |0⟩+ |1⟩√
2

, H|1⟩ = |0⟩ − |1⟩√
2

(12)
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[
0 1
1 0

]
,

[
1 0
0 −1

]
, 1√

2

[
1 1
1 −1

]
,


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

,


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1


(13)

2.3. Grover’s Search Algorithm

Quantum computing can speed up various search processes on unordered data due
to the ability to superposition quantum states, thus allowing for the use of quantum
parallelism. In 1996, a search algorithm that uses these quantum properties was proposed
by Lov Grover [18]. Grover’s algorithm evaluates whether a given solution, called “good
state”, is contained in the domain of N possible solutions. By increasing the probability of
the “good state” and reducing the probability of the remaining ones, it allows for a search
with a time complexity O

(√
N
)

, presenting a great advantage in relation to the classical
one with a time complexity O(N).

The algorithm is built with three main layers (Figure 1), each encapsulating a different
function. The initial layer, designated as State Preparation, initiates the process by placing
all qubits into a superposition state. The Oracle, representing the second layer, encodes
the “good state” and changes its signal (phase shift) through a combination between
multiple controlled Pauli-Z and Pauli-X gates [23]. Finally, the Amplification Layer, or
Diffusion Operator, serves as a third layer and uses a combination of Hadamard, multi-
controlled Pauli-X, and Pauli-X gates [23]. Its function is to phase shift again and amplify
the probability of obtaining the “good state” during the observation process.
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Following Grover’s definition, to achieve the maximum probability of measuring the
good state, we need to add more iterations by repeating layers two and three by t times
(Equation (14)) for a unique solution [24].

T = int(
π

4

√
N− 1

2
), N = 2number of qubits (14)

3. Related Work

This section presents an overview of the current state of the art for classical index tun-
ing algorithms that employ reinforcement learning and quantum index tuning algorithms.
It concludes with a detailed description of the selected classical algorithm to be converted
into a quantum version.
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3.1. Classical Index Tuning Algorithms Using Reinforcement Learning

Nowadays, there has been a significant contribution in the domain of index tuning,
which plays a fundamental role in the efficacy of database searches.

In [25], the authors synthesize the current state of the art of this subject, referring to
various index optimization methods, including methods using reinforcement learning. The
method COREIL [4] uses policy iteration as the algorithm, while SMARTIX [3] uses linear
Q-learning. As an evolution of SMARTIX, the authors in [20] present an approach that
corrects the implementation of the TPC-H benchmark [26], which involved the execution
order of the queries being processed incorrectly, as it differed from that specified in the
TPC-H documentation [27]. The methods NoDBA [5], Lan’s DQN [6], DRLindex [7],
MANTIS [8], and DRLISA [9] implement deep Q-networks (DQN) as algorithms; Welborn’s
index advisor [10] uses the Sinkhorn Policy Gradient, while SWIRL [11] uses proximal
policy optimization (PPO). BAIT [12] and AutoIndex [13] adopt Monte Carlo tree search
(MCTS), and Lai’s PPO-MC [14] uses proximal policy optimization–Monte Carlo (PPO-MC).
Finally, DBABandit [15] and HMAB [16] use a technique called the multi-armed bandit
(MAB) as an algorithm.

The methods presented use a variety of approaches to solve the problem of automating
indexes; however, they were designed for classical computers.

3.2. Quantum Algorithms for Index Tuning

There exists little research in the area of quantum index tuning. The article [2] pro-
poses the conversion of the classical algorithm DINA (deep reinforcement divergent index
advisor) [28] to a quantum version. However, the paper is at an early stage; it has not
provided quantum implementation details and experimental results.

Besides the capabilities that reinforcement learning provides to automate index tuning
problems, other techniques are used. The paper [29] leverages the capabilities of quantum
annealers by proposing novel techniques to map the database indexes into the qubits of
the quantum annealer. One technique exploits the qubits more efficiently by reducing the
asymptotic qubit growth from quadratic to linear by incorporating additional auxiliary
variables. The second technique is embedded within the transformation function, where
efficiency is achieved through a process of extensive pre-processing before the run time.
This technique generates a library of embedding templates, which cover a subset of index
selection problem instances.

The paper in [30] proposes SQIA, a quantum–classical (hybrid) index advisor that
delivers optimal solutions with high probability by using a novel Grover search-based
approach. This approach implements an efficient quantum Oracle used in the Grover
search algorithm, which loads the problem dada into the qubit phases. In other words, this
technique loads and encodes the storage cost, benefits, and constraints.

The present literature review reveals that, in addition to the vision paper proposing a
quantum counterpart of DINA [21], there is currently no quantum counterpart implemen-
tation with experimental results of index advisory using reinforcement learning.

3.3. Classical SMARTIX Algorithm

The SMARTIX experiments presented by the authors of [3] demonstrated a good
balance between the disk space utilized by its index configuration and the performance
metric it can achieve, which led to the selection of its evolution [20] as the foundation
for the development of a quantum version in our work. As the authors of [20] have
made the source code publicly available on GitHub [31], our work is built on that code,
containing the adaptations required to fit the quantum algorithm and preserving the
original characteristics. For the environment, they utilize a scalable database benchmark,
TPC-H [26], which offers a set of features. These features allow for the generation of data
for a predefined group of database tables and the construction of 22 instances of queries
according to 22 query templates.
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The TPC-H benchmark schema includes eight database tables, each with a distinct set
of attributes. When these attributes are added together, the state space contains 45 of these
being available for indexing. Each attribute has two possible actions (CREATE or DROP),
which generate a state space with a total of 90 actions, each encoded in a natural decimal
value in the interval [0, 89].

The reward is defined by a TPC-H performance metric, expressed in queries per hour
(QphH) (Equation (17)), which is composed of two other metrics, namely Power and Through-
put. The Power metric is designed to measure the computing speed of simple queries
(Equation (16)). The Throughput metric measures the capacity to process the maximum
number of queries in the shortest time using parallelism mechanisms (Equation (15)).

The equations are composed of several elements. The quantity 3600 represents the
number of seconds per hour, while the variable QI(i, 0) denotes the execution time of query
i. The variable RI(j, 0) symbolizes the execution time of the refresh function j, which is
responsible for inserting and removing records from the database. The variable S represents
the number of query streams executed, SF the scale factor of the database, Ts the total time
needed to run the throughput test for the S streams, and finally, @Size represents the size
of the database.

Throughput@Size =
S× 22

Ts
× 3600× SF (15)

Power@Size =
3600

24
√

∏22
i=1 QI(i, 0)×∏2

i=1 RI(j, 0)
× SF (16)

QphH@Size =
√

Power@Size× Throughput@Size (17)

To address the issue of a tabular policy, SMARTIX uses a variant of Q-learning called
Q-learning, with linear feature approximation as its reinforcement learning algorithm [32].
This policy is represented by a set of weights, collectively referred to as a feature vector. A
feature is defined as an element of the state space or the action space, so the vector has a
total of 135 weights with an additional weight corresponding to a bias.

To calculate the Q-value, Equation (18) must be used, where θ is the weight value and
fn(s) is the value of each feature according to the current state of the environment.

Q̂(a, s)← θ0 + θ1f1(s) + θ2f2(s) + ... + θnfn(s) (18)

However, during the learning process, it is crucial to modify the agent’s policy. The
algorithm uses the temporal difference strategy with gradient descent (Equation (19)).

θi ← θi + α(r + γmaxaQ̂θ(s
′, a′)− Q̂θ(s, a))

∂Q̂θ(s′, a′)
∂θi

(19)

The SMARTIX algorithm works as follows: first, the feature vector is populated with
random values, and the replay memory is set to an empty state. Second, a cycle is initiated
based on a predefined number of episodes. In each episode, the database is set to an
initial state s. Subsequently, a sequence of steps is initiated. In each step, the algorithm
determines the action to be executed in the environment using the Epsilon-greedy strategy
and executes that action. Then, the environment moves to the new state and returns the
reward r (QphH) and its new state s′. With the reward obtained, the algorithm updates
the feature vector. The algorithm then stores the experience and selects a mini batch of
experiences and runs a replay on these data. Finally, the new state becomes the current
state, and the algorithm repeats the sequence of steps for each episode until the episodes
reach the end.

4. QRLIT: Quantum–Classical Implementation of Classical SMARTIX Algorithm

This section describes the implementation of our QRLIT algorithm, a hybrid quantum–
classical version of SMARTIX. Initially, we present a method for combining quantum
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computing (QC) with reinforcement learning (RL), which serves as the basis for the de-
velopment of QRLIT. Then, we provide a description of the process used to identify the
components that were converted. Finally, we demonstrate and compute the fundamental
values necessary for the construction of the quantum circuit and conclude with the QRLIT
flow diagram and pseudocode.

Quantum reinforcement learning (QRL) is a method that combines the capabilities
of QC and RL. Similarly to its classical counterpart, quantum reinforcement learning also
includes a policy, a state space, an action space, and a reward function but is inspired by
the superposition principle and quantum parallelism [33]. Based on the novel algorithm
proposed in [33] for QRL, the authors of the paper [34] propose an algorithm called quan-
tum Q-learning (QQRL) that stores the policy in a superposition state and uses Grover’s
algorithm as a strategy to amplify the probability amplitude of the best action based on the
learned policy. Grover’s algorithm exploits the natural behavior of superposition states and
offers a good balance between exploration and exploitation. This balance can be achieved
by controlling the number of Grover iterations L through the learning process of the agent.
In other words, as the agent learns and the number of iterations increases, the capacity
to explore decreases until reaching a number of iterations t (as defined in Equation (14)),
which maximizes the probability of measuring the “good” action. The number of iterations
L is determined by the formula in Equation (20) from [34], where k represents a rate that
controls the proportion of policy and reward contributions and t denotes the maximum
number of possible iterations.

L = min
(
int

(
k
(
r + maxa′Q

(
s′, a′

)))
, t
)

(20)

Our QRLIT implementation is based on the QQRL algorithm. Therefore, we identified
that the Epsilon-greedy procedure is replaced by the Grover search algorithm, keeping
the remaining elements in a classical system. With Grover’s algorithm in QRLIT, we
can not only determine the actions to be executed in the environment but also naturally
balance the agent’s duality between exploration and exploitation. As previously outlined
in the Background Section, Grover’s algorithm contains three distinct layers, namely State
Preparation, Oracle, and Amplitude Amplification. In the State Preparation layer, we
initiate the policy of the agent in a superposition state and in the Oracle, we encode the
action with the highest Q-value in the current state of the environment. As the last layer,
we implement the Amplitude Amplification, which amplifies the probability amplitude to
measure the action encoded in the Oracle.

To run and build Grover’s algorithm, it is crucial to identify how many qubits are
required in the quantum register to encode the actions. We calculate the number of qubits
by using the formula Na ≤ 2n ≤ 2Na, presented by the authors of the paper [33]. In this
formula, Na represents the size of the action space, while n denotes the number of qubits
required to encode an action. We apply and solve the formula for a space of 90 actions
and round off the excess, so that n is equal to seven (Equation (21)). We then define the
maximum number of Grover iterations, t. As the number of qubits is already calculated, N
is equal to 128 and therefore, t equals eight (Equation (22)).

2n = Na ≡ n = log2(Na) ≡ n = log2(90) ≡ n ≈ 6.491 ≈ 7 (21)

N = 2number of qubits ≡ N = 27 = 128

t = int(π4
√

N− 1
2 ) ≡ t = int(

√
128π
4 − 1

2 ) ≡ t = int(8.386) = 8
(22)

As identified before, to create the QRLIT, we replace the Epsilon-greedy strategy in
the classical algorithm with Grover’s search (line 6 in Algorithm 1). Figure 2 illustrates the
interactions between the principal components of QRLIT. The agent component initiates
the first interaction through the execution of Grover’s algorithm, which returns the action a.
In binary code, the action is converted to a decimal value and executed in the environment
(line 7 in Algorithm 1). The environment then processes the value and enters a new state
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s′. In this new state, the benchmark is prepared by creating the necessary query instances
using QGen to run the power and throughput tests. Once the benchmark has been executed,
the reward r and the new state s′ of the environment are returned to the agent. With these
two values, the agent calculates the number of Grover iterations L, selects the action of
the new state that contains the highest Q-value, and sends these values to the operation
that builds the Grover algorithm circuit (line 8 in Algorithm 1). Then, the quantum circuit
is constructed with all seven qubits initialized in the register in the state |0⟩. Our QRLIT
proposal provides a natural balance between exploration and exploitation, allowing for
more effective learning; as the agent learns and adjusts its policy, the exploration rate
decreases (Equation (20)). Furthermore, given the properties of quantum parallelism and
superposition states in Grover’s algorithm, this proposal offers another advantage, namely
that it is able to find an action faster (complexity of O

(√
N
)

) (line 6 in Algorithm 1) than
its classical counterpart (complexity of O(N)).

Algorithm 1 QRLIT algorithm with Grover’s search, function approximation, and experience
replay. Adapted from [3,34].

1: Random initialization of parameters Θ
2: Empty initialization of replay memory D
3: for each episode do
4: s← DB initial index configuration mapped as initial state
5: for each step of episode do
6: a ← Run Grover algorithm on s
7: s′, r ← execute(a)
8: Build Grover′s circuit with L and argmaxa∈A
9: for θi ∈ Θ do
10: Update θi according to Equation (19)
11: end for
12: Store experience e = ⟨s, a, r, s′⟩ in D
13: Sample random mini batch of experiences e ∼D
14: Performance experience replay using sampled data
15: s← s′

16: end for
17: end for
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5. Performance Evaluation

This section presents the experiments conducted on the classical algorithm SMARTIX
and its quantum–classical version QRLIT (source code in [35]), as well as the analyses per-
formed on the results. It is organized into three subsections. Section 5.1 provides a detailed
description of the environment used to execute the experiments and Sections 5.2 and 5.3
presents the experiment results and their analysis.

5.1. Experimental Model

All experiments were conducted on a docker container with Ubuntu 22.04 on a 2021
MacBook Pro, which is equipped with 16GB of RAM, 1TB of disk space, and an Apple
M1 Pro CPU with 10 cores. MySQL was used as the DBMS, which implements the TPC-H
benchmark, while a simulator provided by the Qiskit SDK was used to build and execute
the quantum algorithm.

Additionally, in accordance with the TPC-H benchmark specification [27], 22 query
instances were executed in the Power metric and 44 in the Throughput metric with two
parallel streams (22 queries for each stream). This resulted in a total of 66 query instances
being executed in each time step. The queries were generated through a tool provided by
the TPC-H benchmark, designated as QGen.

The experiments were carried out according to the parameter settings outlined in
Table 1. The first parameter setting corresponds to the tests conducted in Section 5.2 to study
the overall performance of the algorithms when the database size is fixed at 10 MB, while
the second parameter setting corresponds to Section 5.3 to study the impact of database
sizes of 10 MB, 20 MB, 30 MB, 40 MB, 70 MB, and 100 MB on the performance of the
algorithms. In this second configuration, the number of episodes was reduced to 25 in
order to reduce the time required to execute the experiments.

Table 1. Configuration parameters for the tests.

Test Name Database Size α γ k Episodes Steps Total Time Steps

Overall Performance 10 MB 0.001 0.8 0.00017 50 100 5000

Impact of Database Size 10 MB, 20 MB, 30 MB,
40 MB, 70 MB, 100 MB 0.001 0.8 0.00017 25 100 2500

5.2. Overall Performance

In this section, experiments were conducted to study the overall performance of the
two algorithms when the database is fixed at 10 MB. This study is based on the following
metrics: number of queries processed per hour, episode execution time, temporal difference
error, and number of Grover iterations. The first metric defines the quality of the algorithms
in terms of their ability to identify a policy that maximizes the cumulative reward (queries
per hour) over time. The episode execution time metric measures the velocity of the
algorithms in executing an episode. The temporal difference error (TD Error) (Equation (1))
metric demonstrates the algorithm’s convergence to an optimal policy; in other words,
the closer the values are to 0, the better the policy is. Finally, the Grover iterations metric
measures the relation between exploration and exploitation; the lower the value, the higher
the rate of exploration relative to exploitation. This metric allows for the analysis of the
agent’s exploration capacity, which is directly correlated with the number of iterations.

The results obtained for each metric in each of 50 episodes for the two algorithms
are shown in Figures 3–6. The average results of each metric over 50 episodes of the two
algorithms are summarized in Table 2. The analysis of Figure 3 and Table 2 reveals that on
average, the hybrid algorithm exhibits a higher number of queries processed per hour by
0.61% compared to its classical counterpart.
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Table 2. Comparison results of the average results of the classical and quantum–classical algorithms
for a database size of 10 MB.

Metric Classical Quantum–Classical Increase in Quantum–Classical
over Classical

Average Number of Queries Processed Per Hour (QphH) 735,715.44 740,267.11 0.61%
Average Episode Execution Time (Seconds) 77.58 99.06 21.67%

Average Temporal Difference Error −605.28 13.00 N/A
Average Number of Grover Iterations N/A 7.53 N/A

Moreover, from the analysis of Figure 4, the hybrid algorithm has a much faster
convergence to a low temporal difference error showing a more stable learning, displaying
a temporal difference error trajectory closer to 0 (Table 2).

To find a balance between exploring and exploiting, the classical algorithm implements
a strategy known as Epsilon-greedy. This strategy uses an exploration rate epsilon ε = 0.9,
which decreases with an exploration discount factor of 0.1 at the end of each episode.
Therefore, with this algorithm, the agent explores with a probability of ε or follows the
learned policy (exploits) with a probability of 1− ε. In the case of the quantum–classical
algorithm, as the agent learns and adjusts its policy, the number of Grover iterations also
increases, consequently reducing the exploration probability (Equation (20)) (Figure 5).

The quantum–classical algorithm provides a better index recommendation, resulting
in a higher number of queries processed per hour than the classical algorithm because
as the agent of the quantum–classical algorithm refines its policy through learning, the
exploration rate decreases. This leads to a decrease in unnecessary explorations and allows
for more effective learning. However, the quantum–classical algorithm takes on average
21.67% more time to complete an episode than its classical counterpart (Figure 6). This
discrepancy is related to the additional computational overhead to create and execute the
quantum circuit at each time step. Figure 7 shows the time required to build and execute
Grover’s algorithm.
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5.3. Impact of Database Sizes

The purpose of this section is to examine the behavior of the algorithms across a range
of database sizes, specifically 10 MB, 20 MB, 30 MB, 40 MB, 70 MB, and 100 MB. The metrics
employed in this analysis include the average number of queries processed per hour of
the 25 episodes for each database size, the number of Grover iterations, and the temporal
difference error of each algorithm.

The results obtained for each metric in each database size for the two algorithms
are shown in Figures 8–12. The average results of each metric over the database sizes of
the two algorithms are summarized in Table 3. The analysis for the database sizes also
indicates a superiority of the hybrid algorithm. The results in Table 3 and Figure 8 show
that on average, the hybrid algorithm yields a higher number of queries processed per hour
of 2.49% compared to its classical counterpart and displays a temporal difference error
trajectory closer to 0 (Figure 9). This trajectory is more evident in this analysis because the
number of episodes is reduced by half, highlighting the importance of a faster convergence.

Table 3. Comparison results of the classical algorithm and the quantum–classical algorithm with
different database sizes.

Metric Classical Quantum–Classical Increase in Quantum–Classical
over Classical

Average Number of Queries Processed Per Hour (QphH) 607,650.60 623,136.44 2.49%
Average Database Size Test Execution Time (Seconds) 8449.18 8936.49 5.45%

Average Temporal Difference Error −603.56 13.78 N/A
Average Number of Grover Iterations N/A 6.27 N/A
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10 executions for quantum–classical algorithm.
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Furthermore, it can also be observed that the number of queries processed per hour
decreases as the database size increases. This indicates that the size of the database affects
the number of QphH generated, in other words, the reward. Consequently, according to
Equation (20), which calculates the number of Grover’s iterations, and since the Q-values
are directly related to the reward, they will also have smaller values. Thus, the smaller the
policy and reward contribution, the smaller the number of iterations (Figure 10), which
increases the exploration rate (Figure 11). Excessive exploration causes the agent not to
follow the learned policy, resulting in a mostly random configuration of indexes as the
database size increases.

In conclusion, besides the average superiority verified by the quantum–classical
algorithm, the results in Figure 10 also demonstrate the need to adjust the parameter k,
which regulates the reward and policy contributions to the number of Grover’s iterations.
In this case, as the reward value decreases, it is necessary to increase the value of k to
reduce the exploration rate.

6. Conclusions and Future Work

This work presents the implementation of QRLIT, a hybrid quantum–classical version
of SMARTIX [3]. The QRLIT demonstrated better performance than its classical counterpart
in terms of the number of queries processed per hour and a faster convergence to an optimal
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policy. By controlling the Grover iterations through the reward and the agent policy, as
the agent refines its policy through learning, the exploration rate decreases, allowing for a
superior temporal difference error convergence closer to zero with more effective learning
compared to its classical counterpart. However, as the value of k controls the contribution
of reward and policy to the number of Grover iterations, the increase in database size
reveals the necessity to adjust this parameter manually to balance the exploration rate.
This manual adjustment in an automatic system is a limitation because the reward (QphH)
varies not only according to the size of the database but also according to the quality and
capacity of the machine’s hardware.

As future work, we intend to analyze the behavior of the algorithms in databases with
significant sizes and more queries. It would also be important to investigate their performance
on distributed database systems. Finally, evaluating the execution of the quantum–classical
algorithm on a real quantum computer is another direction for future research.
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