
Citation: Lin, M.-Y.; Wu, P.-C.; Hsueh,

S.-C. Optimizing Session-Aware

Recommenders: A Deep Dive into

GRU-Based Latent Interaction

Integration. Future Internet 2024, 16,

51. https://doi.org/10.3390/

fi16020051

Academic Editors: María N. Moreno

García and Fernando De la Prieta

Pintado

Received: 10 December 2023

Revised: 21 January 2024

Accepted: 31 January 2024

Published: 1 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

future internet

Article

Optimizing Session-Aware Recommenders: A Deep Dive into
GRU-Based Latent Interaction Integration
Ming-Yen Lin 1 , Ping-Chun Wu 1 and Sue-Chen Hsueh 2,*

1 Department of Information Engineering and Computer Science, Feng Chia University, Taichung 402, Taiwan;
linmy@mail.fcu.edu.tw (M.-Y.L.); jun.audis5@gmail.com (P.-C.W.)

2 Department of Information Management, Chaoyang University of Technology, Taichung 413, Taiwan
* Correspondence: schsueh@cyut.edu.tw

Abstract: This study introduces session-aware recommendation models, leveraging GRU (Gated
Recurrent Unit) and attention mechanisms for advanced latent interaction data integration. A primary
advancement is enhancing latent context, a critical factor for boosting recommendation accuracy.
We address the existing models’ rigidity by dynamically blending short-term (most recent) and
long-term (historical) preferences, moving beyond static period definitions. Our approaches, pre-
combination (LCII-Pre) and post-combination (LCII-Post), with fixed (Fix) and flexible learning (LP)
weight configurations, are thoroughly evaluated. We conducted extensive experiments to assess
our models’ performance on public datasets such as Amazon and MovieLens 1M. Notably, on the
MovieLens 1M dataset, LCII-PreFix achieved a 1.85% and 2.54% higher Recall@20 than II-RNN and
BERT4Rec+st+TSA, respectively. On the Steam dataset, LCII-PostLP outperformed these models by
18.66% and 5.5%. Furthermore, on the Amazon dataset, LCII showed a 2.59% and 1.89% improvement
in Recall@20 over II-RNN and CAII. These results affirm the significant enhancement our models
bring to session-aware recommendation systems, showcasing their potential for both academic and
practical applications in the field.

Keywords: recommender system; session-aware recommendation; latent-context information; long-
term and short-term preference; gated recurrent unit

1. Introduction

Recommendation mechanisms have emerged as vital tools for the filtering of informa-
tion in various aspects of life. They are widely used in commercial platforms, including
e-commerce sites like Amazon. Our preferences and purchases change over time. To ensure
the recommended results align more closely with actual needs, the sequential recommen-
dation system (SRS) has gained prominence [1]. SRS emphasizes continuous interaction
records with time-series characteristics, based on the assumption that dependencies exist
between interactions. Therefore, all user interaction records are essential for a comprehen-
sive understanding. Traditionally, research in this area often used the recurrent neural
network (RNN) as the network architecture, yielding positive results [2–4].

The sequential recommendation method utilizes a series of interaction records as
its reference basis. To avoid learning incorrect information from irrelevant interaction
records, the concept of a session has been introduced. Interaction records within a de-
fined period are considered part of the same session, with interactions processed sep-
arately based on the session. This led to the development of both session-based and
session-aware recommendations.

The session-based recommender system (SBRS) [2,5,6] aims to reflect users’ actual
thinking and behavior patterns. It considers only the interaction records within a short
period, meaning recommendations are based solely on one session’s data. This approach’s

Future Internet 2024, 16, 51. https://doi.org/10.3390/fi16020051 https://www.mdpi.com/journal/futureinternet

https://doi.org/10.3390/fi16020051
https://doi.org/10.3390/fi16020051
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://orcid.org/0000-0003-3180-3132
https://doi.org/10.3390/fi16020051
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/article/10.3390/fi16020051?type=check_update&version=2


Future Internet 2024, 16, 51 2 of 14

limitation is its reliance on a narrow data range, leading to less personalized recommen-
dations. It is, however, beneficial for users seeking recommendation system convenience
without needing to register or log in.

To facilitate personalized recommendations, the session-aware recommender system
(SARS) was developed [7]. SARS involves recommendations comprising multiple ses-
sions [8–11]. Personalized recommendations typically rely on the user’s current interaction
to infer their short-term behavioral intentions. While short-term behaviors significantly
influence future interests and are thus considered short-term preferences, sessions too
distant from the short-term period are classified as long-term preferences. Users have both
long-term and short-term preferences integrated into their overall intention preference for
recommendations [1,11]. This method’s limitations include overlooking context informa-
tion and a rigid definition of short-term preferences based on the last session, which can
limit recommendation adaptability.

The correlation between a product and the current product represents potential in-
formation that should be considered in understanding the real intentions of consumers.
Additionally, previous studies have often limited the definition of short-term preferences
to the last session [11]. This approach can lead to recommendations that are too rigid and
inflexible. This rigidity arises because a session’s definition is based on time intervals, as
mentioned earlier. If a user’s intentions span a period that extends beyond the confines of a
single session, this behavior pattern may not accurately represent the user’s true intentions.

Our work leverages the session-aware recommender system (SARS) over the session-
based recommender system (SBRS) to address two critical shortcomings: overlooking
contextual information and rigid definitions of long-term and short-term preferences. In
our approach, we focus on user–item interactions, such as clicks or purchases, represented
by item IDs. These interactions inform our prediction model, which aims to identify the next
item a user is likely to engage with. We consider contextual information, divided into intra-
context (additional information accompanying interactions) and inter-context (information
spanning current and past sessions). One challenge in this method is ensuring the relevance
of contextual information to the sequence of interactions. Additionally, another challenge
is maintaining the significance of sequential data in our recommendations, considering the
complexity of user interactions over time.

Addressing the relevance of auxiliary contextual information to sequential interaction
records, the hidden state in the gated recurrent unit (GRU) is suggested to be used as
the model’s contextual information [1]. This method ensures the generated contextual
information, based on past interaction records, is relevant. It also mitigates the issue of
the RNN framework forgetting older information in long-sequence data. Therefore, our
paper proposes using the prediction representation of the GRU as the latent-contextual
information, derived from learning based on past sequential-interaction records.

To address the rigidity of defining long-term and short-term user preferences based
on session duration, we propose a flexible window-based approach. This method utilizes
a designated percentage of a user’s interaction history to categorize preferences. For
example, as illustrated in Figure 1, by setting the window (W) at 45%, we consider 45%
of the interaction records closest to the most recent interaction as indicative of short-term
preferences. The remaining interactions are categorized as long-term preferences. This
approach more accurately reflects the user’s actual preferences by dynamically adjusting
the range between long-term and short-term interactions.

While SBRS effectively captures user preferences within individual sessions, its capac-
ity for personalized recommendations is somewhat limited by its focus on single-session
data. This approach may result in less-tailored recommendations due to the absence of
long-term preference analysis. Acknowledging this, our research extends to SARS, which
encompasses both short-term and long-term user preferences, thus offering a more holistic
view of user intent. Our method integrates latent-contextual information, closely linked
to interaction records, which is often overlooked in traditional SARS. By considering both



Future Internet 2024, 16, 51 3 of 14

long-term and short-term preferences and employing a window-based approach, we aim
to enhance the recommendation performance significantly.

Future Internet 2024, 16, x FOR PEER REVIEW 3 of 15 
 

 

 
Figure 1. Long-term vs. short-term preferences by varying window scope. 

While SBRS effectively captures user preferences within individual sessions, its ca-
pacity for personalized recommendations is somewhat limited by its focus on single-ses-
sion data. This approach may result in less-tailored recommendations due to the absence 
of long-term preference analysis. Acknowledging this, our research extends to SARS, 
which encompasses both short-term and long-term user preferences, thus offering a more 
holistic view of user intent. Our method integrates latent-contextual information, closely 
linked to interaction records, which is often overlooked in traditional SARS. By consider-
ing both long-term and short-term preferences and employing a window-based approach, 
we aim to enhance the recommendation performance significantly. 

In summary, the contributions of this study include as follows: 
1. Innovative Combination: We combine GRU networks with attention mechanisms to 

enhance session-aware recommender systems, focusing on both short-term and long-
term user preferences. 

2. Latent-Context GRU Model: Introducing the latent-context GRU model, a novel ap-
proach for capturing latent interaction information, demonstrating improved perfor-
mance in session-aware recommendation tasks. 

3. Comprehensive Evaluation: Rigorous evaluation against current state-of-the-art 
methods provides a detailed analysis of its effectiveness and potential for further de-
velopment. 

2. Related Work 
In traditional recommendation systems, prevalent methods include POP (Most-Pop-

ular) and item-based nearest neighbor (Item-kNN) [12]. Subsequent developments have 
introduced methods like collaborative filtering (CF) [13], matrix factorization (MF) [14,15], 
and Markov chain (MC) [8]. These methods utilize user-click data as the basis for recom-
mendations, where clicks during browsing represent varying preferences or interests of 
users, to predict their next item of interest. 

Sequential recommendation, a primary branch of recommendation systems, is fur-
ther divided into session-based and session-aware recommendations. HCA [1], a hierar-
chical neural network model, focuses on enhancing short-term interests by capturing the 
complex correlations between adjacent data within each time frame. As RNN tends to 
gradually forget past information due to long-term dependencies, this method helps the 
system retain information. 

GRU4Rec [2], is a recommendation system model employing the RNN approach. 
This model continually learns from past features through RNN, combined with the timing 
of data clicks, to construct a highly effective recommendation method at that time. Com-
pared to traditional methods, RNN adds a sequential consideration, with experimental 

StLt

A D EE G B A B C

A D EE G

St

B A B C

Lt

W = 45%

W = 25%

Session: 1 day; Lt: long term; St: short term; W: Window size (ratio of short term)
Hu: User u’s interaction history; : u’s i-th session (1 ≤ i ≤ 4); A, B, C, …, G: interaction item

Figure 1. Long-term vs. short-term preferences by varying window scope.

In summary, the contributions of this study include as follows:

1. Innovative Combination: We combine GRU networks with attention mechanisms
to enhance session-aware recommender systems, focusing on both short-term and
long-term user preferences.

2. Latent-Context GRU Model: Introducing the latent-context GRU model, a novel
approach for capturing latent interaction information, demonstrating improved per-
formance in session-aware recommendation tasks.

3. Comprehensive Evaluation: Rigorous evaluation against current state-of-the-art methods
provides a detailed analysis of its effectiveness and potential for further development.

2. Related Work

In traditional recommendation systems, prevalent methods include POP (Most-Popular)
and item-based nearest neighbor (Item-kNN) [12]. Subsequent developments have intro-
duced methods like collaborative filtering (CF) [13], matrix factorization (MF) [14,15], and
Markov chain (MC) [8]. These methods utilize user-click data as the basis for recommenda-
tions, where clicks during browsing represent varying preferences or interests of users, to
predict their next item of interest.

Sequential recommendation, a primary branch of recommendation systems, is further
divided into session-based and session-aware recommendations. HCA [1], a hierarchical
neural network model, focuses on enhancing short-term interests by capturing the complex
correlations between adjacent data within each time frame. As RNN tends to gradually
forget past information due to long-term dependencies, this method helps the system
retain information.

GRU4Rec [2], is a recommendation system model employing the RNN approach.
This model continually learns from past features through RNN, combined with the tim-
ing of data clicks, to construct a highly effective recommendation method at that time.
Compared to traditional methods, RNN adds a sequential consideration, with experi-
mental results underscoring its effectiveness and establishing a neural methods’ status in
recommendation systems.

Neural session-aware recommendation (NSAR) [9] operates under session-aware rec-
ommendation, incorporating all sessions into the model for learning and predicting the
next item. This work discusses the timing of feature integration, positing that different inte-
gration opportunities significantly affect recommendation performance, hence proposing
two strategies: pre-combine and post-combine.



Future Internet 2024, 16, 51 4 of 14

Inter-Intra RNN (II-RNN) [16] is a two-layer RNN architecture model which can effec-
tively enhance recommendation performance and expedite feature learning. This is because
the final prediction representation of the inner network is passed to the initial hidden state
of the outer network. The outer network, thus, does not start learning from scratch, a
method whose effectiveness is proven by this research. CAII [17] is another two-layer GRU
model which utilizes session information, including item ID, image characteristics, and
item price, to compare these features and achieve a balanced CAII. The CAII-P strategy
emerged as the best solution in this research, suggesting that image features do not sub-
stantially enhance recommendation quality. This also indicates that session information is
not directly correlated with sequential data, a key motivation for our study.

The discussed research highlights that personalized recommendations cannot be solely
based on session-based methods. Hence, session-aware recommendation research has been
extended. Additionally, the use of latent-contextual information as an auxiliary method in
recommendation systems has been explored but not extensively developed.

Our work builds on session-aware recommendation, integrating latent-contextual
information and long-term and short-term preference features. We adopt HCA’s [1] ap-
proach of using GRU prediction representation as an auxiliary feature for model learning,
treating such information as latent context. Drawing from NSAR’s [9] pre-combine and
post-combine feature combination strategies, we revised the attention-gate formula for
feature fusion calculations. Our proposed method’s main framework follows the inner and
outer GRU architecture of II-RNN [16], with a significant difference; while II-RNN inputs
only item IDs, our method also incorporates latent-contextual information and designs for
processing long-term and short-term preferences.

3. Proposed Method
3.1. Problem Statements

Consider a set of users U, where each user u possesses a historical interaction record
Hu =

{
Su

1 , Su
2 , . . . , Su

t
}

. These records consist of t sessions, each ordered chronologically

by the time of interaction. Within each session, denoted as Su
j =

{
iu, j
1 , iu, j

2 , . . . , iu, j
v

}
, there

are v items with which the user has interacted, also arranged in the order of interaction
within that session. The objective is to predict a set of items {ir1, ir2, . . ., irk} that the user is
most likely to interact with next. These predicted items are typically ranked in descending
order of interaction probability. Table 1 presents the primary symbols utilized in this paper.
It also briefly introduces additional terms such as R

iu,j
v

, C
iu,j
v

, and F
iu,j
v

, which are elaborated
upon in the subsequent sections. These terms pertain to the embedding [18] and preference
representations crucial to our methodology.

Table 1. Notations.

Notation Description

I = {i1, i2, . . . , iM} Set of items, ix is the item ID (1 ≤ x ≤ M)
U = {u1, u2, . . . , uN} Set of users, uy is the user ID (1 ≤ y ≤ N)
Hu =

{
Su

1 , Su
2 , . . . , Su

k
}

User u’s historical interactions, Su
j is the j-th session (1 ≤ y ≤ k)

Su
j =

{
iu,j
1 , iu,j

2 , . . . , iu,j
v

}
Interaction items in the j-th session, iu,j

p is the p-th item (1 ≤ p ≤ v)

Riu,j
v

Embedding representation of item iu,j
v

Ciu,j
v

Latent context representation of interactions up to item iu,j
v

Fiu,j
v

Preference representation up to iu,j
v

3.2. LCII Architecture

Figure 2 depicts the architecture of the proposed method, named LCII (Latent Context
II). The architecture consists of five modules: Embedding module, Context Generation mod-
ule, Representation Fusion module, Sequence Processing module, and Prediction module.



Future Internet 2024, 16, 51 5 of 14

Future Internet 2024, 16, x FOR PEER REVIEW 5 of 15 
 

 

𝐹ೡೠ,ೕ Preference representation up to 𝑖௩௨, 

3.2. LCII Architecture 
Figure 2 depicts the architecture of the proposed method, named LCII (Latent Con-

text II). The architecture consists of five modules: Embedding module, Context Genera-
tion module, Representation Fusion module, Sequence Processing module, and Prediction 
module. 

 
Figure 2. LCII Architecture. 

Specifically, the embedding module first generates a random number table, tailored 
to the size of the input data. It then converts the item ID into an embedded representation, 
which becomes the input for the model. 

The context generation module generates potential contextual information that is 
considered for recommendations. As the GRU (Inner) processes the embedded represen-
tation sequentially, a predicted representation is generated one-by-one, based on the la-
tent features learned previously, and thus, it is closely related to the interactive Item. The 
prediction representation generated by the GRU (Inner) is treated as this potential context 
information. 

The representation fusion module performs feature fusion to generate the preference 
representation. Feature fusion involves extracting session features by merging item em-
beddings with latent-contextual representation. The basic LCII performs feature fusion 
only and uses the result directly as the preference representation. Note that Section 3.2.3 
will describe two strategies using additional ‘Term Fusion’ to generate the preference rep-
resentation. The first strategy, named LCII-Pre, performs ‘Term Fusion’ before feature fu-
sion. The second strategy, named LCII-Post, performs ‘Term Fusion’ after feature fusion. 
The representation fusion of LCII-Pre is shown in Figure 3, while that of LCII-Post is 
shown in Figure 4. 

Figure 2. LCII Architecture.

Specifically, the embedding module first generates a random number table, tailored to
the size of the input data. It then converts the item ID into an embedded representation,
which becomes the input for the model.

The context generation module generates potential contextual information that is
considered for recommendations. As the GRU (Inner) processes the embedded repre-
sentation sequentially, a predicted representation is generated one-by-one, based on the
latent features learned previously, and thus, it is closely related to the interactive Item.
The prediction representation generated by the GRU (Inner) is treated as this potential
context information.

The representation fusion module performs feature fusion to generate the preference
representation. Feature fusion involves extracting session features by merging item em-
beddings with latent-contextual representation. The basic LCII performs feature fusion
only and uses the result directly as the preference representation. Note that Section 3.2.3
will describe two strategies using additional ‘Term Fusion’ to generate the preference
representation. The first strategy, named LCII-Pre, performs ‘Term Fusion’ before feature
fusion. The second strategy, named LCII-Post, performs ‘Term Fusion’ after feature fusion.
The representation fusion of LCII-Pre is shown in Figure 3, while that of LCII-Post is shown
in Figure 4.

Subsequently, the sequence processing module uses the GRU (Outer) for learning
and prediction. The GRU (Outer) accepts the first prediction representation from the
GRU (Inner) as the initial state, receives sequentially the preference representation, and
produces the final prediction. The predictions are fed into the prediction module. The
prediction module ultimately produces the user’s recommendation list and provides the
prediction evaluation.



Future Internet 2024, 16, 51 6 of 14
Future Internet 2024, 16, x FOR PEER REVIEW 6 of 15 
 

 

 
Figure 3. Representation Fusion module—LCII-Pre. 

 
Figure 4. Representation Fusion module—LCII-Post. 

Subsequently, the sequence processing module uses the GRU (Outer) for learning 
and prediction. The GRU (Outer) accepts the first prediction representation from the GRU 
(Inner) as the initial state, receives sequentially the preference representation, and pro-
duces the final prediction. The predictions are fed into the prediction module. The predic-
tion module ultimately produces the user’s recommendation list and provides the predic-
tion evaluation. 

3.2.1. Embedding Module 
The item embedding module starts by generating a learnable matrix of size M × d, 

where M is the total number of items and d is the embedding size, using a uniform ran-
dom number generator. The item IDs are then converted into vectors using this matrix, 
which is continuously updated during the model’s training process. This process involves 
the integration of context generation, representation fusion, sequence processing, and pre-
diction modules, ensuring that the item embedding is not an isolated process but an inte-
gral part of the entire model training. The context generation module then takes these 
embeddings to extract latent contexts, which are further divided into long-term and short-

Figure 3. Representation Fusion module—LCII-Pre.

Future Internet 2024, 16, x FOR PEER REVIEW 6 of 15 
 

 

 
Figure 3. Representation Fusion module—LCII-Pre. 

 
Figure 4. Representation Fusion module—LCII-Post. 

Subsequently, the sequence processing module uses the GRU (Outer) for learning 
and prediction. The GRU (Outer) accepts the first prediction representation from the GRU 
(Inner) as the initial state, receives sequentially the preference representation, and pro-
duces the final prediction. The predictions are fed into the prediction module. The predic-
tion module ultimately produces the user’s recommendation list and provides the predic-
tion evaluation. 

3.2.1. Embedding Module 
The item embedding module starts by generating a learnable matrix of size M × d, 

where M is the total number of items and d is the embedding size, using a uniform ran-
dom number generator. The item IDs are then converted into vectors using this matrix, 
which is continuously updated during the model’s training process. This process involves 
the integration of context generation, representation fusion, sequence processing, and pre-
diction modules, ensuring that the item embedding is not an isolated process but an inte-
gral part of the entire model training. The context generation module then takes these 
embeddings to extract latent contexts, which are further divided into long-term and short-

Figure 4. Representation Fusion module—LCII-Post.

3.2.1. Embedding Module

The item embedding module starts by generating a learnable matrix of size M × d,
where M is the total number of items and d is the embedding size, using a uniform
random number generator. The item IDs are then converted into vectors using this matrix,
which is continuously updated during the model’s training process. This process involves
the integration of context generation, representation fusion, sequence processing, and
prediction modules, ensuring that the item embedding is not an isolated process but an
integral part of the entire model training. The context generation module then takes these
embeddings to extract latent contexts, which are further divided into long-term and short-
term preferences in the subsequent modules. This design ensures a seamless and integrated
approach to model training, where each module contributes to refining the final output. In
Figure 2, this is shown as: a user session Su1

j of v items iu1,j
1 , iu1,j

2 , . . . , iu1,j
v is embedded as

R
iu1,j
1

, R
iu1,j
2

, . . ., R
iu1,j
v

.



Future Internet 2024, 16, 51 7 of 14

3.2.2. Context Generation Module

The output from the embedding module constitutes the input for the context gen-
eration module. The primary objective of this module is to identify and capture latent-
interactive information, herein referred to as ‘Latent-context’. The process for generating
this content information commences with the input of the embedding-transformed repre-
sentation into a GRU, designated as the GRU (Inner). That is, R

iu1,j
1

, R
iu1,j
2

, . . ., R
iu1,j
v

, goes

through the GRU (Inner) and produces the latent context Ciu1
1

, Ciu1
2

, Ciu1
3

, . . ., Ciu1
v

. Within
this neural network framework, user information is subject to a learning process.

Upon each iteration through the GRU, two distinct outcomes are yielded: the hidden
state and the current prediction representation. The prediction representation, as derived
from the GRU, is conceptualized as Latent-context and is subsequently stored within a
dedicated Latent-context list. This list is further employed by another GRU, named GRU
(Outer). The rationale for selecting this specific information as Latent-context, is based
on the methodology of generating the prediction representation at any given temporal
point. This involves using both the hidden state and the current interaction record as
inputs. The hidden state represents a cumulative preference profile, developed through
the analysis of historical interaction records up to the current moment. Consequently, the
prediction representation, grounded in these derived preferences, facilitates the generation
of user-specific items of potential interest.

3.2.3. Representation Fusion Module

The item embedding and the latent context produced by the two modules are subse-
quently utilized as inputs for the representation fusion module. The aim of this module
is to combine the two representations to derive a unified user preference representation.
As shown in Figure 5(i), feature fusion generates its representation by combining the item
embedding (denoted by xt) and the latent context embedding (denoted by ct) at the t-th
interaction for the whole interaction history, using one of three ways: vector addition,
element-wise vector multiplication, and the modified attention-gate mechanism [9]. Vector
addition sums corresponding vector elements. Element-wise vector multiplication entails
the multiplication of corresponding elements in the vectors. The modified attention-gate
mechanism [9] merges elements through multiplication of the weighted item vector de-
noted by αxx (where x = (x1, x2, . . ., xv)) and the weighted (latent) context vector denoted by
αcc (where c = (c1, c2, . . ., cv)). The attention weights for items and latent context, denoted by
αx and αc, respectively, are computed using a common relevance-based attention formula.

Future Internet 2024, 16, x FOR PEER REVIEW 8 of 15 
 

 

 
Figure 5. Representation Fusion module—LCII. 

In the basic LCII model, the feature fusion representation is directly used as the pref-
erence representation. The LCII-Pre and LCII-Post strategies use additional ‘term fusion’ 
to generate the preference representation, as described below. 

Figure 5(ii) shows that term fusion is accomplished by either fix fusion or LP 
(learned-parameters) fusion. First, we determine the window size to separate the long-
term and short-term preferences, using the latent-context list as a source. For example, 
setting the window of 30% for a sequence of 19 items will use the last 30 percent of the 
latent-context embedding as short-term preference, thus (C14, C15, …, C19) as short-term 
preference and (C1, C2, …, C13) as long-term preference. Second, the long-term weight and 
the short-term weight are then decided either by a fixed setting (denoted as Fix) or by 
learned-parameters (denoted by LP). Let Wpl and Wps respectively be the long-term em-
bedding and short-term embedding. Fix (term) fusion applies preset values by multiply-
ing Wpl with a preset pl value and Wps with a preset ps value, and then concatenates these 
multiplied embeddings to form the term fusion representation. 

LP (term) fusion dynamically learns the appropriate weights for the embeddings. It 
begins by initializing the long-term vector PL and the short-term vector PS with random 
values. During the training process, these vectors are continuously updated through iter-
ations. The fusion involves element-wise multiplication of PL with the long-term embed-
ding Wpl, and PS with the short-term embedding Wps. After the multiplications, these re-
sults are concatenated to create the final term-fusion representation. 

Figure 3 illustrates the representation fusion module in LCII-Pre. In this configura-
tion, the module incorporates item embedding with the term fusion representation, in-
stead of solely using the latent-context embedding. This is achieved by employing a pre-
combining strategy, where the latent-context embedding is processed in the term fusion 
prior to the feature fusion process. 

Figure 4 demonstrates the representation fusion module in LCII-Post. Contrasting 
with LCII-Pre, the LCII-Post applies a post-combining strategy. This involves processing 
the latent-context embedding in the term fusion after the feature fusion process. The mod-
ule operates by first engaging in feature fusion with item embedding, followed by the 
subsequent incorporation of the latent-context embedding. This sequential integration of-
fers a distinct approach to synthesizing user interaction data into a cohesive preference 
representation. The preference representation serves as the input to the Outer GRU in the 
subsequent module, as described next. 

  

Wpl: long-term embeddings, Wps: short-term embeddings1.  Fix: (pl * Wpl) ‘CONCATE’ (ps * Wps); pl, ps: fixed value 2.  LP: (P Wpl) ‘CONCATE’ (PS Wps); PL, PS: learnable vectors
Term Fusion

( Fix / LP )

Feature Fusion
( Addition / / Attention-Gate )

(i) Feature fusion representation

3. Attention-Gate: 
x = (x1, x2, …, xv); c = (c1, c2, …, cv)

= tanh ( + ), : t-th item embedding

= tanh ( + ), t-th latent context embedding

*: scalar multiplication; : element-wise multiplication 

1. Addition: +
: element-wise 

multiplication (x, c)

(ii) Term fusion representation

Figure 5. Representation Fusion module—LCII.



Future Internet 2024, 16, 51 8 of 14

In the basic LCII model, the feature fusion representation is directly used as the
preference representation. The LCII-Pre and LCII-Post strategies use additional ‘term fusion’
to generate the preference representation, as described below.

Figure 5(ii) shows that term fusion is accomplished by either fix fusion or LP (learned-
parameters) fusion. First, we determine the window size to separate the long-term and
short-term preferences, using the latent-context list as a source. For example, setting the
window of 30% for a sequence of 19 items will use the last 30 percent of the latent-context
embedding as short-term preference, thus (C14, C15, . . ., C19) as short-term preference and
(C1, C2, . . ., C13) as long-term preference. Second, the long-term weight and the short-term
weight are then decided either by a fixed setting (denoted as Fix) or by learned-parameters
(denoted by LP). Let Wpl and Wps respectively be the long-term embedding and short-term
embedding. Fix (term) fusion applies preset values by multiplying Wpl with a preset pl
value and Wps with a preset ps value, and then concatenates these multiplied embeddings
to form the term fusion representation.

LP (term) fusion dynamically learns the appropriate weights for the embeddings. It
begins by initializing the long-term vector PL and the short-term vector PS with random
values. During the training process, these vectors are continuously updated through
iterations. The fusion involves element-wise multiplication of PL with the long-term
embedding Wpl, and PS with the short-term embedding Wps. After the multiplications,
these results are concatenated to create the final term-fusion representation.

Figure 3 illustrates the representation fusion module in LCII-Pre. In this configuration,
the module incorporates item embedding with the term fusion representation, instead of
solely using the latent-context embedding. This is achieved by employing a pre-combining
strategy, where the latent-context embedding is processed in the term fusion prior to the
feature fusion process.

Figure 4 demonstrates the representation fusion module in LCII-Post. Contrasting
with LCII-Pre, the LCII-Post applies a post-combining strategy. This involves processing
the latent-context embedding in the term fusion after the feature fusion process. The
module operates by first engaging in feature fusion with item embedding, followed by
the subsequent incorporation of the latent-context embedding. This sequential integration
offers a distinct approach to synthesizing user interaction data into a cohesive preference
representation. The preference representation serves as the input to the Outer GRU in the
subsequent module, as described next.

3.2.4. Sequence Processing Module

The preference representation, along with the Inner GRU’s predictive representation,
is input into the Outer GRU for prediction purposes. The embeddings from the preference
representation are then sequentially fed into the Outer GRU. The first element of the Inner
GRU’s predictive representation is used as the initial state for the Outer GRU’s hidden
state. This approach, detailed in study [16], specifically addresses the cold-start problem
in RNNs [10,16,19]. Assigning an initial value to the hidden state of the recurrent neural
network allows the model to learn and predict more efficiently [16]. The output from the
sequence processing module is subsequently used for prediction.

3.2.5. Prediction Module

The prediction module first derives a user preference representation during the se-
quence processing phase. This representation undergoes adjustment by a feedforward
neural network to align with the format of the original interaction records. The model’s
training involves a comparison of this representation against actual data (ground truth)
using the softmax cross-entropy loss function. This loss function is crucial for training
the model, by minimizing the difference between the predicted outputs and actual data.
For evaluating the model’s accuracy post-training, we employ standard accuracy metrics
during the testing phase. These metrics assess the model’s performance in ranking items by
relevance in actual user sessions. By following this approach, we ensure a clear distinction



Future Internet 2024, 16, 51 9 of 14

between the training phase, where cross-entropy is used for model optimization, and the
testing phase, where accuracy is evaluated based on the model’s ability to generate relevant
item recommendations using the top-k approach.

4. Experimental Results
4.1. Datasets and Pre-Processing

A total of three well-known datasets were used in the experiments: Steam [20], Movie-
Lens 1M [21], and Amazon [22]. The Steam dataset comprises video game platform
review data, featuring 2,567,538 users, 15,474 items, and 7,793,069 interaction records.
The MovieLens 1M dataset, known for its movie rating data, includes information about
item categories and encompasses 1,000,209 interaction records. The Amazon e-commerce
dataset focuses on clothing, shoes, and jewelry shopping data from 2012 to 2014, containing
402,093 users, 140,116 items, and 770,290 interaction records. With regard to the data
preprocessing method, Steam and MovieLens 1M datasets were preprocessed following
the method described in [10], while the Amazon dataset followed the method in [17].

The preprocessing details are as follows: For MovieLens 1M and Steam, the session
time division is set to one day (60 × 60 × 24 s); the maximum session length is capped at
200 for MovieLens 1M and 15 for Steam. The data filtering conditions are consistent across
datasets. For each user, there must be at least two sessions, and each session must have
a minimum of two interactions. Each interaction (i.e., item ID) should occur at least five
times, and the number of user interaction records (i.e., interaction number of items) should
be five or more. Additionally, the ratio of training to testing data is set at 8:2.

For the Amazon dataset, session division is based on interactions occurring at the
same time point, with a maximum session length of 20 and a minimum of three sessions.
The maximum session lengths for Steam, MovieLens 1M, and Amazon are 15, 200, and 20,
respectively. The ratio of training to testing is also 8 to 2. Table 2 lists the characteristics of
datasets after pre-processing.

Table 2. Characteristics of datasets after pre-processing.

Description Amazon MovieLens 1M Steam

Number of users 9733 1196 6330
Number of items 46,959 3328 4332

Number of actions 700,960 158,498 49,164

4.2. Evaluation Metrics and Parameter Settings

In our experiment, we adopted evaluation metrics such as Recall@K, MRR@K, and
NDCG@K. For Recall@K, we considered top-K predictions with K values set at 5, 10, and
20. The experimental settings for each dataset were optimized as follows: For Amazon,
the window ratio was 65 with an equal preference ratio of 0.5/0.5 for long-term and short-
term preferences, iterating 100 times at a learning rate of 0.001. Steam’s settings included a
window ratio of four, a preference ratio of 0.2/0.8, 200 iterations, and a learning rate of 0.001.
For MovieLens 1M, the window ratio was 30 with a preference ratio of 0.8/0.2, iterating
200 times at a learning rate of 0.01. The attention-gate was used for feature fusion, and a
fixed ratio was used for term fusion. Common hyperparameters were an embedding/GRU
hidden unit size of 80, one inner/outer GRU layer, a batch size of 100, and a dropout rate
of 0.8. We used the Adam optimizer and cross entropy loss function.

The feature fusion method utilizes the attention-gate, and the term fusion method
employs a fixed ratio. In our study, we set the embedding/GRU hidden unit size to 80
as a common parameter. This choice was informed by our findings that increasing the
embedding size beyond 80 does not significantly improve performance. This approach
also considers the training cost of the model. Other hyperparameters, set as common
parameters, include inner/outer GRU layers of 1, a batch size of 100, and a dropout rate of



Future Internet 2024, 16, 51 10 of 14

0.8. The experimental optimizer is the Adam optimizer, and the loss function used is the
cross entropy loss function.

4.3. Baseline Models

To evaluate the effectiveness of our proposed method, we conducted comparisons
with the following well-established methods:

• Most-Popular: This is one of the most commonly used recommendation methods,
which suggests the item that appears most frequently in each session.

• Item-kNN [12]: A prevalent recommendation method that relies on the scores gener-
ated by users’ ratings of items. It employs cosine similarity to recommend items with
similar attributes.

• II-RNN [16]: This model is a session-aware model which leverages the architecture of
inner and outer GRU as its primary framework for model learning.

• CAII [17]: This session-aware model is an extension of the method outlined in [16].
CAII incorporates context information, such as images and prices, into the model input.
For comparison, we use the CAII-P strategy, which has shown the best performance in
its experimental results.

• SASRec [23]: The method is based on the Transformer architecture. SASRec mod-
els the entire user sequence using a casual attention mask to consider item IDs for
recommendations.

• BERT4Rec [24]: A recommendation method based on the BERT architecture, which
employs bidirectional self-attention to model user behavior sequences. Through
the Cloze task [25], also known as the masked language model [26], it learns and
predicts recommendations.

• BERT4Rec+ST+TSA [26]: This is the most recent session-aware method, building upon
the foundation set by [24], enhanced with ST (session token) and TSA (temporal
self-attention) strategies.

• MCLRec [27]: One of the latest studies of session recommendation based on contrastive
learning.

4.4. Performance Comparisons
4.4.1. Performance of Different Feature Fusion Strategies

Given that the Amazon dataset is compatible with all recommendation methods under
consideration, we initially selected the feature fusion method based on this dataset. The
optimal solution identified here was then applied to subsequent experimental analyses.
For these experiments, we utilized the LCII model. Three feature fusion strategies were
examined: sum, element-wise multiplication (⊙), and the attention-gate mechanism. The
experimental results are presented in Table 3, where the best result is highlighted in bold
and the second-best score is underlined, as will be marked in subsequent charts.

Table 3. Performance w.r.t. feature fusion strategies.

Feature
Fusion

Recall
@5

MRR
@5

NDCG
@5

Recall
@10

MRR
@10

NDCG
@10

Recall
@20

MRR
@20

NDCG
@20

Sum 0.2313 0.2208 0.1973 0.2339 0.2212 0.2132 0.2369 0.2214 0.2164
Element-wise Multiplication 0.2393 0.2194 0.2043 0.2475 0.2205 0.2224 0.2545 0.2210 0.2270

Attention-Gate 0.2407 0.2157 0.2060 0.2487 0.2168 0.2244 0.2553 0.2173 0.2300

The attention-gate mechanism mitigates conflicts in fusion between data with differing
feature content. By leveraging calculated weights, attention-gate assesses the influence
of each feature on the model, enabling it to prioritize certain feature information over
others during different time periods. This approach effectively reduces the dominance
of one feature type over another. In terms of prediction accuracy, without considering
sorting, attention-gate performs the best. When sorting, indices are taken into account,



Future Internet 2024, 16, 51 11 of 14

attention-gate still competes closely with the other two fusion methods. Therefore, based
on these experimental results, the attention-gate mechanism will be used for experimental
analysis in subsequent comparison models.

4.4.2. Performance of Different Windows

In the experiments, we will utilize the learning parameters ratio (LP) in LCII-Post
term fusion as the experimental model. The experiments in this section aim to validate the
effectiveness of the long-term and short-term strategies and to examine the division between
them. An inadequately sized window, either too small or too large, may result in suboptimal
performance. Finding the right balance between long and short-term considerations is a
crucial aspect of this experimental phase.

Table 4 presents the experimental results on the Amazon dataset. When the window
is set to 65%, the MRR reaches its optimum, suggesting that this setting effectively brings
the real recommendation target closer to the top of the list. In other words, using 65% of
the information in the capture window as a short-term preference can effectively prioritize
the recommendation target. More experimental results are summarized here: For the
MovieLens 1M dataset, the optimal window setting is 30%, with 35% being the second best.
For the Steam dataset, the best parameter setting is a window of 4%, followed closely by
3%. These experiments demonstrate that different datasets have unique characteristics for
the optimal parameter. Subsequent experiments will therefore employ the optimal window
setting for each dataset as a fixed parameter for comparative analysis.

Table 4. Performance w.r.t. window size.

Window
Size (%)

Recall
@5

MRR
@5

NDCG
@5

Recall
@10

MRR
@10

NDCG
@10

Recall
@20

MRR
@20

NDCG
@20

20 0.2356 0.2118 0.2009 0.2448 0.2131 0.2200 0.2522 0.2136 0.2268
25 0.2364 0.2119 0.2015 0.2451 0.2131 0.2198 0.2537 0.2137 0.2269
30 0.2343 0.2118 0.2009 0.2433 0.2130 0.2190 0.2512 0.2136 0.2263
35 0.2340 0.2098 0.2002 0.2434 0.2111 0.2190 0.2523 0.2117 0.2266
40 0.2357 0.2118 0.2008 0.2455 0.2131 0.2197 0.2540 0.2137 0.2275
45 0.2356 0.2111 0.2013 0.2454 0.2124 0.2200 0.2534 0.2130 0.2274
50 0.2357 0.2120 0.2014 0.2447 0.2133 0.2198 0.2526 0.2138 0.2262
55 0.2366 0.2117 0.2009 0.2455 0.2128 0.2198 0.2532 0.2134 0.2272
60 0.2359 0.2132 0.2014 0.2445 0.2143 0.2205 0.2524 0.2149 0.2274
65 0.2365 0.2134 0.2017 0.2451 0.2145 0.2206 0.2517 0.2150 0.2271
70 0.2357 0.2122 0.2013 0.2446 0.2134 0.2201 0.2521 0.2139 0.2268
75 0.2344 0.2100 0.2008 0.2429 0.2111 0.2191 0.2527 0.2118 0.2274
80 0.2344 0.2115 0.2011 0.2432 0.2127 0.2192 0.2519 0.2133 0.2262

4.4.3. Long-Term and Short-Term Fixed Ratio Performance

In this section, we assess the recommendation performance using a fixed ratio (Fix)
for long/short-term preferences. The experiment tested various parameter settings, with
combinations of [long-term/short-term] preferences set at [0.8/0.2], [0.5/0.5], and [0.2/0.8].
Additionally, extreme setting combinations of [1/0] and [0/1] were evaluated, where the
former exclusively considers long-term preferences and completely disregards short-term
ones, while the latter does the opposite.

The experimental results are summarized below. From the Amazon dataset, it is
evident that both post-combine and pre-combine strategies achieve optimal performance
with a fixed ratio of [0.5/0.5]. This finding suggests that the representation model requires
a balanced consideration of both short-term and long-term preferences for best results.
For the MovieLens 1M dataset, the post-combine outcome mirrors that of Amazon, with
the optimal configuration for pre-combine being [0.8/0.2]. Notably, focusing solely on
short-term preference [0/1] deteriorates model performance. Incorporating long-term
information significantly enhances results, yet exclusively considering long-term preference
[1/0] is not the most effective strategy.



Future Internet 2024, 16, 51 12 of 14

Furthermore, the Steam dataset results indicate a bias towards short-term preference,
implying that information features significantly impact dataset performance. Consequently,
the best setting for post-combine is [0.2/0.8] and for pre-combine, is [0/1].

4.4.4. Overall Comparisons

The overall experimental results are presented in Tables 5–7, respectively, for datasets
Amazon, MoveiLens 1M, and Steam. Most-Popular and Item-kNN are not included when
their performance is far worse than the others. Our proposed method demonstrates the
best performance in most metrics across the three datasets. Specifically, LCII yields the
best results for Amazon, LCII-PreFix for MovieLens 1M, and LCII-PostFix for Steam. In
the MovieLens 1M dataset, LCII-PreFix outperforms II-RNN and BERT4Rec(+ST+TSA) in
Recall@20 by 1.85% and 2.54%, respectively, translating to relative increases of 7% and
9.9%. In the Steam dataset, LCII-PostLP shows a 18.66% and 5.5% higher performance
in Recall@20 compared to II-RNN and BERT4Rec(+ST+TSA), corresponding to relative
improvements of 39.88% and 9.2%. For Amazon’s Recall@20, LCII surpasses II-RNN and
CAII by 2.59% and 1.89%, respectively, indicating performance boosts of 11.3% and 8%.

Table 5. Overall performance w.r.t. Amazon dataset.

Model Recall
@5

MRR
@5

NDCG
@5

Recall
@10

MRR
@10

NDCG
@10

Recall
@20

MRR
@20

NDCG
@20

Most-Popular 0.0041 0.0022 0.0026 0.0075 0.0025 0.0039 0.0144 0.0030 0.0065
Item-kNN 0.2172 0.1796 0.1820 0.2239 0.1804 0.2044 0.2260 0.1806 0.2143

II-RNN 0.2238 0.2139 0.1926 0.2264 0.2143 0.2080 0.2294 0.2145 0.2117
CAII-P 0.2295 0.2115 0.1929 0.2342 0.2121 0.2081 0.2364 0.2123 0.2120
SASRec 0.0908 - 0.0821 0.1007 - 0.0853 0.1102 - 0.0877

BERT4Rec 0.1093 - 0.0900 0.1205 - 0.0936 0.1327 - 0.0967
BERT4Rec+ST+TSA 0.1231 - 0.1060 0.1343 - 0.1096 0.1409 - 0.1113

MCLRec 0.1933 - 0.1601 0.1956 - 0.1597 0.1873 - 0.1534
LCII 0.2407 0.2157 0.2060 0.2487 0.2168 0.2244 0.2553 0.2173 0.2300

LCII-PreLP 0.2360 0.2064 0.2017 0.2450 0.2077 0.2204 0.2529 0.2082 0.2275
LCII-PreFix 0.2368 0.2119 0.2019 0.2467 0.2133 0.2219 0.2538 0.2138 0.2281
LCII-PostLP 0.2357 0.2127 0.2008 0.2446 0.2140 0.2205 0.2528 0.2145 0.2279
LCII-PostFix 0.2371 0.2147 0.2029 0.2442 0.2156 0.2212 0.2519 0.2162 0.2273

Table 6. Overall performance w.r.t. MoveiLens 1M dataset.

Model Recall
@5

MRR
@5

NDCG
@5

Recall
@10

MRR
@10

NDCG
@10

Recall
@20

MRR
@20

NDCG
@20

II-RNN 0.4196 0.3955 0.3945 0.4401 0.3982 0.4158 0.4679 0.4001 0.4277
SASRec 0.4945 - 0.4160 0.5218 - 0.4675 0.5551 - 0.4760

BERT4Rec 0.4938 - 0.4622 0.5267 - 0.4729 0.5634 - 0.4820
BERT4Rec+ST+TSA 0.5423 - 0.5175 0.5692 - 0.5262 0.5995 - 0.5338

LCII 0.5904 0.5353 0.5430 0.6192 0.5391 0.5778 0.6514 0.5414 0.5925
LCII-PreLP 0.5860 0.5329 0.5409 0.6151 0.5368 0.5745 0.6450 0.5388 0.5885
LCII-PreFix 0.5923 0.5360 0.5453 0.6200 0.5397 0.5805 0.6527 0.5420 0.5965
LCII-PostLP 0.5936 0.5364 0.5449 0.6240 0.5404 0.5807 0.6545 0.5426 0.5945
LCII-PostFix 0.5961 0.5410 0.5506 0.6232 0.5446 0.5837 0.6526 0.5466 0.5978



Future Internet 2024, 16, 51 13 of 14

Table 7. Overall performance w.r.t. Stream dataset.

Model Recall
@5

MRR
@5

NDCG
@5

Recall
@10

MRR
@10

NDCG
@10

Recall
@20

MRR
@20

NDCG
@20

II-RNN 0.1160 0.0632 0.0183 0.1761 0.0711 0.0440 0.2636 0.0770 0.0981
SASRec 0.0920 - 0.0553 0.1522 - 0.0747 0.2400 - 0.0968

BERT4Rec 0.0686 - 0.0409 0.1396 - 0.0637 0.2308 - 0.0866
BERT4Rec+ST+TSA 0.0870 - 0.0513 0.1472 - 0.0707 0.2567 - 0.0981

LCII 0.1144 0.0598 0.0214 0.1809 0.0685 0.0501 0.2746 0.0749 0.1088
LCII-PreLP 0.0921 0.0467 0.0191 0.1518 0.0545 0.0442 0.2373 0.0604 0.0959
LCII-PreFix 0.1183 0.0624 0.0231 0.1852 0.0712 0.0527 0.2821 0.0778 0.1138
LCII-PostLP 0.0922 0.0479 0.0194 0.1483 0.0553 0.0433 0.2354 0.0612 0.0946
LCII-PostFix 0.1141 0.0606 0.0209 0.1800 0.0694 0.0482 0.2699 0.0755 0.1041

5. Conclusions

Our study introduces a groundbreaking approach to session-aware recommendations,
emphasizing the integration of latent-context features with both long-term and short-
term user preferences. The novel methodologies, particularly the LCII-Post and LCII-Pre
models, have demonstrated their superiority over traditional recommendation models in
our experiments with the MovieLens 1M and Steam datasets. This success highlights the
potential of our approach in enhancing the accuracy and relevance of recommendations.

The practical implications of our findings are noteworthy. The LCII model, in par-
ticular, emerges as a robust solution for real-world application scenarios. Its balance of
performance efficiency and lower execution time costs makes it an attractive option for
deployment in various recommendation system environments.

Looking towards future research, there are several promising avenues to explore.
The scalability of our proposed models to larger and more diverse datasets represents a
significant area for further investigation. Additionally, the integration of more nuanced
contextual information, such as user demographics or temporal usage patterns, could
further refine the accuracy and applicability of our recommendations.

Author Contributions: Conceptualization, M.-Y.L.; formal analysis, M.-Y.L.; investigation, M.-Y.L.
and P.-C.W.; methodology, M.-Y.L., P.-C.W. and S.-C.H.; supervision, M.-Y.L.; writing—original draft,
P.-C.W.; writing—review and editing, S.-C.H. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by National Science and Technology Council, Taiwan, un-
der grant number MOST109-2221-E-035-064 and by Feng Chia University, Taiwan, under grant
number 22H00310.

Data Availability Statement: The data presented in this study are available at https://github.com/
Junwu0615/LCII-Rec-Model (accessed on 1 December 2023).

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Cui, Q.; Wu, S.; Huang, Y.; Wang, L. A Hierarchical Contextual Attention-Based GRU Network for Sequential Recommendation.

arXiv 2017, arXiv:1711.05114. Available online: https://arxiv.org/abs/1711.05114 (accessed on 23 September 2022).
2. Hidasi, B.; Karatzoglou, A.; Baltrunas, L.; Tikk, D. Session-Based Recommendations with Recurrent Neural Networks. In

Proceedings of the International Conference on Learning Representations, San Diego, CA, USA, 7–9 May 2015. Available online:
https://arxiv.org/abs/1511.06939 (accessed on 20 October 2022).

3. Hidasi, B.; Karatzoglou, A.; Quadrana, M.; Tikk, D. Parallel Recurrent Neural Network Architectures for Feature-rich Session-
Based Recommendations. In Proceedings of the 10th ACM Conference on Recommender Systems (RecSys ‘16), Boston, MA, USA,
15–19 September 2016; pp. 241–248. [CrossRef]

4. Hidasi, B.; Karatzoglou, A. Recurrent Neural Networks with Top-k Gains for Session-Based Recommendations. In Pro-
ceedings of the 27th ACM International Conference on Information and Knowledge Management (CIKM ‘18), Torino, Italy,
22–26 October 2018; pp. 843–853. [CrossRef]

https://github.com/Junwu0615/LCII-Rec-Model
https://github.com/Junwu0615/LCII-Rec-Model
https://arxiv.org/abs/1711.05114
https://arxiv.org/abs/1511.06939
https://doi.org/10.1145/2959100.2959167
https://doi.org/10.1145/3269206.3271761


Future Internet 2024, 16, 51 14 of 14

5. Li, J.; Ren, P.; Chen, Z.; Ren, Z.; Lian, T.; Ma, J. Neural Attentive Session-Based Recommendation. In Proceedings of the 2017
ACM on Conference on Information and Knowledge Management (CIKM ‘17), Singapore, 6–10 November 2017; pp. 1419–1428.
[CrossRef]

6. Song, W.; Wang, S.; Wang, Y.; Wang, S. Next-Item Recommendations in Short Sessions. In Proceedings of the 15th ACM
Conference on Recommender Systems (RecSys ‘21), Amsterdam, The Netherlands, 27 September–1 October 2021; pp. 282–291.
[CrossRef]

7. Guo, Y.; Zhang, D.; Ling, Y.; Chen, H. A Joint Neural Network for Session-Aware Recommendation. IEEE Access 2020, 8,
74205–74215. [CrossRef]

8. Gu, W.; Dong, S.; Zeng, Z. Increasing Recommended Effectiveness with Markov Chains and Purchase Intervals. Neural Comput.
Appl. 2014, 25, 1153–1162. [CrossRef]

9. Phuong, T.M.; Thanh, T.C.; Bach, N.X. Neural Session-Aware Recommendation. IEEE Access 2019, 7, 86884–86896. [CrossRef]
10. Seol, J.J.; Ko, Y.; Lee, S.G. Exploiting Session Information in BERT-Based Session-Aware Sequential Recommendation. In

Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ‘22),
Madrid, Spain, 11–15 July 2022; pp. 2639–2644. [CrossRef]

11. Gu, G.Y.; Yanxiang, L.; Chen, H. A Neighbor-Guided Memory-Based Neural Network for Session-Aware Recommendation. IEEE
Access 2020, 8, 120668–120678. [CrossRef]

12. Sarwar, B.; Karypis, G.; Konstan, J.; Reidl, J. Item-Based Collaborative Filtering Recommendation Algorithms. In Proceedings of
the 10th International Conference on World Wide Web, Hong Kong, China, 1–5 May 2001; pp. 285–295.

13. Linden, G.; Smith, B.; York, J. Amazon.com Recommendations: Item-To-Item Collaborative Filtering. IEEE Internet Comput. 2003,
7, 76–80. [CrossRef]

14. Luo, X.; Zhou, M.; Li, S.; Shang, M. An Inherently Nonnegative Latent Factor Model for High-Dimensional and Sparse Matrices
from Industrial Applications. IEEE Trans. Ind. Inform. 2018, 14, 2011–2022. [CrossRef]

15. Luo, X.; Zhou, M.; Li, S.; Xia, Y.; You, Z.H.; Zhu, Q.; Leung, H. Incorporation of Efficient Second-Order Solvers Into Latent Factor
Models for Accurate Prediction of Missing QoS Data. IEEE Trans. Cybern. 2018, 48, 1216–1228. [CrossRef] [PubMed]

16. Ruocco, M.; Skrede, O.S.L.; Langseth, H. Inter-Session Modeling for Session-Based Recommendation. In Proceedings of the 2nd
Workshop on Deep Learning for Recommender Systems (DLRS 2017), Como, Italy, 27 August 2017; pp. 24–31. [CrossRef]

17. Hsueh, S.C.; Shih, M.S.; Lin, M.Y. Context Enhanced Recurrent Neural Network for Session-Aware Recommendation. In
Proceedings of the 28th International Conference on Technologies and Applications of Artificial Intelligence, Yunlin, Taiwan,
1–2 December 2023.

18. Barkan, O.; Koenigstein, N. ITEM2VEC: Neural Item Embedding for Collaborative Filtering. In Proceedings of the IEEE 26th
International Workshop on Machine Learning for Signal Processing (MLSP), Vietri sul Mare, Italy, 13–16 September 2016; pp. 1–6.
[CrossRef]

19. Cui, Q.; Wu, S.; Liu, Q.; Zhong, W.; Wang, L. MV-RNN: A Multi-View Recurrent Neural Network for Sequential Recommendation.
IEEE Trans. Knowl. Data Eng. 2020, 32, 317–331. [CrossRef]

20. Steam Dataset. Available online: https://cseweb.ucsd.edu/~jmcauley/datasets.html#steam_data (accessed on 20 October 2022).
21. MovieLens Dataset. Available online: https://grouplens.org/datasets/movielens/ (accessed on 20 October 2022).
22. Amazon Dataset. Available online: http://jmcauley.ucsd.edu/data/amazon (accessed on 20 October 2022).
23. Kang, W.C.; McAuley, J. Self-Attentive Sequential Recommendation. In Proceedings of the IEEE International Conference on Data

Mining (ICDM), Singapore, 17–20 November 2018; pp. 197–206. [CrossRef]
24. Sun, F.; Liu, J.; Wu, J.; Pei, C.; Lin, X.; Ou, W.; Jiang, P. BERT4Rec: Sequential Recommendation with Bidirectional Encoder

Representations from Transformer. In Proceedings of the 28th ACM International Conference on Information and Knowledge
Management (CIKM ‘19), Beijing, China, 3–7 November 2019; pp. 1441–1450. [CrossRef]

25. Taylor, W.L. Cloze Procedure: A New Tool for Measuring Readability. J. Q. 1953, 30, 415–433. [CrossRef]
26. Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. BERT: Pre-Training of Deep Bidirectional Transformers for Language Under-

standing. In Proceedings of the North American Association for Computational Linguistics (NAACL), Minneapolis, MN, USA,
2–7 June 2019; pp. 4171–4186.

27. Qin, X.; Yuan, H.; Zhao, P.; Fang, J.; Zhuang, F.; Liu, G.; Liu, G.; Sheng, V. Meta-optimized Contrastive Learning for Sequential
Recommendation. In Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information
Retrieval (SIGIR ’23), Taipei, Taiwan, 23–27 July 2023; pp. 89–98.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1145/3132847.3132926
https://doi.org/10.1145/3460231.3474238
https://doi.org/10.1109/ACCESS.2020.2984287
https://doi.org/10.1007/s00521-014-1599-8
https://doi.org/10.1109/ACCESS.2019.2926074
https://doi.org/10.1145/3477495.3531910
https://doi.org/10.1109/ACCESS.2020.3006360
https://doi.org/10.1109/MIC.2003.1167344
https://doi.org/10.1109/TII.2017.2766528
https://doi.org/10.1109/TCYB.2017.2685521
https://www.ncbi.nlm.nih.gov/pubmed/28422674
https://doi.org/10.1145/3125486.3125491
https://doi.org/10.1109/MLSP.2016.7738886
https://doi.org/10.1109/TKDE.2018.2881260
https://cseweb.ucsd.edu/~jmcauley/datasets.html#steam_data
https://grouplens.org/datasets/movielens/
http://jmcauley.ucsd.edu/data/amazon
https://doi.org/10.1109/ICDM.2018.00035
https://doi.org/10.1145/3357384.3357895
https://doi.org/10.1177/107769905303000401

	Introduction 
	Related Work 
	Proposed Method 
	Problem Statements 
	LCII Architecture 
	Embedding Module 
	Context Generation Module 
	Representation Fusion Module 
	Sequence Processing Module 
	Prediction Module 


	Experimental Results 
	Datasets and Pre-Processing 
	Evaluation Metrics and Parameter Settings 
	Baseline Models 
	Performance Comparisons 
	Performance of Different Feature Fusion Strategies 
	Performance of Different Windows 
	Long-Term and Short-Term Fixed Ratio Performance 
	Overall Comparisons 


	Conclusions 
	References

