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Abstract: Increasing global credit card usage has elevated it to a preferred payment method for
daily transactions, underscoring its significance in global financial cybersecurity. This paper in-
troduces a credit card fraud detection (CCFD) system that integrates federated learning (FL) with
blockchain technology. The experiment employs FL to establish a global learning model on the
cloud server, which transmits initial parameters to individual local learning models on fog nodes.
With three banks (fog nodes) involved, each bank trains its learning model locally, ensuring data
privacy, and subsequently sends back updated parameters to the global learning model. Through
the integration of FL and blockchain, our system ensures privacy preservation and data protection.
We utilize three machine learning and deep neural network learning algorithms, RF, CNN, and
LSTM, alongside deep optimization techniques such as ADAM, SGD, and MSGD. The SMOTE
oversampling technique is also employed to balance the dataset before model training. Our proposed
framework has demonstrated efficiency and effectiveness in enhancing classification performance
and prediction accuracy.

Keywords: credit card fraud; financial fraud; fraud detection; federated learning; blockchain; fog
computing; cybersecurity; privacy preservation; data protection

1. Introduction
1.1. Credit Card Fraud

In the contemporary era, technology permeates nearly every field of our lives, from
education and healthcare to finance, economics, industry, trade, politics, and entertainment.
The methods through which consumers conduct transactions have undergone profound
transformation and expansion in recent years. As a result, the surge in electronic commerce
(e-commerce) and online credit card transactions for purchases and payments can be
directly linked to the evolution of modern lifestyles, technology advancements, and the
ubiquitous presence of online applications.

According to industry research, merchants are projected to incur losses of USD 130 bil-
lion from fraudulent transactions between 2018 and 2023 [1]. Many financial institutions
allocate a security budget ranging from 20% to 30%, known as extended detection and
response (XDR), considered a top priority in their security investments [2]. Credit card
fraud occurs when a fraudster unlawfully uses someone’s credit card, either online or
physically, by stealing credit card information for unauthorized transactions. Fraudsters
continually innovate fraud methods to breach credit card systems and conduct unautho-
rized transactions. Credit card fraud, whether offline or online, can occur without the
authorization or permission of the cardholder. Offline credit card fraud takes place when a
fraudulent individual physically uses a credit card at a point-of-sale (POS) terminal. On the
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other hand, online credit card fraud occurs when a fraudster steals credit card information
and conducts unauthorized transactions or payments over the internet [3,4].

As widely acknowledged, AI and ML methodologies have showcased their efficacy
and efficiency in detecting anomalies and fraud across diverse domains, including credit
card transactions. Leveraging machine learning-based fraud detection presents numerous
benefits, including automated fraud identification, real-time processing, minimized verifi-
cation durations, and the capacity to uncover latent correlations within data. Conversely,
conventional fraud detection methods entail the manual establishment of decision rules,
consuming considerable time, necessitating multiple verification procedures (potentially
inconveniencing users), and primarily detecting overt fraudulent activities [3,4].

1.2. Fraud Detection System Challenges and Limitations

Although many credit card fraud detection (CCFD) systems and frameworks have
been proposed in the academic and industrial sectors, they face numerous challenges and
limitations that disturb their efficiency and effectiveness. These issues demand heightened
attention for resolution, encompassing concerns such as imbalanced data, adversarial
attacks, feature engineering, real-time detection, the cost of false positives, and data privacy,
as described below [5–13]:

• Unavailability of public datasets: The unavailability of public datasets, particularly
real-world credit card datasets, is attributed to confidentiality concerns, making it
challenging to access data due to privacy considerations for cardholders.

• Imbalanced data and skewed class distribution: The imbalance in class distribution is
a critical issue that affects prediction accuracy.

• Changes of fraud methods and patterns: Fraudsters persistently devise novel attack
and fraud tactics to outwit CCFD systems, allowing them to evade the detection
of both new and previously unseen fraudulent transactions. They employ various
adversarial techniques such as data poisoning, evasion attacks, and manipulation of
input data to deceive the model.

• Changes in cardholder’s behavior: The CCFD system encounters challenges in fraud
detection due to the continuous changes in cardholders’ behavior over time. These
changes are not uniform across all cardholders’ lives.

• Concept drift: This occurs when the ML classifier model, trained on historical data,
becomes outdated or less effective when deployed in a dynamic environment due to
changing data distribution. This can prevent its ability to detect all fraud patterns,
as expected.

• Real-time detection system: Establishing a real-time detection system is essential
for effective fraud prevention. However, it becomes increasingly challenging in
environments with high transaction volumes and large datasets. Any delay in fraud
detection can lead to financial losses for cardholders and financial institutions.

• False alarms: A rise in false alarms can detrimentally affect the accuracy and reliability of
CCFD systems, potentially causing problems for individuals and financial institutions.

• Data privacy: Data privacy and protection are crucial aspects that demand heightened
focus. However, the challenge lies in accessing publicly available data for conducting
experiments, presenting a significant obstacle for CCFD system developers due to
these concerns.

• Many ML techniques classify one class more accurately than the other: Each machine
learning (ML) or deep learning (DL) algorithm possesses its own set of advantages
and disadvantages, which allow it to detect certain patterns while potentially missing
others effectively. Some algorithms may perform well in detecting one class of data
but struggle with others, or they may excel in specific detection systems but falter
in others.

Therefore, there is a pressing need to develop robust CCFD systems that integrate
various techniques to enhance their strength and efficiency. These techniques may include
cloud computing, fog computing, edge computing, IoT, blockchain, and more. Additionally,
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integrating a combination of machine learning (ML) or deep learning (DL) algorithms is
essential to bolster the strength of the CCFD system, leveraging the advantages of each
algorithm to create a robust detection system.

1.3. Problem Statement and Motivation

The increase in credit card fraud is readily apparent in various aspects of modern
life, both physical and electronic. This issue has garnered significant attention in research
circles, being recognized as a trending topic due to its direct impact on individuals and
financial institutions, leading to financial losses. Consequently, numerous credit card
fraud (CCFD) systems have been proposed in academic and industrial domains. The
primary focus of these systems has been to enhance fraud detection accuracy and overall
performance. Numerous challenges and issues confront credit card fraud detection (CCFD)
systems, presenting obstacles and security vulnerabilities. These include preserving privacy,
preserving cardholders’ data, ensuring the availability of online fraud detection systems,
detecting previously unseen fraudulent transactions, adapting to evolving fraud methods,
and understanding changes in cardholders’ behavior.

While deploying these CCFD systems on cloud servers offers heightened performance
and computational capabilities, it also raises data privacy and protection concerns. There-
fore, our objective is to enhance the performance and accuracy of these CCFD systems while
preserving privacy and data protection. To achieve this, our paper proposes a robust CCFD
system that integrates various techniques, including cloud computing, fog computing,
federated learning, and blockchain.

Specifically, we concentrate on integrating federated learning with blockchain to
enhance the classification performance, prediction accuracy, and data protection capabilities
of our CCFD system.

1.4. Proposed Work Contributions

We propose the blockchain-federated learning credit card fraud detection system,
which includes the following key contributions:

• Addressing the issue of skewed classes in the datasets, we employ the Synthetic
Minority Oversampling Technique (SMOTE) to balance the dataset before training
our models.

• Recognizing the significance of preserving privacy and data protection for maintain-
ing institutional reputations, we incorporate blockchain and federated learning (FL)
into our credit card fraud detection system to ensure these aspects for our cardhold-
ers (clients).

• Utilizing three machine and deep learning algorithms (RF, CNN, LSTM) to develop
multiple, self-improving, and maintainable fraud detection models enhances the
system structure and learning module.

• Incorporating deep optimization techniques (ADAM, SGD, MSGD) into our detection
system to adjust neural network attributes, such as weights and learning rates, reduces
overall loss and improves prediction accuracy.

1.5. Paper Organization

The rest of this article is organized as follows: Section 2 explains the background,
and Section 3 discusses the related research papers. Section 4 proposes the design for our
predictive framework and the methodology used in our experiment. Section 5 describes the
experimental results and performance evaluation. Finally, Section 6 presents the conclusion
of this paper and summarizes this and future work.

2. Background

Federated learning (FL), as shown in Figure 1, is a machine learning technique that
significantly contributes to preserving privacy and protecting data during the learning
process. In federated learning, two types of learning models exist: local and global learning
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models. The global learning model resides in the cloud server and distributes parameters
to the local learning models. These local fog node models receive the parameters and
conduct model learning locally. Subsequently, the updated parameters are sent back to
the global model. These updated parameters iteratively proceed forward and backward
until reaching the target with the minimum error, as explained in Algorithm 1 [14,15].
Integrating of FL and blockchain in credit card services ensure preserved privacy, data
protection, decentralized storage, secure payment networks, and automated tasks [16,17].

Figure 1. Federated learning.
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Algorithm 1: Federated Learning Algorithm

Data: Node local datasets {D1, D2, ..., Dn};
Global model parameters θ;
Learning rate η
Result: Updated global model parameters θ
Initialize global model parameters θ;
while not reached convergence do

Randomly select a subset of nodes (local models) N ⊂ {1, 2, ..., n};
for each node i ∈ N do

Send current global model parameters θ to node i;
Node i computes local updates using dataset Di: θi ← θ − η∇ℓi(θ);
Send local updates θi back to server (global model);

end
Aggregate local updates to update global model parameters: θ ← 1

|N| ∑i∈N θi;

end

Federated learning is a recent ML technique that has gained popularity for its ability
to train ML classifier models on local devices or servers without sharing private data with
cloud servers, thus ensuring privacy preservation and data protection. Various applications
leverage federated learning, including healthcare, financial services, smartphones and
IoT devices, autonomous vehicles, telecommunications, manufacturing, retail, energy and
utilities, agriculture, and government and public services. McMahan et al. proposed a
distributed ML technique called federated learning (FL) in [14]. It presented a practical
method for the federated learning of deep networks based on iterative model averaging,
and it conducted a comprehensive empirical evaluation across five different models and
four datasets.

Zhang et al. proposed “FedSI”, a novel federated continual learning method that
adapts the synaptic intelligence method to the federated learning scenario. This approach
aims to enhance performance on non-IID data by incorporating knowledge from other
local models. They developed CFedSI, a communication-efficient federated continual
learning method that reduces communication overheads by employing the bidirectional
compression and error compensation (BCEC) algorithm. This BCEC algorithm works
on compressing transmitted data, both uplink and downlink, while ensuring training
divergence through error compensation [18].

Cicceri et al. introduced a “DILoCC” framework to oversee various devices, includ-
ing wearable devices, sensors, and applications. This architecture utilized a Distributed
Incremental Learning (DIL) approach, enabling collaboration among the sensing devices.
Additionally, it enhances system efficiency by mitigating the repercussions of “Catastrophic
Forgetting”. Hence, the paper elucidated how IoMT and wearable devices enhance health-
care through predictive ICT systems. Additionally, “DILoCC” oversees wearables using a
Distributed Incremental Learning approach [19].

In their paper, Rauniyar et al. [20] explored the utilization of Federated Learning (FL)
technology in medical applications. They provided an overview of current research trends
and outcomes aimed at designing reliable and scalable FL models. Zhan et al. introduced
a taxonomy of existing incentive mechanisms for federated learning, accompanied by
comparison and contrast of various approaches to incentive mechanisms [21]. Many re-
search papers have proposed surveys and conducted in-depth discussions about federated
learning technology, as indicated in Table 1.

Blockchain is a new technology with decentralized storage, tamper resistance, and
traceability. It operates as a distributed ledger consisting of multiple nodes. Therefore,
each node stores all data independently of a central authority. A blockchain consists of a
series of blocks that hold specific information connected to form a chain structure in the
chronological order in which they are generated. It utilizes cryptographic knowledge to
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ensure its immutability and unforgeability. Therefore, blockchain technology prevents data
tampering, and forgery, and provides flexibility in tracing data [22–24].

Table 1. The most referenced survey papers in federated learning research.

Paper Cited # Year Area Contribution

[25] 1200 2020 FL, Mobile Edge
Network

FL enables collaborative training and DL for mobile edge
network optimization

[26] 423 2021 FL and IoT Survey of FL applications in IoT networks
[27] 320 2021 FL and ML Comparing different ML-based deployment architectures on FL
[28] 313 2020 FL and ML Overview of FL enabling technologies, protocols, and applications

[29] 310 2021 FL and IoT Recent advances of federated learning towards enabling federated
learning-powered IoT applications

[30] 268 2023 FL and data mining Comprehensive review on federated learning systems

[31] 267 2021 FL and ML Survey desirable criteria and future directions in communication and
networking systems

[32] 240 2023 FL and edge
computing Explores the domain of personalized FL and taxonomy of PFL techniques

[33] 237 2022 FL and IoT Surveys problem statements and emerging challenges of applying FL
within heterogeneous IoT

[34] 194 2020 FL and IoT Surveys existing studies on FL and its use in wireless IoT

[35] 151 2020 FL and ML Highlights the need for personalization and surveys recent research on
this topic

[36] 145 2022 FL and ML
Discusses several approaches that address the performance issues
associated with FL impact on the security and overall performance of
the IoT

[37] 134 2020 FL Data-driven learning model-based cooperative localization and location
data processing with emerging machine learning and big data methods

[38] 119 2022 FL and cybersecurity Extensive study on the ability of FL to provide better cybersecurity and
prevent various cyberattacks in real times

[21] 88 2022 FL Surveys the incentive mechanism design for federated learning

[39] 87 2021 FL and cybersecurity Comprehensive survey of the unique security vulnerabilities exposed by
the FL ecosystem

[40] 76 2022 FL and cybersecurity Comprehensive survey on privacy and robustness in FL over the past
five years

[41] 66 2022 FL and deep learning Analyzes and presents the main ideas based on differential privacy (DP)
to guarantee users’ privacy in DL and FL

[42] 64 2022 FL and blockchain Survey on the synergy of FL and blockchain to enable drone edge
intelligence for green sustainable environments

[43] 51 2023 FL and IoT and
cybersecurity

Survey on the existing intrusion detection solutions proposed for the IoT
ecosystem including IoT devices, fog computing, and cloud
computing layers

[44] 49 2021 FL and ML Reviews existing contemporary works and Explains the challenges of
each type of FL survey

[45] 46 2023 FL and IoMT Presents privacy-related issues in IoMT
[46] 35 2022 FL and blockchain Presents a solution taxonomy of BC-based FL in UAVs for B5G networks

[47] 33 2023 FL and IoT
Provides a novel federal classification between cloud, edge, and fog, and
presents a comprehensive research roadmap on offloading for different
federated scenarios

[48] 25 2022 FL and data privacy Survey reviews the Privacy-Preserving Aggregation (PPAgg) protocols
proposed to address privacy and security issues in FL systems

[49] 23 2022 FL and privacy Discusses the current state of research on blockchain and FL

[50] 21 2020 FL Reviews related studies of FL to base on the baseline a universal
definition gives a guiding for the future work

[51] 21 2022 FL and blockchain Proposes an FL-based layered healthcare informatics architecture along
with the case study on FL-based electronic health records (FL-EHR)

[52] 20 2024 FL and adversarial
attacks

Provides a comprehensive understanding of the attacks’ effect by
identifying FL attacks with low budgets, low visibility, and high impact.
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The integration of federated learning (FL) and blockchain introduces intricate computa-
tional and operational challenges, potentially amplifying the costs associated with deployment
and maintenance. This complexity arises due to various factors, including the following [53–56]:

• Computational Overhead: Integrating these two technologies may impose significant
computational demands, particularly in handling large-scale data. This arises from the
necessity of coordinating multiple devices or servers for model training, the crypto-
graphic operations required for transaction validation and the consensus mechanisms
inherent in blockchain applications.

• Data Synchronization: Employing federated learning involves utilizing distributed
data sources, with each node training a local model using its respective data. However,
this introduces an additional layer of complexity, necessitating the maintenance of data
consistency and synchronization across multiple nodes within a blockchain network.

• Scalability Challenges: While federated learning (FL) and blockchain systems are
scalable to handle large volumes of data and network devices and nodes, their scal-
ability can lead to increased communication overhead and consensus latency in FL
and blockchain networks. These factors can result in performance bottlenecks and
elevated operational costs.

• Security and Privacy Concerns: Federated learning (FL) relies on sharing model pa-
rameter updates and aggregating information among nodes, raising concerns about
data privacy and confidentiality. Integrating FL with blockchain introduces additional
privacy challenges due to the inherent transparency of blockchain technology. Further-
more, blockchain presents complex cryptographic challenges in safeguarding sensitive
information while ensuring integrity.

• Regulatory Compliance: The intersection of federated learning (FL) and blockchain
introduces challenges regarding regulatory compliance. Ensuring compliance with
data protection regulations, privacy laws, and industry standards adds complexity
and may incur additional compliance costs. Compliance with these regulations and
standards is essential but may necessitate additional resources and considerations.

3. Related Work

Many researchers are interested in developing robust credit card fraud detection
systems due to the increasing number of fraudulent transactions worldwide and the sub-
stantial financial losses incurred, negatively impacting financial institutions, communities,
and individuals.

Wang et al. [57] presented a fraud detection system (AFLCS) employing FL models
based on the CNN algorithm with Approx-SMOTE. This system not only enhanced the
existing credit card fraud detection system but also significantly reduced processing time by
up to 30 times without compromising performance. Integrating salt and interference items
strengthened security measures, preventing external intruders and internal pretenders
from accessing the original text, thereby improving the privacy and security of data.

Zheng et al. [58] proposed a novel federated meta-learning framework for fraud
detection, enabling banks to learn a fraud detection model from distributed local models
stored in their respective local databases. A centralized global learning model aggregates
parameter updates from locally computed updates of the fraud detection model. This
approach aims to safeguard privacy and protect the sensitive information of cardholders.
Additionally, the authors formulated an enhanced triplet-like metric learning, designed
a novel meta-learning-based classifier, and employed joint comparison with K negative
samples in each mini-batch.

Abdul Salam et al. [59] introduced a credit card fraud detection (CCFD) system
based on federated learning, implemented using TensorFlow Federated and PyTorch
frameworks. This experiment involved a comparative analysis of different individual and
hybrid resampling techniques to tackle skewed datasets. This paper clarified that hybrid
resampling methods outperformed deep learning classification models, yielding superior
results for machine learning classification models.
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Yang et al. [60] presented a framework that utilizes federated learning to train fraud
detection models locally. FFD allows banks to preserve privacy and protect data by training
data locally without sharing datasets, thereby enabling accurate fraud detection. The global
learning model is based on aggregating local learning models. Additionally, oversampling
methods were applied to address the issue of skewed datasets.

Bian and Zheng [61] employed federated learning to enhance the accuracy of credit
card fraud detection. It utilized real-world credit card transaction datasets and employed a
Dirichlet distribution to randomly allocate sample data to 10 simulated banks. This paper
introduces a novel algorithm that considers the weight of the positive class (class 1), and it
introduces an innovative approach to model the distance within the aggregation strategy.

Our experiment was based on a comparison with the frameworks presented in two re-
search papers [57,58], which evaluated their performance and results against a list of
state-of-the-art related works. These state-of-the-art research papers have proposed credit
card fraud detection methods using the same dataset, namely the European credit card
dataset, including BMR [62], APATE [63], PD-FDS [64], SPD [65], CMAB [66], RawLR [67],
RMNLS [68], FlowScope [69], FD-META [58], and APPROX-SMOTE [57], as compared later
in our paper and listed in Table 2.

Table 2. List of related works and state of the art.

Paper Year Framework Methods Limitations

[62] 2014 BMR
Detecting credit card fraud using the Bayes
minimum risk approach to achieve improved
results, quantified by monetary savings

Probability estimations are not consistently accurate
across all classification algorithms. Additionally,
utilizing the full dataset tends to yield better results
compared to under-sampling, which is less effective.

[68] 2015 RMNLS
Utilizing undersampling to address a class
imbalance. Incorporating investigators’ feedback to
enhance the accuracy of alerts

Non-stationary data distribution. Highly
unbalanced class distributions.

[63] 2016 APATE
Preventing a transaction by employing a
graph-based automated fraud detection system
before approving it

Utilizing a redesigned APATE tailored to the
e-commerce sector’s realities by incorporating a
limited set of confirmed fraudulent transactions

[64] 2017 PD-FDS
A fraud detection system based on purchase density
does not necessitate the presence of pre-existing
fraudulent transactions

Various fraud detection systems are employed by
payment service providers, as well as the potential
risk of personal information exposure in credit
card transactions

[65] 2017 SPD

Representing transactions in a bipartite graph
enables the identification of suspicious patterns
from known compromised cards. This involves
defining new attributes to capture suspiciousness
and employing a non-linear classifier for evaluation

Not mentioned

[66] 2018 CMAB
A modified version of the Contextual Multi-Armed
Bandit algorithm outperforms commonly employed
offline models in terms of cumulative rewards

Balancing between exploration and exploitation.
Demonstrates superior performance over offline
models, particularly in scenarios involving
concept drift

[67] 2018 RawLR

Grouping cardholders according to similar
transaction behaviors Aggregating transactions,
extracting behavioral patterns, training classifiers,
and implementing a feedback mechanism

Not Mentioned

[69] 2020 FlowScope

FlowScope surpasses state-of-the-art baselines in
accurately identifying accounts engaged in money
laundering, across both injected and real-world
data scenarios

Current methods concentrate on detecting dense
subgraphs. Decreased accuracy in detecting
high-volume flows of funds.

[58] 2021 FD-META
Federated meta-learning for enhancing fraud
detection. Enhanced triplet-like metric learning and
classifier based on meta-learning.

Imbalanced dataset with limited instances of fraud.
Data security prevents sharing of datasets
between banks,

[57] 2023 APPROX-SMOTE Enhancing the performance and accuracy of
traditional fraud detection models poses a challenge

The bank credit dataset exhibits a severe imbalance
between positive and negative samples. Data
privacy and security concerns prevent dataset
sharing among users
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4. Design and Methodology
4.1. Proposed Framework

In this paper, we propose our blockchain-federated learning credit card fraud detec-
tion system based on the integration of FL with blockchain technology, as illustrated in
Figures 2 and 3.

Figure 2. Proposed fraud detection framework.

Integrating FL and blockchain techniques in our detection system ensures the preser-
vation of privacy and data protection. Federated learning ensures the accurate training
of our models by sending the initial model parameters from the global learning model
(cloud server) to the local learning model in each fog node (bank) individually. Each fog
node represents a different bank with its local learning model. Thus, updates will be sent
and received between the local and global learning models until reaching the target with
the minimum loss values. Blockchain is a distributed ledger (database) shared among a
computer network’s nodes, used to store datasets in blocks linked together via crypto-
graphic hashes. Blockchain is a new technology that features decentralized storage, tamper
resistance, and traceability [16,17,22–24].
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Figure 3. Framework techniques.

In addition, our framework employs three machine learning and deep neural network
algorithms: Random Forest (RF), Convolutional Neural Networks (CNNs), and long short-
term memory (LSTM). As demonstrated in our previous work [70], certain algorithms,
such as SVM, NB, and LR, did not perform optimally in anomaly detection tasks like ours.
Therefore, for this experiment, we constructed our credit card fraud detection (CCFD)
system using algorithms known for their high capability and performance in accurately de-
tecting fraud instances, namely RF, CNN, and LSTM. Leveraging their strong performance,
these algorithms are poised to yield significant improvements when integrated with other
techniques such as federated learning, blockchain, and fog computing. Consequently, we
selected RF as the optimal classifier model among traditional machine learning algorithms,
while CNN and LSTM were chosen as the deep neural network algorithms.

A deep learning optimizer is a mathematical function used to improve the weights of
the network based on the gradients and other information, depending on the formulation
of the optimizer. Hence, we utilize these three optimizers: ADAM, SGD, and MSGD.
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In our previous work [70], we evaluated classifier models using the baseline dataset,
and oversampling and undersampling techniques. The dataset exhibits class imbalance,
where the number of fraudulent transactions is significantly lower than that of legitimate
transactions, leading to reduced prediction accuracy. Resampling the dataset before train-
ing the classifier models is crucial to ensure accurate fraud detection. Undersampling
techniques, such as NearMiss, aim to address the skewed dataset by retaining transactions
close to the minority class and discarding those further away. However, this approach
reduces the dataset size, potentially negatively impacting accuracy.

Moreover, we utilized the Synthetic Minority Oversampling Technique (SMOTE) to
balance the dataset and alleviate class imbalance before model training. SMOTE augments
the number of minority class instances, effectively addressing the imbalance. We have
applied SMOTE in various experiments across different research papers, and its efficiency
and effectiveness have been validated when compared to both the baseline dataset and the
NearMiss Undersampling technique [70].

We utilize performance metrics to evaluate our predictive classifier models, including
accuracy, precision, recall, F1-score, computation time, and average loss.

Our proposed framework distinguishes itself by integrating blockchain technology
with federated learning, ensuring high privacy preservation and data protection. Addi-
tionally, we employ several deep learning optimization techniques to enhance algorithm
performance. Collectively, these techniques set our proposed framework apart.

4.2. Dataset Overview

The Europe Credit Card (ECC) dataset is utilized in this experiment, representing an
imbalanced real-world dataset by ULB (Université Libre de Bruxelles) on big data mining
and fraud detection. It encompasses credit card transactions made by European cardholders
in September 2013. The dataset comprises all transactions occurring over two days, with
492 instances of fraud identified out of 284,807 transactions, as explained in Table 3.

Table 3. Overview of the Kaggle dataset: ECC

Fraud Non-Fraud

Transaction 492 284,315
Class 1 0

As evident, the dataset exhibits highly imbalanced data, with fraudulent transactions
accounting for approximately 0.172% of all transactions. As illustrated in Figure 4, ECC
exhibits a highly imbalanced dataset, resulting in imbalanced class distribution and skewed
data that impact the training of classifier models and prediction accuracy. The dataset
exhibits class imbalance, where the number of fraudulent transactions is significantly lower
than that of legitimate transactions, leading to reduced prediction accuracy. Resampling the
dataset before training the classifier models is crucial to ensure accurate fraud detection. The
substantial disparity between the two classes, with class 0 representing original transactions
and class 1 representing fraudulent transactions, can hinder the ability of trained models
to recognize fraud patterns and identify fraudulent transactions. Therefore, resampling
techniques must be applied in the skewed dataset to process the data before training
the model.

Resampling techniques encompass oversampling and undersampling methods. Un-
dersampling techniques, such as NearMiss, aim to address the skewed dataset by retaining
transactions close to the minority class and discarding those further away. However, this
approach reduces the dataset size, potentially impacting accuracy negatively. Moreover, we
utilized the Synthetic Minority Oversampling Technique (SMOTE) to balance the dataset
and alleviate class imbalance before model training. SMOTE augments the number of
minority class instances, effectively addressing the imbalance. We have applied SMOTE
in various experiments across different research papers, and its efficiency and effective-
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ness have been validated when compared to both the baseline dataset and the NearMiss
Undersampling technique [70].

Figure 4. Imbalanced dataset ECC.

The dataset consists of numerical input variables and has undergone PCA transfor-
mation due to confidentiality concerns. Consequently, providing the original features or
further background information is not feasible. The features include 30 principal compo-
nents derived from PCA (V1 through V28), with “Time” and “Amount” being the only
features not subjected to PCA transformation. Additionally, the “Class” feature serves as
the output variable, taking a value of 1 in the case of fraudulent transactions and 0 for legiti-
mate transactions (https://www.kaggle.com/datasets/mlg-ulb/creditcardfraud (accessed
on 1 April 2024)).

4.3. Data Preprocessing and Feature Extraction

Data preprocessing is the initial step in training our models. The dataset comprises
many transactions, totaling 284,807, prompting us to randomly select 40% of the data for
preprocessing. Subsequently, the data are divided into a 70% portion for the training dataset
and a 30% portion for the testing dataset. Furthermore 70% is further partitioned within the
training data, with 60% allocated to the training dataset and 10% to the validation dataset.
The dataset undergoes cleaning and PCA transformation, after which we scale/normalize
the data to standardize features and mitigate outlier instances. Following this, we execute the
subsequent steps: converting NumPy arrays to PyTorch tensors, establishing data loaders, and
segregating features (input) from labels (output). Notably, the features consist of 30 principal
components derived from PCA (V1 through V28), with “Time” and “Amount” remaining
unaltered by PCA transformation. Additionally, the “Class” feature functions as the output
variable, taking 1 for fraudulent transactions and 0 for legitimate ones. All features except
the “Class” feature serve as inputs.

4.4. Methodology

The proposed detection involves applying FL integrated with blockchain on a fog node.
Each fog node represents a different bank with its local learning model. Federated learning
ensures the accurate training of our models by sending the initial model parameters from
the global learning model (cloud server) to the local learning model in each fog node (bank)
individually. The FL algorithm is usually based on the following steps [53–56]:

https://www.kaggle.com/datasets/mlg-ulb/creditcardfraud
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1. Initialization: A global learning model is initialized on a cloud server with random
parameters generated to create and initialize it.

2. Model Distribution: Each local model (bank) downloads the global model from the
cloud server. The parameter initialization is distributed to fog nodes (banks), which
serve as local learning models.

3. Local Training: Each bank trains its local learning model using its local data, starting
from the downloaded global model. During training, the local model updates its
parameters based on its local dataset.

4. Model Aggregation: Upon completing local training, each local model sends its
updated parameters back to the cloud server (global model). The global model
aggregates these updates from all local models to prepare a new global model with
the recent parameter updates.

5. Global Model (Updated Parameters): The updated model parameters are frequently
communicated back to the cloud server after training at each bank.

6. Iteration: Steps 3 to 5 are iteratively repeated until the target with the minimum loss is
achieved. Each round involves local training on individual banks, followed by model
aggregation at the cloud server.

7. Convergence: After multiple rounds of training, the global model converges to a state
where it has captured knowledge from all local models (fog nodes) while preserving
privacy and data protection.

8. Deployment: Once training is complete, the final global model is deployed, while
individual banks retain their local data without sharing them with the cloud server.

We assumed three banks for experimental purposes, but the framework can accom-
modate any number of banks. Each bank will train its local learning model using the
parameters received from the global model. Using FL helps keep the data on their lo-
cal server more confidential and preserves privacy. Additionally, our system involves
blockchain technology, which provides an immutable ledger to facilitate faster informa-
tion reception, more accurate data processing, risk reduction, transaction recording, asset
tracking in a business network, and more [16,17].

5. Experiment Results and Performance Evaluation
5.1. Predictive Models and Performance Metrics

The architectures and hyperparameters of the CNN and LSTM models used in our
experiment are summarized in Table 4. The global model parameters consist of config-
urations for two neural network architectures: Convolutional Neural Network (CNN)
and Long Short-Term Memory (LSTM). For the CNN, the input dimension is set to 30,
indicating the size of input features, while the hidden dimension is also 30, determining
the number of filters in the convolutional layers. No specific number of layers is specified
for the CNN. The learning rate for optimization is set at 0.001, determining the step size
during parameter updates, and the training is conducted for 10 epochs with a batch size of
64 samples. The log interval parameter defines the frequency at which the training progress
is logged, set to every 10 batches. For the LSTM model, the input and hidden dimensions
are both set to 30, specifying the size of input features and the numbers of hidden units
in the LSTM layers, respectively. One layer of LSTM is employed in this configuration.
Similarly, the learning rate, number of epochs, batch size, log interval, and splitting ratio
remain consistent with the CNN settings. Additionally, the data splitting ratio is set at 70:30,
indicating the proportion of data allocated for training and testing/validation, respectively.
The model operates across three separate banks, possibly denoting different data sources
or subsets utilized in the federated learning framework.
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Table 4. Architecture of the CNN and LSTM models.

Model

Parameter CNN LSTM

Input_dim 30 30
Hidden_dim 30 30
Num_layers 0 1

Learning_rate 0.001 0.01
Num_epochs 10 10

Batch_size 64 64
Log_interval 10 10

Splitting_ratio 70:30 70:30
Num_banks 3 3

ADAM, SGD, and MSGD deep learning optimizers are utilized to improve network
weights based on gradients and other models’ information during the training process,
to ensure our predictions are as accurate and optimized as possible. Adaptive Moment
Estimation (ADAM) is a popular deep optimizer algorithm for training deep learning
models. It combines the ideas of RMSProp and Momentum, computing adaptive learning
rates for each parameter [71] as follows:

mt = β1 ·mt−1 + (1− β1) · gt,

vt = β2 · vt−1 + (1− β2) · g2
t ,

m̂t =
mt

1− βt
1

,

v̂t =
vt

1− βt
2

,

θt+1 = θt −
η√

v̂t + ϵ
· m̂t,

(1)

where

• mt and vt: first and second moment estimates.
• gt: gradient at time step t.
• β1 and β2: decay rates for first and second moment estimates
• η: learning rate.
• ϵ: small constant added to the denominator to prevent division by zero.

Stochastic Gradient Descent (SGD) uses a randomly selected single sample for each
iteration [72].

θt+1 = θt − η · ∇J(θt), (2)

where

• θt: parameter vector at time step t.
• η: learning rate.
• ∇J(θt): gradient of loss function J with respect to parameters θt.

Mini-batch Stochastic Gradient Descent (MSGD) updates the parameters using mini-
batches of data, providing a balance between the efficiency of SGD and the stability of
batch gradient descent [73].

θt+1 = θt − η · 1
m

m

∑
i=1
∇J(θt; xi, yi), (3)

where

• θt: parameter vector at time step t.
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• η:learning rate.
• m: mini-batch size.
• ∇J(θt; xi, yi): gradient of loss function J with respect to parameters θt by mini-batch

of m samples (xi, yi).

We evaluate our predictive classifier models using the following performance metrics:
accuracy, precision, recall, F1-score, computation time, and average loss. These metrics
are evaluated based on the following parameters: true positive (TP), true negative (TN), false
positive (FP), and false negative (FN). A true positive occurs when the predicted output is true
and indeed true. Conversely, if the predicted output is false and indeed false, it is referred to as a
true negative. A false positive arises when the predicted output is true, but in reality, it is false.
Conversely, if the predicted output is false yet true, it is termed a false negative. The definitions
and equations for each metric are as follows (https://www.javatpoint.com/performance-
metrics-in-machine-learning (accessed on 1 April 2024)):

• Accuracy is the number of correct predictions to the total number of predictions.

Accuracy =
TP + TN

TP + TN + FP + FN
(4)

• Precision is the ratio of true positive to the total positive predictions (true positive and
false positive).

Precision =
TP

TP + FP
(5)

• Recall (sensitivity) provides the accuracy for the positive instances (class 1) as fraudu-
lent transactions.

Recall =
TP

TP + FN
(6)

• F1-Score is the ratio of true positives to the total number of positives (true Positive
and false negative).

F1-score = 2× Presession× Recall
Presession + Recall

(7)

The experiment is conducted using Python3 along with several open-source machine
learning tools, including Scikit Learn 0.24.2, Pandas 1.1.5, Numpy 1.26.4, Matplotlib 3.3.4,
Imblearn 0.8.1, Pytorch 1.13.1, and Syft 0.1.29a1 (federated). The specifications of the
desktop computer used in our experiment are as follows: CPU Ryzen 5 3600x, 16 GB RAM,
and Windows 11 64-bit.

5.2. Performance Evaluation

The experiment conducted in this paper involved comparing the performance of the
proposed framework with other fraud detection systems introduced in previous research
papers. Table 5 illustrates the performance evaluation for two deep neural network learning
algorithms, CNN and LSTM with ADAM, SGD, and MSGD deep optimizer techniques.

Table 5. Models performance evaluation (our work).

ADAM SGD MSGD

Metrics CNN LSTM CNN LSTM CNN LSTM

Accuracy 0.94 0.95 0.97 0.93 0.96 0.95
Precision 0.93 0.99 0.97 0.97 0.98 0.99

Recall 0.95 0.90 0.96 0.88 0.94 0.92
F1-Score 0.94 0.95 0.97 0.93 0.96 0.95

Comp.Time 0.04 0.27 0.04 0.25 0.04 0.29
Avg.Loss 0.18 0.25 0.10 0.21 0.12 0.17

The table showcases various performance metrics, such as accuracy, precision, recall,
F1-score, computation time, and average loss, as shown in Figures 5–7. CNN, coupled

https://www.javatpoint.com/performance-metrics-in-machine-learning
https://www.javatpoint.com/performance-metrics-in-machine-learning
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with the SGD, demonstrated high performance, achieving an accuracy, precision, recall,
and F1-score of 0.97, 0.97, 0.96, and 0.97, respectively. Additionally, this model exhibited a
computation time of 0.04 and an average loss of 0.10.

Figure 5. Performance evaluation with ADAM optimizer.

Figure 6. Performance evaluation with SGD optimizer.

Additionally, we implemented the RF algorithm integrated with the FL-blockchain
(FL-blockchain-RF) framework, as shown in Table 6. We compared the performance of
RF in our proposed detection system with our previous works [70,74]. FL-blockchain-RF
exhibited high performance, achieving an accuracy, precision, recall, and F1-score of 0.99,
0.99, 1, and 0.99, respectively, as illustrated in Figure 8.

Table 7 presents performance comparison with other works. Based on the performance
results, we observed that our proposed models exhibited good performance, achieving
accuracy, precision, recall, and F1-score of 0.97, 0.97, 0.96, and 0.97, respectively.

Our framework has demonstrated its efficiency; however, our goal is to increase the
accuracy, recall, and F1-score to achieve a high probability of around 0.99. Due to the size
of our dataset sample and resource limitations, we encountered some constraints during
this experiment. Therefore, it is feasible to further enhance its classification performance
and prediction accuracy through several factors, including online fraud detection systems,
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real-world datasets, dataset size, the high availability of resources, network depth, width,
and cardinality. Adjusting weights, learning rate, number of hidden layers, epochs, and
batch size will significantly improves the model’s performance.

Figure 7. Performance evaluation with MSGD optimizer.

Table 6. RF performance comparison.

Model

Metrics RF [70] RF [74] RF (Our Work)

Accuracy 0.99 0.96 0.99
Precision 0.89 0.97 0.99

Recall 0.85 0.92 1
F1-Score 0.87 0.94 0.99

Figure 8. RF performance evaluation [70,74].
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Table 7. Performance comparison with other methods.

Metrics

Method Accuracy Precision Recall F1-Score

BMR [62] 0.69 0.66 0.71 0.68
APATE [63] 0.70 0.66 0.71 0.69
PD-FDS [64] 0.70 0.68 0.74 0.71

SPD [65] 0.74 0.69 0.82 0.75
CMAB [66] 0.81 0.71 0.86 0.78
RawLR [67] 0.81 0.82 0.91 0.86
RMNLS [68] 0.83 0.89 0.92 0.90

Flow-Scope [69] 0.87 0.89 0.93 0.91
FD-Meta [58] 0.99 0.98 0.99 0.99

Approx-SMOTE [57] 0.98 0.98 0.97 0.98
Our work 0.97 0.97 0.96 0.97

6. Conclusions and Future Research Directions

The rising global adoption of credit cards has made them a preferred and commonly
used payment option for daily transactions, exerting a significant influence on global
financial cybersecurity. This study introduces a credit card fraud detection (CCFD) system
employing blockchain-federated learning, which integrates federated learning (FL) with
blockchain technology. Through the integration of FL and blockchain techniques, our
system guarantees improved privacy, enhanced data protection, and minimized risk of data
breaches. Additionally, the integration of FL and blockchain in credit card services ensures
preserved privacy, data protection, decentralized storage, secure payment networks, and
automated tasks. Three machine learning and deep neural network algorithms, RF, CNN,
and LSTM, are utilized, alongside three optimization techniques: ADAM, SGD, and MSGD.
Furthermore, the SMOTE oversampling technique is employed to balance the dataset before
model training. The proposed framework has proven effective in enhancing classification
performance and prediction accuracy.

Despite the vast number of credit card fraud detection (CCFD) systems and frame-
works proposed in academic and industrial fields, numerous challenges and limitations
adversely affect their efficiency and effectiveness. These limitations require greater atten-
tion for resolution, including issues such as imbalanced data, adversarial attacks, feature
engineering, real-time detection, cost of false positives, and data privacy.

The imbalance of data is a critical issue affecting prediction accuracy due to class
distribution disparities. Fraud continuously evolves, employing new attacks and fraud
methods that can deceive CCFD systems and evade the detection of new and unseen
fraudulent transactions. Fraudsters utilize adversarial attacks, including data poisoning,
evasion attacks, and input data manipulation, to deceive the model.

Developing a real-time detection system is crucial for fraud detection, but it becomes
challenging in high-volume environments and with big data. Any delay in fraud detection
can result in financial losses for both cardholders and financial institutions. Moreover, an
increase in false alarms can negatively impact the accuracy and integrity of CCFD systems,
leading to potential issues for individuals and financial institutions.

Finally, data privacy and protection are critical aspects that warrant increased attention.
However, due to these concerns, finding publicly available data for conducting experiments
presents a significant obstacle for CCFD system developers.

In future work, additional efforts will be directed toward maintaining privacy and
protecting data by implementing defensive measures against potential threats. Our objec-
tive is to further improve privacy and data protection by deploying a defensive system
capable of detecting and preventing potential attacks or instances of fraud in real-time. Our
next project involves implementing an online credit card fraud detection (CCFD) system
that simulates various attacks and instances of fraud, followed by an evaluation of the
system’s performance. We will assess its ability to prevent, detect, and mitigate fraudulent
transactions by identifying attack patterns.
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