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Abstract: Understanding household energy-consumption patterns is essential for developing effective
energy-conservation strategies. This study aims to identify ‘out-profiled’ consumers—households
that exhibit atypical energy-usage behaviors—by applying four distinct feature-selection method-
ologies. Specifically, we utilized the chi-square independence test to assess feature independence,
recursive feature elimination with multinomial logistic regression (RFE-MLR) to identify optimal
feature subsets, random forest (RF) to determine feature importance, and a combined fuzzy rough
feature selection with fuzzy rough nearest neighbors (FRFS-FRNN) for handling uncertainty and
imprecision in data. These methods were applied to a dataset based on a survey of 383 households
in Brazil, capturing various factors such as household size, income levels, geographical location,
and appliance usage. Our analysis revealed that key features such as the number of people in the
household, heating and air conditioning usage, and income levels significantly influence energy
consumption. The novelty of our work lies in the comprehensive application of these advanced
feature-selection techniques to identify atypical consumption patterns in a specific regional context.
The results showed that households without heating and air conditioning equipment in medium-
or high-consumption profiles, and those with lower- or medium-income levels in medium- or high-
consumption profiles, were considered out-profiled. These findings provide actionable insights for
energy providers and policymakers, enabling the design of targeted energy-conservation strategies.
This study demonstrates the importance of tailored approaches in promoting sustainable energy
consumption and highlights notable deviations in energy-use patterns, offering a foundation for
future research and policy development.

Keywords: behavior analysis; consumption patterns; feature selection; fuzzy rough sets; random forest

1. Introduction

Household energy conservation is a critical issue with significant economic and envi-
ronmental implications. Reducing energy usage not only helps families lower their energy
bills but also minimizes the demand for energy generation, leading to broader benefits
such as decreased environmental impact and enhanced economic sustainability. Previous
studies have emphasized the importance of understanding both subjective and objective
factors influencing household energy consumption [1,2].

Identifying ‘out-profiled’ consumers—households exhibiting atypical energy-usage
behaviors—is crucial for optimizing energy distribution, planning for energy demand
and implementing effective energy-saving measures [3,4]. These atypical behaviors can
include significantly higher or lower energy usage than similar households, inconsistent
consumption patterns or unexpected peaks in energy usage. For instance, a household may
have a high number of occupants but exhibit lower than expected energy consumption,
or vice versa [5]. There is a need for more refined methods to accurately identify and
understand these unique consumption patterns, providing actionable insights for energy
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providers and policymakers and enabling the development of targeted strategies for energy
conservation tailored to specific household dynamics [6].

Various studies have explored different methods for analyzing energy-consumption
patterns, which can be broadly categorized into methods for typical and atypical energy-
consumption patterns. Several innovative methods have been proposed to analyze energy-
consumption patterns. For instance, ref. [7] introduced a deep anomaly detection technique
using energy time-series images, which provides a robust framework for identifying unusual
consumption patterns in buildings. Another study by ref. [8] proposed a data-driven model
that leverages statistical and machine learning methods to analyze energy consumption
in residential buildings. In Greece, ref. [9] examined the energy-consumption patterns of
residential users, offering insights into the factors influencing energy use in different contexts.

Typical energy-consumption patterns have been extensively studied using various fore-
casting techniques. Ref. [10] utilized a spectral clustering algorithm combined with temporal
fusion transformers to forecast building energy consumption. This approach enhances the
interpretability of the models used. Similarly, ref. [11] presented a new method for seasonal en-
ergy consumption-forecasting employing temporal convolutional networks, which effectively
capture the seasonal variations in energy use.

Identifying atypical energy-consumption patterns is a relatively newer area of research.
Studies such as ref. [12] have focused on uncovering unusual consumption behaviors in
households. Our study advances this field by combining multiple feature-selection techniques,
including the Chi-square test, recursive elimination feature, random forest and fuzzy rough
feature selection to identify key determinants of atypical energy usage. This comprehensive
approach provides a nuanced understanding of household energy consumption, highlighting
deviations that can inform targeted energy-conservation strategies.

Feature selection plays a vital role in refining these methods. It is a technique that
reduces the data-processing scale by removing irrelevant and redundant features, thereby
reducing dimensionality, improving learning accuracy, reducing learning time and simpli-
fying learning results [13,14]. No single feature-selection method is universally applicable
to all datasets [15]. Each dataset possesses unique characteristics that influence the effec-
tiveness of different feature-selection techniques. Consequently, it is essential to evaluate
and test various methods to determine the most suitable approach for a given dataset.

There are three primary types of feature-selection techniques: filter methods, wrapper
methods and embedded methods. Filter methods are computationally efficient because
they are independent of the classifier, making them easy and quick to implement [16].
The most common filter methods use statistical measurements to determine correlation
or independence between input features and the target variable [17]. Wrapper methods
evaluate the features and produce the result simultaneously with a learning model using a
learning algorithm, resulting in higher classification accuracy but with the disadvantage of
high time complexity [18]. Embedded methods incorporate the classifier’s bias into feature
selection, producing better classifier performance and greater efficiency since they do not
need to evaluate feature sets iteratively [19,20].

This study aims to address the gap in understanding atypical energy-usage patterns
by employing advanced feature-selection techniques to uncover the critical determinants of
household energy usage. In our research, we tested several feature-selection methods: the
chi-square test to assess the features’ independence [17], recursive feature elimination (RFE)
with multinomial logistic regression (MLR) [18], random forests (RF) [15] and fuzzy rough
sets (FRS) [13,14]. These techniques help identify the most informative features affecting
energy consumption and offer a deeper understanding of consumer behaviors.

The dataset used in this study is part of a survey administered to 383 randomly
selected households in Brazil, collecting data on monthly electrical power consumption
and the characteristics of the households and occupants [21]. This comprehensive dataset
provides a robust foundation for analyzing energy-consumption patterns and identifying
key determinants. The household energy usage was categorized into three distinct classes:
low-, medium- and high-load-consumption profiles.
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By applying these advanced feature-selection techniques, this research aims to set a
new standard in energy conservation, offering a robust template for future studies focused
on optimizing residential energy use. The ultimate goal is to empower urban actors to
make data-driven decisions for a more sustainable future. Beyond the Introduction, the
structure of this paper is as follows: Section 2 outlines the methodologies employed in
our study to identify critical determinants of household energy usage. Section 3 provides
an overview of the dataset used in this study, including the data-collection process, the
characteristics of the dataset and the categorization of variables. Section 4 discusses the
feature-selection process, applying specific criteria to obtain a subset of relevant features.
Section 5 analyzes the selected features, assessing their impact on household energy load
profiles and identifying out-profiled households. Finally, Section 6 concludes the study and
suggests future research directions.

2. Methodology

This section outlines the methodologies employed in our study to identify critical
determinants of household energy usage. Various feature-selection techniques were utilized
to refine our dataset, ensuring that only the most relevant features were retained for analysis.
The overall feature-selection process and the interaction between different methods are
illustrated in Figure 1.

Begin

Load Dataset Preprocess Data Perform
Chi-square Test

Evaluate
Chi-square Results

Apply RFE
with MLR

Evaluate
RFE Results

Apply
Random Forest

Evaluate
RF Results

Apply FRFS
with FRNN

Evaluate
FRFS Results

Combine
Results

Select
Optimal Features

End

Figure 1. Flowchart of the feature-selection process and interaction between different methods.

2.1. Chi-Square Independence Test

The chi-square (CHI2) test examines whether there is a relationship between two
categorical variables in a single sample. This test assesses the independence or association
between two categorical variables [22]. The null hypothesis (H0) suggests that there is
no association between the two variables, implying they are independent. Conversely,
the alternate hypothesis (H1) posits that there is a significant association between them,
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indicating they are not independent. From a contingency table (Table 1) that displays the
frequency counts of the joint occurrences nij of the two categorical variables, let X repre-
sent one variable with categories X1, X2, . . . , Xm and Y represent the other variable with
categories Y1, Y2, . . . , Yk.

Table 1. Contingency table for the CHI2 test.

Variable Y
Y1 Y2 · · · Yk

X1 n11 n12 · · · n1k x1
X2 n21 n22 · · · n2k x2
...

...
...

. . .
...

...
Xm nm1 nm2 · · · nmk xm

y1 y2 · · · yk n

The values xi and yj are the marginal totals of the rows and columns, respectively, and
are calculated as xi = ∑k

j=1 nij, i = 1, . . . , m and yj = ∑m
i=1 nij, j = 1, . . . , k. Under the null

hypothesis of independence, the expected frequency (Eij) for each cell in the contingency
table is

Eij =
xiyj

n
, (1)

where n = ∑m
i=1 ∑k

j=1 nij.
The chi-square statistic (χ2) measures the discrepancy between the observed frequen-

cies (nij) and the expected frequencies (Eij) given by (1), and is defined as

χ2 =
m

∑
i=1

k

∑
j=1

(nij − Eij)
2

Eij
.

Under certain conditions, such as when the sample size is sufficiently large and the
expected frequencies are not too small, the χ2 statistic follows a chi-square distribution
with (m− 1)(k− 1) degrees of freedom. Typically, each expected frequency Eij should be
at least 5 to ensure the validity of the chi-square approximation.

To determine whether to reject the null hypothesis, we use the χ2 statistic. The null
hypothesis is rejected if the χ2 statistic exceeds the critical value from the chi-square
distribution at a chosen significance level (such as α = 0.05). Alternatively, the null
hypothesis is rejected if the p-value is less than the significance level.

It is important to note that the chi-square test is an omnibus test. Therefore, if the test
indicates a significant association, post hoc procedures need to be conducted to compare
individual conditions.

2.2. Recursive Feature Elimination with Multinomial Logistic Regression

The RFE process aims to select the most important features by iteratively removing
the least significant ones, thereby improving the efficiency of the feature-selection process.
As explained in Algorithm 1, the process begins with constructing a model using all
available features. Subsequently, each feature is assigned a weight based on its relevance
in classifying the target variable. The feature with the lowest weight is then eliminated.
The model is subsequently reconstructed, and the importance of each remaining feature is
recalculated [23]. This iterative process continues until the remaining set of features meets
a predefined performance threshold.
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Algorithm 1 Recursive Feature Elimination (RFE)
Input: Dataset X with feature dimension k
Output: S∗← Set of features providing the highest performance metric

1: Initialize: S← {1, . . . , k}
2: Train a model on X using features in S
3: min_score← S performance metric
4: for each feature f in S do
5: S′ ← S− { f }
6: Train a model on X using features in S′

7: if S′ performance metric < min_score then
8: fmin ← f
9: min_score← S′ performance metric

10: end if
11: end for
12: Remove fmin from S

Given that the response variable in this study, household energy usage, is categorized
into three distinct classes (low-, medium- and high-load-consumption profiles), we em-
ployed a multinomial logistic regression (MLR) algorithm. This generalized linear model is
particularly suitable for situations where the response variable encompasses more than two
categories. The MLR algorithm utilizes a non-linear log transformation, which facilitates
the calculation of the probability of occurrence for each class of the dependent variable [24].

Several assumptions were verified to ensure the applicability of the multinomial
logistic regression:

• Independence of irrelevant alternatives: The assumption that the odds of preferring
one class over another are independent of the presence or absence of other alternatives.
This was tested using the Hausman-McFadden test [25].

• No multicollinearity: Multicollinearity among predictors was checked using variance
inflation factor (VIF) values, ensuring all were below the threshold of 5 [26].

• Linearity of logits: The relationship between continuous predictors and the logit of
the outcome was confirmed to be linear [27].

• Large sample size: The sample size was sufficiently large to provide reliable estimates
of the model parameters [28].

The probability that an observation Yi belongs to a particular class c ∈ {1, 2, . . . , C},
given the predictor variables xi, is denoted as P(Yi = c|xi) and is given by

P(Yi = c|xi; α1, α2, . . . , αC, β1, β2, . . . , βC) =
eαc+βT

c xi

∑C
j=1 eαj+βT

j xi
,

where αc denotes the intercept for class c, and βc represents the vector of regression
coefficients for class c.

To assess the performance of the classifier, a confusion matrix is employed to compare
the predicted classes to the actual classes from the ground truth data. The accuracy of the
model is then calculated by dividing the number of correct predictions by the total number
of predictions, thus providing a metric to evaluate the model’s performance.

2.3. Random Forest Algorithm

RF is a machine learning model that utilizes an ensemble of decision trees combined
with a method known as bootstrap aggregation, or ‘bagging’. This approach involves
creating multiple subsets of the training data by sampling with replacement from the
original dataset [29]. Each subset is used to train a different decision tree, and the forest
is constructed by aggregating these trees. This technique often results in higher accuracy
compared to a single decision tree model while retaining the interpretability benefits of tree
models [30].
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In RF, each tree consists of a sequence of binary decisions, or ‘nodes’, based on a single
feature or a combination of features. These nodes create splits in the tree, grouping similar
observations together and separating them from others. The algorithm provides measures
to rank features according to their importance in predicting the target outcome, selecting
those with the highest predictive ability [31].

The RF feature-selection process involves the following steps: training the algorithm
on bootstrapped datasets, computing feature importance scores for each tree and selecting
features with importance scores above a predefined threshold. The detailed procedure of
the RF algorithm is outlined in Algorithm 2.

Algorithm 2 Random Forest (RF)
Input: Training dataset X, number of trees N and feature importance threshold T
Output: Selected features S

1: Initialize: S← ∅
2: for i = 1 to N do
3: Sample a bootstrapped dataset Xi from X {Randomly sample with replacement}
4: Train a decision tree Ti on Xi
5: Compute feature importance scores using Ti
6: Update S with features having importance scores above T
7: end for
8: return S

The RF feature-selection method is advantageous as it can identify relevant fea-
tures, reduce dimensionality and improve model interpretability while maintaining high
predictive performance.

2.4. Fuzzy Rough Feature-Selection Method

Zadeh’s fuzzy set theory [32] extends classical set theory to handle uncertainty and
vagueness. In classical set theory, an element either belongs to a set or does not. However,
fuzzy set theory allows for partial membership, where elements can belong to a set with
varying degrees between 0 and 1. This approach accommodates uncertainty about the
boundaries of sets.

Let V be the universe of discourse, which is the set of all possible elements un-
der consideration in a given context. A fuzzy set A is defined as a set of ordered pairs
A = {(v, µA(v)) : v ∈ V, µA(v) ∈ [0, 1]}, where the membership function µA : V → [0, 1]
represents the degree of membership of element v in the fuzzy set A.

Rough set theory aims to handle incomplete or imprecise information by distinguish-
ing between certain and uncertain knowledge [33]. Let U be the universe of objects, which
includes all specific objects under analysis in the given context. While V represents all
possible elements considered, U focuses on the particular set of objects being studied. Let
R ⊆ U ×U be a relation representing the lack of knowledge about elements of U. For a set
of objects X ⊆ U, R(x) denotes the equivalence class of R determined by element x. The
rough set X is composed of the tuple ⟨X−, X+⟩, where X− is the lower approximation and
X+ is the upper approximation, defined as

X− =
⋃

x∈U
{R(x) : R(x) ⊆ X}

X+ =
⋃

x∈U
{R(x) : R(x) ∩ X ̸= ∅}

In the rough set, X− represents the certain elements of X and X+ includes both
certain and uncertain elements. The boundary region X0 delineates regions of complete
information (positive region) and regions of uncertainty (boundary region): X0 = X+−X−.

The fuzzy rough sets [34] combine fuzzy set theory and rough set theory to handle
uncertainty and imprecision in data. Let V be the universe of discourse, and A ⊆ V be a
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fuzzy set in V. Let U be a non-empty universe, and R be a similarity relation on U. For
F ∈ f (U), the fuzzy rough set is the pair ⟨R−(F), R+(F)⟩ of fuzzy sets on U, such that for
every u ∈ U

R−(F)(u) = inf
y∈U

max{1− R(u, y), F(y)}

R+(F)(u) = sup
y∈U

min{R(u, y), F(y)}

The fuzzy rough sets feature-selection (FRFS) algorithm identifies relevant features
that distinguish between different classes or concepts in a dataset. It uses rough set
approximations to evaluate feature contributions and iteratively refines feature selection to
balance relevance and redundancy in the selected feature subset. The algorithm considers
the dataset’s inherent properties to ensure optimal feature selection.

The algorithm selects features that increase the positive region size until it matches the
size of the positive region with all features or the required number of features. The concept
of indiscernibility is central to locating a positive region. Suppose we have a non-empty set
of objects U and a non-empty set of attributes A. The indiscernibility of two objects ui and
uj based on the sets of attributes in F, where F ⊆ A, is given by

IND(F) = {(ui, uj) ∈ U2 | ∀ f ∈ F, f (ui) = f (uj)}

Using indiscernibility, we can identify the partition of U generated by IND(F). This
partition is defined as

U/IND(F) = ⊗{U/IND({ f }) : f ∈ F},

where ⊗ for two sets A and B is represented by

A⊗ B = {X ∩Y : ∀X ∈ A, ∀Y ∈ B, X ∩Y ̸= ∅}

Let Q be an equivalence relation over U. The positive region POSF(Q) can be found using

POSF(Q) =
⋃

Y∈U/Q

FY

where FY are the rough sets of lower approximations, defined as

FY = {ui ∈ U | [ui]U/IND(F) ⊆ Y}.

If the goal is to identify the largest positive region for a specific number of features,
denoted as k, the FRFS algorithm calculates the POSF(Q) for each set of k features and
selects the set that maximizes it. This means it chooses the set with the highest number of
ui. Alternatively, if we want to consider all possible combinations of features, from n = 1
to n = n, FRFS will give us the smallest number of features that maximize POSF(Q).

The fuzzy rough nearest neighbor (FRNN) classification method can handle fuzzy
and uncertain data. It extends the nearest neighbor classification concept by classifying
test objects based on their similarity to a specified number of neighbors, denoted by K.
The method considers the membership degrees of these neighbors to the class labels when
assigning a class label to the test object [35].

The FRNN algorithm computes the distances ∥y− uj∥ between an unclassified object
y from the testing data and each object uj from the training data. After calculating these
distances, FRNN considers the fuzzy memberships of the k nearest neighbors to determine
the fuzzy membership of y to each class c. The aggregation process combines the fuzzy
memberships of the neighbors to determine the fuzzy membership of the test object. The
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membership degree of a given new sample y in a class c, represented by the k nearest
neighbors, is measured as

µc(y) =

k
∑

j=1
µcj

(
1

∥y−uj∥2/(q−1)

)
k
∑

j=1

(
1

∥y−uj∥2/(q−1)

) ,

where q ∈ (1,+∞) is the fuzzy strength parameter and µcj is the membership of the sample
uj from the training data to the class c among the k nearest neighbors.

To classify the test data point y, we select the class c with the highest fuzzy membership
value µc(y). Subsequently, we compare the predicted class labels (associated with fuzzy
memberships) to the true class labels (i.e., the original class of the test data point). The
accuracy is calculated by determining the correctness of predictions for each data point y.

The algorithm for the FRFS is presented in Algorithm 3.

Algorithm 3 Fuzzy Rough Feature Selection (FRFS)
Input: Dataset D with features F = { f1, f2, . . . , fn}, target variable Y
Output: Selected feature subset Fs

1: Initialize: Fs ← ∅
2: Calculate initial positive region POSF(Q) for all features F
3: while |Fs| < n do
4: for each feature fi ∈ F \ Fs do
5: Compute the positive region for feature fi
6: end for
7: Find the feature f ∗ that maximizes the positive region
8: Add f ∗ to Fs
9: Update the positive region POSFs(Q)

10: if POSFs(Q) equals POSF(Q) then
11: break
12: end if
13: end while
14: return Fs

3. Overview of the Dataset

This section provides an overview of the dataset used in this study, including the
data-collection process, the characteristics of the dataset and the categorization of variables.

3.1. Dataset Description

This dataset is part of a survey administered to 383 randomly selected households in
Brazil to collect data about monthly electrical power consumption and the characteristics
of the households and occupants. The inputs consist of the building’s geographical and
structural data and data related to the occupants’ social, economic and behavioral aspects.
The outputs are low-, medium- and high-load-consumption profiles. Those profiles are
formed by clustering the household power consumption with k-means, agglomerative
hierarchical clustering (AHC) and self-organizing maps (SOM).

Based on the research conducted by [36], selecting input variables for the dataset
depends on expert opinions and initial testing. In this specific case, the selection of each
variable results from a study on the factors that affect household electricity consumption.

Various researchers have divided them into different categories to understand better
the factors that affect indoor environmental quality. For instance, factors affecting house-
hold energy consumption have been categorized into seven groups: climate, building
characteristics, social and economic factors, user presence, building service systems, occu-
pant behavior and indoor environmental quality [37]. Additionally, these factors have been
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grouped into four categories: external conditions, physical characteristics of the dwelling,
appliance and electronics stock, and occupant factors [38]. A simplified classification di-
vides these factors into objective and subjective categories, where objective factors do not
depend on the individual’s intention, while subjective factors are related to an individual’s
intention [6].

3.2. Variable Categorization

Machine learning models for energy consumption rely on various features such as
outdoor weather conditions, building size and surface area, and dwelling typology [39].
For instance, weather conditions, such as temperature and rainfall, are considered for urban
or rural areas where a dwelling is located. Similarly, building characteristics, such as the
number of rooms, determine the dwelling typology.

According to a review conducted by ref. [2], heating and air conditioning (HAC)
systems, along with domestic hot water (DHW) systems, are some of the major energy-
consuming appliances in households. This variation in energy consumption is attributed to
differences in thermal comfort expectations, resulting in temperature adjustments, and to
different degrees of importance placed on occupant behavior [40].

According to ref. [1], age and family size are important factors linked to energy con-
sumption. Homes with fewer children have more flexibility in their energy-consumption
practices compared to homes with children, where parents have less flexibility in their
routines. The number of people living in a house is also a significant factor affecting energy
consumption, as energy usage tends to increase with the number of occupants [41]. Addi-
tionally, ref. [42] suggests that homes with fewer children can perform different practices
and consume energy differently, making them more flexible in their energy consumption.

Household disposable income and education level are important factors that influence
energy consumption across various energy load profiles [43]. When families have higher
incomes, they tend to own more appliances and thus consume more energy. However, a
higher income can also lead to investments in modern energy-efficient equipment, thereby
decreasing energy consumption.

Each row in the dataset is a twelve-element array consisting of eleven characteristics
and one of three cluster types. To provide a clearer understanding of the dataset, Table 2
presents the description of the characteristics, and Table 3 provides the statistical analysis
of the numerical variables, including their mean, median, standard deviation, minimum
and maximum values.

Table 2. Description of features in the behavior dataset.

Feature Description

ARE Area in which the dwelling is located (0-Urban, 1-Countryside)
TYP Dwelling typology (0-Standard house, 1-Standard apartment, 2-Duplex or triplex)
BED Number of bedrooms
HAC Number of heating and air conditioning units in use
DHW Number of domestic hot water units in use
COE Usage of electric cooktop and/or electric oven (0-Yes, 1-No)
WPU Usage of electric water pump (0-Yes, 1-No)
NPE Number of people living in the dwelling
U18 Number of people under 18 living in the dwelling
PET Presence of pets, specifically dogs and/or cats (0-Yes, 1-No)

INC Value of family income (0-Up to R$ 1903.98, 1-From R$ 1903.99 to R$ 4664.68, 2-Above
R$ 4664.68)
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Table 3. Statistical analysis of numerical variables in the dataset.

Variable Mean Std Dev Min Median Max

Number of bedrooms 2.83 1.00 1.00 3.00 8.00
Number of heating and air
conditioning units 0.94 1.13 0.00 1.00 5.00

Number of domestic hot water units 1.04 0.93 0.00 1.00 5.00
Number of people 3.16 1.23 1.00 3.00 7.00
Number of people under 18 0.81 0.92 0.00 1.00 5.00

4. The Feature-Selection Process

Generating a model for predictive purposes using data is often challenged by the curse
of dimensionality, which can be mitigated by selecting relevant features from the original
feature set. This section aims to achieve this by applying specific feature-selection criteria
and obtaining a subset of the relevant features.

4.1. Chi-Square Test

In the context of feature selection for a predictive model, the CHI2 test is used to
evaluate the independence between each feature and the target variable [44]. Before
analyzing the categorical variables, the five numerical features (BED, HAC, DHW, NPE,
and U18) were categorized and the categories are presented in Table 4.

Table 4. Categorization of quantitative variables.

Feature Categories

BED 0—One bedroom, 1—Two bedrooms, 2—Three bedrooms, 3—Four or more bedrooms
HAC 0—Zero HAC, 1—One HAC, 2—Two HACs, 3—Three or more HACs
DHW 0—Zero DHW, 1—One DHW, 2—Two DHWs, 3—Three or more DHWs
NPE 0—One person, 1—Two persons, 2—Three persons, 3—Four or more persons
U18 0—Zero child, 1—One child, 2—Two children, 3—Three or more children

The process involves calculating the p-value for each feature to determine its statistical
significance in relation to the target variable. If the p-value for a feature is greater than
0.05 (at a 95% confidence level), we fail to reject the null hypothesis, indicating that the
feature is independent of the target variable. Consequently, that feature is removed from
further analysis. We then recalculate the p-values for the remaining features and continue
this process until all features have p-values lower than 0.05. This iterative process ensures
that only statistically significant features are retained. The implementation of the CHI2 test
was done using the scikit-learn 1.3.0 library in Python 3.9.18 [21].

During the initial test, the k-means and SOM algorithms identified the PET feature
with the highest p-value. In k-means, the p-value was approximately 0.6 (Figure 2a), while
in SOM, it was almost equal to 1 (Figure 2c). On the other hand, the AHC algorithm
identified the ARE feature with the highest p-value, around 0.55 (Figure 2b). Therefore,
these features were eliminated as their p-values exceeded the 0.05 threshold.
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Figure 2. p-value of features in the CHI2 test. (a) K-means, (b) AHC, (c) SOM.
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In the second stage of analysis, the WPU feature was removed. The p-value was
approximately 0.5, slightly less in k-means (Figure 3a) and a little more in SOM (Figure 3c).
In the AHC analysis, the PET feature was removed due to its p-value being close to 0.5.
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Figure 3. p-value of features after removing one feature in the CHI2 test. (a) K-means, (b) AHC,
(c) SOM.

After removing two features, the highest p-value continued to be above the 0.05
threshold (Figure 4). The value was closer to 0.25 in all cases: k-means and SOM with the
ARE feature, and AHC with WPU.
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Figure 4. p-value of features after removing two features in the CHI2 test. (a) K-means, (b) AHC,
(c) SOM.

After removing eight features, all p-values were below the 0.05 threshold, signaling the
end of the process, as shown in Figure 5.
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Figure 5. p-value of features after removing eight features in the CHI2 test. (a) K-means, (b) AHC,
(c) SOM.

After conducting a recursive analysis, the features with a p-value higher than the
threshold were eliminated until all remaining features had a p-value below the threshold.
This confirmed that ARE, PET and WPU were independent. As a result, it was concluded
that only the following features have a significant relationship with the target variables:
HAC, INC, DHW, TYP, NPE, BED, COE and U18.
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4.2. Recursive Feature Elimination with Multinomial Logistic Regression

The RFE-MLR determines the optimal number of features required to achieve the best
model accuracy. Initially, the algorithm calculates the accuracy of all features and then
identifies which feature must be removed to maintain or improve accuracy. This process is
repeated until RFE indicates that no more features need to be removed. The algorithms
were implemented in Python’s scikit-learn library, and stratified k-fold cross-validation
was used to enhance performance [21]. To address the potential biases introduced by
the initial set of features, we conducted a thorough literature review and consulted with
domain experts to identify the most relevant variables for household energy consumption.
Additionally, we performed sensitivity analyses to evaluate the impact of including or
excluding specific features on the overall model performance. These steps are crucial for
ensuring that our feature-selection process remains robust and that the selected features
genuinely contribute to understanding energy-consumption patterns.

The initial accuracy of RFE-MLR with all eleven features, indicating an optimal number
of ten features, was 68.6% using the k-means algorithm (Figure 6a). The algorithm suggested
the removal of the U18 feature, after which the accuracy of 68.6% was maintained, and the
algorithm then identified an optimal number of nine features (Figure 6b). After removing
TYP and running the algorithm for the third time, RFE-MLR showed that the remaining nine
characteristics were the optimal number of features (Figure 6c). This means that the k-means
algorithm selected the following features as optimal: ARE, HAC, DHW, NPE, WPU, INC,
COE, PET and BED, and the model finished with an accuracy of 69.7%.
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Figure 6. Model accuracy vs. the number of features with k-means. (a) All features, (b) After the 1st
removal, (c) Process ends.

For the AHC target, we ran the RFE-MLR with all eleven features and obtained an
accuracy of 60.1%. The algorithm suggested that only three features are optimal: HAC,
DHW and NPE. After removing the non-relevant features, the accuracy increased to 64.1%,
as depicted in Figure 7b. Therefore, these three features are considered relevant for the
prediction model.
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Figure 7. Model accuracy vs. number of features with AHC. (a) All features, (b) Process ends.
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According to the RFE-MLR algorithm, only one feature is considered optimal when
the target is SOM. This is shown in Figure 8. The model that includes all eleven features has
an accuracy of 67.3%. However, when only the HAC feature is used, the accuracy increases
to 68.7%.
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Figure 8. Model accuracy vs. number of features with SOM. All features, process ends.

After analyzing the model accuracy with respect to the choice of factors and using the
RFE-MLR algorithm, we found that the algorithm presents different optimal features with
each target. Therefore, we have decided to consider the features selected with the k-means
algorithm for further analysis. The final accuracy achieved was nearly 70%, and the optimal
features selected were ARE, HAC, DHW, NPE, WPU, INC, COE, PET and BED.

4.3. Random Forest Algorithm

Understanding which features have the most significant impact on the predictions of
a random forest model is crucial. We calculate the feature importance scores based on how
much each feature contributes to the model’s accuracy. Features with higher importance
scores are more influential. These scores help guide feature selection, where we choose to
keep only the most important features for the final model. We then remove each feature with
less importance and verify the accuracy. If the accuracy decreases, we stop the process. If not,
we repeat the process to simplify the model without sacrificing predictive performance.

To determine the accuracy of a model, we use a cross-validation algorithm, which
helps us understand the significance of the features used. In a random forest (RF) model,
the sum of all feature importance scores equals one, or 100%, normalizing each feature’s
importance within the model’s context. We applied this algorithm using the scikit-learn
library in Python [21]. In the initial stage, all eleven features produced cluster outputs
with the same 70% accuracy. The importance score of the first feature ranking is presented
in Figure 9. The analysis reveals that the feature ‘ARE’ has a relatively small importance
score of less than 0.01, representing only 1% of the importance in prediction. On the other
hand, the feature ‘HAC’ has the highest importance score, accounting for almost 25% of the
prediction importance.
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Figure 9. Ranking of feature importance with all features in each clustering method as a target.
(a) K-means, (b) AHC, (c) SOM.

The RF algorithm first removes the feature ‘ARE’ and checks for any change in the
model accuracy. As there is no change, the process is repeated. The features are dropped
individually, based on their importance score in ascending order presented in Figure 9. The
RF process stops after dropping ARE, WPU, COE, PET and TYP features, which are not
necessarily in this order (Figure 10).
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Figure 10. Ranking of feature importance with selected features in each clustering method as a target.
(a) K-means, (b) AHC, (c) SOM.

According to the importance ranking, the feature ‘TYP’ was removed, and the next
feature, ‘U18’, has an importance score of approximately 10% (as shown in Figure 10). If
‘U18’ is removed, the model accuracy will decrease to 68% in k-means and AHC, and 69%
in SOM. Removing any other features will also negatively impact the model’s accuracy.
Therefore, the RF process stops here, and the selected features are U18, INC, BED, DHW,
NPE and HAC.

4.4. Fuzzy Rough Feature-Selection Method

Determining the ideal number of features can be challenging because there is always a
trade-off between the smallest subset and the most accurate modeling [45]. A FRFS can be
combined with FRNN for classification to address this challenge. This approach balances
both aspects to achieve a more effective feature-selection process.

Combining FRFS with the FRNN algorithm provides a comprehensive framework
for handling uncertainty and imprecision in feature-selection and feature-classification
tasks. This integration allows for more robust and accurate modeling of complex real-world
data, where traditional methods may fall short due to their inability to handle uncertainty
effectively. These algorithms are available in the fuzzy-rough-learn Python library [46].

In a random sample of behavioral data (Table 5), we compared the positive region
selecting the features { f2, f3} and { f4, f5}. Here, xi represents the objects (xi ∈ U), f represents
the attributes ( f ∈ A) and p represents the k-means consumption clusters. Table 6 shows the
resulting set for the partition U/IND(F) when considering the features { f2, f3}.
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Table 5. Random sample of the behavioral dataset.

U f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 p

x1 1 0 2 1 1 0 1 2 0 0 4 2
x2 0 0 2 0 0 0 0 3 0 0 4 1
x3 0 1 3 1 2 1 1 2 0 0 2 2
x4 0 1 1 1 1 1 1 1 0 1 2 1
x5 0 0 3 0 1 0 1 3 1 0 4 1
x6 0 0 2 0 1 1 1 1 0 1 0 1
x7 0 1 3 2 2 0 1 5 1 1 4 2
x8 0 0 3 4 2 0 1 3 1 1 4 3

The objects x1, x2 and x6 are indiscernible in relation to the attributes { f2, f3}, as they
all have f2 = 0 and f3 = 2. Similarly, x3 and x7 cannot be distinguished from each other
as they both have f2 = 1 and f3 = 3, and x5 and x8 cannot be distinguished from each
other as they both have f2 = 0 and f3 = 3. Therefore, the resulting set for the partition
U/IND(F) is shown in Table 6.

Table 6. Partition of U based on f2 and f3.

U/IND(F) f2 f3

{x1, x2, x6} 0 2
{x3, x7} 1 3
{x5, x8} 0 3
{x4} 1 1

Given a set of clustered objects Q, if U/Q is defined as {{x1,x3,x7}, {x2,x4,x5,x6}, {x8}},
the elementary sets presented in U/IND( f2, f3), which are also contained in X (where
X is a subset of U/Q), are {x3, x7} and {x4}. Therefore, the values of FX and POSF(Q) for
F = { f2, f3} and Q = {p} are

FX = {{x3, x7}, {x4}}

POS{ f2, f3}(Q) = {x3, x4, x7}

Regarding { f4, f5}, it seems that x1 and x4 are indiscernible because both have f4 = 1
and f5 = 1, while x5 and x6 both have f4 = 0 and f5 = 1. The resulting set for the partition
U/IND(F) is shown in Table 7.

Table 7. Partition of U based on f4 and f5.

U/IND(F) f4 f5

{x1, x4} 1 1
{x2} 0 0
{x3} 1 2
{x5, x6} 0 1
{x7} 2 2
{x8} 4 2

The sets contained in X, which is a subset of U/Q, and presented in U/IND( f4, f5)
are: {x2}, {x3}, {x5, x6}, {x7} and {x8}. Therefore, POSF(Q) and FX, where F = { f4, f5} and
Q = {p}, are:

FX = {{x2}, {x3}, {x5, x6}, {x7}, {x8}}

POS{ f4, f5}(Q) = {x2, x3, x5, x6, x7, x8}

When POS{ f4, f5}(Q) surpasses POS{ f2, f3}(Q), the combination of features f4 and f5
becomes more important than f2 and f3.
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In the analyzed dataset, FRFS identified the features that increased the positive region
for each n = k, where k ranged from 2 to 10. The selected features are listed in Table 8.

Table 8. Features selected with maximum POSF(Q).

n Selected Features

2 TYP/DHW
3 ARE/TYP/DHW
4 ARE/TYP/BED/DHW
5 ARE/TYP/BED/HAC/DHW
6 ARE/TYP/BED/HAC/DHW/COE
7 ARE/TYP/BED/HAC/DHW/COE/WPU
8 ARE/TYP/BED/HAC/DHW/COE/WPU/NPE
9 ARE/TYP/BED/HAC/DHW/COE/WPU/NPE/U18
10 ARE/TYP/BED/HAC/DHW/COE/WPU/NPE/U18/PET

In this approach, FRNN is combined with FRFS to calculate the model accuracy of
each feature group (as shown in Table 8). The n features that achieve the highest accuracy
are then selected. If two feature groups have the same accuracy, the group with the lowest
n value is chosen.

To maximize accuracy, the FRNN algorithm was executed using 75–25% train and test
groups, with k neighbors in {3, 5, 7, 9, 11}. Each value in Table 9 represents the average
accuracy obtained from multiple runs to ensure robustness and reliability of the results.

Table 9. FRNN model accuracy for n features selected.

n K-Means Accuracy AHC Accuracy SOM Accuracy

2 0.6489 0.5957 0.6596
3 0.6489 0.5957 0.6596
4 0.6277 0.5957 0.6595
5 0.6809 0.7021 0.7128
6 0.6596 0.6383 0.6596
7 0.6596 0.6277 0.6809
8 0.6809 0.6383 0.6383
9 0.6596 0.6277 0.6914
10 0.6489 0.6064 0.6489

After applying the FRNN algorithm combined with FRFS, it was determined that the
optimal number of features for maximizing accuracy was n = 5. Specifically, the selected
features were ARE, TYP, BED, HAC, and DHW.

5. Analyzing the Selected Features

In this section, we conduct a trend analysis, assessing the impact of selected features on
household energy load profiles and identifying out-profiled households—those that deviate
from the typical patterns of their assigned consumption cluster and exhibit behaviors
characteristic of a different, typically lower-consumption profile.

5.1. Feature-Selection Overview

The feature selection provides insights into which features the model relies on, but it
does not explain why a feature is important. Domain knowledge is crucial for understand-
ing the context and significance of certain features. Through Table 10, we can analyze the
results obtained from the feature-selection techniques simultaneously.
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Table 10. Features and the methods by which they were selected.

Feature Method

ARE RFE-MLR/FRFS-FRNN
TYP CHI2/FRFS-FRNN
BED CHI2/RFE-MLR/RF/FRFS-FRNN
HAC CHI2/RFE-MLR/RF/FRFS-FRNN
DHW CHI2/RFE-MLR/RF/FRFS-FRNN
COE CHI2/RFE-MLR
WPU RFE-MLR
NPE CHI2/RFE-MLR/RF
U18 CHI2/RF
PET RFE-MLR
INC CHI2/RFE-MLR/RF

While feature-selection techniques shed light on which features are influential in the
model, they do not inherently provide the rationale behind them. Thus, a deep under-
standing is essential to comprehend the context and significance of these features. For that
analysis, we focus on features common to at least three selection methods.

Thus, we will analyze the number of people living in a dwelling (NPE), the number
of heating and air conditioning units (HAC), the number of hot water units (DHW), the
number of bedrooms (BED), and the value of family income (INC).

5.2. Heating and Air Conditioning Equipment

The analysis of HAC usage reveals distinct patterns across various clustering meth-
ods, as depicted in Figure 11. This pattern underscores the significant influence of HAC
equipment on energy-consumption profiles.
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Figure 11. Cumulative bar chart of the HAC percentage in each consumption profile. (a) K-means,
(b) AHC, (c) SOM.

In the low-consumption profile, most dwellings do not use HAC. In k-means, 66.42%
of dwellings fall into this category, a behavior maintained across other clustering algorithms:
71.74% in AHC and 66.37% in SOM.

Conversely, the medium-consumption profile is characterized by a substantial increase
in HAC presence. The proportion of dwellings without HAC significantly drops to around
20% in k-means and SOM and to 25% in AHC. This shift suggests an escalating dependence
on HAC as consumption levels rise.

The trend becomes more pronounced in the high-consumption profile, where the
percentage of dwellings without HAC diminishes further. Notably, the proportion of
households using more than two HAC units increases markedly in this category, jumping
from 13.39% to 48.78% in k-means, 10.96% to 46.51% in AHC, and 12.90% to 40.35% in SOM.

The decreasing trend of dwellings without HAC in the medium- and high-consumption
profiles indicates a significant shift towards increased HAC usage. Consequently, house-
holds within these profiles that do not use HAC can be considered out-profiled, deviating
from the typical pattern of their respective consumption categories.
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5.3. Domestic Hot Water Equipment

The use of DHW equipment reveals a clear trend where higher-consumption profiles
are associated with an increased presence of DHW units. This correlation is presented in
Figure 12.
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Figure 12. Cumulative bar chart of the DHW percentage in each consumption profile. (a) K-means,
(b) AHC, (c) SOM.

In the low-consumption profile, a significant proportion of dwellings, nearly 80%, have
none or only one DHW unit. This figure declines to around 60% in the medium profile and
drops to about 40% in the high-consumption profile, indicating a strong correlation between
higher energy consumption and the number of DHW units. This pattern is consistent across
the k-means, AHC, and SOM clustering methods.

The medium-consumption profile predominantly consists of households with at least
one DHW unit, while the high-consumption profile is characterized by dwellings with two
or more DHW units. This delineation suggests that the presence of multiple DHW units is
a significant indicator of higher energy-consumption levels.

Consequently, households in the medium profile without any DHW unit can be
considered out-profiled, deviating from the general trend of this consumption category.
Similarly, in the high-consumption profile, dwellings with a maximum of one DHW unit
are also deemed out-profiled, given their lower than expected DHW count for this high-
energy-consumption category.

5.4. Number of People in Household

It is universally acknowledged that the number of people living in a household (NPE)
impacts energy consumption, as evidenced in the analysis across three clustering algorithms
(Figure 13).
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Figure 13. Cumulative bar chart of the NPE percentage in each consumption profile. (a) K-means,
(b) AHC, (c) SOM.

In the low-consumption profile, approximately 70% of dwellings house up to three
individuals. This proportion significantly decreases in the medium- and high-consumption
profiles. Notably, dwellings with a single occupant are almost exclusively found in the low-
consumption profile, with their presence in the medium and high profiles being minimal
or non-existent.
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Dwellings with two occupants also constitute a minority in the medium profile, ac-
counting for around 20%, and this figure diminishes to nearly 10% in the high-consumption
profile. In contrast, the high-consumption profile predominantly comprises households
with four or more occupants.

Therefore, it can be inferred that dwellings with up to two occupants in the medium-
consumption profile and those with up to three occupants in the high-consumption profile
are outliers or ‘out-profiled’ households, deviating from the typical occupancy patterns of
their respective consumption categories.

5.5. Number of Bedrooms

The number of bedrooms across different household energy-consumption profiles
provides insightful correlations. In Figure 14, we categorize dwellings based on the number
of bedrooms, including a category for more than four bedrooms, given the low proportion
of such dwellings in the dataset.

Dwellings with up to three bedrooms are predominantly found in the low-consumption
profile, accounting for nearly 90% of households. This trend sharply decreases in the
medium- and high-consumption profiles, where the prevalence of one and two-bedroom
dwellings is significantly lower. Single-bedroom dwellings are virtually absent in the
high-consumption profile, and two-bedroom dwellings constitute a small fraction (around
4.88% in k-means, 4.65% in AHC and 5.26% in SOM).
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Figure 14. Cumulative bar chart of the BED percentage in each consumption profile. (a) K-means,
(b) AHC, (c) SOM.

Conversely, the proportion of dwellings with three or more bedrooms increases with
the consumption profiles. This category represents almost half of the dwellings in the
low-consumption profile, about three-quarters in the medium-consumption profile and
close to 95% in the high-consumption profile, regardless of the clustering method used.

This analysis reveals that dwellings with up to two bedrooms in the medium- and high-
consumption profiles deviate from the common pattern, thus qualifying as out-profiled
households.

5.6. Household Income Levels

The analysis of household energy consumption concerning income levels is presented
in Figure 15, showcasing the distribution of various income levels across different con-
sumption profiles.
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Figure 15. Cumulative bar chart of the INC levels percentage in each consumption profile. (a) K-
means, (b) AHC, (c) SOM.

In the medium-consumption profile, dwellings at the lowest income level comprise
only about 9%, which reduces to zero in the high-consumption profile. A similar decreasing
trend is observed for the second income level, representing around 19% in the medium
profile (22% in the AHC profile) and never exceeding 15% in the high profile, irrespective
of the clustering method.

Considering that most households in both the medium- and high-consumption profiles
fall into the highest income category, it is reasonable to infer that dwellings within these
profiles’ first and second income levels are outliers or ’out-profiled’ households. These
findings emphasize the influence of income on household energy consumption and the
divergence of lower-income households from the typical consumption patterns of their
respective profiles.

6. Conclusions and Future Work

This study has provided significant advancements in the analysis of household energy
consumption by examining data from 373 dwellings in Brazil using four distinct feature-
selection methods: the chi-square (CHI2) independence test, recursive feature elimination
with multinomial logistic regression (RFE-MLR), random forest (RF), and fuzzy rough fea-
ture selection combined with fuzzy rough nearest neighbor (FRFS-FRNN). These methods
were instrumental in identifying key features associated with energy consumption, offering
a deeper understanding of consumer behaviors and aiding in identifying out-profiled con-
sumers. The findings from this research can guide future studies in energy consumption,
including evaluating new techniques and exploring additional data and features across
different regions.

From the initial eleven features included in the survey, five were retained after the feature-
selection analysis. Subsequent individual analyses confirmed that these features significantly
impact household energy consumption across low-, medium-, and high-load profiles.

Key findings of this study include the identification of out-profiled dwellings, which
are characterized by the absence of heating and air conditioning (HAC) equipment in
medium- or high-consumption profiles, the absence of domestic hot water (DHW) equip-
ment in the medium profile, and the presence of only one DHW unit in the high profile.
Additionally, dwellings with up to two people in the medium profile and up to three people
in the high profile, as well as those with up to two bedrooms in medium or high profiles,
were considered out-profiled. Households with an income of up to R$ 4664.68 in medium
or high profiles also fell into this category.

While this study presents notable advancements, it is not without limitations. Firstly,
the research is geographically constrained to Brazilian households, which might limit
the generalization of findings to other regions with different climatic, cultural, and socio-
economic conditions. Secondly, the effectiveness of the feature-selection methods is contin-
gent on the initial set of features in the dataset. The exclusion of certain variables or the
presence of unobserved confounding factors might have influenced the study’s outcomes.

Despite these limitations, the study opens several directions for future research. One
potential path is the development of dynamic energy tariff models based on consumer
behavior, as suggested by our findings, which can lead to more equitable billing systems
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and promote energy conservation. Additionally, applying these techniques in different
geographical and socio-economic contexts can validate and possibly enhance the general-
ization of our findings. Further research could also explore the integration of additional
variables, such as real-time energy-usage data and more granular socio-economic indicators,
to deepen the understanding of household energy behavior.

In conclusion, this study contributes significantly to the field of energy management
by offering a nuanced understanding of household energy behavior through advanced
feature-selection techniques. Our findings facilitate the development of tailored strategies
for sustainable energy consumption and highlight the potential for more equitable energy
management practices. Building on these insights, addressing the identified limitations
and exploring new methodologies will foster a more comprehensive understanding of
household energy dynamics.
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